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Some Goals

Understand mathematical objects such as

∞∑
n=0

an = a0 + a1 + a2 + a3 + · · · =?

∞∏
n=0

an = a0 · a1 · a2 · a3 + · · · =?

The building blocks of these objects are

a1,a2,a3, . . . ,an, . . .︸ ︷︷ ︸
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Sequences of real numbers

Definition
A sequence is a function f whose domain is N.

It can be represented as

{f(1), f(2), f(3), . . .}

{f(0), f(1), f(2), f(3), . . .}

or

{f(n), . . . , n ≥ n0}

We will first examine sequences of real numbers, f : N→ R. Later we
will study sequences of functions.
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It allows us to look at real numbers in a concrete manner: If

x = A.a1a2 · · · an · · · ,

where ai are the decimal digits, we form the sequence of rational
numbers

x0 = A
x1 = A.a1

x2 = A.a1a2

xn = A.a1a2 · · · an, and so on
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Examples

We will look for features such as clustering
1 (1, 1

2 ,
2
3 ,

3
4 , . . .)

2 (c, c, c, c, . . .)
3 (1,−1

2 ,
2
3 ,−

3
4 , . . .)

4 ( 1
2n )∞n=1 = (1

2 ,
1
4 ,

1
8 , . . .)

5 (an), a1 = 1, and an+1 = an
2 + 1

6 (an), an is the nth digit in the decimal expansion of π.
7 (an), an = (1 + 1/n)n
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Why Sequences?

We use sequences to make sense of:∑
n≥1 an: Series

1 + 1/22 + 1/32 + · · ·+ 1/n2 + · · ·

Question: How to handle

(a0 + a1 + · · ·+ an + · · · )(b0 + b1 + · · ·+ bn + · · · )

∑
m,n≥1 am,n: Double [multiple] Series∑

m,n

1
m2 + n2∏

n≥1 an: Infinite Products∏
p

(
1

1− p
), p prime number
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Convergence of a Sequence

Sequences are wonderful ways to represent data, but we are mostly
interested is one of its aspects:

Definition
A sequence (an) converges to a real number a if, for every positive real
number ε, there exists an N ∈ N such that whenever n ≥ N it follows
that |an − a| < ε.

One notation: lim an = a, or (an)→ a. To understand this we introduce
the notion of a neighborhood of a real number a.
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Example

Consider the sequence (an), an = n+1
n . It is natural to expect that

lim an = 1. Let us follow the template:
Given ε > 0, to determine N we solve∣∣∣∣n + 1

n
− 1
∣∣∣∣ < ε

That is ∣∣∣∣1n
∣∣∣∣ < ε ⇒ n >

1
ε

Thus if ε = 1/100, N = 101 will work.
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Neighborhoods

( | )
a− ε a a + ε

Definition
Given a real number a ∈ R and a positive number ε > 0, the set

Vε(a) = {x ∈ R : |x − a| < ε}

is called the ε-neighborhood of a.

Wolmer Vasconcelos (Set 2) Advanced Calculus Spring 2010 11 / 144



Limit and Neighborhoods

(
a1
•

a2
• •

a3
•
· · ·

• • •
aN

| )
a− ε a a + ε

|
b

a is the limit of (an) if once aN enters the neigbhorhood Vε(a), all an
that follow will stay in it. That is, the an cluster around a in a very
specific manner.

Note that this implies that if (an) converges, its limit is unique: the an
cannot be in both Vε(a) and Vε(b) if ε < 1/2|a− b|.
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Exercise

Let an = 2n2+n+1
n2 . It can be written as

an = 2 +
1
n

+
1
n2

It is now easy to see that lim an = 2: Just notice that

|an − 2| = 1
n

+
1
n2 ≤ 2

1
n

and we can use the argument of the previous Example to finish.
Exercise: For every real number x ∈ R, there exists a sequence (an)
of rational numbers such that (an)→ x .
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Limit Template

Let us summarize the procedure to compute the limit of a sequence:

(an)→ a involves all the following steps:
1 Let ε > 0 be arbitrary
2 Demonstrate a choice for N ∈ N: hard work here often
3 Assume n ≥ N
4 Check that

|a− an| < ε
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Example

Define the sequence

a1 =
√

2, a2 =

√
2
√

2, a3 =

√
2
√

2
√

2, · · ·

Question: (an)→? Note

a1 =
√

2, a2 = a1
4
√

2, a3 = a2
8
√

2, · · ·

an = 21/2+1/4+···+1/2n
< 2

So this sequence is bounded [and increasing]. Show that its least
upper bound is 2.
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Infinity as the limit of a sequence

If a sequence (an) is not convergent, we say that it is divergent. We
also use the following terminology for some divergent sequences:

Definition
The sequence (an) converges to∞, lim an =∞, if given any positive
number b, there is an N ∈ N such that an ≥ b for n ≥ N.

Example: {1,2,3, . . . ,n, . . .}

Some sequences don’t make up their minds:
1 1,−1,1, . . . ,±1, . . .
2 one gets a very complicated sequence by glueing two unrelated

sequences (an), (bn), as in

a0,b0,a1,b1,a2,b2, . . . ,an,bn, . . . ,
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Boundedness of Convergent Sequences

Definition
A sequence (an) is bounded if there exists a number M > 0 such that
|an| ≤ M for all n ∈ N.

Theorem
Every convergent sequence is bounded.

Proof. Suppose (an)→ `. For ε = 1 let N ∈ N be such that |an − `| < 1
for n ≥ N.
We claim that M = max{|a1|, |a2|, . . . , |aN−1|, |`|+ 1} satisfies

|an| ≤ M

Wolmer Vasconcelos (Set 2) Advanced Calculus Spring 2010 17 / 144



Converse?

The sequence (1,−1, . . . , (−1)n, . . .) is bounded but not convergent.

Many sequences are put together from two or more sequences: Say
start with

{a1,a2,a3, . . .} {b1,b2,b3, . . .}

{a1,b1,a2,b2,a3,b3, . . .}
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Algebraic Limit Theorem

Theorem
Let lim an = a and lim bn = b. Then

(i) lim can = ca, for all c ∈ R;
(ii) lim(an + bn) = a + b;

(iii) lim(anbn) = ab;
(iv) lim(an/bn) = a/b provided bn 6= 0 and b 6= 0.

Note an important consequence: Since we can view real numbers as
limits of rational numbers, we can carry out the desired field operations

x = X .x1x2 . . . xn| . . .
y = Y .y1y2 . . . yn| . . .
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Proof. (i) [If lim an = a, then lim can = ca] Consider the case c 6= 0. To
prove (can)→ ca, we use the proof template. Let ε > 0. We want to
argue that |can − ca| < ε from some term of the sequence (can) on.
Since (an)→ a, given ε/|c|, there is N ∈ N such that for n ≥ N
|an − a| < ε/|c|.
This leads to

|can − ca| = |c||an − a| < ε, n ≥ N,

as desired. This proves (i) for c 6= 0. The case c = 0 is trivial.
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(ii) [If lim an = a, lim bn = b, then lim(an + bn) = a + b] Given ε > 0,
pick N1 and N2 so that

|an − a| < ε/2, & |bn − b| < ε/2

for n ≥ N1 and n ≥ N2, respectively. Thus n ≥ N = max{N1,N2}

|(an + bn)− (a + b)| = |(an − a) + (bn − b)| ≤ |an − a|+ |bn − b|
≤ ε/2 + ε/2 = ε
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(iii) [If lim an = a, lim bn = b, then lim anbn = ab] If lim an = a,
lim bn = b, we know that |an| and |bn| are bounded, that is |an| < M1
and |bn| < M2 for all n. Let M = max{M1,M2}. Given ε > 0, pick N1
and N2 so that

|an − a| < ε/2M, & |bn − b| < ε/2M

for n ≥ N1 and n ≥ N2, respectively.
This leads to: for all n ≥ N = max{N1,N2}

|anbn − ab| = |(anbn − anb) + (anb − ab)|
≤ |(anbn − anb)|+ |(anb − ab)|
= |an||bn − b|+ |b||an − a| ≤ M1|bn − b|+ M2|an − a|
≤ ε/2 + ε/2 = ε

which completes the proof.
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(iv) [If lim an = a, lim bn = b, bn,b 6= 0, then lim an/bn = a/b]. In the
case of an/bn, we are going to apply the product rule to the product
an

1
bn

. This requires

Lemma

If the sequence (bn)→ b and bn,b 6= 0, then ( 1
bn

)→ 1
b .

Proof. Let ε0 = |b|/2. Pick N1 large enough so that for n ≥ N1
|bn − b| < ε0 = |b|/2. This shows that in this range |bn| > |b|/2. Next,
given ε > 0, choose N2 so that for n ≥ N2

|bn − b| < εb2

2

Finally, if we let N = max{N1,N2},

∣∣∣∣ 1
bn
− 1

b

∣∣∣∣ =

∣∣∣∣b − bn

bbn

∣∣∣∣ ≤ εb2

2
1

|b||b|/2
= ε
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(xn)→?

We examine in detail this important sequence. Two cases are easy:
x = 1, when the sequence is constant (so lim xn = 1), and x = −1
(when it alternates between 1 and −1) when it does not converge. Let
us next examine the case |x | < 1, that is −1 < x < 1. We make a
series of technical observations.
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A useful limit calculation

Lemma
For any p > −1 and all n ∈ N, (1 + p)n ≥ 1 + pn.

Proof. We prove this by induction. It is true for n = 1. Now consider

(1 + p)n+1 = (1 + p)n(1 + p) ≥ (1 + pn)(1 + p)

= 1 + p(n + 1) + p2n ≥ 1 + p(n + 1).
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Back to our limit. If |x | < 1, 1
|x | = 1 + p, p > 0 and thus

1
|xn|

= (1 + p)n ≥ 1 + pn > pn

Therefore
|xn| < 1

pn

Which shows that for |x | < 1 lim |xn| = 0 and lim xn = 0 as well.
The case |x | > 1. Apply the algebraic limit theorem: By the case
above, lim 1

xn = 0, which shows (xn) does not converge.
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Limits and Order

Theorem (Order Limit Theorem)
Assume lim an = a and lim bn = b. Then

1 If an ≥ 0 for all n ∈ N, then a ≥ 0.
2 If an ≤ bn for all n ∈ N, then a ≤ b.
3 If there exists c ∈ R for which c ≤ bn for all n ∈ N, then c ≤ b.

Similarly, if an ≤ c for all n ∈ N, then a ≤ c.
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Proof. (i) Assume, by way of contradiction, that a < 0. Let us show
that this produces some an < 0. Let ε = |a|. There exists N such that

|an − a| < ε, n ≥ N

If an ≥ 0 for n ≥ N,

|an − a| = |an + (−a)| = an + |a| ≥ ε,

a contradiction.

(ii) The Algebraic Limit Theorem guarantees that the sequence
(bn − an) converges to b − a. Because bn − an ≥ 0, by Part (i), b ≥ a.

(iii) Take an = c (or bn = c) for all n ∈ N and apply (ii). �
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Examples

The constant sequence (c, c, c, . . .) converges to c:

xn = c for all n, so for ε > 0, |xn − c| = 0 < ε

Let xn ≥ 0 for all n ∈ N.
1 If (xn)→ 0, show that (

√
xn)→ 0: Given ε > 0 we can find N such

that |xn| < ε2 for n ≥ N. It follows that |
√

xn| < ε for n ≥ N.
2 If (xn)→ x , show that (

√
xn)→

√
x : We already know that x ≥ 0

and that the sequence is bounded, that is L < xn < U.In particular√
xn ≥

√
L and x ≥

√
L. Given ε > 0 pick N so that |xn − x | < ε2

√
L

for n ≥ N. Then

|
√

xn −
√

x | ≤ |
√

xn −
√

x | |
√

xn +
√

x |
2
√

L

=
|xn − x |

2
√

L
< ε
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Exercises

1 (i) Show that if (bn)→ b, then the sequence (|bn|) converges to
|b|.(ii) Converse?

2 Let (an) be a bounded (not necessarilly convergent) sequence,
and assume (bn)→ 0. Show that (anbn)→ 0. Why we are not
allowed to use the Algebraic Limit theorem?

3 Exercises 32(a,c,e) in page 56 of Textbook.
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Monotone Sequences

Definition
A sequence (an) is increasing if an ≤ an+1 for all n ∈ N, and
decreasing if an ≥ an+1 for all n ∈ N. A sequence is monotone if it is
either increasing or decreasing.

Theorem (Monotone Convergence Theorem)
If the sequence (an) is monotone and bounded, then it converges.

Proof. The assumption is that there is a B such that an ≤ B for all
n ∈ N. We are going to ‘build’ lim an. For that we are going to use the
decimal representation of the an.
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Visual Proof

a1 = A1.a11a12a13a14 · · ·
a2 = A2.a21a22a23a24 · · ·
a3 = A3.a31a32a33a34 · · ·

...
...

aN = AN .aN1aN2aN3aN4 · · ·
...

...
an = An.an1an2an3an4 · · ·

Since the an are bounded, its integral parts An are also bounded and
non-increasing. Thus, there is an N such that An = AN for all n ≥ N.
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Let us scan the first decimal digits from aN on:

aN1 = AN .aN1aN2aN3aN4 · · ·
...

...
an = An.an1an2an3an4 · · ·

Since An = AN , and an are increasing, the digits an1 must be
increasing so once it hits its maximal value, say at n = N1, it must stay
there, i.e. an1 = aN11 for n ≥ N1.
We move over the second decimal place, and so on. In this manner we
build the element a = AN .b1b2b3b4 . . . with the property
|a− an| < 10−Nr for n ≥ Nr+1. This shows that a = lim an. Note that a
is the least upper bound of the set {an}.
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‘Abstract’ Proof

Let (an) be a bounded monotone increasing sequence,

a1 ≤ a2 ≤ · · · ≤ an ≤ an+1 ≤ · · · ≤ B

Because the set of terms {an,n ≥ 1} is bounded, by the Axiom of
Completeness the set has a least upper bound B0. Now we verify
that an → B0. We use the limit template:

Given ε > 0, B0 − ε is not an upper bound so there is N such that
aN > B0 − ε. Since an is increasing, we have

B0 ≥ an ≥ aN > B0 − ε, n ≥ N.

This means that |an − B0| < ε for n ≥ N, thus proving that
lim an = B0.

Wolmer Vasconcelos (Set 2) Advanced Calculus Spring 2010 36 / 144



Example

A sequence we met already was (xn), where x1 = 1 and

xn+1 =
xn

2
+ 1

We proved that xn < xn+1 < 2, so this is a monotone bounded
sequence. Let a = lim xn. If we delete x1, we obtain the sequence
(xn+1,n ≥ 1) which obviously is monotone, and has the same limit.
Thus

lim xn+1 = a =
lim xn

2
+ 1 =

a
2

+ 1

and therefore
a = 2
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Calculating Square Roots

Let x1 = 2, and define

xn+1 = 1/2
(

xn +
2
xn

)

Show that x2
n ≥ 2, and then prove that xn − xn+1 ≥ 0. Conclude

that lim xn =
√

2.
We use induction. Squaring we have x2

n+1 = 1/4(x2
n + 4 + 4/x2

n ).
To show that x2

n+1 > 2, it suffices to show that if x2
n > 2, then

x2
n + 4/x2

n > 4. But

x2
n + 4/x2

n − 4 = (xn −
2
xn

)2 > 0

Note also xn − xn+1 = 1/2(xn − 2/xn) > 0, since x2
n > 2. Thus the

sequence (xn) is bounded and decreasing. Its limit a satisfies
a = 1/2(a + 2/a), i.e. a =

√
2.

Wolmer Vasconcelos (Set 2) Advanced Calculus Spring 2010 38 / 144



Modify the sequence so that it converges to
√

c:

xn+1 = 1/2
(

xn +
c
xn

)

We again check that the sequence (xn) is monotone and bounded.
When solving for the limit, we get a = 1/2(a + c/a), i.e. a =

√
c.

Many other equations f(x) = 0 can be set up as

x =
g(x)

h(x)

which we turn into a dynamical scheme

xn+1 =
g(xn)

h(xn)

If (xn) is monotone and bounded, the limit is a root.
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Subsequences

Definition
Let (an) be a sequence of real numbers, and let n1 < n2 < n3 < · · · be
an increasing sequence of natural numbers. Then the sequence

an1 ,an2 ,an3 ,an4 , . . .

is called a subsequence of (an) and is denoted by (anj ), where j ∈ N
indexes the subsequence.

Theorem
Subsequences of a convergent sequence converge to the same limit
as the original sequence.
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About bounded sequences: Bolzano-Weierstrass

-M
[

M
]

Theorem (Bolzano-Weierstrass Theorem)
Every bounded sequence (an) contains a convergent subsequence.

Proof. The assumption is that all an lie in some closed interval
I1 = [−M,M]. (Note that we allow repetitions.) Since the sequence is
infinite, an infinite subset of terms lies in either [−M,0] or in [0,M]. We
pick one of the subintervals with an infinite number of terms and call it
I2.
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We continue the process: bisect I2 pick I3 one of its two halfs that
contain an infinite number of terms. In this manner we get a
decreasing sequence of closed intervals

I1 ⊃ I2 ⊃ I3 ⊃ · · ·

If in each subset Ik we pick an element ank of the sequence in it, we
obtain a subsequence

{an1 ,an2 ,an3 , . . .}

We claim this (sub)sequence converges.
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By he Nested Interval Property there exists at least one point x ∈ R
contained in every Ik .
We claim (ank )→ x . Note that the length of Ik is M 1

2k−1 , which
converges to 0 (discussed in Workshop #3).
Choose N so that k ≥ N implies that the length of Ik is less than ε.
Because x and ank are both in ik , |x − ank | < ε. �

Wolmer Vasconcelos (Set 2) Advanced Calculus Spring 2010 44 / 144



Exercise

Let (an) be a bounded sequence, and define the set

S = {x ∈ R | x < an for infinitely many an}

Show that there exists a subsquence (ank ) converging to s = sup S.
(This is a direct proof of the BW Theorem using AoC.)
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Examples

Give an example of each of the following, or argue that such a request
is impossible.

1 A sequence that does not contain 0 or 1 as a term but contains
subsequences converging to each of these values.

2 A monotone sequence that diverges but has a convergent
subsequence.

3 A sequence that contains subsequences converging to every point
in the infinite set {1,1/2,1/3,1/4, . . .}.

4 An unbounded sequence with a convergent subsequence.
5 A sequence that has a subsequence that is bounded but contains

no subsequence that converges.
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Warming Up ...

Thus far we have two basic results about convergence of sequences:

Theorem (Monotone Convergence Theorem)
If the sequence (an) is monotone and bounded, then it converges.

Essentially, if

a1 ≤ a2 ≤ · · · ≤ an ≤ · · · ≤ B,

then an → B0, least upper bound of the an

Theorem (Bolzano-Weierstrass Theorem)
Every bounded sequence (an) contains a convergent subsequence.

Essentially, if the sequence (an) is bounded, that is there is M > 0
such that −M ≤ an ≤ M for all n, then there is a subsequence

an1 ,an2 ,an3 , . . .

that is convergent.
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The notion of convergence of a sequence that we are using is:

Definition (Convergence of a Sequence)
A sequence (an) converges to the real number a if, for every ε > 0,
there exists an N ∈ N such that whenever n ≥ N it follows that
|an − a| < ε.

lim an = a if→ given ε > 0→ find N → for n ≥ N → |an − a| < ε
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Cèsaro Means

There are other ways of defining convergence of sequences. Today
we study a powerful notion, but first we do warm ups.

Let (an) be a sequence and define the sequence of its means,

cn =
a1 + a2 + · · ·+ an

n
, n ≥ 1

thus forming the sequence (cn) of averages. For example, the
sequence (1,0,1,0,1,0, . . .) has sequence of means

(1,1/2,2/3,1/2,3/5,1/2,5/7, . . . ,1/2, (n + 2)/(2n + 1), . . .)→ 1/2
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Theorem (Cèsaro Means)
If (an)→ a, then (cn)→ a also.

Proof.
Given ε > 0 we will find N such that |cn − a| < ε for n ≥ N.Since
(an)→ a, we know that (an) is bounded, say |an| < M for some M,
and for ε′ = ε/2 there is N0 such that

|an − a| < ε′ n ≥ N0

Now consider |cn − a|

|cn − a| =

∣∣∣∣a1 + · · ·+ an

n
− a
∣∣∣∣ = ∣∣∣∣(a1 − a) + · · ·+ (an − a)

n

∣∣∣∣
≤ |a1 − a|+ · · ·+ |an − a|

n
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We are going to split the numerator of

|a1 − a|+ · · ·+ |an − a|
n

into two summands, up to N0 and from there to n: Note that
|an − a| ≤ |an|+ |a| ≤ 2M by the triangle inequality. Choosing

N = max{N0,4N0M/ε}

2N0M
n

+
(n − N0)ε/2

n
≤ ε/2 + ε/2 = ε

for n ≥ N, as desired. �
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Cauchy Sequence

Definition
A sequence (an) is called a Cauchy sequence if, for every ε > 0, there
is an N ∈ N such that whenever m,n ≥ N it follows that |an − am| < ε.

Compare to the standard definition of convergence:

Definition (Convergence of a Sequence)
A sequence (an) converges to the real number a if, for every ε > 0,
there exists an N ∈ N such that whenever n ≥ N it follows that
|an − a| < ε.

Comment on the differences!
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Exercise

Prove that an = 2n+1
n is Cauchy

1 We estimate |an − am|: For n < m

|2n + 1
n

− 2m + 1
m

| = |1
n
− 1

m
| = |m − n

mn
|

2 Note that |m−n
mn | ≤

1
n .

3 If ε > 0 and N is chosen so that ε > 1
N , we have

|an − am| < ε, n,m ≥ N
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More Interesting Example

Let a sequence be defined as follows: x1 = 1, x2 = 2,
x3 = 1/2(x1 + x2) and in general xn+1 = 1/2(xn−1 + xn). Show that

|xn − xm| ≤
1

2N−1 , ∀n,m ≥ N,

so Cauchy’s condition is fulfilled.

Hint: Note that each term is midway between the two preceding ones.
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Theorem
Every convergent sequence is a Cauchy sequence.

Proof. Assume (xn) converges to x . To prove (xn) is Cauchy, we must
find N such that |xn − xm| < ε for n,m ≥ N. This is easily done: given
ε/2 find N such that

|x − xn| < ε/2, n ≥ N.

By the triangle inequality,

|xn − xm| ≤ |xn − x |+ |x − xm| ≤ ε/2 + ε/2 = ε, n,m ≥ N.
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Cauchy Criterion

Theorem
A sequence converges if and only if it is a Cauchy sequence.

While the definition of convergence requires a candidate for the limit,
Cauchy’s Criterion is a softer requirement. [Discuss]

Proof. The preceding theorem showed that every convergent
sequence is a Cauchy sequence. To prove the converse, we first show
that every Cauchy sequence is bounded, apply Bolzano- Weierstrass,
and then complete proof.
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Boundedness of Cauchy sequences

Lemma
Cauchy sequences are bounded.

Proof. Given ε = 1, there exists an N such that |xn − xm| < 1 for all
m,n ≥ N. Thus, making m = N, we must have |xn| ≤ |xN |+ 1 for all
n ≥ N. It follows that

M = max{|x1|, |x2|, |x3|, . . . , |xN−1|, |xN |+ 1}

is a bound for (xn).
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Cauchy Criterion

Theorem
A sequence converges if and only if it is a Cauchy sequence.

Proof. By the Bolzano-Weierstrass theorem, since (xn) is bounded, it
has a convergent subsequence (xnk ) of limit, say, x . We want to argue
that x is the limit of (xn) also.

Let ε > 0. Because (xn) is Cauchy, there exists N such that

|xn − xm| < ε/2, m,n ≥ N.

Because (xnk )→ x , choose a term xNK , with NK ≥ N such that

|xNK − x | < ε/2.
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Now observe: If n ≥ NK ,

|xn − x | = |xn − xNK + xNK − x |
≤ |xn − xNK |+ |xNK − x |
< ε/2 + ε/2 = ε

This shows that (xn)→ x �
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Workshop #3

Review the following concepts/techniques:

Algebraic and order limit theorems

Your favorite limit tricks [see two slides down for one useful tool]
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Warmups

This uses only the cute lemma and some of the algebraic limits
theorems.

1 Let an = qn. If q > 1, prove that lim an =∞: Set q = 1 + p, p > 0.
By the Lemma, (1 + p)n ≥ 1 + np, which clearly converges to∞.

2 Let an = qn. If 0 < q < 1, prove that lim an = 0. [Hint: work with
1/q.] This means (1/q)n →∞, hence qn → 0.
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Workshop #3: there is a second page

1 If q > 0, show that lim n
√

q = 1. [Hint: Use the technique above.
First assume q > 1. Then set n

√
q = 1 + pn, pn > 0. Now

q = (1 + pn)
n ≥ 1 + npn. In case 0 < q < 1, use 1

n√q . ]

2 Show that lim n
√

n = 1. [Hint: Work with n
√√

n = 1 + kn.]Explain

why setting n
√

n = 1 + an will not work.
3 Find the limit of n

√
anbn + bncn + ancn if a > b > c > 0.

4 Find the limit of
√

n2 + an + b − n.
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5 Give an example or argue request is impossible.

(i) A Cauchy sequence that is not monotone.
(ii) A monotone sequence that is not Cauchy.

(iii) A Cauchy sequence with a divergent subsequence.
(iv) An unbounded sequence containing a subsequence that is

Cauchy.
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The following lemma discussed in class is helpful.

Lemma
If p > −1, (1 + p)n ≥ 1 + pn for all n ∈ N.

Proof. We prove this by induction.
Base Case: It is true for n = 1.

Induction Step: Now consider

(1 + p)n+1 = (1 + p)n(1 + p) ≥ (1 + pn)(1 + p)

= 1 + p(n + 1) + p2n ≥ 1 + p(n + 1).
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Comment on a Limit

In the Workshop #3 Problem like

lim n
√

an + bn + cn, a > b > c > 0

can [?] be argued as follows

lim n
√

an + bn + cn = lim a n
√

1 + (b/a)n + (c/a)n

= a lim n
√

1 + (b/a)n + (c/a)n

which is fine but then argued wrongly [why?]

lim n
√

1 + (b/a)n + (c/a)n = n
√

1 + lim(b/a)n + lim(c/a)n

=
n
√

1 + 0 + 0 = 1
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One of the proper ways to argue

a =
n
√

an ≤ n
√

an + bn + cn ≤ n
√

3an = a n
√

3

and then use Problem #4 that shows

lim n
√

3 = 1
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lim(1 + 1/n)n

(1 +
1
n

)n = 1 + n
1
n

+
n(n − 1)

1 · 2
1/n2 + · · ·+ n(n − 1) . . . (n − n + 1)

1 · · · n
1/nn

= 1 + 1 +
1

1 · 2
(1− 1

n
) +

1
1 · 2·

(1− 1
n

)(1− 2
n

) + · · ·

+
1

1 · 2 · · · n
(1− 1

n
) · · · (1− n − 1

n
)

Note that
1

1 · 2 · · · n
(1− 1

n
) · · · (1− n − 1

n
) <

1
n!

This shows that

2 < (1 +
1
n

)n < 1 + 1 +
1
2!

+
1
3!

+ · · · < 3
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Intro to Infinite Series

Question: What do we see in the Infinite Series

∞∑
n=0

an = a0 + a1 + a2 + a3 + · · · =?

Answer: At least two things
The sequence of terms, (an) and
The sequence of partial sums, (sn),

sn = a0 + a1 + · · ·+ an

We say the series converges to S ∈ R if lim sn = S. By abuse of
notation, we then replace the ? by S.
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Backbone Examples

The perspective we use is to view a series as the pair of related
sequences:

an, sn = a0 + a1 + · · ·+ an

with emphasis on the question:
What should the sequence (an) be like so that the sequence of partial
sums (sn) converges?

We need to look close at some important series.
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The Geometric Series

For q ∈ R, the geometric series of ratio q is

1 + q + q2 + q3 + · · ·+ qn + · · ·

Sometimes, all terms are multiplied by a same constant, that instead of
the sequence of terms (qn), one has (aqn). Let us examine when it
converges and find the corresponding limit.

We need an expression for the partial sum sn = 1 + q + · · ·+ qn.
If we multiply sn by q and subtract sn we get

qsn − sn = q(1 + q + · · ·+ qn)− (1 + q + · · ·+ qn)

= qn+1 − 1
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We get an explicit expression for sn

sn =
1

1− q
− qn+1

1− q

According to the value of q, we conclude: If |q| < 1, since qn → 0,

1 + q + q2 + q3 + · · ·+ qn + · · · = 1
1− q

Otherwise the series diverges. If q ≥ 1, it converges to infinity.
[Note the confusing language.]
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The Harmonic Series

This is the series

1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
n

+ · · ·

This series diverges: It suffices to organize its partial sums in groups
that add to at least 1/2:

1 +
1
2

+
1
3

+
1
4

+ · · · = 1 +
1
2

+ (
1
3

+
1
4
) + (

1
5

+
1
6

+
1
7

+
1
8
) + · · ·

≥ 1 +
1
2

+ (
1
4

+
1
4
) + (

1
8

+
1
8

+
1
8

+
1
8
) + · · ·

= 1 + 1/2 + 1/2 + 1/2 + · · ·
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Zeta Function

The series
1 +

1
2p +

1
3p +

1
4p + · · ·+ 1

np + · · · ,

for p > 1 will always converge. Its sum is denoted by ζ(p).

For example, ζ(2) = π2

6 .
This function is actually defined for all complex numbers p whose real
part is > 1. It is known as Riemann zeta function.It is probably the
most famous function of Mathematics.
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Let us show that

1 +
1
2p +

1
3p +

1
4p + · · ·+ 1

np + · · · ,

for p > 1 will always converge.

We are going to bound each term 1/np by the terms of another series,
and then argue the new series converges.
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Consider the function f(x) = 1/xp, x ≥ 2. This is a decreasing function
(draw the graph).
Observe

1/np ≤
∫ n

x=n−1
1/xpdx

Therefore its partial sums are bounded by

sn ≤ 1 +

∫ n

x=1

dx
xp = 1 +

1
p − 1

[
1− 1

np−1

]
< 1 +

1
p − 1
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Alternating the Harmonic Series

This is the series

1− 1
2

+
1
3
− 1

4
+ · · ·+ (−1)n−1 1

n
+ · · ·

Its even partial sums, s0 = 1, s2 = 1− 1/2 + 1/3, ... are
decreasing
Its odd partial sums, s1 = 1− 1/2, s3 = 1− 1/2 + 1/3− 1/4, ...
are increasing
The nested intervals [s1, s0] ⊃ [s3, s2] ⊃ [s5, s4] ⊃ · · · will define
the limit 0.69... [actually ln 2]
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Exponential Series

We claim that the series

1 + 1 +
1
2!

+
1
3!

+ · · ·

convergent.
Note that the sequence of its partial sums is monotone but it is
bounded by the partial sums of a geometric series

1 + 1 +
1
2!

+
1
3!

+ · · ·+ 1
n!
< 1 + 1 +

1
2

+
1
22 + · · ·+ 1

2n−1

a series that converges to 3. We can refine the comparison.

1 + 1 +
1
2!

+
1
3!

+ · · ·+ 1
12!

= 2.71828183

with error
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1
13!

+
1

14!
+ · · · <

1
13!

(1 +
1

13
+

1
132 + · · ·

=
1

13!

1
1− 1

13

=
1
12

1
12!

a number that does not affect the 8th decimal place.
The limit of this famous series is denoted e, after Euler.
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Irrationality of e

We claim that the series

e = 1 + 1 +
1
2!

+
1
3!

+ · · ·

is not a rational number. We already know that 2 < e < 3, in particular
e is not an integer. Suppose e = p

q , with q ≥ 2 since e is not an
integer. Multiplying the equality by q!, we have

eq! = p(q − 1)! =

[
q! + q! +

q!

2!
+

q!

3!
+ · · ·+ q!

q!

]
+

1
q + 1

+
1

(q + 1)(q + 2)
+ · · ·
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Note that p(q − 1)! and[
q! + q! +

q!

2!
+

q!

3!
+ · · ·+ q!

q!

]
are integers, so that its difference

1
q + 1

+
1

(q + 1)(q + 2)
+ · · ·

must also be an integer. But this series is smaller than the geometric
series

1
q + 1

+
1

(q + 1)2 +
1

(q + 1)3 + · · ·

whose sum is
1

q + 1
1

1− 1
q+1

=
1
q
< 1
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Exercises

Is the series
(1− 1

2
) + (

1
2
− 1

3
) + (

1
3
− 1

4
) + · · ·

convergent or divergent? Justify answer.
Is the series

11

(101)!
+

22

(100 + 2)!
+ · · ·+ nn

(100 + n)!
+ · · ·

convergent or divergent? Justify answer.
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Convergence of Series

Given the series
∞∑

n=0

an = a0 + a1 + a2 + a3 + · · · ?

there are two sequences associated to it
The sequence of terms, (an) and
The sequence of partial sums, (sn),

sn = a0 + a1 + · · ·+ an

We say the series converges to A ∈ R if lim sn = A.We write this
as

∞∑
n=0

an = a0 + a1 + a2 + a3 + · · · = A
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A cautionary tale

We pick the alternating harmonic series–which we know to be
convergent–and carry out arithmetic operations: See what happens

S = 1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+ · · ·

1
2

S =
1
2
− 1

4
+

1
6
− 1

8
+

1
10
− · · ·

S +
1
2

S = 1 +
1
3
− 1

2
+

1
5
− 1

4
+ · · ·

Thus S + 1
2S = 3

2S is just a rearrangement of S! The arithmetic is
saying instead that

3
2

S = S!

Wolmer Vasconcelos (Set 2) Advanced Calculus Spring 2010 87 / 144



Algebraic Limit Theorem for Series

Theorem
If
∑∞

k=1 ak = A and
∑∞

k=1 bk = B, then:
1
∑∞

k=1 cak = cA for all c ∈ R and
2
∑∞

k=1(ak + bk ) = A + B.

Proof. (i) To show
∑∞

k=1 cak = cA, we consider the sequence of partial
sums

tn = ca1 + ca2 + · · ·+ can.

Since
∑∞

k=1 ak = A, its sequence of partial sums

sn = a1 + a2 + · · ·+ an

converges to A. By the Algebraic Limit Theorem for Sequences,
lim tn = c lim sn = cA.
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(ii) To show that
∑∞

k=1(ak + bk ) = A + B, let rn = a1 + · · ·+ an,
sn = b1 + · · ·+ bn be the partial sum terms of the series. The partial
sum term of the addition of the two series is

tn = (a1 +b1)+ · · ·+(an +bn) = (a1 + · · ·+an)+(b1 + · · ·+bn) = rn +sn.

By the Algebraic Limit Theorem for Sequences,

lim tn = lim rn + lim sn = A + B.
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Product of Series

Other operations are harder:
Question: Given two series, a0 + a1 + a2 + · · ·+ an + · · · and
b0 + b1 + b2 + · · ·+ bn + · · · , what is

(a0 + a1 + a2 + · · ·+ an + · · · )(b0 + b1 + b2 + · · ·+ bn + · · · ) =?

Part of the issue arises from the distributive rule. We will offer a
partial fix later.
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Cauchy Criterion for Series

Definition
A sequence (an) is called a Cauchy sequence if, for every ε > 0, there
is an N ∈ N such that whenever m,n ≥ N it follows that |an − am| < ε.

Recall:

Theorem
A sequence converges if and only if it is a Cauchy sequence.

We apply this criterion to the sequence (sn) of partial sums of a series∑∞
k=1 ak . Note that

|sm − sn| = |am+1 + · · ·+ an|
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Cauchy Test for Series

Theorem
The series

∑∞
k=1 ak converges if and only if given ε > 0, there exists

an N ∈ N such that whenever n > m ≥ N it follows that

|am+1 + am+2 + · · ·+ an| < ε.

Proof. Just observe

|sn − sm| = |am+1 + am+2 + · · ·+ an| < ε,

and apply the Cauchy’s Criterion for sequences. �

Corollary

If the series
∑∞

k=1 ak converges, then (ak )→ 0.

Proof. Set n = m + 1, then |sn − sm| = |an|.
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Converse?

Question: Is a series whose sequence of terms an converges to 0
convergent? This one is easy:

Answer: No. The (harmonic) series

1 + 1/2 + 1/3 + · · ·+ 1/n + · · ·

has 1/n→ 0 but it is divergent.
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Comparisons

Given two series
∑

k≥1 ak and
∑

k≥1 bk that loosely connected we
seek to link their convergence/divergence:

Theorem (Comparison Test)

Assume
∑∞

k=1 ak and
∑∞

k=1 bk are series satisfying 0 ≤ ak ≤ bk for all
k ∈ N.

1 If
∑∞

k=1 bk converges, then
∑∞

k=1 ak converges.
2 If

∑∞
k=1 ak diverges, then

∑∞
k=1 bk diverges.

Proof. Both follow from Cauchy’s Criterion applied to the partial sums

|am+1 + am+2 + · · ·+ an| ≤ |bm+1 + bm+2 + · · ·+ bn|

If, for instance, given ε > 0 we can find N so that for n,m > N
|bm+1 + am+2 + · · ·+ bn| < ε, then the same condition will apply to the
an.
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Example

1 We know that the harmonic series,
∑∞

n=1
1
n diverges. It is clear

that the same happens if we form the series
∑∞

n=N
1
n where N is

some fixed number N ≥ 1.
2 If a and b are positive numbers, consider the series [called

generalized harmonic series] whose terms are given by the rule:

1
a
,

1
a + b

,
1

a + 2b
, . . . ,

1
a + nb

, . . .

3 We claim that this series is also divergent: We compare the terms
to a multiple of the harmonic series

1
a + bn

≥ 1
n + bn

=
1

b + 1
1
n
, n ≥ a
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Absolute Convergence Test

If
∑∞

n=1 an is a series of non-negative terms, its partial sums

sn = a1 + a2 + · · ·+ an, sn+1 = sn + an

is a monotone sequence. Therefore, by the criterion, the series
converges exactly when the sequence (sn) is bounded.

We make use of this:

Theorem (Absolute Convergence Test)

If the series
∑∞

k=1 |ak | converges, then
∑∞

k=1 ak converges as well.
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Proof of the Absolute Convergence Test

1 We make use of Cauchy criterion for series: Let ε > 0. Since the
series

∑∞
k=1 |ak | converges, there exists N so that

|an+1|+ |an+1|+ · · ·+ |am| < ε m ≥ n > N

2 By the triangle inequality (one that say |a + b| ≤ |a|+ |b|), we get

|an+1 + an+1 + · · ·+ am| < ε m ≥ n > N

3 Therefore the series
∑∞

k=1 ak satisfies the Cauchy condition and
therefore converges.
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Converse?

The series
1− 1

2
+

1
3
− · · · (−1)n−1 1

n
· · ·

is convergent (alternating harmonic series) (the one that won a
Grammy’s Award), but the series of the absolute values is

1 +
1
2

+
1
3

+ · · ·+ 1
n
· · · ,

is divergent.
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Alternating Series

An alternating series is one with consecutive terms have opposite
signs. One group of them is easy to study:

Theorem (Alternating Series Test)
Let (an) be a sequence satisfying

1 a1 ≥ a2 ≥ · · · ≥ an ≥ an+1 ≥ · · · , and
2 (an)→ 0.

Then the alternating series
∑∞

n=1(−1)n+1an converges.

In other words: If (an) is a decreasing sequence of positive terms then

∞∑
n=1

(−1)n+1an converges if and only if lim an = 0
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Proof. Observe the odd and even sequences of partial sums

s1 = a1 ≥ s3 = a1 − (a2 − a3) ≥ s5 = s3 − (a4 − a5), . . .

s2 = a1 − a2 ≤ s4 = s2 + (a3 − a4) ≤ s5 = s3 + (a5 − a6), . . .

They are monotone and bounded: Since (an)→ 0, there exists
an ≤ K , s2n = s2n−1 + a2n ≤ s2n−1 + K ≤ a1 + K , therefore the even
sequence is increasing and bounded. Thus it has a limit `1. Similarly,
the other sequence is decreasing and with a lower bound, so it has a
limit `2. Since ±an = sn − sn−1 converges to 0, `1 = `2.
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Rearrangements

Definition
Let

∑
k≥1 ak be a series. A series

∑
k≥1 bk is said to be a

rearrangement of
∑

k≥1 ak if there exists a 1–1, onto function
f : N→ N such that bf(k) = ak for all k ∈ N.

Consider the geometric series of ratio q

1 + q + q2 + q3 + · · ·+ qn + · · ·

Now we shuffle the terms

q + 1 + q3 + q2 + q5 + q4 + · · ·

This is not a geometric series, but we should expect its fate linked to
the first series. The next result says this.
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A cautionary tale

S = 1− 1
2

+
1
3
− 1

4
+

1
5
− · · ·

1
2

S =
1
2
− 1

4
+

1
6
− 1

8
+

1
10
− · · ·

S +
1
2

S = 1 +
1
3
− 1

2
+

1
5
− 1

4
+ · · ·

Thus S + 1
2S = 3

2S is just a rearrangement of S! The arithmetic is
saying instead that

3
2

S = S!

Wolmer Vasconcelos (Set 2) Advanced Calculus Spring 2010 102 / 144



Series of Positive Terms

Theorem (Dirichlet)
The sum of a series of positive terms [convergence/divergence] is the
same in whatever order [rearrangement] the terms are taken.

Proof. Let a0 + a1 + a2 + · · ·+ an + · · · be a series of positive terms of
sum s. Then any partial sum of rearrangement
b0 + b1 + b2 + · · ·+ bn + · · · is bounded by s. Thus the second is
convergent and its sum t is bound by s.
We reverse the roles to obtain s ≤ t . �
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Product of Series

Question: Given two series, a0 + a1 + a2 + · · ·+ an + · · · and
b0 + b1 + b2 + · · ·+ bn + · · · , what is

(a0 + a1 + a2 + · · ·+ an + · · · )(b0 + b1 + b2 + · · ·+ bn + · · · ) =?
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The issue is: we have all the poducts ambn that can be organized into
many different series, and then grouped. For instance, if we list the
ambn as the double array, we

• // •

��~~
~~

~~
~

• // •

��~~
~~

~~
~

• // •

��~~
~~

~~
~

· · ·

•

��

•

??~~~~~~~
•

��~~
~~

~~
~

•

??~~~~~~~
•

��~~
~~

~~
~

• · · ·

•

??~~~~~~~
•

��~~
~~

~~
~

•

??~~~~~~~
•

��~~
~~

~~
~

• • · · ·

•

��

•

??~~~~~~~
•

��~~
~~

~~
~

• • • · · ·

•

??~~~~~~~
• • • • • · · ·
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We could try the following: Define the product as the series

a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · ·

Makes sense? [Discuss] Will see another rearrangement soon.

a0b0 a1b0 a2b0 a3b0 . . .
a0b1 a1b1 a2b1 a3b1 . . .
a0b2 a1b2 a2b2 a3b2 . . .
a0b3 a1b3 a2b3 a3b3 . . .
. . . . . . . . . . . . . . .
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The partial sums remind us how polynomials are multiplied

(a0 + a1x + a2x2 + · · ·+ anxn)(b0 + b1x + b2x2 + · · ·+ bmxm)

=
m+n∑
k=0

(
∑

0≤i≤k

aibk−i)xk

a0b0,a0b1 + a1b0 , a0b2 + a1b1 + a2b2, . . .
Another aspect of this definition is:

Theorem
If
∑

n≥0 an and
∑

n≥0 bn are two convergent series of positive terms,
and s and t are their respective sums, then the third series is
convergent and has the sum st.
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Out of all products ambn, the ‘product’ above is given in terms of the
diagonals

a0b0 a1b0 a2b0 a3b0 . . .
a0b1 a1b1 a2b1 a3b1 . . .
a0b2 a1b2 a2b2 a3b2 . . .
a0b3 a1b3 a2b3 a3b3 . . .
. . . . . . . . . . . . . . .

a0b0,a0b1 + a1b0 , a0b2 + a1b1 + a2b2, . . . whose partial sums don’t
write conveniently.
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We want to re-write the terms of the product series differently:

a0b0 a1b0 a2b0 a3b0 . . .
a0b1 a1b1 a2b1 a3b1 . . .
a0b2 a1b2 a2b2 a3b2 . . .
a0b3 a1b3 a2b3 a3b3 . . .
. . . . . . . . . . . . . . .

a0b0, (a0 + a1)(a0 + a1)− a0b0 ,
(a0 + a1 + a2)(b0 + b1 + b2)− (a0 + a1)(b0 + b1), . . . whose nth partial
sum is

(a0 + a1 + · · ·+ an)(b0 + b1 + · · ·+ bn),

a sequence that converges to st by the Algebraic Limit Theorem.
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Theorem
If
∑∞

k=1 ak converges absolutely, then any rearrangement of this series
converges to the same limit.

Proof. Assume
∑

k≥1 ak converges absolutely to A, and let
∑

k≥1 bk
be an rearrangement of

∑
k≥1 ak . Let

sn =
n∑

k=1

ak = a1 + a2 + · · ·+ an

and

tn =
n∑

k=1

bk = b1 + b2 + · · ·+ bn

be the corresponding partial sums.
Let ε > 0. Since (sn)→ A, choose N1 such that

|sn − A| < ε/2

for all n ≥ N1.
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Because the convergence is absolute, we can choose N2 so that

n∑
k=m+1

|bk | < ε/2

for all n > m ≥ N2. Take N = max{N1,N2}. We know that the terms
{a1,a2, . . . ,aN} must all appear in the rearranged series, and we move
far out enough in the series

∑
k≥1 bk that these terms are all included.

Thus, choose M = max{f (k) | 1 ≤ k ≤ N}.
It is clear that if m ≥ M, then (tm − sN) consists of a finite number of
terms, the absolute values of which appear in the tail of

∑∞
k=N+1 |ak |.

The earlier choice of N2 guarantees |tm − sN | < ε/2, and so

|tm − A| = |tm − sN + sN − A|
≤ |tm − sN |+ |sN − A| ≤ ε/2 + ε/2 = ε
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Convergence Tests for Series

3 elementary tests of convergene

Integral Test

Ratio Test

Root Test
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Integral Test

Theorem (Integral Test)
Let

∑
n≥0 an be a series of positive terms. If there is a decreasing

function f(x) such that an ≤ f(n) for large n and∫ ∞
x=1

f(x)dx <∞,

then
∑

n≥0 an converges.

Proof. If an ≤ f(n) for n ≥ n0, since f(x) is decreasing,

an ≤
∫ n

n−1
f(x)dx , n > n0.

From this, and the assumption that
∫∞

1 f(x)dx <∞, we get that the
partial sums of the series

∑
n≥0 an are bounded, and therefore

converge by the theorem on bounded monotone sequences. �
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Consider the function f(x) = 1/xp, x ≥ 2. This is a decreasing function
(draw the graph).
Observe

1/np ≤
∫ n

x=n−1
1/xpdx

Therefore its partial sums are bounded by

sn ≤ 1 +

∫ n

x=1

dx
xp = 1 +

1
p − 1

[
1− 1

np−1

]
< 1 +

1
p − 1
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Convergence

Let us show that

1 +
1
2p +

1
3p +

1
4p + · · ·+ 1

np + · · · ,

for p > 1 will always converge.

We are going to bound each term 1/np by the terms of another series,
and then argue the new series converges.
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Examples

Comparison gives ∑
n≥1

1
n(n + 1)

≤
∑
n≥1

1
n2

which is convergent.
In the same manner, if ∑

n≥1

p(n)

q(n)
,

where p(n) and q(n) are positive polynomial expressions with
deg q ≥ 2 + deg p, then the series converges by the same reason. Do
it!
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Ratio Tests

There are very useful tests involving the ratio an+1/an of two
successive terms of a series. Sometimes we compare the ratio
an+1/an to another bn+1/bn. In these we suppose that an and bn are
strictly positive.
Suppose an,bn > 0 and that

an+1

an
≤ bn+1

bn

for sufficiently large n, that is for n ≥ n0.
Then

an =
an0+1

an0

an0+2

an0+1
· · · an

an−1
an0

≤
bn0+1

bn0

bn0+2

bn0+1
· · · bn

bn−1
an0 =

an0

bn0

bn

= Cbn, C = an0/bn0.
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Here are some applications:

Theorem
Let

∑
an and

∑
bn be series of positive terms.

1 If for n ≥ n0
an+1

an
≤ bn+1

bn
,

and the series
∑

bn converges, then
∑

an converges also.
2 If for n ≥ n0

an+1

an
≥ bn+1

bn
,

and the series
∑

an diverges, then
∑

bn diverges also.

Theorem (d’Alambert Test)
The series

∑
an is convergent if an+1/an ≤ r , where r < 1, for all

sufficiently large n.
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Theorem
Given a series

∑
n≥1 an with an 6= 0, if (an) satisfies

lim
∣∣∣∣an+1

an

∣∣∣∣ = r < 1,

then the series converges absolutely.

Proof.
1 Let r ′ satisfy r < r ′ < 1. For ε = r ′ − r , there is N such that for

n ≥ N |an+1/an| − r | < ε, and therefore

|an+1/an| − r ≤ ||an+1/an| − r | < ε = r ′ − r ,

giving |an+1| ≤ r ′|an| for n ≥ N.
2 The above shows that the series

∑∞
n=N |an| satisfies

|an| ≤ |aN |(r ′)n−N , a geometric series of ratio r ′ < 1, which
converges.
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Exponential

A quick application of the ratio test:
We claim that the series

1 + x +
x2

2!
+

x3

3!
+ · · ·

converges for all values of x .

For the ratio of consecutive terms

an+1

an
=

xn+1/(n + 1)!

xn/n+!
=

x
n + 1

so that for any x , lim an+1/an = 0.

This is a well used technique for power series.
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Examples

1 For the series
∑

n≥1
n
2n we invoke the ratio test:

an+1

an
=

n + 1
2n+1 /

n
2n =

n + 1
n

1
2

which has limit 1/2 < 1. So the series converges.
2 Decide [with justification] whether the series∑

n≥1

n!

nn ,

is convergent or divergent?
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Exercises

1 Show that if an > 0 and lim nan = L, with L 6= 0, then the series∑
an diverges.

2 Show that if an > 0 and lim n2an = L, with L 6= 0, then the series∑
an converges.

3 Find examples of two series
∑

an and
∑

bn both of which diverge
but for which

∑
min{an,bn} converges. To make it more difficult,

choose examples where (an) and (bn) are positive and
decreasing.
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Root Test

Let
∑

n≥1 an be a series of positive terms. We are going to examine
how the limit

lim
n→∞

n
√

an

is used to decide convergence. We recall one special calculation of
these limits: If x > 0

lim
n→∞

n
√

x = 1

Recall another limit: limn→∞
n
√

n = 1.
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Root Test

Theorem
If
∑

n≥1 an is a series of positive terms and limn→∞ n
√

an = r < 1, then
the series converges.

Proof. Let r < r ′ < 1 and pick ε = r ′ − r . This is the same subtle point
we used above.

1 There is N so that for n > N

| n
√

an − r | < ε

2 This implies that n
√

an < r + ε = r ′ < 1 for n > N. As a
consequence

an < (r ′)n

3 We now compare the series
∑

n ≥ 1an to the geometric series∑
n≥1(r

′)n of ratio r ′ < 1. Thus both series converge.
Wolmer Vasconcelos (Set 2) Advanced Calculus Spring 2010 125 / 144



Example

Consider the series (for q > 0)

1 + q + 2q2 + · · ·+ nqn + · · ·

We invoke the root test

lim
n→∞

n
√

nqn = q lim
n→∞

n
√

n = q

Therefore it converges if q < 1
Let us calculate the sum of tbe series. For that we must have an
inkling on how the series arose from the geometric series. At these
times we replace q by x and recall:
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Nice calculation

1 Differentiate the ‘equality’

1
1− x

= 1 + x + x2 + · · ·+ xn + · · ·

2 To get almost our series

1
(1− x)2 = 1 + 2x + 3x2 + · · ·+ nxn−1 + · · ·

3 Now multiply by x and add 1

1 +
x

(1− x)2 = 1 + x + 2x2 + · · ·+ nxn + · · ·

4 Thus for 0 < q < 1 the series sums to

1 +
q

(1− q)2
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Exercises

Show that the series

1− 1
3

+
1
5
− 1

7
+ · · ·

converges. (Hint: Look up one of the class examples)
To find the limit, sum the geometric series

1− x2 + x4 − x6 + · · · ,

and integrate over [0,1]. Indicate what steps will have to be
properly justified.
Is the series

11

(101)!
+

22

(100 + 2)!
+ · · ·+ nn

(100 + n)!
+ · · ·

convergent or divergent? Justify answer.
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More Exercises

1 Show that ∑
n≥0

(−1)n 2n + 3
(n + 1)(n + 2)

= 1.

2 Determine the values of q for which the series

q + 2q2 + 3q3 + · · ·+ nqn + · · ·

is converget.
3 Show that

∑
n≥2

1
n(ln n)p converges if p > 1, and diverges if p ≤ 1.
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Workshop #4

Think/Do next 4 Questions [in 2 frames]
1 Find the sum of the series∑

n≥1

1
n(n + 4)

.

As a warmup, find the sum of the series∑
n≥1

1
n(n + 1)

.

2 Show that if an > 0 and lim npan = L, with L 6= 0 for some integer
p > 1, then the series

∑
an converges. An application: If∑

n≥1

p(n)

q(n)
,

where p(n) and q(n) are positive polynomial expressions with
deg q ≥ 2 + deg p, then the series converges.
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Workshop #4, Cont’d

3 Determine the values of q > 0 for which the following series
converges and find its sum

1 + q +
q2

2
+ · · ·+ qn

n
+ · · · .

Calculate the sum of the series.
4 Is the following series ∑

n≥0

e−n2

convergent or divergent? Try all [ratio, root, and integral tests]
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Exercises

1 Show that the sequence
√

n + 1−
√

n√
n + 2−

√
n + 1

, n ∈ N

converges. As a challenge, find also a bound for it.
2 Let 0 ≤ a,b ∈ R and define recursively a0 = a, b0 = b,

an+1 =
√

anbn and bn+1 = (an + bn)/2. Show that [an,bn] form a
nested sequence of intervals. Prove that the intersection of these
intervals is a single point.

3 If the series
∑

n≥1 a2
n and

∑
n≥1 b2

n are convergent, prove that∑
n≥1 anbn is convergent.
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lim n
√

n

1 Write n
√√

n = 1 + an, so that n
√

n = (1 + an)
2 and

√
n = (1 + an)

n

2 By a Lemma we have used often,
√

n = (1+an)
n ≥ 1+nan > nan,

1√
n

=

√
n

n
> an

3 Thus

1 ≤ n
√

n = (1 + an)
2 = 1 + 2an + a2

n < 1 +
2√
n

+
1
n

4 Therefore, by the Squeeze Theorem, limn→∞
n
√

n = 1
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Typical E-Questions

• Prove that bounded monotone sequences are convergent.

•Why the cardinalities of N and of N4 are the same?

• If (an)→ a and (bn)→ b, with bn,b 6= 0, prove that lim(an/bn) = a/b.

•What is the nested interval property of R? Give an interesting
example and sketch the proof.

• If (an) and (bn) are sequences such that lim an + bn = 5 and
lim an = 2, must (bn) be convergent? Explain or give counter-example.

• If (an)→ 5, an ≥ 0, prove with full details that lim
√

an =
√

5. [You
may use ε = 1/10.]

• Find lim n
√

an+1bn + bn+1cn + cn+1an, with a > b > c > 0
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• Do all sequences have a convergent subsequence? If not, when?
Explain.

• Let (an) and (bn) be two Cauchy sequences. Prove directly that
(anbn) is a Cauchy sequence.

• If a is a positive integer, give a formula for the sum of the series∑
n≥1

1
n(n + a)

.
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A beautiful limit

• Prove that lim n( n
√

x − 1), x > 0, exists. [Not easy, not in exam, just
tossed as a challenge.]
The limit defines a function f(x). Observe the property

n( n
√

xy − 1) = n( n
√

x − 1) n
√

y + n( n
√

y − 1)

Taking into account lim n
√

y = 1 from a Workshop, we get

f(xy) = f(x) + f(y),

a defining property of Logs. [? Maybe f(x) = ex ]
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An old First Hourly

(15 pts)
1 What is a countable set?
2 Why is Q countable?
3 Prove that N and N2 have the same cardinality.

(10 pts) Prove that the sequence defined by x1 = 3 and

xn+1 =
1

4− xn

converges.
(15 pts) Describe very carefully and in full the following terms:

1 lower bound of a subset A ⊂ R
2 Nested Interval Property
3 give an example for each term.
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(15 pts)
1 Define precisely the notion of a convergent sequence.
2 What is a subsequence of a sequence?
3 Prove that all subsequences of a convergent sequence have the

same limit.
(15 pts)

1 What is a monotone sequence? Give an example.
If a monotone sequence (an) is bounded, prove that it is
convergent.

(15 pts) Find (with proof!) the limit of the sequence

n
√

anbn + bncn + cnan, a > b > c > 0.

(15 pts)
1 What is a Cauchy sequence?
2 If (an) and (bn) are Cauchy sequences, prove directly that (anbn) is

a Cauchy sequence.
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Exercise

The equation x3 − 3x + 1 = 0 has a root α between 0 and 1. To find it,
define the sequence

x1 = 0, xn+1 =
1

3− x2
n

Show that the sequence is monotone and converges to α.
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Exercises

1 Show that if an > 0 and lim nan = L, with L 6= 0, then the series∑
an diverges.

2 Show that if an > 0 and lim n2an = L, with L 6= 0, then the series∑
an converges.

3 Find examples of two series
∑

an and
∑

bn both of which diverge
but for which

∑
min{an,bn} converges. To make it more difficult,

choose examples where (an) and (bn) are positive and
decreasing.
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Hourly #1 Review

Important Topics

Least Upper Bound
Axiom of Completeness
Cardinality: Countable and Uncountable Sets, Power Sets
Sequences, Convergence/Divergence
Monotone Sequences
Bolzano-Weirstrauss Theorem
Cauchy Sequences
Series: Backbone Examples
Convergence of Series: Meaning
Tests of Convergence: Integral, Ratio, Root
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