Math 311: Advanced Calculus

Wolmer V. Vasconcelos

Set 2

Spring 2010

Wolmer Vasconcelos (Set 2)

Advanced Calculus

Outline

Some Goals

- Sequences
- 3 Limit Theorems
- 4 Monotone Sequences
- 5 Bolzano-Weierstrass
- 6 Cauchy Criterion
- Workshop #3
- 8 Series
- Properties of Infinite Series
- 10 Convergence Tests for Series
- 11 Workshop #4
- 12 Typical E-Questions
- 13 Hourly #1 Review

Understand mathematical objects such as

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + a_3 + \cdots = ?$$

$$\prod_{n=0}^{\infty} a_n = a_0 \cdot a_1 \cdot a_2 \cdot a_3 + \cdots = ?$$

The building blocks of these objects are

$$\underline{a_1, a_2, a_3, \ldots, a_n, \ldots}$$

Outline

- 8 Series
- Properties of Infinite Series
- 10 Convergence Tests for Series
- 11 Workshop #4
- 12 Typical E-Questions
- 13 Hourly #1 Review

Definition

A sequence is a function **f** whose domain is \mathbb{N} .

It can be represented as

 $\{f(1), f(2), f(3), \ldots\}$

 $\{f(0), f(1), f(2), f(3), \ldots\}$

or

$$\{\mathbf{f}(n),\ldots, n \ge n_0\}$$

We will first examine sequences of real numbers, $f : \mathbb{N} \to \mathbb{R}$. Later we will study sequences of functions.

It allows us to look at real numbers in a concrete manner: If

$$x = A.a_1a_2\cdots a_n\cdots$$
,

where a_i are the decimal digits, we form the sequence of rational numbers

$$x_0 = A$$

$$x_1 = A.a_1$$

$$x_2 = A.a_1a_2$$

$$x_n = A.a_1a_2 \cdots a_n$$
, and so on

We will look for features such as clustering

 $(1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, ...)$ (c, c, c, c, c, ...) $(1, -\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, ...)$ $(\frac{1}{2^n})_{n=1}^{\infty} = (\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ...)$ $(a_n), a_1 = 1$, and $a_{n+1} = \frac{a_n}{2} + 1$ $(a_n), a_n$ is the *n*th digit in the decimal expansion of π . $(a_n), a_n = (1 + 1/n)^n$

Why Sequences?

We use sequences to make sense of:

• $\sum_{n\geq 1} a_n$: Series

$$1 + 1/2^2 + 1/3^2 + \dots + 1/n^2 + \dots$$

Question: How to handle

$$(a_0+a_1+\cdots+a_n+\cdots)(b_0+b_1+\cdots+b_n+\cdots)$$

•
$$\sum_{m,n\geq 1} a_{m,n}$$
: Double [multiple] Series

$$\sum_{m,n}\frac{1}{m^2+n^2}$$

• $\prod_{n\geq 1} a_n$: Infinite Products

$$\prod_{p} (\frac{1}{1-p}), \quad p \text{ prime number}$$

Sequences are wonderful ways to represent data, but we are mostly interested is one of its aspects:

Definition

A sequence (a_n) converges to a real number a if, for every positive real number ϵ , there exists an $N \in \mathbb{N}$ such that whenever $n \ge N$ it follows that $|a_n - a| < \epsilon$.

One notation: $\lim a_n = a$, or $(a_n) \rightarrow a$. To understand this we introduce the notion of a **neighborhood** of a real number *a*.

Example

Consider the sequence (a_n) , $a_n = \frac{n+1}{n}$. It is natural to expect that $\lim a_n = 1$. Let us follow the template:

• Given $\epsilon > 0$, to determine *N* we solve

$$\left|\frac{n+1}{n}-1\right|<\epsilon$$

That is

$$\left|\frac{1}{n}\right| < \epsilon \quad \Rightarrow \quad n > \frac{1}{\epsilon}$$

• Thus if $\epsilon = 1/100$, N = 101 will work.

$$\begin{array}{c|c} (& | &) \\ \hline a - \epsilon & a & a + \epsilon \end{array}$$

Definition

Given a real number $a \in \mathbb{R}$ and a positive number $\epsilon > 0$, the set

$$V_{\epsilon}(a) = \{x \in \mathbb{R} \colon |x - a| < \epsilon\}$$

is called the ϵ -neighborhood of a.

Limit and Neighborhoods

a is the limit of (a_n) if once a_N enters the neighborhood $V_{\epsilon}(a)$, all a_n that follow will stay in it. That is, the a_n cluster around *a* in a very specific manner.

Note that this implies that if (a_n) converges, its limit is unique: the a_n cannot be in both $V_{\epsilon}(a)$ and $V_{\epsilon}(b)$ if $\epsilon < 1/2|a - b|$.

Exercise

Let $a_n = \frac{2n^2 + n + 1}{n^2}$. It can be written as $a_n = 2 + \frac{1}{n} + \frac{1}{n^2}$

It is now easy to see that $\lim a_n = 2$: Just notice that

$$|a_n-2|=\frac{1}{n}+\frac{1}{n^2}\leq 2\frac{1}{n}$$

and we can use the argument of the previous Example to finish. **Exercise:** For every real number $x \in \mathbb{R}$, there exists a sequence (a_n) of rational numbers such that $(a_n) \to x$. Let us summarize the procedure to compute the limit of a sequence:

- $(a_n) \rightarrow a$ involves all the following steps:
 - Let $\epsilon > 0$ be arbitrary
 - 2 Demonstrate a choice for $N \in \mathbb{N}$: hard work here often
 - 3 Assume $n \ge N$
 - Check that

 $|\boldsymbol{a} - \boldsymbol{a}_n| < \epsilon$

Define the sequence

$$a_1=\sqrt{2}, \quad a_2=\sqrt{2\sqrt{2}}, \quad a_3=\sqrt{2\sqrt{2\sqrt{2}}}, \cdots$$

Question: $(a_n) \rightarrow ?$ Note

$$a_1 = \sqrt{2}, \quad a_2 = a_1 \sqrt[4]{2}, \quad a_3 = a_2 \sqrt[8]{2}, \cdots$$

$$a_n = 2^{1/2 + 1/4 + \dots + 1/2^n} < 2$$

So this sequence is bounded [and increasing]. Show that its least upper bound is 2.

Infinity as the limit of a sequence

If a sequence (a_n) is not **convergent**, we say that it is **divergent**. We also use the following terminology for some divergent sequences:

Definition

The sequence (a_n) converges to ∞ , $\lim a_n = \infty$, if given any positive number *b*, there is an $N \in \mathbb{N}$ such that $a_n \ge b$ for $n \ge N$.

Example:
$$\{1, 2, 3, ..., n, ...\}$$

Some sequences don't make up their minds:

- **1**, $-1, 1, \ldots, \pm 1, \ldots$
- one gets a very complicated sequence by glueing two unrelated sequences (a_n) , (b_n) , as in

$$a_0, b_0, a_1, b_1, a_2, b_2, \ldots, a_n, b_n, \ldots,$$

Definition

A sequence (a_n) is bounded if there exists a number M > 0 such that $|a_n| \le M$ for all $n \in \mathbb{N}$.

Theorem

Every convergent sequence is bounded.

Proof. Suppose $(a_n) \rightarrow \ell$. For $\epsilon = 1$ let $N \in \mathbb{N}$ be such that $|a_n - \ell| < 1$ for $n \ge N$.

We claim that $M = \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, |\ell| + 1\}$ satisfies

$$|a_n| \leq M$$

The sequence $(1, -1, ..., (-1)^n, ...)$ is bounded but not convergent. Many sequences are put together from two or more sequences: Say start with

$$\{a_1, a_2, a_3, \ldots\} \quad \{b_1, b_2, b_3, \ldots\}$$

 $\{a_1, b_1, a_2, b_2, a_3, b_3, \ldots\}$

Outline

- Some Goals
- 2) Sequences
 - Limit Theorems
- Monotone Sequences
- 5 Bolzano-Weierstrass
- 6 Cauchy Criterion
- 7 Workshop #3
- 8 Series
- Properties of Infinite Series
- 10 Convergence Tests for Series
- 11 Workshop #4
- 12 Typical E-Questions
- 13 Hourly #1 Review

Theorem

Let $\lim a_n = a$ and $\lim b_n = b$. Then

(i)
$$\lim ca_n = ca$$
, for all $c \in \mathbb{R}$;

- (ii) $\lim(a_n + b_n) = a + b;$
- (iii) $\lim(a_nb_n) = ab;$
- (iv) $\lim(a_n/b_n) = a/b$ provided $b_n \neq 0$ and $b \neq 0$.

Note an important consequence: Since we can view real numbers as limits of rational numbers, we can carry out the desired field operations

$$\begin{array}{rcl} x & = & X.x_1x_2\ldots x_n|\ldots\\ y & = & Y.y_1y_2\ldots y_n|\ldots \end{array}$$

Proof. (i) [If $\lim a_n = a$, then $\lim ca_n = ca$] Consider the case $c \neq 0$. To prove $(ca_n) \to ca$, we use the proof template. Let $\epsilon > 0$. We want to argue that $|ca_n - ca| < \epsilon$ from some term of the sequence (ca_n) on. Since $(a_n) \to a$, given $\epsilon/|c|$, there is $N \in \mathbb{N}$ such that for $n \geq N$ $|a_n - a| < \epsilon/|c|$. This leads to

$$|ca_n - ca| = |c||a_n - a| < \epsilon, \quad n \ge N,$$

as desired. This proves (i) for $c \neq 0$. The case c = 0 is trivial.

(ii) [If $\lim a_n = a$, $\lim b_n = b$, then $\lim (a_n + b_n) = a + b$] Given $\epsilon > 0$, pick N_1 and N_2 so that

$$|a_n - a| < \epsilon/2$$
, & $|b_n - b| < \epsilon/2$

for $n \ge N_1$ and $n \ge N_2$, respectively. Thus $n \ge N = \max\{N_1, N_2\}$

$$|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)| \le |a_n - a| + |b_n - b| \le \epsilon/2 + \epsilon/2 = \epsilon$$

(iii) [If $\lim a_n = a$, $\lim b_n = b$, then $\lim a_n b_n = ab$] If $\lim a_n = a$, $\lim b_n = b$, we know that $|a_n|$ and $|b_n|$ are bounded, that is $|a_n| < M_1$ and $|b_n| < M_2$ for all *n*. Let $M = \max\{M_1, M_2\}$. Given $\epsilon > 0$, pick N_1 and N_2 so that

$$|a_n - a| < \epsilon/2M$$
, & $|b_n - b| < \epsilon/2M$

for $n \ge N_1$ and $n \ge N_2$, respectively. This leads to: for all $n \ge N = \max\{N_1, N_2\}$

$$\begin{aligned} |a_n b_n - ab| &= |(a_n b_n - a_n b) + (a_n b - ab)| \\ &\leq |(a_n b_n - a_n b)| + |(a_n b - ab)| \\ &= |a_n||b_n - b| + |b||a_n - a| \le M_1|b_n - b| + M_2|a_n - a| \\ &\leq \epsilon/2 + \epsilon/2 = \epsilon \end{aligned}$$

which completes the proof.

(iv) [If $\lim a_n = a$, $\lim b_n = b$, b_n , $b \neq 0$, then $\lim a_n/b_n = a/b$]. In the case of a_n/b_n , we are going to apply the product rule to the product $a_n \frac{1}{b_n}$. This requires

Lemma

If the sequence $(b_n) \to b$ and $b_n, b \neq 0$, then $(\frac{1}{b_n}) \to \frac{1}{b}$.

Proof. Let $\epsilon_0 = |b|/2$. Pick N_1 large enough so that for $n \ge N_1$ $|b_n - b| < \epsilon_0 = |b|/2$. This shows that in this range $|b_n| > |b|/2$. Next, given $\epsilon > 0$, choose N_2 so that for $n \ge N_2$

$$|b_n-b|<rac{\epsilon b^2}{2}$$

Finally, if we let $N = \max\{N_1, N_2\}$,

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| = \left|\frac{b - b_n}{bb_n}\right| \le \frac{\epsilon b^2}{2} \frac{1}{|b||b|/2} = \epsilon$$

We examine in detail this important sequence. Two cases are easy: x = 1, when the sequence is constant (so $\lim x^n = 1$), and x = -1 (when it alternates between 1 and -1) when it does not converge. Let us next examine the case |x| < 1, that is -1 < x < 1. We make a series of technical observations.

Lemma

For any
$$p > -1$$
 and all $n \in \mathbb{N}$, $(1 + p)^n \ge 1 + pn$.

Proof. We prove this by induction. It is true for n = 1. Now consider

$$(1+p)^{n+1} = (1+p)^n(1+p) \ge (1+pn)(1+p)$$

= $1+p(n+1)+p^2n \ge 1+p(n+1).$

• Back to our limit. If |x| < 1, $\frac{1}{|x|} = 1 + p$, p > 0 and thus

$$\frac{1}{|x^n|} = (1+p)^n \ge 1+pn > pn$$

Therefore

$$|x^n| < \frac{1}{pn}$$

- Which shows that for $|x| < 1 \lim |x^n| = 0$ and $\lim x^n = 0$ as well.
- The case |x| > 1. Apply the algebraic limit theorem: By the case above, lim ¹/_{xⁿ} = 0, which shows (xⁿ) does not converge.

Theorem (Order Limit Theorem)

Assume $\lim a_n = a$ and $\lim b_n = b$. Then

- **1** If $a_n \ge 0$ for all $n \in \mathbb{N}$, then $a \ge 0$.
- 2 If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $a \leq b$.
- If there exists c ∈ ℝ for which c ≤ b_n for all n ∈ N, then c ≤ b. Similarly, if a_n ≤ c for all n ∈ N, then a ≤ c.

Proof. (i) Assume, by way of contradiction, that a < 0. Let us show that this produces some $a_n < 0$. Let $\epsilon = |a|$. There exists *N* such that

$$|a_n - a| < \epsilon, \quad n \ge N$$

If $a_n \ge 0$ for $n \ge N$,

$$|\mathbf{a}_n - \mathbf{a}| = |\mathbf{a}_n + (-\mathbf{a})| = \mathbf{a}_n + |\mathbf{a}| \ge \epsilon,$$

a contradiction.

(ii) The Algebraic Limit Theorem guarantees that the sequence $(b_n - a_n)$ converges to b - a. Because $b_n - a_n \ge 0$, by Part (i), $b \ge a$. (iii) Take $a_n = c$ (or $b_n = c$) for all $n \in \mathbb{N}$ and apply (ii).

Examples

• The constant sequence (*c*, *c*, *c*, ...) converges to c:

 $x_n = c$ for all n, so for $\epsilon > 0$, $|x_n - c| = 0 < \epsilon$

- Let $x_n \ge 0$ for all $n \in \mathbb{N}$.
 - If $(x_n) \to 0$, show that $(\sqrt{x_n}) \to 0$: Given $\epsilon > 0$ we can find *N* such that $|x_n| < \epsilon^2$ for $n \ge N$. It follows that $|\sqrt{x_n}| < \epsilon$ for $n \ge N$.
 - 2 If $(x_n) \to x$, show that $(\sqrt{x_n}) \to \sqrt{x}$: We already know that $x \ge 0$ and that the sequence is bounded, that is $L < x_n < U$. In particular $\sqrt{x_n} \ge \sqrt{L}$ and $x \ge \sqrt{L}$. Given $\epsilon > 0$ pick *N* so that $|x_n - x| < \epsilon 2\sqrt{L}$ for $n \ge N$. Then

$$\begin{aligned} |\sqrt{x_n} - \sqrt{x}| &\leq |\sqrt{x_n} - \sqrt{x}| \frac{|\sqrt{x_n} + \sqrt{x}|}{2\sqrt{L}} \\ &= \frac{|x_n - x|}{2\sqrt{L}} < \epsilon \end{aligned}$$

- (i) Show that if $(b_n) \rightarrow b$, then the sequence $(|b_n|)$ converges to |b|.(ii) Converse?
- 2 Let (a_n) be a bounded (not necessarilly convergent) sequence, and assume $(b_n) \rightarrow 0$. Show that $(a_n b_n) \rightarrow 0$. Why we are not allowed to use the Algebraic Limit theorem?
- Exercises 32(a,c,e) in page 56 of Textbook.

Outline

- Some Goals
- 2 Sequences
- Limit Theorems
- Monotone Sequences
- Bolzano-Weierstrass
- Cauchy Criterion
- 7 Workshop #3
- 8 Series
- Properties of Infinite Series
- 10 Convergence Tests for Series
- 11 Workshop #4
- 12 Typical E-Questions
- 13 Hourly #1 Review

Definition

A sequence (a_n) is **increasing** if $a_n \le a_{n+1}$ for all $n \in \mathbb{N}$, and **decreasing** if $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$. A sequence is **monotone** if it is either increasing or decreasing.

Theorem (Monotone Convergence Theorem)

If the sequence (a_n) is monotone and bounded, then it converges.

Proof. The assumption is that there is a *B* such that $a_n \leq B$ for all $n \in \mathbb{N}$. We are going to 'build' lim a_n . For that we are going to use the decimal representation of the a_n .

Visual Proof

$$a_{1} = A_{1}.a_{11}a_{12}a_{13}a_{14}\cdots$$

$$a_{2} = A_{2}.a_{21}a_{22}a_{23}a_{24}\cdots$$

$$a_{3} = A_{3}.a_{31}a_{32}a_{33}a_{34}\cdots$$

$$\vdots$$

$$a_{N} = A_{N}.a_{N1}a_{N2}a_{N3}a_{N4}\cdots$$

$$\vdots$$

$$a_{n} = A_{n}.a_{n1}a_{n2}a_{n3}a_{n4}\cdots$$

Since the a_n are bounded, its integral parts A_n are also bounded and non-increasing. Thus, there is an N such that $A_n = A_N$ for all $n \ge N$.

Let us scan the first decimal digits from a_N on:

$$a_{N1} = A_N a_{N1} a_{N2} a_{N3} a_{N4} \cdots$$

$$\vdots \qquad \vdots$$

$$a_n = A_n a_{n1} a_{n2} a_{n3} a_{n4} \cdots$$

Since $A_n = A_N$, and a_n are increasing, the digits a_{n1} must be increasing so once it hits its maximal value, say at $n = N_1$, it must stay there, i.e. $a_{n1} = a_{N_1 1}$ for $n \ge N_1$. We move over the second decimal place, and so on. In this manner we

build the element $a = A_N . b_1 b_2 b_3 b_4 ...$ with the property

 $|a - a_n| < 10^{-N_r}$ for $n \ge N_{r+1}$. This shows that $a = \lim a_n$. Note that a is the least upper bound of the set $\{a_n\}$.

Let (a_n) be a bounded monotone increasing sequence,

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq a_{n+1} \leq \cdots \leq B$$

Because the set of terms $\{a_n, n \ge 1\}$ is bounded, by the **Axiom of Completeness** the set has a **least upper bound** B_0 . Now we verify that $a_n \rightarrow B_0$. We use the limit template:

 Given *ε* > 0, *B*₀ - *ε* is not an upper bound so there is *N* such that *a_N* > *B*₀ - *ε*. Since *a_n* is increasing, we have

$$B_0 \ge a_n \ge a_N > B_0 - \epsilon, \quad n \ge N.$$

• This means that $|a_n - B_0| < \epsilon$ for $n \ge N$, thus proving that $\lim a_n = B_0$.
A sequence we met already was (x_n) , where $x_1 = 1$ and

$$x_{n+1}=\frac{x_n}{2}+1$$

We proved that $x_n < x_{n+1} < 2$, so this is a monotone bounded sequence. Let $a = \lim x_n$. If we delete x_1 , we obtain the sequence $(x_{n+1}, n \ge 1)$ which obviously is monotone, and has the same limit. Thus

$$\lim x_{n+1} = a = \frac{\lim x_n}{2} + 1 = \frac{a}{2} + 1$$

and therefore

Calculating Square Roots

Let $x_1 = 2$, and define

$$x_{n+1} = 1/2\left(x_n + \frac{2}{x_n}\right)$$

• Show that $x_n^2 \ge 2$, and then prove that $x_n - x_{n+1} \ge 0$. Conclude that $\lim x_n = \sqrt{2}$. We use induction. Squaring we have $x_{n+1}^2 = 1/4(x_n^2 + 4 + 4/x_n^2)$. To show that $x_{n+1}^2 > 2$, it suffices to show that if $x_n^2 > 2$, then $x_n^2 + 4/x_n^2 > 4$. But

$$x_n^2 + 4/x_n^2 - 4 = (x_n - \frac{2}{x_n})^2 > 0$$

Note also $x_n - x_{n+1} = 1/2(x_n - 2/x_n) > 0$, since $x_n^2 > 2$. Thus the sequence (x_n) is bounded and decreasing. Its limit *a* satisfies a = 1/2(a+2/a), i.e. $a = \sqrt{2}$.

• Modify the sequence so that it converges to \sqrt{c} :

$$x_{n+1}=1/2\left(x_n+\frac{c}{x_n}\right)$$

We again check that the sequence (x_n) is monotone and bounded. When solving for the limit, we get a = 1/2(a + c/a), i.e. $a = \sqrt{c}$.

• Many other equations f(x) = 0 can be set up as

$$x = \frac{\mathbf{g}(x)}{\mathbf{h}(x)}$$

which we turn into a dynamical scheme

$$x_{n+1} = rac{\mathbf{g}(x_n)}{\mathbf{h}(x_n)}$$

If (x_n) is monotone and bounded, the limit is a root.

Outline

- Some Goals
- 2 Sequences
- 3 Limit Theorems
- Monotone Sequences

Bolzano-Weierstrass

- Cauchy Criterion
- 7 Workshop #3
- 8 Series
- Properties of Infinite Series
- 10 Convergence Tests for Series
- 11 Workshop #4
- 12 Typical E-Questions
- 13 Hourly #1 Review

Definition

Let (a_n) be a sequence of real numbers, and let $n_1 < n_2 < n_3 < \cdots$ be an increasing sequence of natural numbers. Then the sequence

 $a_{n_1}, a_{n_2}, a_{n_3}, a_{n_4}, \dots$

is called a **subsequence** of (a_n) and is denoted by (a_{n_j}) , where $j \in \mathbb{N}$ indexes the subsequence.

Theorem

Subsequences of a convergent sequence converge to the same limit as the original sequence.

About bounded sequences: Bolzano-Weierstrass

Theorem (Bolzano-Weierstrass Theorem)

Every bounded sequence (a_n) contains a convergent subsequence.

Proof. The assumption is that all a_n lie in some closed interval $l_1 = [-M, M]$. (Note that we allow repetitions.) Since the sequence is infinite, an infinite subset of terms lies in either [-M, 0] or in [0, M]. We pick one of the subintervals with an infinite number of terms and call it l_2 .

We continue the process: bisect I_2 pick I_3 one of its two halfs that contain an infinite number of terms. In this manner we get a decreasing sequence of closed intervals

$$I_1 \supset I_2 \supset I_3 \supset \cdots$$

If in each subset I_k we pick an element a_{n_k} of the sequence in it, we obtain a subsequence

$$\{a_{n_1}, a_{n_2}, a_{n_3}, \ldots\}$$

We claim this (sub)sequence converges.

By he Nested Interval Property there exists at least one point $x \in \mathbb{R}$ contained in every I_k .

We claim $(a_{n_k}) \rightarrow x$. Note that the length of I_k is $M_{\frac{1}{2^{k-1}}}$, which converges to 0 (discussed in Workshop #3).

Choose *N* so that $k \ge N$ implies that the length of I_k is less than ϵ . Because *x* and a_{n_k} are both in i_k , $|x - a_{n_k}| < \epsilon$. Let (a_n) be a bounded sequence, and define the set

 $S = \{x \in \mathbb{R} \mid x < a_n \text{ for infinitely many } a_n\}$

Show that there exists a subsquence (a_{n_k}) converging to $s = \sup S$. (This is a direct proof of the BW Theorem using AoC.) Give an example of each of the following, or argue that such a request is impossible.

- A sequence that does not contain 0 or 1 as a term but contains subsequences converging to each of these values.
- A monotone sequence that diverges but has a convergent subsequence.
- A sequence that contains subsequences converging to every point in the infinite set {1, 1/2, 1/3, 1/4,...}.
- An unbounded sequence with a convergent subsequence.
- A sequence that has a subsequence that is bounded but contains no subsequence that converges.

Outline

- Some Goals
- 2 Sequences
- 3 Limit Theorems
- 4 Monotone Sequences
- 5 Bolzano-Weierstrass
- 6 Cauchy Criterion
 - Workshop #3
- 8 Series
- Properties of Infinite Series
- Onvergence Tests for Series
- 11 Workshop #4
- 12 Typical E-Questions
- 13 Hourly #1 Review

Warming Up ...

Thus far we have two basic results about convergence of sequences:

Theorem (Monotone Convergence Theorem)

If the sequence (a_n) is monotone and bounded, then it converges.

Essentially, if

$$a_1 \leq a_2 \leq \cdots \leq a_n \leq \cdots \leq B$$
,

then $a_n \rightarrow B_0$, least upper bound of the a_n

Theorem (Bolzano-Weierstrass Theorem)

Every bounded sequence (a_n) contains a convergent subsequence.

Essentially, if the sequence (a_n) is bounded, that is there is M > 0 such that $-M \le a_n \le M$ for all *n*, then there is a subsequence

$$a_{n_1}, a_{n_2}, a_{n_3}, \ldots$$

that is convergent.

Wolmer Vasconcelos (Set 2)

The notion of convergence of a sequence that we are using is:

Definition (Convergence of a Sequence)

A sequence (a_n) converges to the real number a if, for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $n \ge N$ it follows that $|a_n - a| < \epsilon$.

$$\lim a_n = a \text{ if } \to \text{ given } \epsilon > 0 \to \text{ find } N \to \text{ for } n \ge N \to |a_n - a| < \epsilon$$

There are other ways of defining **convergence** of sequences. Today we study a powerful notion, but first we do warm ups.

Let (a_n) be a sequence and define the sequence of its **means**,

$$c_n=rac{a_1+a_2+\cdots+a_n}{n},\quad n\geq 1$$

thus forming the sequence (c_n) of averages. For example, the sequence (1, 0, 1, 0, 1, 0, ...) has sequence of means

$$(1, 1/2, 2/3, 1/2, 3/5, 1/2, 5/7, \dots, 1/2, (n+2)/(2n+1), \dots) \rightarrow 1/2$$

Theorem (Cèsaro Means)

If $(a_n) \rightarrow a$, then $(c_n) \rightarrow a$ also.

Proof.

Given ε > 0 we will find N such that |c_n − a| < ε for n ≥ N.Since (a_n) → a, we know that (a_n) is bounded, say |a_n| < M for some M, and for ε' = ε/2 there is N₀ such that

$$|a_n - a| < \epsilon' \quad n \ge N_0$$

• Now consider
$$|c_n - a|$$

$$\begin{aligned} |c_n - a| &= \left| \frac{a_1 + \dots + a_n}{n} - a \right| = \left| \frac{(a_1 - a) + \dots + (a_n - a)}{n} \right| \\ &\leq \frac{|a_1 - a| + \dots + |a_n - a|}{n} \end{aligned}$$

We are going to split the numerator of

$$\frac{|a_1-a|+\cdots+|a_n-a|}{n}$$

into two summands, up to N_0 and from there to *n*: Note that $|a_n - a| \le |a_n| + |a| \le 2M$ by the triangle inequality. Choosing

 $N = \max\{N_0, 4N_0M/\epsilon\}$

$$\frac{2N_0M}{n} + \frac{(n-N_0)\epsilon/2}{n} \leq \epsilon/2 + \epsilon/2 = \epsilon$$

for $n \ge N$, as desired.

Definition

A sequence (a_n) is called a **Cauchy sequence** if, for every $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that whenever $m, n \ge N$ it follows that $|a_n - a_m| < \epsilon$.

Compare to the standard definition of convergence:

Definition (Convergence of a Sequence)

A sequence (a_n) converges to the real number a if, for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $n \ge N$ it follows that $|a_n - a| < \epsilon$.

Comment on the differences!

Exercise

Prove that
$$a_n = \frac{2n+1}{n}$$
 is Cauchy
We estimate $|a_n - a_m|$: For $n < m$
 $|\frac{2n+1}{n} - \frac{2m+1}{m}| = |\frac{1}{n} - \frac{1}{m}| = |\frac{m-n}{mn}|$

$$|a_n-a_m|<\epsilon, \quad n,m\geq N$$

Let a sequence be defined as follows: $x_1 = 1$, $x_2 = 2$, $x_3 = 1/2(x_1 + x_2)$ and in general $x_{n+1} = 1/2(x_{n-1} + x_n)$. Show that

$$|x_n-x_m|\leq \frac{1}{2^{N-1}},\quad \forall n,m\geq N,$$

so Cauchy's condition is fulfilled.

Hint: Note that each term is midway between the two preceding ones.

Theorem

Every convergent sequence is a Cauchy sequence.

Proof. Assume (x_n) converges to x. To prove (x_n) is Cauchy, we must find N such that $|x_n - x_m| < \epsilon$ for $n, m \ge N$. This is easily done: given $\epsilon/2$ find N such that

$$|x-x_n| < \epsilon/2, \quad n \ge N.$$

By the triangle inequality,

$$|x_n - x_m| \le |x_n - x| + |x - x_m| \le \epsilon/2 + \epsilon/2 = \epsilon, \quad n, m \ge N.$$

Theorem

A sequence converges if and only if it is a Cauchy sequence.

While the definition of convergence requires a candidate for the limit, Cauchy's Criterion is a softer requirement. [**Discuss**]

Proof. The preceding theorem showed that every convergent sequence is a Cauchy sequence. To prove the converse, we first show that every Cauchy sequence is bounded, apply Bolzano- Weierstrass, and then complete proof.

Lemma

Cauchy sequences are bounded.

Proof. Given $\epsilon = 1$, there exists an *N* such that $|x_n - x_m| < 1$ for all $m, n \ge N$. Thus, making m = N, we must have $|x_n| \le |x_N| + 1$ for all $n \ge N$. It follows that

$$M = \max\{|x_1|, |x_2|, |x_3|, \dots, |x_{N-1}|, |x_N|+1\}$$

is a bound for (x_n) .

Theorem

A sequence converges if and only if it is a Cauchy sequence.

Proof. By the Bolzano-Weierstrass theorem, since (x_n) is bounded, it has a convergent subsequence (x_{n_k}) of limit, say, x. We want to argue that x is the limit of (x_n) also.

Let $\epsilon > 0$. Because (x_n) is Cauchy, there exists *N* such that

$$|x_n-x_m|<\epsilon/2, \quad m,n\geq N.$$

Because $(x_{n_k}) \rightarrow x$, choose a term x_{N_K} , with $N_K \ge N$ such that

$$|x_{N_K}-x|<\epsilon/2.$$

Now observe: If $n \ge N_K$,

$$\begin{aligned} |x_n - x| &= |x_n - x_{N_K} + x_{N_K} - x| \\ &\leq |x_n - x_{N_K}| + |x_{N_K} - x| \\ &< \epsilon/2 + \epsilon/2 = \epsilon \end{aligned}$$

This shows that $(x_n) \rightarrow x$

Outline

- Some Goals
- 2 Sequences
- 3 Limit Theorems
- 4 Monotone Sequences
- 5 Bolzano-Weierstrass
- 6 Cauchy Criterion
 - Workshop #3
- Series
- Properties of Infinite Series
- 10 Convergence Tests for Series
- Workshop #4
- 12 Typical E-Questions
- Hourly #1 Review

Review the following concepts/techniques:

- Algebraic and order limit theorems
- Your favorite limit tricks [see two slides down for one useful tool]

This uses only the cute lemma and some of the algebraic limits theorems.

- Let $a_n = q^n$. If q > 1, prove that $\lim a_n = \infty$: Set q = 1 + p, p > 0. By the Lemma, $(1 + p)^n \ge 1 + np$, which clearly converges to ∞ .
- 2 Let $a_n = q^n$. If 0 < q < 1, prove that $\lim a_n = 0$. [*Hint:* work with 1/q.] This means $(1/q)^n \to \infty$, hence $q^n \to 0$.

- If q > 0, show that $\lim \sqrt[n]{q} = 1$. [*Hint:* Use the technique above. First assume q > 1. Then set $\sqrt[n]{q} = 1 + p_n$, $p_n > 0$. Now $q = (1 + p_n)^n \ge 1 + np_n$. In case 0 < q < 1, use $\frac{1}{\sqrt[n]{q}}$.]
- Show that $\lim \sqrt[n]{n} = 1$. [*Hint:* Work with $\sqrt[n]{\sqrt{n}} = 1 + k_n$.]Explain why setting $\sqrt[n]{n} = 1 + a_n$ will not work.
- Sind the limit of $\sqrt[n]{a^nb^n + b^nc^n + a^nc^n}$ if a > b > c > 0.
- Find the limit of $\sqrt{n^2 + an + b} n$.

5 Give an example or argue request is impossible.

- (i) A Cauchy sequence that is not monotone.
- (ii) A monotone sequence that is not Cauchy.
- (iii) A Cauchy sequence with a divergent subsequence.
- (iv) An unbounded sequence containing a subsequence that is Cauchy.

The following lemma discussed in class is helpful.

Lemma

If p > -1, $(1 + p)^n \ge 1 + pn$ for all $n \in \mathbb{N}$.

Proof. We prove this by induction.

- Base Case: It is true for n = 1.
- Induction Step: Now consider

$$(1+p)^{n+1} = (1+p)^n(1+p) \ge (1+pn)(1+p)$$

= $1+p(n+1)+p^2n \ge 1+p(n+1).$

In the Workshop #3 Problem like

$$\lim\sqrt[n]{a^n+b^n+c^n}, \quad a>b>c>0$$

can [?] be argued as follows

$$\lim \sqrt[n]{a^n + b^n + c^n} = \lim a \sqrt[n]{1 + (b/a)^n + (c/a)^n} = a \lim \sqrt[n]{1 + (b/a)^n + (c/a)^n}$$

which is fine but then argued wrongly [why?]

$$\lim \sqrt[n]{1 + (b/a)^n + (c/a)^n} = \sqrt[n]{1 + \lim(b/a)^n + \lim(c/a)^n} \\ = \sqrt[n]{1 + 0 + 0} = 1$$

Wolmer Vasconcelos (Set 2)

One of the proper ways to argue

$$a = \sqrt[n]{a^n} \le \sqrt[n]{a^n + b^n + c^n} \le \sqrt[n]{3a^n} = a\sqrt[n]{3}$$

and then use Problem #4 that shows

 $\lim \sqrt[n]{3} = 1$

$$(1+\frac{1}{n})^{n} = 1 + n\frac{1}{n} + \frac{n(n-1)}{1\cdot 2} \frac{1}{n^{2}} + \dots + \frac{n(n-1)\dots(n-n+1)}{1\cdots n} \frac{1}{n^{n}}$$

$$= 1 + 1 + \frac{1}{1\cdot 2} (1-\frac{1}{n}) + \frac{1}{1\cdot 2} (1-\frac{1}{n})(1-\frac{2}{n}) + \dots$$

$$+ \frac{1}{1\cdot 2\cdots n} (1-\frac{1}{n}) \cdots (1-\frac{n-1}{n})$$

Note that

$$\frac{1}{1\cdot 2\cdots n}(1-\frac{1}{n})\cdots(1-\frac{n-1}{n})<\frac{1}{n!}$$

This shows that

$$2 < (1 + \frac{1}{n})^n < 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots < 3$$

Outline

- Some Goals
- 2 Sequences
- 3 Limit Theorems
- 4 Monotone Sequences
- 5 Bolzano-Weierstrass
- 6 Cauchy Criterion
 - Workshop #3
 - **Series**
- Properties of Infinite Series
- Onvergence Tests for Series
- Workshop #4
- 12 Typical E-Questions
- 13 Hourly #1 Review

Intro to Infinite Series

Question: What do we see in the Infinite Series

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + a_3 + \dots = ?$$

Answer: At least two things

- The sequence of terms, (a_n) and
- The sequence of partial sums, (s_n) ,

 $s_n = a_0 + a_1 + \cdots + a_n$

We say the series converges to S ∈ ℝ if lim s_n = S. By abuse of notation, we then replace the ? by S.

The perspective we use is to view a series as the **pair** of related sequences:

$$a_n, \quad s_n = a_0 + a_1 + \cdots + a_n$$

with emphasis on the question: What should the sequence (a_n) be like so that the sequence of partial sums (s_n) converges?

We need to look close at some important series.
For $q \in \mathbb{R}$, the geometric series of ratio q is

$$1+q+q^2+q^3+\cdots+q^n+\cdots$$

Sometimes, all terms are multiplied by a same constant, that instead of the sequence of terms (q^n) , one has (aq^n) . Let us examine when it converges and find the corresponding limit.

- We need an expression for the partial sum $s_n = 1 + q + \cdots + q^n$.
- If we multiply s_n by q and subtract s_n we get

$$qs_n - s_n = q(1 + q + \dots + q^n) - (1 + q + \dots + q^n)$$

= $q^{n+1} - 1$

• We get an explicit expression for *s_n*

$$s_n = \frac{1}{1-q} - \frac{q^{n+1}}{1-q}$$

• According to the value of q, we conclude: If |q| < 1, since $q^n \rightarrow 0$,

$$1+q+q^2+q^3+\cdots+q^n+\cdots=\frac{1}{1-q}$$

 Otherwise the series diverges. If *q* ≥ 1, it converges to infinity. [Note the confusing language.] This is the series

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$$

This series diverges: It suffices to organize its partial sums in groups that add to at least 1/2:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}) + \dots$$

$$\geq 1 + \frac{1}{2} + (\frac{1}{4} + \frac{1}{4}) + (\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}) + \dots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$$

The series $1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots + \frac{1}{n^p} + \dots$

for p > 1 will always converge. Its sum is denoted by $\zeta(p)$.

For example, $\zeta(2) = \frac{\pi^2}{6}$.

This function is actually defined for all complex numbers p whose real part is > 1. It is known as **Riemann zeta function**. It is probably the most famous function of Mathematics.

Let us show that

$$1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots + \frac{1}{n^p} + \dots$$

for p > 1 will always converge.

We are going to bound each term $1/n^{p}$ by the terms of another series, and then argue the new series converges.

Consider the function $\mathbf{f}(x) = 1/x^p$, $x \ge 2$. This is a decreasing function (draw the graph). Observe

$$1/n^{p} \leq \int_{x=n-1}^{n} 1/x^{p} dx$$

Therefore its partial sums are bounded by

$$s_n \leq 1 + \int_{x=1}^n \frac{dx}{x^p} = 1 + \frac{1}{p-1} \left[1 - \frac{1}{n^{p-1}} \right] < 1 + \frac{1}{p-1}$$

This is the series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n-1} \frac{1}{n} + \dotsb$$

- Its even partial sums, s₀ = 1, s₂ = 1 1/2 + 1/3, ... are decreasing
- Its odd partial sums, s₁ = 1 − 1/2, s₃ = 1 − 1/2 + 1/3 − 1/4, ... are increasing
- The nested intervals [s₁, s₀] ⊃ [s₃, s₂] ⊃ [s₅, s₄] ⊃ · · · will define the limit 0.69... [actually ln 2]

We claim that the series

$$1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

convergent.

Note that the sequence of its partial sums is monotone but it is bounded by the partial sums of a geometric series

$$1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} < 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}$$

a series that converges to 3. We can refine the comparison.

$$1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{12!} = 2.71828183$$

with error

$$\frac{1}{13!} + \frac{1}{14!} + \dots < \frac{1}{13!} (1 + \frac{1}{13} + \frac{1}{13^2} + \dots \\ = \frac{1}{13!} \frac{1}{1 - \frac{1}{13}} = \frac{1}{12} \frac{1}{12!}$$

a number that does not affect the 8th decimal place. The limit of this famous series is denoted *e*, after Euler. We claim that the series

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

is not a rational number. We already know that 2 < e < 3, in particular e is not an integer. Suppose $e = \frac{p}{q}$, with $q \ge 2$ since e is not an integer. Multiplying the equality by q!, we have

$$eq! = p(q-1)! = \left[q! + q! + \frac{q!}{2!} + \frac{q!}{3!} + \dots + \frac{q!}{q!}\right] \\ + \frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \dots$$

Note that p(q-1)! and

$$\left[q!+q!+\frac{q!}{2!}+\frac{q!}{3!}+\cdots+\frac{q!}{q!}\right]$$

are integers, so that its difference

$$\frac{1}{q+1}+\frac{1}{(q+1)(q+2)}+\cdots$$

must also be an integer. But this series is smaller than the geometric series

$$rac{1}{q+1} + rac{1}{(q+1)^2} + rac{1}{(q+1)^3} + \cdots$$

whose sum is

$$\frac{1}{q+1}\frac{1}{1-\frac{1}{q+1}} = \frac{1}{q} < 1$$

Is the series $(1-\frac{1}{2}) + (\frac{1}{2}-\frac{1}{3}) + (\frac{1}{3}-\frac{1}{4}) + \cdots$

convergent or divergent? Justify answer. Is the series

$$\frac{1^1}{(101)!} + \frac{2^2}{(100+2)!} + \dots + \frac{n^n}{(100+n)!} + \dots$$

convergent or divergent? Justify answer.

Outline

- Some Goals
- 2 Sequences
- 3 Limit Theorems
- 4 Monotone Sequences
- 5 Bolzano-Weierstrass
- 6 Cauchy Criterion
- 7 Workshop #3
- **Series**
- Properties of Infinite Series
- O Convergence Tests for Series
- 1 Workshop #4
- 12 Typical E-Questions
- 13 Hourly #1 Review

Convergence of Series

Given the series

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + a_3 + \cdots ?$$

there are two sequences associated to it

- The sequence of **terms**, (a_n) and
- The sequence of **partial sums**, (*s_n*),

$$s_n = a_0 + a_1 + \cdots + a_n$$

• We say the **series converges** to $A \in \mathbb{R}$ if $\lim s_n = A$. We write this as

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + a_3 + \dots = A$$

We pick the alternating harmonic series—which we know to be convergent—and carry out arithmetic operations: See what happens

$$S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$
$$\frac{1}{2}S = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \cdots$$
$$S + \frac{1}{2}S = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} - \frac{1}{4} + \cdots$$

Thus $S + \frac{1}{2}S = \frac{3}{2}S$ is just a rearrangement of *S*! The arithmetic is saying instead that

$$\frac{3}{2}S = S$$

Theorem

If
$$\sum_{k=1}^{\infty} a_k = A$$
 and $\sum_{k=1}^{\infty} b_k = B$, then:
① $\sum_{k=1}^{\infty} ca_k = cA$ for all $c \in \mathbb{R}$ and
② $\sum_{k=1}^{\infty} (a_k + b_k) = A + B$.

Proof. (i) To show $\sum_{k=1}^{\infty} ca_k = cA$, we consider the sequence of partial sums

$$t_n=ca_1+ca_2+\cdots+ca_n.$$

Since $\sum_{k=1}^{\infty} a_k = A$, its sequence of partial sums

$$s_n = a_1 + a_2 + \cdots + a_n$$

converges to *A*. By the Algebraic Limit Theorem for Sequences, $\lim t_n = c \lim s_n = cA$.

(ii) To show that $\sum_{k=1}^{\infty} (a_k + b_k) = A + B$, let $r_n = a_1 + \cdots + a_n$, $s_n = b_1 + \cdots + b_n$ be the partial sum terms of the series. The partial sum term of the addition of the two series is

$$t_n = (a_1 + b_1) + \dots + (a_n + b_n) = (a_1 + \dots + a_n) + (b_1 + \dots + b_n) = r_n + s_n.$$

By the Algebraic Limit Theorem for Sequences,

$$\lim t_n = \lim r_n + \lim s_n = A + B.$$

Other operations are harder: **Question:** Given two series, $a_0 + a_1 + a_2 + \cdots + a_n + \cdots$ and $b_0 + b_1 + b_2 + \cdots + b_n + \cdots$, what is

$$(a_0 + a_1 + a_2 + \dots + a_n + \dots)(b_0 + b_1 + b_2 + \dots + b_n + \dots) =?$$

Part of the issue arises from the **distributive rule**. We will offer a partial fix later.

Definition

A sequence (a_n) is called a **Cauchy sequence** if, for every $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that whenever $m, n \ge N$ it follows that $|a_n - a_m| < \epsilon$.

Recall:

Theorem

A sequence converges if and only if it is a Cauchy sequence.

We apply this criterion to the sequence (s_n) of partial sums of a series $\sum_{k=1}^{\infty} a_k$. Note that

$$|s_m - s_n| = |a_{m+1} + \cdots + a_n|$$

Theorem

The series $\sum_{k=1}^{\infty} a_k$ converges if and only if given $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $n > m \ge N$ it follows that

$$|a_{m+1}+a_{m+2}+\cdots+a_n|<\epsilon.$$

Proof. Just observe

$$|\mathbf{s}_n - \mathbf{s}_m| = |\mathbf{a}_{m+1} + \mathbf{a}_{m+2} + \cdots + \mathbf{a}_n| < \epsilon,$$

and apply the Cauchy's Criterion for sequences.

Corollary

If the series $\sum_{k=1}^{\infty} a_k$ converges, then $(a_k) \to 0$.

Proof. Set n = m + 1, then $|s_n - s_m| = |a_n|$.

Question: Is a series whose sequence of terms a_n converges to 0 convergent? This one is easy:

Answer: No. The (harmonic) series

$$1 + 1/2 + 1/3 + \cdots + 1/n + \cdots$$

has $1/n \rightarrow 0$ but it is divergent.

Comparisons

Given two series $\sum_{k\geq 1} a_k$ and $\sum_{k\geq 1} b_k$ that loosely connected we seek to link their convergence/divergence:

Theorem (Comparison Test)

Assume $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ are series satisfying $0 \le a_k \le b_k$ for all $k \in \mathbb{N}$.

Proof. Both follow from Cauchy's Criterion applied to the partial sums

$$|a_{m+1} + a_{m+2} + \dots + a_n| \le |b_{m+1} + b_{m+2} + \dots + b_n|$$

If, for instance, given $\epsilon > 0$ we can find N so that for n, m > N $|b_{m+1} + a_{m+2} + \cdots + b_n| < \epsilon$, then the same condition will apply to the a_n .

Example

- We know that the **harmonic series**, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. It is clear that the same happens if we form the series $\sum_{n=N}^{\infty} \frac{1}{n}$ where *N* is some fixed number $N \ge 1$.
- If a and b are positive numbers, consider the series [called generalized harmonic series] whose terms are given by the rule:

$$\frac{1}{a}, \frac{1}{a+b}, \frac{1}{a+2b}, \dots, \frac{1}{a+nb}, \dots$$

We claim that this series is also divergent: We compare the terms to a multiple of the harmonic series

$$\frac{1}{a+bn} \geq \frac{1}{n+bn} = \frac{1}{b+1}\frac{1}{n}, \quad n \geq a$$

If $\sum_{n=1}^{\infty} a_n$ is a series of non-negative terms, its partial sums

$$s_n = a_1 + a_2 + \cdots + a_n$$
, $s_{n+1} = s_n + a_n$

is a monotone sequence. Therefore, by the criterion, the series converges exactly when the sequence (s_n) is bounded.

We make use of this:

Theorem (Absolute Convergence Test)

If the series $\sum_{k=1}^{\infty} |a_k|$ converges, then $\sum_{k=1}^{\infty} a_k$ converges as well.

Proof of the Absolute Convergence Test

We make use of Cauchy criterion for series: Let *ϵ* > 0. Since the series ∑_{k=1}[∞] |*a_k*| converges, there exists *N* so that

$$|a_{n+1}| + |a_{n+1}| + \dots + |a_m| < \epsilon \quad m \ge n > N$$

2 By the triangle inequality (one that say $|a+b| \le |a|+|b|$), we get

$$|a_{n+1}+a_{n+1}+\cdots+a_m|<\epsilon\quad m\geq n>N$$

Solution Therefore the series $\sum_{k=1}^{\infty} a_k$ satisfies the Cauchy condition and therefore converges.

The series

$$1 - \frac{1}{2} + \frac{1}{3} - \cdots (-1)^{n-1} \frac{1}{n} \cdots$$

is convergent (alternating harmonic series) (the one that won a Grammy's Award), but the series of the absolute values is

$$1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\cdots,$$

is divergent.

An alternating series is one with consecutive terms have opposite signs. One group of them is easy to study:

Theorem (Alternating Series Test)

Let (a_n) be a sequence satisfying

$$\bigcirc a_1 \geq a_2 \geq \cdots \geq a_n \geq a_{n+1} \geq \cdots$$
 , and

$$(a_n) \to 0.$$

Then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

In other words: If (a_n) is a decreasing sequence of positive terms then

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n \quad \text{converges if and only if} \quad \lim a_n = 0$$

Proof. Observe the odd and even sequences of partial sums

$$s_1 = a_1 \ge s_3 = a_1 - (a_2 - a_3) \ge s_5 = s_3 - (a_4 - a_5), \dots$$

$$s_2 = a_1 - a_2 \le s_4 = s_2 + (a_3 - a_4) \le s_5 = s_3 + (a_5 - a_6), \dots$$

They are monotone and bounded: Since $(a_n) \rightarrow 0$, there exists $a_n \leq K$, $s_{2n} = s_{2n-1} + a_{2n} \leq s_{2n-1} + K \leq a_1 + K$, therefore the even sequence is increasing and bounded. Thus it has a limit ℓ_1 . Similarly, the other sequence is decreasing and with a lower bound, so it has a limit ℓ_2 . Since $\pm a_n = s_n - s_{n-1}$ converges to 0, $\ell_1 = \ell_2$.

Definition

Let $\sum_{k\geq 1} a_k$ be a series. A series $\sum_{k\geq 1} b_k$ is said to be a **rearrangement** of $\sum_{k\geq 1} a_k$ if there exists a 1–1, onto function $\mathbf{f} : \mathbb{N} \to \mathbb{N}$ such that $b_{\mathbf{f}(k)} = a_k$ for all $k \in \mathbb{N}$.

Consider the geometric series of ratio q

$$1+q+q^2+q^3+\cdots+q^n+\cdots$$

Now we shuffle the terms

$$q + 1 + q^3 + q^2 + q^5 + q^4 + \cdots$$

This is not a geometric series, but we should expect its fate linked to the first series. The next result says this.

A cautionary tale

$$S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$$
$$\frac{1}{2}S = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \cdots$$
$$S + \frac{1}{2}S = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} - \frac{1}{4} + \cdots$$

Thus $S + \frac{1}{2}S = \frac{3}{2}S$ is just a rearrangement of *S*! The arithmetic is saying instead that

$$\frac{3}{2}S = S!$$

Theorem (Dirichlet)

The sum of a series of positive terms [convergence/divergence] is the same in whatever order [rearrangement] the terms are taken.

Proof. Let $a_0 + a_1 + a_2 + \cdots + a_n + \cdots$ be a series of positive terms of sum *s*. Then any partial sum of rearrangement $b_0 + b_1 + b_2 + \cdots + b_n + \cdots$ is bounded by *s*. Thus the second is convergent and its sum *t* is bound by *s*. We reverse the roles to obtain $s \le t$.

Question: Given two series, $a_0 + a_1 + a_2 + \cdots + a_n + \cdots$ and $b_0 + b_1 + b_2 + \cdots + b_n + \cdots$, what is

 $(a_0 + a_1 + a_2 + \dots + a_n + \dots)(b_0 + b_1 + b_2 + \dots + b_n + \dots) = ?$

The issue is: we have all the poducts $a_m b_n$ that can be organized into many different series, and then grouped. For instance, if we list the $a_m b_n$ as the double array, we

We could try the following: Define the product as the series

$$a_0b_0 + (a_0b_1 + a_1b_0) + (a_0b_2 + a_1b_1 + a_2b_0) + \cdots$$

Makes sense? [Discuss] Will see another rearrangement soon.

a_0b_0	a_1b_0	a_2b_0	a_3b_0	
$a_0 b_1$	a_1b_1	a_2b_1	a_3b_1	
a_0b_2	a_1b_2	a_2b_2	a_3b_2	
$a_0 b_3$	a_1b_3	a_2b_3	a_3b_3	

Wolmer Vasconcelos (Set 2)

The partial sums remind us how polynomials are multiplied

$$(a_0 + a_1x + a_2x^2 + \dots + a_nx^n)(b_0 + b_1x + b_2x^2 + \dots + b_mx^m)$$

$$=\sum_{k=0}^{m+n}(\sum_{0\leq i\leq k}a_ib_{k-i})x^k$$

 a_0b_0 , $a_0b_1 + a_1b_0$, $a_0b_2 + a_1b_1 + a_2b_2$, ... Another aspect of this definition is:

Theorem

If $\sum_{n\geq 0} a_n$ and $\sum_{n\geq 0} b_n$ are two convergent series of positive terms, and *s* and *t* are their respective sums, then the third series is convergent and has the sum st.

Out of all products $a_m b_n$, the 'product' above is given in terms of the diagonals

a_0b_0	a_1b_0	a_2b_0	a_3b_0	
a_0b_1	a_1b_1	a_2b_1	a_3b_1	
a_0b_2	a_1b_2	a_2b_2	a_3b_2	
a_0b_3	a_1b_3	a_2b_3	a_3b_3	

 a_0b_0 , $a_0b_1 + a_1b_0$, $a_0b_2 + a_1b_1 + a_2b_2$,... whose partial sums don't write conveniently.
We want to re-write the terms of the product series differently:

 $a_0b_0, (a_0 + a_1)(a_0 + a_1) - a_0b_0$, $(a_0 + a_1 + a_2)(b_0 + b_1 + b_2) - (a_0 + a_1)(b_0 + b_1), \dots$ whose *n*th partial sum is

$$(a_0+a_1+\cdots+a_n)(b_0+b_1+\cdots+b_n),$$

a sequence that converges to *st* by the Algebraic Limit Theorem.

Theorem

If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then any rearrangement of this series converges to the same limit.

Proof. Assume $\sum_{k\geq 1} a_k$ converges absolutely to *A*, and let $\sum_{k\geq 1} b_k$ be an rearrangement of $\sum_{k\geq 1} a_k$. Let

$$s_n=\sum_{k=1}^n a_k=a_1+a_2+\cdots+a_n$$

and

$$t_n=\sum_{k=1}^n b_k=b_1+b_2+\cdots+b_n$$

be the corresponding partial sums. Let $\epsilon > 0$. Since $(s_n) \rightarrow A$, choose N_1 such that

$$|s_n - A| < \epsilon/2$$

for all $n \ge N_1$.

Wolmer Vasconcelos (Set 2)

Because the convergence is absolute, we can choose N_2 so that

$$\sum_{k=m+1}^n |b_k| < \epsilon/2$$

for all $n > m \ge N_2$. Take $N = \max\{N_1, N_2\}$. We know that the terms $\{a_1, a_2, \ldots, a_N\}$ must all appear in the rearranged series, and we move far out enough in the series $\sum_{k\ge 1} b_k$ that these terms are all included. Thus, choose $M = \max\{f(k) \mid 1 \le k \le N\}$. It is clear that if $m \ge M$, then $(t_m - s_N)$ consists of a finite number of

terms, the absolute values of which appear in the tail of $\sum_{k=N+1}^{\infty} |a_k|$. The earlier choice of N_2 guarantees $|t_m - s_N| < \epsilon/2$, and so

$$\begin{aligned} |t_m - A| &= |t_m - s_N + s_N - A| \\ &\leq |t_m - s_N| + |s_N - A| \leq \epsilon/2 + \epsilon/2 = \epsilon \end{aligned}$$

Outline

- Some Goals
- 2 Sequences
- 3 Limit Theorems
- 4 Monotone Sequences
- 5 Bolzano-Weierstrass
- 6 Cauchy Criterion
- Workshop #3
- 8 Series
- Properties of Infinite Series
 - Convergence Tests for Series
- Workshop #4
- 12 Typical E-Questions
- B Hourly #1 Review

3 elementary tests of convergene

- Integral Test
- Ratio Test
- Root Test

Theorem (Integral Test)

Let $\sum_{n\geq 0} a_n$ be a series of positive terms. If there is a decreasing function $\mathbf{f}(x)$ such that $a_n \leq \mathbf{f}(n)$ for large n and

$$\int_{x=1}^{\infty}\mathbf{f}(x)dx<\infty,$$

then $\sum_{n\geq 0} a_n$ converges.

Proof. If $a_n \leq \mathbf{f}(n)$ for $n \geq n_0$, since $\mathbf{f}(x)$ is decreasing,

$$a_n \leq \int_{n-1}^n \mathbf{f}(x) dx, \quad n > n_0.$$

From this, and the assumption that $\int_{1}^{\infty} \mathbf{f}(x) dx < \infty$, we get that the partial sums of the series $\sum_{n\geq 0} a_n$ are bounded, and therefore converge by the theorem on bounded monotone sequences.

Wolmer Vasconcelos (Set 2)

Advanced Calculus

Consider the function $\mathbf{f}(x) = 1/x^p$, $x \ge 2$. This is a decreasing function (draw the graph). Observe

$$1/n^{p} \leq \int_{x=n-1}^{n} 1/x^{p} dx$$

Therefore its partial sums are bounded by

$$s_n \leq 1 + \int_{x=1}^n \frac{dx}{x^p} = 1 + \frac{1}{p-1} \left[1 - \frac{1}{n^{p-1}} \right] < 1 + \frac{1}{p-1}$$

Let us show that

$$1 + \frac{1}{2^{p}} + \frac{1}{3^{p}} + \frac{1}{4^{p}} + \dots + \frac{1}{n^{p}} + \dots,$$

for p > 1 will always converge.

We are going to bound each term $1/n^p$ by the terms of another series, and then argue the new series converges.

Comparison gives

$$\sum_{n\geq 1}\frac{1}{n(n+1)}\leq \sum_{n\geq 1}\frac{1}{n^2}$$

which is convergent. In the same manner, if

where p(n) and q(n) are positive polynomial expressions with deg $q \ge 2 + \deg p$, then the series converges by the same reason. Do it!

Ratio Tests

There are very useful tests involving the ratio a_{n+1}/a_n of two successive terms of a series. Sometimes we compare the ratio a_{n+1}/a_n to another b_{n+1}/b_n . In these we suppose that a_n and b_n are strictly positive.

Suppose $a_n, b_n > 0$ and that

$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$$

for sufficiently large *n*, that is for $n \ge n_0$. Then

$$\begin{array}{lll} a_n & = & \displaystyle \frac{a_{n_0+1}}{a_{n_0}} \frac{a_{n_0+2}}{a_{n_0+1}} \cdots \frac{a_n}{a_{n-1}} a_{n_0} \\ & \leq & \displaystyle \frac{b_{n_0+1}}{b_{n_0}} \frac{b_{n_0+2}}{b_{n_0+1}} \cdots \frac{b_n}{b_{n-1}} a_{n_0} = \frac{a_{n_0}}{b_{n_0}} b_n \\ & = & \displaystyle Cb_n, \quad C = a_{n_0} / b n_0. \end{array}$$

Here are some applications:

Theorem

Let $\sum a_n$ and $\sum b_n$ be series of positive terms. If for $n \ge n_0$

$$\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n},$$

and the series $\sum b_n$ converges, then $\sum a_n$ converges also. 2 If for $n > n_0$

$$\frac{a_{n+1}}{a_n} \geq \frac{b_{n+1}}{b_n},$$

and the series $\sum a_n$ diverges, then $\sum b_n$ diverges also.

Theorem (d'Alambert Test)

The series $\sum a_n$ is convergent if $a_{n+1}/a_n \le r$, where r < 1, for all sufficiently large n.

Theorem

Given a series
$$\sum_{n>1} a_n$$
 with $a_n \neq 0$, if (a_n) satisfies

$$\operatorname{im}\left|\frac{a_{n+1}}{a_n}\right|=r<1,$$

then the series converges absolutely.

Proof.

• Let r' satisfy r < r' < 1. For $\epsilon = r' - r$, there is N such that for $n \ge N |a_{n+1}/a_n| - r| < \epsilon$, and therefore

$$|a_{n+1}/a_n| - r \le ||a_{n+1}/a_n| - r| < \epsilon = r' - r,$$

giving $|a_{n+1}| \leq r' |a_n|$ for $n \geq N$.

2 The above shows that the series $\sum_{n=N}^{\infty} |a_n|$ satisfies $|a_n| \le |a_N| (r')^{n-N}$, a geometric series of ratio r' < 1, which converges.

A quick application of the ratio test: We claim that the series

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

converges for all values of x.

For the ratio of consecutive terms

$$\frac{a_{n+1}}{a_n} = \frac{x^{n+1}/(n+1)!}{x^n/n+!} = \frac{x}{n+1}$$

so that for any *x*, $\lim a_{n+1}/a_n = 0$.

This is a well used technique for power series.

Examples

• For the series $\sum_{n\geq 1} \frac{n}{2^n}$ we invoke the ratio test:

$$\frac{a_{n+1}}{a_n} = \frac{n+1}{2^{n+1}} / \frac{n}{2^n} = \frac{n+1}{n} \frac{1}{2}$$

which has limit 1/2 < 1. So the series converges.

Occide [with justification] whether the series

$$\sum_{n\geq 1}\frac{n!}{n^n}$$

is convergent or divergent?

- Show that if $a_n > 0$ and $\lim na_n = L$, with $L \neq 0$, then the series $\sum a_n$ diverges.
- Show that if $a_n > 0$ and $\lim n^2 a_n = L$, with $L \neq 0$, then the series $\sum a_n$ converges.
- Sind examples of two series ∑ a_n and ∑ b_n both of which diverge but for which ∑ min{a_n, b_n} converges. To make it more difficult, choose examples where (a_n) and (b_n) are positive and decreasing.

Let $\sum_{n\geq 1} a_n$ be a series of positive terms. We are going to examine how the limit

$\lim_{n\to\infty}\sqrt[n]{a_n}$

is used to decide convergence. We recall one special calculation of these limits: If x > 0

r

$$\lim_{n\to\infty}\sqrt[n]{x}=1$$

Recall another limit: $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Theorem

If $\sum_{n\geq 1} a_n$ is a series of positive terms and $\lim_{n\to\infty} \sqrt[n]{a_n} = r < 1$, then the series converges.

Proof. Let r < r' < 1 and pick $\epsilon = r' - r$. This is the same subtle point we used above.

1 There is N so that for n > N

$$|\sqrt[n]{a_n} - r| < \epsilon$$

2 This implies that ⁿ√a_n < r + ϵ = r' < 1 for n > N. As a consequence

$$a_n < (r')^n$$

^S We now compare the series $\sum n \ge 1a_n$ to the geometric series $\sum_{n\ge 1} (r')^n$ of ratio r' < 1. Thus both series converge.

Wolmer Vasconcelos (Set 2)

Consider the series (for q > 0)

$$1 + q + 2q^2 + \cdots + nq^n + \cdots$$

We invoke the root test

$$\lim_{n\to\infty}\sqrt[n]{nq^n} = q\lim_{n\to\infty}\sqrt[n]{n} = q$$

Therefore it converges if q < 1

Let us calculate the sum of the series. For that we must have an inkling on how the series arose from the geometric series. At these times we replace q by x and recall:

Nice calculation

Differentiate the 'equality'

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots$$

2 To get almost our series

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + \dots + nx^{n-1} + \dots$$

Now multiply by x and add 1

$$1 + \frac{x}{(1-x)^2} = 1 + x + 2x^2 + \dots + nx^n + \dots$$

• Thus for 0 < q < 1 the series sums to

$$1+\frac{q}{(1-q)^2}$$

Exercises

Show that the series

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

converges. (*Hint*: Look up one of the class examples) To find the limit, sum the geometric series

$$1-x^2+x^4-x^6+\cdots$$

and integrate over [0, 1]. Indicate what steps will have to be properly justified.

Is the series

$$\frac{1^1}{(101)!} + \frac{2^2}{(100+2)!} + \dots + \frac{n^n}{(100+n)!} + \dots$$

convergent or divergent? Justify answer.

• Show that $\sum_{n \ge 0} (-1)^n \frac{2n+3}{(n+1)(n+2)} = 1.$

Obtermine the values of q for which the series

$$q+2q^2+3q^3+\cdots+nq^n+\cdots$$

is converget.

Show that $\sum_{n\geq 2} \frac{1}{n(\ln n)^p}$ converges if p > 1, and diverges if $p \leq 1$.

Outline

- Some Goals
- 2 Sequences
- 3 Limit Theorems
- 4 Monotone Sequences
- 5 Bolzano-Weierstrass
- 6 Cauchy Criterion
- Workshop #3
- 8 Series
- Properties of Infinite Series
- O Convergence Tests for Series
- Workshop #4
- 2 Typical E-Questions
- B Hourly #1 Review

Workshop #4

Think/Do next 4 Questions [in 2 frames]

1 Find the sum of the series

$$\sum_{n\geq 1}\frac{1}{n(n+4)}.$$

As a warmup, find the sum of the series

$$\sum_{n\geq 1}\frac{1}{n(n+1)}.$$

2 Show that if $a_n > 0$ and $\lim n^p a_n = L$, with $L \neq 0$ for some integer p > 1, then the series $\sum a_n$ converges. An application: If

$$\sum_{n\geq 1}\frac{p(n)}{q(n)},$$

where p(n) and q(n) are positive polynomial expressions with deg $q \ge 2 + \deg p$, then the series converges.

Wolmer Vasconcelos (Set 2)

3 Determine the values of q > 0 for which the following series converges and find its sum

$$1+q+\frac{q^2}{2}+\cdots+\frac{q^n}{n}+\cdots$$

Calculate the sum of the series.

4 Is the following series

$$\sum_{n\geq 0} e^{-n^2}$$

convergent or divergent? Try all [ratio, root, and integral tests]

Exercises

Show that the sequence

$$\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}-\sqrt{n+1}}, \quad n \in \mathbb{N}$$

converges. As a challenge, find also a bound for it.

- ② Let $0 \le a, b \in \mathbb{R}$ and define recursively $a_0 = a, b_0 = b$, $a_{n+1} = \sqrt{a_n b_n}$ and $b_{n+1} = (a_n + b_n)/2$. Show that $[a_n, b_n]$ form a nested sequence of intervals. Prove that the intersection of these intervals is a single point.
- If the series $\sum_{n\geq 1} a_n^2$ and $\sum_{n\geq 1} b_n^2$ are convergent, prove that $\sum_{n\geq 1} a_n b_n$ is convergent.

$\lim \sqrt[n]{n}$

- Write $\sqrt[n]{\sqrt{n}} = 1 + a_n$, so that $\sqrt[n]{n} = (1 + a_n)^2$ and $\sqrt{n} = (1 + a_n)^n$
- 2 By a Lemma we have used often, $\sqrt{n} = (1 + a_n)^n \ge 1 + na_n > na_n$,

$$\frac{1}{\sqrt{n}} = \frac{\sqrt{n}}{n} > a_n$$

Thus

$$1 \leq \sqrt[n]{n} = (1 + a_n)^2 = 1 + 2a_n + a_n^2 < 1 + \frac{2}{\sqrt{n}} + \frac{1}{n}$$

• Therefore, by the Squeeze Theorem, $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Outline

- Some Goals
- 2 Sequences
- 3 Limit Theorems
- 4 Monotone Sequences
- 5 Bolzano-Weierstrass
- 6 Cauchy Criterion
- Workshop #3
- 8 Series
- Properties of Infinite Series
- Onvergence Tests for Series
- 1 Workshop #4
- 2 Typical E-Questions
- 3 Hourly #1 Review

- Prove that bounded monotone sequences are convergent.
- \bullet Why the cardinalities of $\mathbb N$ and of $\mathbb N^4$ are the same?
- If $(a_n) \rightarrow a$ and $(b_n) \rightarrow b$, with $b_n, b \neq 0$, prove that $\lim(a_n/b_n) = a/b$.
- What is the **nested interval property** of \mathbb{R} ? Give an interesting example and sketch the proof.
- If (a_n) and (b_n) are sequences such that $\lim a_n + b_n = 5$ and $\lim a_n = 2$, must (b_n) be convergent? Explain or give counter-example.
- If $(a_n) \rightarrow 5$, $a_n \ge 0$, prove with full details that $\lim \sqrt{a_n} = \sqrt{5}$. [You may use $\epsilon = 1/10$.]
- Find $\lim \sqrt[n]{a^{n+1}b^n + b^{n+1}c^n + c^{n+1}a^n}$, with a > b > c > 0

- Do all sequences have a convergent subsequence? If not, when? Explain.
- Let (a_n) and (b_n) be two Cauchy sequences. Prove directly that (a_nb_n) is a Cauchy sequence.
- If *a* is a positive integer, give a formula for the sum of the series

$$\sum_{n\geq 1}\frac{1}{n(n+a)}.$$

• Prove that $\lim n(\sqrt[n]{x} - 1)$, x > 0, exists. [Not easy, not in exam, just tossed as a challenge.]

The limit defines a function f(x). Observe the property

$$n(\sqrt[n]{xy}-1) = n(\sqrt[n]{x}-1)\sqrt[n]{y} + n(\sqrt[n]{y}-1)$$

Taking into account $\lim \sqrt[n]{y} = 1$ from a Workshop, we get

$$\mathbf{f}(xy)=\mathbf{f}(x)+\mathbf{f}(y),$$

a defining property of Logs. [? Maybe $f(x) = e^x$]

- (15 pts)
 - What is a countable set?
 - **2** Why is \mathbb{Q} countable?
 - **③** Prove that \mathbb{N} and \mathbb{N}^2 have the same cardinality.
- (10 pts) Prove that the sequence defined by $x_1 = 3$ and

$$x_{n+1}=\frac{1}{4-x_n}$$

converges.

- (15 pts) Describe very carefully and in full the following terms:
 - old D lower bound of a subset $A\subset \mathbb{R}$
 - 2 Nested Interval Property
 - give an example for each term.

- (15 pts)
 - Define precisely the notion of a convergent sequence.
 - What is a **subsequence** of a sequence?
 - Prove that all subsequences of a convergent sequence have the same limit.
- (15 pts)
 - What is a monotone sequence? Give an example.
 If a monotone sequence (a_n) is bounded, prove that it is convergent.
- (15 pts) Find (with proof!) the limit of the sequence

$$\sqrt[n]{a^nb^n+b^nc^n+c^na^n}, \quad a>b>c>0.$$

- (15 pts)
 - What is a **Cauchy** sequence?
 - If (a_n) and (b_n) are Cauchy sequences, prove directly that (a_nb_n) is a Cauchy sequence.

The equation $x^3 - 3x + 1 = 0$ has a root α between 0 and 1. To find it, define the sequence

$$x_1 = 0, \quad x_{n+1} = \frac{1}{3 - x_n^2}$$

Show that the sequence is monotone and converges to α .

- Show that if $a_n > 0$ and $\lim na_n = L$, with $L \neq 0$, then the series $\sum a_n$ diverges.
- Show that if $a_n > 0$ and $\lim n^2 a_n = L$, with $L \neq 0$, then the series $\sum a_n$ converges.
- Sind examples of two series ∑ a_n and ∑ b_n both of which diverge but for which ∑ min{a_n, b_n} converges. To make it more difficult, choose examples where (a_n) and (b_n) are positive and decreasing.

Outline

- Some Goals
- 2 Sequences
- 3 Limit Theorems
- 4 Monotone Sequences
- 5 Bolzano-Weierstrass
- 6 Cauchy Criterion
- 7 Workshop #3
- 8 Series
- Properties of Infinite Series
- Convergence Tests for Series
- 11 Workshop #4
 - 2 Typical E-Questions
- 13 Hourly #1 Review

Important Topics

- Least Upper Bound
- Axiom of Completeness
- Cardinality: Countable and Uncountable Sets, Power Sets
- Sequences, Convergence/Divergence
- Monotone Sequences
- Bolzano-Weirstrauss Theorem
- Cauchy Sequences
- Series: Backbone Examples
- Convergence of Series: Meaning
- Tests of Convergence: Integral, Ratio, Root