# Math 311: Advanced Calculus 

Wolmer V. Vasconcelos

Set 2
Spring 2010

## Outline

## (1) Some Goals

(2) Sequences
(3) Limit Theorems

4 Monotone Sequences
5. Bolzano-Weierstrass

6 Cauchy Criterion
7 Workshop \#3
8 Series
(9) Properties of Infinite Series

10 Convergence Tests for Series
(11) Workshop \#4
(12) Typical E-Questions
(13) Hourly \#1 Review

## Some Goals

Understand mathematical objects such as

$$
\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots=?
$$

$$
\prod_{n=0}^{\infty} a_{n}=a_{0} \cdot a_{1} \cdot a_{2} \cdot a_{3}+\cdots=?
$$

The building blocks of these objects are

$$
\underbrace{a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots}
$$

## Outline

## (1) Some Goals

(2) Sequences
(3) Limit Theorems

4 Monotone Sequences
5 Bolzano-Weierstrass
6. Cauchy Criterion

7 Workshop \#3
8 Series
9) Properties of Infinite Series
(10) Convergence Tests for Series
(11) Workshop \#4
(12) Typical E-Questions
(13) Hourly \#1 Review

## Sequences of real numbers

## Definition

A sequence is a function $f$ whose domain is $\mathbb{N}$.
It can be represented as

$$
\begin{gathered}
\{\mathbf{f}(1), \mathbf{f}(2), \mathbf{f}(3), \ldots\} \\
\{\mathbf{f}(0), \mathbf{f}(1), \mathbf{f}(2), \mathbf{f}(3), \ldots\}
\end{gathered}
$$

or

$$
\left\{\mathbf{f}(n), \ldots, \quad n \geq n_{0}\right\}
$$

We will first examine sequences of real numbers, $\mathbf{f}: \mathbb{N} \rightarrow \mathbb{R}$. Later we will study sequences of functions.

It allows us to look at real numbers in a concrete manner: If

$$
x=A \cdot a_{1} a_{2} \cdots a_{n} \cdots,
$$

where $a_{i}$ are the decimal digits, we form the sequence of rational numbers

$$
\begin{aligned}
x_{0} & =A \\
x_{1} & =A \cdot a_{1} \\
x_{2} & =A \cdot a_{1} a_{2} \\
x_{n} & =A \cdot a_{1} a_{2} \cdots a_{n}, \quad \text { and so on }
\end{aligned}
$$

## Examples

We will look for features such as clustering
(1) $\left(1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right)$
(2) $(c, c, c, c, \ldots)$
(3) $\left(1,-\frac{1}{2}, \frac{2}{3},-\frac{3}{4}, \ldots\right)$
(4) $\left(\frac{1}{2^{n}}\right)_{n=1}^{\infty}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right)$
(5) $\left(a_{n}\right), a_{1}=1$, and $a_{n+1}=\frac{a_{n}}{2}+1$
(6) $\left(a_{n}\right), a_{n}$ is the $n$th digit in the decimal expansion of $\pi$.
(7) $\left(a_{n}\right), a_{n}=(1+1 / n)^{n}$

## Why Sequences?

We use sequences to make sense of:

- $\sum_{n \geq 1} a_{n}$ : Series

$$
1+1 / 2^{2}+1 / 3^{2}+\cdots+1 / n^{2}+\cdots
$$

Question: How to handle

$$
\left(a_{0}+a_{1}+\cdots+a_{n}+\cdots\right)\left(b_{0}+b_{1}+\cdots+b_{n}+\cdots\right)
$$

- $\sum_{m, n \geq 1} a_{m, n}$ : Double [multiple] Series

$$
\sum_{m, n} \frac{1}{m^{2}+n^{2}}
$$

- $\prod_{n \geq 1} a_{n}$ : Infinite Products

$$
\prod_{p}\left(\frac{1}{1-p}\right), \quad p \text { prime number }
$$

## Convergence of a Sequence

Sequences are wonderful ways to represent data, but we are mostly interested is one of its aspects:

## Definition

A sequence $\left(a_{n}\right)$ converges to a real number a if, for every positive real number $\epsilon$, there exists an $N \in \mathbb{N}$ such that whenever $n \geq N$ it follows that $\left|a_{n}-a\right|<\epsilon$.

One notation: $\lim a_{n}=a$, or $\left(a_{n}\right) \rightarrow a$. To understand this we introduce the notion of a neighborhood of a real number $a$.

## Example

Consider the sequence $\left(a_{n}\right), a_{n}=\frac{n+1}{n}$. It is natural to expect that $\lim a_{n}=1$. Let us follow the template:

- Given $\epsilon>0$, to determine $N$ we solve

$$
\left|\frac{n+1}{n}-1\right|<\epsilon
$$

- That is

$$
\left|\frac{1}{n}\right|<\epsilon \quad \Rightarrow \quad n>\frac{1}{\epsilon}
$$

- Thus if $\epsilon=1 / 100, N=101$ will work.


## Neighborhoods



## Definition

Given a real number $a \in \mathbb{R}$ and a positive number $\epsilon>0$, the set

$$
V_{\epsilon}(a)=\{x \in \mathbb{R}:|x-a|<\epsilon\}
$$

is called the $\epsilon$-neighborhood of $a$.

## Limit and Neighborhoods


$a$ is the limit of $\left(a_{n}\right)$ if once $a_{N}$ enters the neigbhorhood $V_{\epsilon}(a)$, all $a_{n}$ that follow will stay in it. That is, the $a_{n}$ cluster around $a$ in a very specific manner.

Note that this implies that if $\left(a_{n}\right)$ converges, its limit is unique: the $a_{n}$ cannot be in both $V_{\epsilon}(a)$ and $V_{\epsilon}(b)$ if $\epsilon<1 / 2|a-b|$.

## Exercise

Let $a_{n}=\frac{2 n^{2}+n+1}{n^{2}}$. It can be written as

$$
a_{n}=2+\frac{1}{n}+\frac{1}{n^{2}}
$$

It is now easy to see that $\lim a_{n}=2$ : Just notice that

$$
\left|a_{n}-2\right|=\frac{1}{n}+\frac{1}{n^{2}} \leq 2 \frac{1}{n}
$$

and we can use the argument of the previous Example to finish. Exercise: For every real number $x \in \mathbb{R}$, there exists a sequence $\left(a_{n}\right)$ of rational numbers such that $\left(a_{n}\right) \rightarrow x$.

## Limit Template

Let us summarize the procedure to compute the limit of a sequence:
$\left(a_{n}\right) \rightarrow a$ involves all the following steps:
(1) Let $\epsilon>0$ be arbitrary
(2) Demonstrate a choice for $N \in \mathbb{N}$ : hard work here often
(3) Assume $n \geq N$
(4) Check that

$$
\left|a-a_{n}\right|<\epsilon
$$

## Example

Define the sequence

$$
a_{1}=\sqrt{2}, \quad a_{2}=\sqrt{2 \sqrt{2}}, \quad a_{3}=\sqrt{2 \sqrt{2 \sqrt{2}}}, \cdots
$$

Question: $\left(a_{n}\right) \rightarrow$ ? Note

$$
\begin{gathered}
a_{1}=\sqrt{2}, \quad a_{2}=a_{1} \sqrt[4]{2}, \quad a_{3}=a_{2} \sqrt[8]{2}, \cdots \\
a_{n}=2^{1 / 2+1 / 4+\cdots+1 / 2^{n}}<2
\end{gathered}
$$

So this sequence is bounded [and increasing]. Show that its least upper bound is 2 .

## Infinity as the limit of a sequence

If a sequence $\left(a_{n}\right)$ is not convergent, we say that it is divergent. We also use the following terminology for some divergent sequences:

## Definition

The sequence $\left(a_{n}\right)$ converges to $\infty$, lim $a_{n}=\infty$, if given any positive number $b$, there is an $N \in \mathbb{N}$ such that $a_{n} \geq b$ for $n \geq N$.

Example: $\{1,2,3, \ldots, n, \ldots\}$
Some sequences don't make up their minds:
(1) $1,-1,1, \ldots, \pm 1, \ldots$
(2) one gets a very complicated sequence by glueing two unrelated sequences $\left(a_{n}\right),\left(b_{n}\right)$, as in

$$
a_{0}, b_{0}, a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}, b_{n}, \ldots
$$

## Boundedness of Convergent Sequences

## Definition

A sequence $\left(a_{n}\right)$ is bounded if there exists a number $M>0$ such that $\left|a_{n}\right| \leq M$ for all $n \in \mathbb{N}$.

## Theorem

Every convergent sequence is bounded.
Proof. Suppose $\left(a_{n}\right) \rightarrow \ell$. For $\epsilon=1$ let $N \in \mathbb{N}$ be such that $\left|a_{n}-\ell\right|<1$ for $n \geq N$.
We claim that $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{N-1}\right|,|\ell|+1\right\}$ satisfies

$$
\left|a_{n}\right| \leq M
$$

## Converse?

The sequence $\left(1,-1, \ldots,(-1)^{n}, \ldots\right)$ is bounded but not convergent.
Many sequences are put together from two or more sequences: Say start with

$$
\begin{gathered}
\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \quad\left\{b_{1}, b_{2}, b_{3}, \ldots\right\} \\
\left\{a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots\right\}
\end{gathered}
$$

## Outline

## (1) Some Goals

(2) Sequences
(3) Limit Theorems
(4) Monotone Sequences

5 Bolzano-Weierstrass
6. Cauchy Criterion
(7) Workshop \#3

8 Series
9) Properties of Infinite Series
(10) Convergence Tests for Series

11 Workshop \#4
(12) Typical E-Questions
(13) Hourly \#1 Review

## Algebraic Limit Theorem

## Theorem

Let $\lim a_{n}=a$ and $\lim b_{n}=b$. Then
(i) $\lim c a_{n}=c a$, for all $c \in \mathbb{R}$;
(ii) $\lim \left(a_{n}+b_{n}\right)=a+b$;
(iii) $\lim \left(a_{n} b_{n}\right)=a b$;
(iv) $\lim \left(a_{n} / b_{n}\right)=a / b$ provided $b_{n} \neq 0$ and $b \neq 0$.

Note an important consequence: Since we can view real numbers as limits of rational numbers, we can carry out the desired field operations

$$
\begin{aligned}
x & =X \cdot x_{1} x_{2} \ldots x_{n} \mid \ldots \\
y & =Y . y_{1} y_{2} \ldots y_{n} \mid \ldots
\end{aligned}
$$

Proof. (i) [If lim $a_{n}=a$, then $\left.\lim c a_{n}=c a\right]$ Consider the case $c \neq 0$. To prove $\left(c a_{n}\right) \rightarrow c a$, we use the proof template. Let $\epsilon>0$. We want to argue that $\left|c a_{n}-c a\right|<\epsilon$ from some term of the sequence $\left(c a_{n}\right)$ on. Since $\left(a_{n}\right) \rightarrow a$, given $\epsilon /|c|$, there is $N \in \mathbb{N}$ such that for $n \geq N$ $\left|a_{n}-a\right|<\epsilon /|c|$.
This leads to

$$
\left|c a_{n}-c a\right|=|c|\left|a_{n}-a\right|<\epsilon, \quad n \geq N
$$

as desired. This proves (i) for $c \neq 0$. The case $c=0$ is trivial.
(ii) [If $\lim a_{n}=a, \lim b_{n}=b$, then $\left.\lim \left(a_{n}+b_{n}\right)=a+b\right]$ Given $\epsilon>0$, pick $N_{1}$ and $N_{2}$ so that

$$
\left|a_{n}-a\right|<\epsilon / 2, \quad \& \quad\left|b_{n}-b\right|<\epsilon / 2
$$

for $n \geq N_{1}$ and $n \geq N_{2}$, respectively. Thus $n \geq N=\max \left\{N_{1}, N_{2}\right\}$

$$
\begin{aligned}
\left|\left(a_{n}+b_{n}\right)-(a+b)\right| & =\left|\left(a_{n}-a\right)+\left(b_{n}-b\right)\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right| \\
& \leq \epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

(iii) $\left[\right.$ If $\lim a_{n}=a, \lim b_{n}=b$, then $\left.\lim a_{n} b_{n}=a b\right]$ If $\lim a_{n}=a$, $\lim b_{n}=b$, we know that $\left|a_{n}\right|$ and $\left|b_{n}\right|$ are bounded, that is $\left|a_{n}\right|<M_{1}$ and $\left|b_{n}\right|<M_{2}$ for all $n$. Let $M=\max \left\{M_{1}, M_{2}\right\}$. Given $\epsilon>0$, pick $N_{1}$ and $N_{2}$ so that

$$
\left|a_{n}-a\right|<\epsilon / 2 M, \quad \& \quad\left|b_{n}-b\right|<\epsilon / 2 M
$$

for $n \geq N_{1}$ and $n \geq N_{2}$, respectively.
This leads to: for all $n \geq N=\max \left\{N_{1}, N_{2}\right\}$

$$
\begin{aligned}
\left|a_{n} b_{n}-a b\right| & =\left|\left(a_{n} b_{n}-a_{n} b\right)+\left(a_{n} b-a b\right)\right| \\
& \leq\left|\left(a_{n} b_{n}-a_{n} b\right)\right|+\left|\left(a_{n} b-a b\right)\right| \\
& =\left|a_{n}\right|\left|b_{n}-b\right|+|b|\left|a_{n}-a\right| \leq M_{1}\left|b_{n}-b\right|+M_{2}\left|a_{n}-a\right| \\
& \leq \epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

which completes the proof.
(iv) $\left[\operatorname{If} \lim a_{n}=a, \lim b_{n}=b, b_{n}, b \neq 0\right.$, then $\left.\lim a_{n} / b_{n}=a / b\right]$. In the case of $a_{n} / b_{n}$, we are going to apply the product rule to the product $a_{n} \frac{1}{b_{n}}$. This requires

## Lemma

If the sequence $\left(b_{n}\right) \rightarrow b$ and $b_{n}, b \neq 0$, then $\left(\frac{1}{b_{n}}\right) \rightarrow \frac{1}{b}$.
Proof. Let $\epsilon_{0}=|b| / 2$. Pick $N_{1}$ large enough so that for $n \geq N_{1}$ $\left|b_{n}-b\right|<\epsilon_{0}=|b| / 2$. This shows that in this range $\left|b_{n}\right|>|b| / 2$. Next, given $\epsilon>0$, choose $N_{2}$ so that for $n \geq N_{2}$

$$
\left|b_{n}-b\right|<\frac{\epsilon b^{2}}{2}
$$

Finally, if we let $N=\max \left\{N_{1}, N_{2}\right\}$,

$$
\left|\frac{1}{b_{n}}-\frac{1}{b}\right|=\left|\frac{b-b_{n}}{b b_{n}}\right| \leq \frac{\epsilon b^{2}}{2} \frac{1}{|b||b| / 2}=\epsilon
$$

We examine in detail this important sequence. Two cases are easy: $x=1$, when the sequence is constant (so $\lim x^{n}=1$ ), and $x=-1$ (when it alternates between 1 and -1 ) when it does not converge. Let us next examine the case $|x|<1$, that is $-1<x<1$. We make a series of technical observations.

## A useful limit calculation

## Lemma

For any $p>-1$ and all $n \in \mathbb{N},(1+p)^{n} \geq 1+p n$.
Proof. We prove this by induction. It is true for $n=1$. Now consider

$$
\begin{aligned}
(1+p)^{n+1} & =(1+p)^{n}(1+p) \geq(1+p n)(1+p) \\
& =1+p(n+1)+p^{2} n \geq 1+p(n+1)
\end{aligned}
$$

- Back to our limit. If $|x|<1, \frac{1}{|x|}=1+p, p>0$ and thus

$$
\frac{1}{\left|x^{n}\right|}=(1+p)^{n} \geq 1+p n>p n
$$

- Therefore

$$
\left|x^{n}\right|<\frac{1}{p n}
$$

- Which shows that for $|x|<1 \lim \left|x^{n}\right|=0$ and $\lim x^{n}=0$ as well.
- The case $|x|>1$. Apply the algebraic limit theorem: By the case above, $\lim \frac{1}{x^{n}}=0$, which shows $\left(x^{n}\right)$ does not converge.


## Limits and Order

## Theorem (Order Limit Theorem)

Assume $\lim a_{n}=a$ and $\lim b_{n}=b$. Then
(1) If $a_{n} \geq 0$ for all $n \in \mathbb{N}$, then $a \geq 0$.
(2) If $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.
(3) If there exists $c \in \mathbb{R}$ for which $c \leq b_{n}$ for all $n \in \mathbb{N}$, then $c \leq b$. Similarly, if $a_{n} \leq c$ for all $n \in \mathbb{N}$, then $a \leq c$.

Proof. (i) Assume, by way of contradiction, that $a<0$. Let us show that this produces some $a_{n}<0$. Let $\epsilon=|a|$. There exists $N$ such that

$$
\left|a_{n}-a\right|<\epsilon, \quad n \geq N
$$

If $a_{n} \geq 0$ for $n \geq N$,

$$
\left|a_{n}-a\right|=\left|a_{n}+(-a)\right|=a_{n}+|a| \geq \epsilon,
$$

a contradiction.
(ii) The Algebraic Limit Theorem guarantees that the sequence ( $b_{n}-a_{n}$ ) converges to $b-a$. Because $b_{n}-a_{n} \geq 0$, by Part (i), $b \geq a$.
(iii) Take $a_{n}=c\left(\right.$ or $\left.b_{n}=c\right)$ for all $n \in \mathbb{N}$ and apply (ii).

## Examples

- The constant sequence $(c, c, c, \ldots)$ converges to $c$ :
$x_{n}=c$ for all $n$, so for $\epsilon>0,\left|x_{n}-c\right|=0<\epsilon$
- Let $x_{n} \geq 0$ for all $n \in \mathbb{N}$.
(1) If $\left(x_{n}\right) \rightarrow 0$, show that $\left(\sqrt{x_{n}}\right) \rightarrow 0$ : Given $\epsilon>0$ we can find $N$ such that $\left|x_{n}\right|<\epsilon^{2}$ for $n \geq N$. It follows that $\left|\sqrt{x_{n}}\right|<\epsilon$ for $n \geq N$.
(2) If $\left(x_{n}\right) \rightarrow x$, show that $\left(\sqrt{x_{n}}\right) \rightarrow \sqrt{x}$ : We already know that $x \geq 0$ and that the sequence is bounded, that is $L<x_{n}<U$. In particular $\sqrt{x_{n}} \geq \sqrt{L}$ and $x \geq \sqrt{L}$. Given $\epsilon>0$ pick $N$ so that $\left|x_{n}-x\right|<\epsilon 2 \sqrt{L}$ for $n \geq N$. Then

$$
\begin{aligned}
\left|\sqrt{x_{n}}-\sqrt{x}\right| & \leq\left|\sqrt{x_{n}}-\sqrt{x}\right| \frac{\left|\sqrt{x_{n}}+\sqrt{x}\right|}{2 \sqrt{L}} \\
& =\frac{\left|x_{n}-x\right|}{2 \sqrt{L}}<\epsilon
\end{aligned}
$$

## Exercises

(1) (i) Show that if $\left(b_{n}\right) \rightarrow b$, then the sequence $\left(\left|b_{n}\right|\right)$ converges to $|b|$.(ii) Converse?
(2) Let $\left(a_{n}\right)$ be a bounded (not necessarilly convergent) sequence, and assume $\left(b_{n}\right) \rightarrow 0$. Show that $\left(a_{n} b_{n}\right) \rightarrow 0$. Why we are not allowed to use the Algebraic Limit theorem?
(3) Exercises 32(a,c,e) in page 56 of Textbook.

## Outline

(1) Some Goals
(2) Sequences

3 Limit Theorems
(4) Monotone Sequences
(5) Bolzano-Weierstrass

6 Cauchy Criterion
7 Workshop \#3
8 Series
9 Properties of Infinite Series
10 Convergence Tests for Series
(11) Workshop \#4
(12) Typical E-Questions
(13) Hourly \#1 Review

## Monotone Sequences

## Definition

A sequence $\left(a_{n}\right)$ is increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$, and decreasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}$. A sequence is monotone if it is either increasing or decreasing.

## Theorem (Monotone Convergence Theorem)

If the sequence $\left(a_{n}\right)$ is monotone and bounded, then it converges.
Proof. The assumption is that there is a $B$ such that $a_{n} \leq B$ for all $n \in \mathbb{N}$. We are going to 'build' $\lim a_{n}$. For that we are going to use the decimal representation of the $a_{n}$.

## Visual Proof

$$
\begin{aligned}
a_{1}= & A_{1} \cdot a_{11} a_{12} a_{13} a_{14} \cdots \\
a_{2}= & A_{2} \cdot a_{21} a_{22} a_{23} a_{24} \cdots \\
a_{3}= & A_{3} \cdot a_{31} a_{32} a_{33} a_{34} \cdots \\
\vdots & \vdots \\
a_{N}= & A_{N} \cdot a_{N 1} a_{N 2} a_{N 3} a_{N 4} \cdots \\
\vdots & \vdots \\
a_{n}= & A_{n} \cdot a_{n 1} a_{n 2} a_{n 3} a_{n 4} \cdots
\end{aligned}
$$

Since the $a_{n}$ are bounded, its integral parts $A_{n}$ are also bounded and non-increasing. Thus, there is an $N$ such that $A_{n}=A_{N}$ for all $n \geq N$.

Let us scan the first decimal digits from $a_{N}$ on:

$$
\begin{aligned}
a_{N 1}= & A_{N} \cdot a_{N 1} a_{N 2} a_{N 3} a_{N 4} \cdots \\
\vdots & \vdots \\
a_{n}= & A_{n} \cdot a_{n 1} a_{n 2} a_{n 3} a_{n 4} \cdots
\end{aligned}
$$

Since $A_{n}=A_{N}$, and $a_{n}$ are increasing, the digits $a_{n 1}$ must be increasing so once it hits its maximal value, say at $n=N_{1}$, it must stay there, i.e. $a_{n 1}=a_{N_{1} 1}$ for $n \geq N_{1}$.
We move over the second decimal place, and so on. In this manner we build the element $a=A_{N} \cdot b_{1} b_{2} b_{3} b_{4} \ldots$ with the property $\left|a-a_{n}\right|<10^{-N_{r}}$ for $n \geq N_{r+1}$. This shows that $a=\lim a_{n}$. Note that $a$ is the least upper bound of the set $\left\{a_{n}\right\}$.

## 'Abstract' Proof

Let $\left(a_{n}\right)$ be a bounded monotone increasing sequence,

$$
a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq a_{n+1} \leq \cdots \leq B
$$

Because the set of terms $\left\{a_{n}, n \geq 1\right\}$ is bounded, by the Axiom of Completeness the set has a least upper bound $B_{0}$. Now we verify that $a_{n} \rightarrow B_{0}$. We use the limit template:

- Given $\epsilon>0, B_{0}-\epsilon$ is not an upper bound so there is $N$ such that $a_{N}>B_{0}-\epsilon$. Since $a_{n}$ is increasing, we have

$$
B_{0} \geq a_{n} \geq a_{N}>B_{0}-\epsilon, \quad n \geq N
$$

- This means that $\left|a_{n}-B_{0}\right|<\epsilon$ for $n \geq N$, thus proving that $\lim a_{n}=B_{0}$.


## Example

A sequence we met already was $\left(x_{n}\right)$, where $x_{1}=1$ and

$$
x_{n+1}=\frac{x_{n}}{2}+1
$$

We proved that $x_{n}<x_{n+1}<2$, so this is a monotone bounded sequence. Let $a=\lim x_{n}$. If we delete $x_{1}$, we obtain the sequence $\left(x_{n+1}, n \geq 1\right)$ which obviously is monotone, and has the same limit. Thus

$$
\lim x_{n+1}=a=\frac{\lim x_{n}}{2}+1=\frac{a}{2}+1
$$

and therefore

$$
a=2
$$

## Calculating Square Roots

Let $x_{1}=2$, and define

$$
x_{n+1}=1 / 2\left(x_{n}+\frac{2}{x_{n}}\right)
$$

- Show that $x_{n}^{2} \geq 2$, and then prove that $x_{n}-x_{n+1} \geq 0$. Conclude that $\lim x_{n}=\sqrt{2}$.
We use induction. Squaring we have $x_{n+1}^{2}=1 / 4\left(x_{n}^{2}+4+4 / x_{n}^{2}\right)$. To show that $x_{n+1}^{2}>2$, it suffices to show that if $x_{n}^{2}>2$, then $x_{n}^{2}+4 / x_{n}^{2}>4$. But

$$
x_{n}^{2}+4 / x_{n}^{2}-4=\left(x_{n}-\frac{2}{x_{n}}\right)^{2}>0
$$

Note also $x_{n}-x_{n+1}=1 / 2\left(x_{n}-2 / x_{n}\right)>0$, since $x_{n}^{2}>2$. Thus the sequence $\left(x_{n}\right)$ is bounded and decreasing. Its limit a satisfies $a=1 / 2(a+2 / a)$, i.e. $a=\sqrt{2}$.

- Modify the sequence so that it converges to $\sqrt{c}$ :

$$
x_{n+1}=1 / 2\left(x_{n}+\frac{c}{x_{n}}\right)
$$

We again check that the sequence $\left(x_{n}\right)$ is monotone and bounded.
When solving for the limit, we get $a=1 / 2(a+c / a)$, i.e. $a=\sqrt{c}$.

- Many other equations $\mathbf{f}(x)=0$ can be set up as

$$
x=\frac{\mathbf{g}(x)}{\mathbf{h}(x)}
$$

which we turn into a dynamical scheme

$$
x_{n+1}=\frac{\mathbf{g}\left(x_{n}\right)}{\mathbf{h}\left(x_{n}\right)}
$$

If $\left(x_{n}\right)$ is monotone and bounded, the limit is a root.

## Outline

## (1) Some Goals

(2) Sequences

3 Limit Theorems
(4) Monotone Sequences
(5) Bolzano-Weierstrass
6) Cauchy Criterion

7 Workshop \#3
8 Series
9) Properties of Infinite Series

10 Convergence Tests for Series
(11) Workshop \#4
(12) Typical E-Questions
(13) Hourly \#1 Review

## Subsequences

## Definition

Let $\left(a_{n}\right)$ be a sequence of real numbers, and let $n_{1}<n_{2}<n_{3}<\cdots$ be an increasing sequence of natural numbers. Then the sequence

$$
a_{n_{1}}, a_{n_{2}}, a_{n_{3}}, a_{n_{4}}, \ldots
$$

is called a subsequence of $\left(a_{n}\right)$ and is denoted by $\left(a_{n_{j}}\right)$, where $j \in \mathbb{N}$ indexes the subsequence.

## Theorem

Subsequences of a convergent sequence converge to the same limit as the original sequence.

## About bounded sequences: Bolzano-Weierstrass



## Theorem (Bolzano-Weierstrass Theorem)

Every bounded sequence $\left(a_{n}\right)$ contains a convergent subsequence.
Proof. The assumption is that all $a_{n}$ lie in some closed interval $I_{1}=[-M, M]$. (Note that we allow repetitions.) Since the sequence is infinite, an infinite subset of terms lies in either $[-M, 0]$ or in $[0, M]$. We pick one of the subintervals with an infinite number of terms and call it $I_{2}$.

We continue the process: bisect $I_{2}$ pick $I_{3}$ one of its two halfs that contain an infinite number of terms. In this manner we get a decreasing sequence of closed intervals

$$
I_{1} \supset I_{2} \supset I_{3} \supset \cdots
$$

If in each subset $I_{k}$ we pick an element $a_{n_{k}}$ of the sequence in it, we obtain a subsequence

$$
\left\{a_{n_{1}}, a_{n_{2}}, a_{n_{3}}, \ldots\right\}
$$

We claim this (sub)sequence converges.

By he Nested Interval Property there exists at least one point $x \in \mathbb{R}$ contained in every $I_{k}$.
We claim $\left(a_{n_{k}}\right) \rightarrow x$. Note that the length of $I_{k}$ is $M \frac{1}{2^{k-1}}$, which converges to 0 (discussed in Workshop \#3). Choose $N$ so that $k \geq N$ implies that the length of $I_{k}$ is less than $\epsilon$. Because $x$ and $a_{n_{k}}$ are both in $i_{k},\left|x-a_{n_{k}}\right|<\epsilon$.

## Exercise

Let $\left(a_{n}\right)$ be a bounded sequence, and define the set

$$
S=\left\{x \in \mathbb{R} \mid x<a_{n} \quad \text { for infinitely many } a_{n}\right\}
$$

Show that there exists a subsquence $\left(a_{n_{k}}\right)$ converging to $s=\sup S$. (This is a direct proof of the BW Theorem using AoC.)

## Examples

Give an example of each of the following, or argue that such a request is impossible.
(1) A sequence that does not contain 0 or 1 as a term but contains subsequences converging to each of these values.
(2) A monotone sequence that diverges but has a convergent subsequence.
(3) A sequence that contains subsequences converging to every point in the infinite set $\{1,1 / 2,1 / 3,1 / 4, \ldots\}$.
(1) An unbounded sequence with a convergent subsequence.
(3) A sequence that has a subsequence that is bounded but contains no subsequence that converges.

## Outline

(1) Some Goals
(2) Sequences

3 Limit Theorems
(4) Monotone Sequences

5 Bolzano-Weierstrass

## 6 Cauchy Criterion

(7) Workshop \#3

8 Series
9 Properties of Infinite Series
(10) Convergence Tests for Series
(11) Workshop \#4
(12) Typical E-Questions
(13) Hourly \#1 Review

## Warming Up ...

Thus far we have two basic results about convergence of sequences:

## Theorem (Monotone Convergence Theorem)

If the sequence $\left(a_{n}\right)$ is monotone and bounded, then it converges.
Essentially, if

$$
a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq \cdots \leq B,
$$

then $a_{n} \rightarrow B_{0}$, least upper bound of the $a_{n}$

## Theorem (Bolzano-Weierstrass Theorem)

Every bounded sequence ( $a_{n}$ ) contains a convergent subsequence.
Essentially, if the sequence $\left(a_{n}\right)$ is bounded, that is there is $M>0$ such that $-M \leq a_{n} \leq M$ for all $n$, then there is a subsequence

$$
a_{n_{1}}, a_{n_{2}}, a_{n_{3}}, \ldots
$$

that is convergent.

The notion of convergence of a sequence that we are using is:

## Definition (Convergence of a Sequence)

A sequence $\left(a_{n}\right)$ converges to the real number a if, for every $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that whenever $n \geq N$ it follows that $\left|a_{n}-a\right|<\epsilon$.

$$
\lim a_{n}=a \text { if } \rightarrow \text { given } \epsilon>0 \rightarrow \text { find } N \rightarrow \text { for } n \geq N \rightarrow\left|a_{n}-a\right|<\epsilon
$$

## Cèsaro Means

There are other ways of defining convergence of sequences. Today we study a powerful notion, but first we do warm ups.

Let $\left(a_{n}\right)$ be a sequence and define the sequence of its means,

$$
c_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}, \quad n \geq 1
$$

thus forming the sequence $\left(c_{n}\right)$ of averages. For example, the sequence $(1,0,1,0,1,0, \ldots)$ has sequence of means

$$
(1,1 / 2,2 / 3,1 / 2,3 / 5,1 / 2,5 / 7, \ldots, 1 / 2,(n+2) /(2 n+1), \ldots) \rightarrow 1 / 2
$$

## Theorem (Cèsaro Means)

If $\left(a_{n}\right) \rightarrow a$, then $\left(c_{n}\right) \rightarrow a$ also.

## Proof.

- Given $\epsilon>0$ we will find $N$ such that $\left|c_{n}-a\right|<\epsilon$ for $n \geq N$.Since $\left(a_{n}\right) \rightarrow a$, we know that $\left(a_{n}\right)$ is bounded, say $\left|a_{n}\right|<M$ for some $M$, and for $\epsilon^{\prime}=\epsilon / 2$ there is $N_{0}$ such that

$$
\left|a_{n}-a\right|<\epsilon^{\prime} \quad n \geq N_{0}
$$

- Now consider $\left|c_{n}-a\right|$

$$
\begin{aligned}
\left|c_{n}-a\right| & =\left|\frac{a_{1}+\cdots+a_{n}}{n}-a\right|=\left|\frac{\left(a_{1}-a\right)+\cdots+\left(a_{n}-a\right)}{n}\right| \\
& \leq \frac{\left|a_{1}-a\right|+\cdots+\left|a_{n}-a\right|}{n}
\end{aligned}
$$

We are going to split the numerator of

$$
\frac{\left|a_{1}-a\right|+\cdots+\left|a_{n}-a\right|}{n}
$$

into two summands, up to $N_{0}$ and from there to $n$ : Note that $\left|a_{n}-a\right| \leq\left|a_{n}\right|+|a| \leq 2 M$ by the triangle inequality. Choosing

$$
\begin{gathered}
N=\max \left\{N_{0}, 4 N_{0} M / \epsilon\right\} \\
\frac{2 N_{0} M}{n}+\frac{\left(n-N_{0}\right) \epsilon / 2}{n} \leq \epsilon / 2+\epsilon / 2=\epsilon
\end{gathered}
$$

for $n \geq N$, as desired.

## Cauchy Sequence

## Definition

A sequence $\left(a_{n}\right)$ is called a Cauchy sequence if, for every $\epsilon>0$, there is an $N \in \mathbb{N}$ such that whenever $m, n \geq N$ it follows that $\left|a_{n}-a_{m}\right|<\epsilon$.

Compare to the standard definition of convergence:

## Definition (Convergence of a Sequence)

A sequence $\left(a_{n}\right)$ converges to the real number a if, for every $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that whenever $n \geq N$ it follows that $\left|a_{n}-a\right|<\epsilon$.

Comment on the differences!

## Exercise

Prove that $a_{n}=\frac{2 n+1}{n}$ is Cauchy
(1) We estimate $\left|a_{n}-a_{m}\right|$ : For $n<m$

$$
\left|\frac{2 n+1}{n}-\frac{2 m+1}{m}\right|=\left|\frac{1}{n}-\frac{1}{m}\right|=\left|\frac{m-n}{m n}\right|
$$

(2) Note that $\left|\frac{m-n}{m n}\right| \leq \frac{1}{n}$.
(3) If $\epsilon>0$ and $N$ is chosen so that $\epsilon>\frac{1}{N}$, we have

$$
\left|a_{n}-a_{m}\right|<\epsilon, \quad n, m \geq N
$$

## More Interesting Example

Let a sequence be defined as follows: $x_{1}=1, x_{2}=2$, $x_{3}=1 / 2\left(x_{1}+x_{2}\right)$ and in general $x_{n+1}=1 / 2\left(x_{n-1}+x_{n}\right)$. Show that

$$
\left|x_{n}-x_{m}\right| \leq \frac{1}{2^{N-1}}, \quad \forall n, m \geq N
$$

so Cauchy's condition is fulfilled.
Hint: Note that each term is midway between the two preceding ones.

## Theorem

Every convergent sequence is a Cauchy sequence.
Proof. Assume $\left(x_{n}\right)$ converges to $x$. To prove $\left(x_{n}\right)$ is Cauchy, we must find $N$ such that $\left|x_{n}-x_{m}\right|<\epsilon$ for $n, m \geq N$. This is easily done: given $\epsilon / 2$ find $N$ such that

$$
\left|x-x_{n}\right|<\epsilon / 2, \quad n \geq N
$$

By the triangle inequality,

$$
\left|x_{n}-x_{m}\right| \leq\left|x_{n}-x\right|+\left|x-x_{m}\right| \leq \epsilon / 2+\epsilon / 2=\epsilon, \quad n, m \geq N
$$

## Cauchy Criterion

## Theorem

A sequence converges if and only if it is a Cauchy sequence.
While the definition of convergence requires a candidate for the limit, Cauchy's Criterion is a softer requirement. [Discuss]

Proof. The preceding theorem showed that every convergent sequence is a Cauchy sequence. To prove the converse, we first show that every Cauchy sequence is bounded, apply Bolzano- Weierstrass, and then complete proof.

## Boundedness of Cauchy sequences

## Lemma

Cauchy sequences are bounded.
Proof. Given $\epsilon=1$, there exists an $N$ such that $\left|x_{n}-x_{m}\right|<1$ for all $m, n \geq N$. Thus, making $m=N$, we must have $\left|x_{n}\right| \leq\left|x_{N}\right|+1$ for all $n \geq N$. It follows that

$$
M=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|,\left|x_{3}\right|, \ldots,\left|x_{N-1}\right|,\left|x_{N}\right|+1\right\}
$$

is a bound for $\left(x_{n}\right)$.

## Cauchy Criterion

## Theorem

A sequence converges if and only if it is a Cauchy sequence.
Proof. By the Bolzano-Weierstrass theorem, since $\left(x_{n}\right)$ is bounded, it has a convergent subsequence $\left(x_{n_{k}}\right)$ of limit, say, $x$. We want to argue that $x$ is the limit of $\left(x_{n}\right)$ also.
Let $\epsilon>0$. Because $\left(x_{n}\right)$ is Cauchy, there exists $N$ such that

$$
\left|x_{n}-x_{m}\right|<\epsilon / 2, \quad m, n \geq N
$$

Because $\left(x_{n_{k}}\right) \rightarrow x$, choose a term $x_{N_{K}}$, with $N_{K} \geq N$ such that

$$
\left|x_{N_{K}}-x\right|<\epsilon / 2
$$

Now observe: If $n \geq N_{K}$,

$$
\begin{aligned}
\left|x_{n}-x\right| & =\left|x_{n}-x_{N_{K}}+x_{N_{K}}-x\right| \\
& \leq\left|x_{n}-x_{N_{K}}\right|+\left|x_{N_{K}}-x\right| \\
& <\epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

This shows that $\left(x_{n}\right) \rightarrow x$

## Outline

## (1) Some Goals

(2) Sequences

3 Limit Theorems
(4) Monotone Sequences

5 Bolzano-Weierstrass
6. Cauchy Criterion
(7) Workshop \#3

8 Series
(9) Properties of Infinite Series

10 Convergence Tests for Series
(11) Workshop \#4
(12) Typical E-Questions

13 Hourly \#1 Review

## Workshop \#3

Review the following concepts/techniques:

- Algebraic and order limit theorems
- Your favorite limit tricks [see two slides down for one useful tool]


## Warmups

This uses only the cute lemma and some of the algebraic limits theorems.
(1) Let $a_{n}=q^{n}$. If $q>1$, prove that $\lim a_{n}=\infty$ : Set $q=1+p, p>0$. By the Lemma, $(1+p)^{n} \geq 1+n p$, which clearly converges to $\infty$.
(2) Let $a_{n}=q^{n}$. If $0<q<1$, prove that $\lim a_{n}=0$. [Hint: work with $1 / q$.] This means $(1 / q)^{n} \rightarrow \infty$, hence $q^{n} \rightarrow 0$.

## Workshop \#3: there is a second page

(1) If $q>0$, show that $\lim \sqrt[n]{q}=1$. [Hint: Use the technique above. First assume $q>1$. Then set $\sqrt[n]{q}=1+p_{n}, p_{n}>0$. Now $q=\left(1+p_{n}\right)^{n} \geq 1+n p_{n}$. In case $0<q<1$, use $\frac{1}{\sqrt[n]{q}}$.]
(2) Show that $\lim \sqrt[n]{n}=1$. [Hint: Work with $\sqrt[n]{\sqrt{n}}=1+k_{n}$.]Explain why setting $\sqrt[n]{n}=1+a_{n}$ will not work.
(3) Find the limit of $\sqrt[n]{a^{n} b^{n}+b^{n} c^{n}+a^{n} c^{n}}$ if $a>b>c>0$.
(4) Find the limit of $\sqrt{n^{2}+a n+b}-n$.

5 Give an example or argue request is impossible.
(i) A Cauchy sequence that is not monotone.
(ii) A monotone sequence that is not Cauchy.
(iii) A Cauchy sequence with a divergent subsequence.
(iv) An unbounded sequence containing a subsequence that is Cauchy.

The following lemma discussed in class is helpful.

## Lemma

If $p>-1,(1+p)^{n} \geq 1+p n$ for all $n \in \mathbb{N}$.
Proof. We prove this by induction.

- Base Case: It is true for $n=1$.
- Induction Step: Now consider

$$
\begin{aligned}
(1+p)^{n+1} & =(1+p)^{n}(1+p) \geq(1+p n)(1+p) \\
& =1+p(n+1)+p^{2} n \geq 1+p(n+1)
\end{aligned}
$$

## Comment on a Limit

In the Workshop \#3 Problem like

$$
\lim \sqrt[n]{a^{n}+b^{n}+c^{n}}, \quad a>b>c>0
$$

can [?] be argued as follows

$$
\begin{aligned}
\lim \sqrt[n]{a^{n}+b^{n}+c^{n}} & =\lim a \sqrt[n]{1+(b / a)^{n}+(c / a)^{n}} \\
& =a \lim \sqrt[n]{1+(b / a)^{n}+(c / a)^{n}}
\end{aligned}
$$

which is fine but then argued wrongly [why?]

$$
\begin{aligned}
\lim \sqrt[n]{1+(b / a)^{n}+(c / a)^{n}} & =\sqrt[n]{1+\lim (b / a)^{n}+\lim (c / a)^{n}} \\
& =\sqrt[n]{1+0+0}=1
\end{aligned}
$$

One of the proper ways to argue

$$
a=\sqrt[n]{a^{n}} \leq \sqrt[n]{a^{n}+b^{n}+c^{n}} \leq \sqrt[n]{3 a^{n}}=a \sqrt[n]{3}
$$

and then use Problem \#4 that shows

$$
\lim \sqrt[n]{3}=1
$$

## $\lim (1+1 / n)^{n}$

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & =1+n \frac{1}{n}+\frac{n(n-1)}{1 \cdot 2} 1 / n^{2}+\cdots+\frac{n(n-1) \ldots(n-n+1)}{1 \cdots n} 1 / n^{n} \\
& =1+1+\frac{1}{1 \cdot 2}\left(1-\frac{1}{n}\right)+\frac{1}{1 \cdot 2 \cdot}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots \\
& +\frac{1}{1 \cdot 2 \cdots n}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{n-1}{n}\right)
\end{aligned}
$$

Note that

$$
\frac{1}{1 \cdot 2 \cdots n}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{n-1}{n}\right)<\frac{1}{n!}
$$

This shows that

$$
2<\left(1+\frac{1}{n}\right)^{n}<1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots<3
$$

## Outline

## (1) Some Goals

(2) Sequences

3 Limit Theorems
(4) Monotone Sequences

5 Bolzano-Weierstrass
(6. Cauchy Criterion
(7) Workshop \#3

## (8) Series

(9) Properties of Infinite Series
(10) Convergence Tests for Series
(11) Workshop \#4
(12) Typical E-Questions
(13) Hourly \#1 Review

## Intro to Infinite Series

Question: What do we see in the Infinite Series

$$
\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots=?
$$

Answer: At least two things

- The sequence of terms, $\left(a_{n}\right)$ and
- The sequence of partial sums, $\left(s_{n}\right)$,

$$
s_{n}=a_{0}+a_{1}+\cdots+a_{n}
$$

- We say the series converges to $S \in \mathbb{R}$ if $\lim s_{n}=S$. By abuse of notation, we then replace the ? by $S$.


## Backbone Examples

The perspective we use is to view a series as the pair of related sequences:

$$
a_{n}, \quad s_{n}=a_{0}+a_{1}+\cdots+a_{n}
$$

with emphasis on the question:
What should the sequence $\left(a_{n}\right)$ be like so that the sequence of partial sums $\left(s_{n}\right)$ converges?

We need to look close at some important series.

## The Geometric Series

For $q \in \mathbb{R}$, the geometric series of ratio $q$ is

$$
1+q+q^{2}+q^{3}+\cdots+q^{n}+\cdots
$$

Sometimes, all terms are multiplied by a same constant, that instead of the sequence of terms $\left(q^{n}\right)$, one has $\left(a q^{n}\right)$. Let us examine when it converges and find the corresponding limit.

- We need an expression for the partial sum $s_{n}=1+q+\cdots+q^{n}$.
- If we multiply $s_{n}$ by $q$ and subtract $s_{n}$ we get

$$
\begin{aligned}
q s_{n}-s_{n} & =q\left(1+q+\cdots+q^{n}\right)-\left(1+q+\cdots+q^{n}\right) \\
& =q^{n+1}-1
\end{aligned}
$$

- We get an explicit expression for $s_{n}$

$$
s_{n}=\frac{1}{1-q}-\frac{q^{n+1}}{1-q}
$$

- According to the value of $q$, we conclude: If $|q|<1$, since $q^{n} \rightarrow 0$,

$$
1+q+q^{2}+q^{3}+\cdots+q^{n}+\cdots=\frac{1}{1-q}
$$

- Otherwise the series diverges. If $q \geq 1$, it converges to infinity. [Note the confusing language.]


## The Harmonic Series

This is the series

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}+\cdots
$$

This series diverges: It suffices to organize its partial sums in groups that add to at least $1 / 2$ :

$$
\begin{aligned}
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots & =1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\cdots \\
& \geq 1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+\cdots \\
& =1+1 / 2+1 / 2+1 / 2+\cdots
\end{aligned}
$$

## Zeta Function

The series

$$
1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots+\frac{1}{n^{p}}+\cdots
$$

for $p>1$ will always converge. Its sum is denoted by $\zeta(p)$.
For example, $\zeta(2)=\frac{\pi^{2}}{6}$.
This function is actually defined for all complex numbers $p$ whose real part is $>1$. It is known as Riemann zeta function.It is probably the most famous function of Mathematics.

Let us show that

$$
1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots+\frac{1}{n^{p}}+\cdots
$$

for $p>1$ will always converge.
We are going to bound each term $1 / n^{p}$ by the terms of another series, and then argue the new series converges.

Consider the function $f(x)=1 / x^{p}, x \geq 2$. This is a decreasing function (draw the graph).
Observe

$$
1 / n^{p} \leq \int_{x=n-1}^{n} 1 / x^{p} d x
$$

Therefore its partial sums are bounded by

$$
s_{n} \leq 1+\int_{x=1}^{n} \frac{d x}{x^{p}}=1+\frac{1}{p-1}\left[1-\frac{1}{n^{p-1}}\right]<1+\frac{1}{p-1}
$$

## Alternating the Harmonic Series

This is the series

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+(-1)^{n-1} \frac{1}{n}+\cdots
$$

- Its even partial sums, $s_{0}=1, s_{2}=1-1 / 2+1 / 3, \ldots$ are decreasing
- Its odd partial sums, $s_{1}=1-1 / 2, s_{3}=1-1 / 2+1 / 3-1 / 4, \ldots$ are increasing
- The nested intervals $\left[s_{1}, s_{0}\right] \supset\left[s_{3}, s_{2}\right] \supset\left[s_{5}, s_{4}\right] \supset \cdots$ will define the limit 0.69... [actually $\ln 2$ ]


## Exponential Series

We claim that the series

$$
1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots
$$

convergent.
Note that the sequence of its partial sums is monotone but it is bounded by the partial sums of a geometric series

$$
1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}<1+1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n-1}}
$$

a series that converges to 3 . We can refine the comparison.

$$
1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{12!}=2.71828183
$$

with error

$$
\begin{aligned}
\frac{1}{13!}+\frac{1}{14!}+\cdots & <\frac{1}{13!}\left(1+\frac{1}{13}+\frac{1}{13^{2}}+\cdots\right. \\
& =\frac{1}{13!} \frac{1}{1-\frac{1}{13}}=\frac{1}{12} \frac{1}{12!}
\end{aligned}
$$

a number that does not affect the 8th decimal place. The limit of this famous series is denoted $e$, after Euler.

## Irrationality of $e$

We claim that the series

$$
e=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots
$$

is not a rational number. We already know that $2<e<3$, in particular $e$ is not an integer. Suppose $e=\frac{p}{q}$, with $q \geq 2$ since $e$ is not an integer. Multiplying the equality by $q!$, we have

$$
\begin{aligned}
e q! & =p(q-1)!=\left[q!+q!+\frac{q!}{2!}+\frac{q!}{3!}+\cdots+\frac{q!}{q!}\right] \\
& +\frac{1}{q+1}+\frac{1}{(q+1)(q+2)}+\cdots
\end{aligned}
$$

Note that $p(q-1)$ ! and

$$
\left[q!+q!+\frac{q!}{2!}+\frac{q!}{3!}+\cdots+\frac{q!}{q!}\right]
$$

are integers, so that its difference

$$
\frac{1}{q+1}+\frac{1}{(q+1)(q+2)}+\cdots
$$

must also be an integer. But this series is smaller than the geometric series

$$
\frac{1}{q+1}+\frac{1}{(q+1)^{2}}+\frac{1}{(q+1)^{3}}+\cdots
$$

whose sum is

$$
\frac{1}{q+1} \frac{1}{1-\frac{1}{q+1}}=\frac{1}{q}<1
$$

## Exercises

Is the series

$$
\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots
$$

convergent or divergent? Justify answer.
Is the series

$$
\frac{1^{1}}{(101)!}+\frac{2^{2}}{(100+2)!}+\cdots+\frac{n^{n}}{(100+n)!}+\cdots
$$

convergent or divergent? Justify answer.

## Outline

(1) Some Goals
(2) Sequences

3 Limit Theorems
(4) Monotone Sequences
(5) Bolzano-Weierstrass
6. Cauchy Criterion
(7) Workshop \#3

8 Series
(9) Properties of Infinite Series
(10) Convergence Tests for Series
(11) Workshop \#4
(12) Typical E-Questions
(13) Hourly \#1 Review

## Convergence of Series

Given the series

$$
\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots \text { ? }
$$

there are two sequences associated to it

- The sequence of terms, $\left(a_{n}\right)$ and
- The sequence of partial sums, $\left(s_{n}\right)$,

$$
s_{n}=a_{0}+a_{1}+\cdots+a_{n}
$$

- We say the series converges to $A \in \mathbb{R}$ if $\lim s_{n}=A$. We write this as

$$
\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots=A
$$

## A cautionary tale

We pick the alternating harmonic series-which we know to be convergent-and carry out arithmetic operations: See what happens

$$
\begin{aligned}
S & =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots \\
\frac{1}{2} S & =\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}-\cdots \\
S+\frac{1}{2} S & =1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}-\frac{1}{4}+\cdots
\end{aligned}
$$

Thus $S+\frac{1}{2} S=\frac{3}{2} S$ is just a rearrangement of $S!$ The arithmetic is saying instead that

$$
\frac{3}{2} S=S!
$$

## Algebraic Limit Theorem for Series

## Theorem

If $\sum_{k=1}^{\infty} a_{k}=A$ and $\sum_{k=1}^{\infty} b_{k}=B$, then:
(1) $\sum_{k=1}^{\infty} c a_{k}=c A$ for all $c \in \mathbb{R}$ and
(2) $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)=A+B$.

Proof. (i) To show $\sum_{k=1}^{\infty} c a_{k}=c A$, we consider the sequence of partial sums

$$
t_{n}=c a_{1}+c a_{2}+\cdots+c a_{n}
$$

Since $\sum_{k=1}^{\infty} a_{k}=A$, its sequence of partial sums

$$
s_{n}=a_{1}+a_{2}+\cdots+a_{n}
$$

converges to $A$. By the Algebraic Limit Theorem for Sequences, $\lim t_{n}=c \lim s_{n}=c A$.
(ii) To show that $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)=A+B$, let $r_{n}=a_{1}+\cdots+a_{n}$, $s_{n}=b_{1}+\cdots+b_{n}$ be the partial sum terms of the series. The partial sum term of the addition of the two series is
$t_{n}=\left(a_{1}+b_{1}\right)+\cdots+\left(a_{n}+b_{n}\right)=\left(a_{1}+\cdots+a_{n}\right)+\left(b_{1}+\cdots+b_{n}\right)=r_{n}+s_{n}$.
By the Algebraic Limit Theorem for Sequences,

$$
\lim t_{n}=\lim r_{n}+\lim s_{n}=A+B
$$

## Product of Series

Other operations are harder:
Question: Given two series, $a_{0}+a_{1}+a_{2}+\cdots+a_{n}+\cdots$ and $b_{0}+b_{1}+b_{2}+\cdots+b_{n}+\cdots$, what is

$$
\left(a_{0}+a_{1}+a_{2}+\cdots+a_{n}+\cdots\right)\left(b_{0}+b_{1}+b_{2}+\cdots+b_{n}+\cdots\right)=?
$$

Part of the issue arises from the distributive rule. We will offer a partial fix later.

## Cauchy Criterion for Series

## Definition

A sequence $\left(a_{n}\right)$ is called a Cauchy sequence if, for every $\epsilon>0$, there is an $N \in \mathbb{N}$ such that whenever $m, n \geq N$ it follows that $\left|a_{n}-a_{m}\right|<\epsilon$.

Recall:

## Theorem

A sequence converges if and only if it is a Cauchy sequence.
We apply this criterion to the sequence $\left(s_{n}\right)$ of partial sums of a series $\sum_{k=1}^{\infty} a_{k}$. Note that

$$
\left|s_{m}-s_{n}\right|=\left|a_{m+1}+\cdots+a_{n}\right|
$$

## Cauchy Test for Series

## Theorem

The series $\sum_{k=1}^{\infty} a_{k}$ converges if and only if given $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that whenever $n>m \geq N$ it follows that

$$
\left|a_{m+1}+a_{m+2}+\cdots+a_{n}\right|<\epsilon
$$

Proof. Just observe

$$
\left|s_{n}-s_{m}\right|=\left|a_{m+1}+a_{m+2}+\cdots+a_{n}\right|<\epsilon,
$$

and apply the Cauchy's Criterion for sequences.

## Corollary

If the series $\sum_{k=1}^{\infty} a_{k}$ converges, then $\left(a_{k}\right) \rightarrow 0$.
Proof. Set $n=m+1$, then $\left|s_{n}-s_{m}\right|=\left|a_{n}\right|$.

## Converse?

Question: Is a series whose sequence of terms $a_{n}$ converges to 0 convergent? This one is easy:

Answer: No. The (harmonic) series

$$
1+1 / 2+1 / 3+\cdots+1 / n+\cdots
$$

has $1 / n \rightarrow 0$ but it is divergent.

## Comparisons

Given two series $\sum_{k \geq 1} a_{k}$ and $\sum_{k \geq 1} b_{k}$ that loosely connected we seek to link their convergence/divergence:

## Theorem (Comparison Test)

Assume $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ are series satisfying $0 \leq a_{k} \leq b_{k}$ for all $k \in \mathbb{N}$.
(1) If $\sum_{k=1}^{\infty} b_{k}$ converges, then $\sum_{k=1}^{\infty} a_{k}$ converges.
(2) If $\sum_{k=1}^{\infty} a_{k}$ diverges, then $\sum_{k=1}^{\infty} b_{k}$ diverges.

Proof. Both follow from Cauchy's Criterion applied to the partial sums

$$
\left|a_{m+1}+a_{m+2}+\cdots+a_{n}\right| \leq\left|b_{m+1}+b_{m+2}+\cdots+b_{n}\right|
$$

If, for instance, given $\epsilon>0$ we can find $N$ so that for $n, m>N$ $\left|b_{m+1}+a_{m+2}+\cdots+b_{n}\right|<\epsilon$, then the same condition will apply to the $a_{n}$.

## Example

(1) We know that the harmonic series, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. It is clear that the same happens if we form the series $\sum_{n=N}^{\infty} \frac{1}{n}$ where $N$ is some fixed number $N \geq 1$.
(2) If $a$ and $b$ are positive numbers, consider the series [called generalized harmonic series] whose terms are given by the rule:

$$
\frac{1}{a}, \frac{1}{a+b}, \frac{1}{a+2 b}, \ldots, \frac{1}{a+n b}, \ldots
$$

(3) We claim that this series is also divergent: We compare the terms to a multiple of the harmonic series

$$
\frac{1}{a+b n} \geq \frac{1}{n+b n}=\frac{1}{b+1} \frac{1}{n}, \quad n \geq a
$$

## Absolute Convergence Test

If $\sum_{n=1}^{\infty} a_{n}$ is a series of non-negative terms, its partial sums

$$
s_{n}=a_{1}+a_{2}+\cdots+a_{n}, \quad s_{n+1}=s_{n}+a_{n}
$$

is a monotone sequence. Therefore, by the criterion, the series converges exactly when the sequence $\left(s_{n}\right)$ is bounded.
We make use of this:

## Theorem (Absolute Convergence Test)

If the series $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges, then $\sum_{k=1}^{\infty} a_{k}$ converges as well.

## Proof of the Absolute Convergence Test

(1) We make use of Cauchy criterion for series: Let $\epsilon>0$. Since the series $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges, there exists $N$ so that

$$
\left|a_{n+1}\right|+\left|a_{n+1}\right|+\cdots+\left|a_{m}\right|<\epsilon \quad m \geq n>N
$$

(2) By the triangle inequality (one that say $|a+b| \leq|a|+|b|$ ), we get

$$
\left|a_{n+1}+a_{n+1}+\cdots+a_{m}\right|<\epsilon \quad m \geq n>N
$$

(3) Therefore the series $\sum_{k=1}^{\infty} a_{k}$ satisfies the Cauchy condition and therefore converges.

## Converse?

The series

$$
1-\frac{1}{2}+\frac{1}{3}-\cdots(-1)^{n-1} \frac{1}{n} \cdots
$$

is convergent (alternating harmonic series) (the one that won a Grammy's Award), but the series of the absolute values is

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \cdots
$$

is divergent.

## Alternating Series

An alternating series is one with consecutive terms have opposite signs. One group of them is easy to study:

## Theorem (Alternating Series Test)

Let $\left(a_{n}\right)$ be a sequence satisfying
(1) $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq a_{n+1} \geq \cdots$, and
(2) $\left(a_{n}\right) \rightarrow 0$.

Then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.
In other words: If $\left(a_{n}\right)$ is a decreasing sequence of positive terms then

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n} \quad \text { converges if and only if } \lim a_{n}=0
$$

Proof. Observe the odd and even sequences of partial sums

$$
\begin{gathered}
s_{1}=a_{1} \geq s_{3}=a_{1}-\left(a_{2}-a_{3}\right) \geq s_{5}=s_{3}-\left(a_{4}-a_{5}\right), \ldots \\
s_{2}=a_{1}-a_{2} \leq s_{4}=s_{2}+\left(a_{3}-a_{4}\right) \leq s_{5}=s_{3}+\left(a_{5}-a_{6}\right), \ldots
\end{gathered}
$$

They are monotone and bounded: Since $\left(a_{n}\right) \rightarrow 0$, there exists $a_{n} \leq K, s_{2 n}=s_{2 n-1}+a_{2 n} \leq s_{2 n-1}+K \leq a_{1}+K$, therefore the even sequence is increasing and bounded. Thus it has a limit $\ell_{1}$. Similarly, the other sequence is decreasing and with a lower bound, so it has a limit $\ell_{2}$. Since $\pm a_{n}=s_{n}-s_{n-1}$ converges to $0, \ell_{1}=\ell_{2}$.

## Rearrangements

## Definition

Let $\sum_{k \geq 1} a_{k}$ be a series. A series $\sum_{k \geq 1} b_{k}$ is said to be a rearrangement of $\sum_{k>1} a_{k}$ if there exists a 1-1, onto function $\mathbf{f}: \mathbb{N} \rightarrow \mathbb{N}$ such that $b_{\mathbf{f}(k)}=a_{k}$ for all $k \in \mathbb{N}$.

Consider the geometric series of ratio $q$

$$
1+q+q^{2}+q^{3}+\cdots+q^{n}+\cdots
$$

Now we shuffle the terms

$$
q+1+q^{3}+q^{2}+q^{5}+q^{4}+\cdots
$$

This is not a geometric series, but we should expect its fate linked to the first series. The next result says this.

## A cautionary tale

$$
\begin{aligned}
S & =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots \\
\frac{1}{2} S & =\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}-\cdots \\
S+\frac{1}{2} S & =1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}-\frac{1}{4}+\cdots
\end{aligned}
$$

Thus $S+\frac{1}{2} S=\frac{3}{2} S$ is just a rearrangement of $S!$ The arithmetic is saying instead that

$$
\frac{3}{2} S=S!
$$

## Series of Positive Terms

## Theorem (Dirichlet)

The sum of a series of positive terms [convergence/divergence] is the same in whatever order [rearrangement] the terms are taken.

Proof. Let $a_{0}+a_{1}+a_{2}+\cdots+a_{n}+\cdots$ be a series of positive terms of sum $s$. Then any partial sum of rearrangement $b_{0}+b_{1}+b_{2}+\cdots+b_{n}+\cdots$ is bounded by $s$. Thus the second is convergent and its sum $t$ is bound by $s$. We reverse the roles to obtain $s \leq t$.

## Product of Series

Question: Given two series, $a_{0}+a_{1}+a_{2}+\cdots+a_{n}+\cdots$ and $b_{0}+b_{1}+b_{2}+\cdots+b_{n}+\cdots$, what is

$$
\left(a_{0}+a_{1}+a_{2}+\cdots+a_{n}+\cdots\right)\left(b_{0}+b_{1}+b_{2}+\cdots+b_{n}+\cdots\right)=?
$$

The issue is: we have all the poducts $a_{m} b_{n}$ that can be organized into many different series, and then grouped. For instance, if we list the $a_{m} b_{n}$ as the double array, we


We could try the following: Define the product as the series

$$
a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right)+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)+\cdots
$$

Makes sense? [Discuss] Will see another rearrangement soon.

$$
\begin{array}{ccccc}
a_{0} b_{0} & a_{1} b_{0} & a_{2} b_{0} & a_{3} b_{0} & \cdots \\
a_{0} b_{1} & a_{1} b_{1} & a_{2} b_{1} & a_{3} b_{1} & \cdots \\
a_{0} b_{2} & a_{1} b_{2} & a_{2} b_{2} & a_{3} b_{2} & \cdots \\
a_{0} b_{3} & a_{1} b_{3} & a_{2} b_{3} & a_{3} b_{3} & \cdots \\
\ldots & \cdots & \cdots & \cdots & \cdots
\end{array}
$$

The partial sums remind us how polynomials are multiplied

$$
\begin{gathered}
\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{m} x^{m}\right) \\
=\sum_{k=0}^{m+n}\left(\sum_{0 \leq i \leq k} a_{i} b_{k-i}\right) x^{k}
\end{gathered}
$$

$a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{2}, \ldots$
Another aspect of this definition is:

## Theorem

If $\sum_{n \geq 0} a_{n}$ and $\sum_{n \geq 0} b_{n}$ are two convergent series of positive terms, and $s$ and $t$ are their respective sums, then the third series is convergent and has the sum st.

Out of all products $a_{m} b_{n}$, the 'product' above is given in terms of the diagonals

$$
\begin{array}{lllll}
a_{0} b_{0} & a_{1} b_{0} & a_{2} b_{0} & a_{3} b_{0} & \ldots \\
a_{0} b_{1} & a_{1} b_{1} & a_{2} b_{1} & a_{3} b_{1} & \ldots \\
a_{0} b_{2} & a_{1} b_{2} & a_{2} b_{2} & a_{3} b_{2} & \ldots \\
a_{0} b_{3} & a_{1} b_{3} & a_{2} b_{3} & a_{3} b_{3} & \ldots
\end{array}
$$

$a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{2}, \ldots$ whose partial sums don't write conveniently.

We want to re-write the terms of the product series differently:

| $a_{0} b_{0}$ | $a_{1} b_{0}$ | $a_{2} b_{0}$ | $a_{3} b_{0}$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: |
| $a_{0} b_{1}$ | $a_{1} b_{1}$ | $a_{2} b_{1}$ | $a_{3} b_{1}$ | $\ldots$ |
| $a_{0} b_{2}$ | $a_{1} b_{2}$ | $a_{2} b_{2}$ | $a_{3} b_{2}$ | $\ldots$ |
| $a_{0} b_{3}$ | $a_{1} b_{3}$ | $a_{2} b_{3}$ | $a_{3} b_{3}$ | $\ldots$ |
| $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ |

$a_{0} b_{0},\left(a_{0}+a_{1}\right)\left(a_{0}+a_{1}\right)-a_{0} b_{0}$,
$\left(a_{0}+a_{1}+a_{2}\right)\left(b_{0}+b_{1}+b_{2}\right)-\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right), \ldots$ whose $n$th partial sum is

$$
\left(a_{0}+a_{1}+\cdots+a_{n}\right)\left(b_{0}+b_{1}+\cdots+b_{n}\right)
$$

a sequence that converges to st by the Algebraic Limit Theorem.

## Theorem

If $\sum_{k=1}^{\infty} a_{k}$ converges absolutely, then any rearrangement of this series converges to the same limit.

Proof. Assume $\sum_{k \geq 1} a_{k}$ converges absolutely to $A$, and let $\sum_{k \geq 1} b_{k}$ be an rearrangement of $\sum_{k \geq 1} a_{k}$. Let

$$
s_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n}
$$

and

$$
t_{n}=\sum_{k=1}^{n} b_{k}=b_{1}+b_{2}+\cdots+b_{n}
$$

be the corresponding partial sums.
Let $\epsilon>0$. Since $\left(s_{n}\right) \rightarrow A$, choose $N_{1}$ such that

$$
\left|s_{n}-A\right|<\epsilon / 2
$$

for all $n \geq N_{1}$.

Because the convergence is absolute, we can choose $N_{2}$ so that

$$
\sum_{k=m+1}^{n}\left|b_{k}\right|<\epsilon / 2
$$

for all $n>m \geq N_{2}$. Take $N=\max \left\{N_{1}, N_{2}\right\}$. We know that the terms $\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$ must all appear in the rearranged series, and we move far out enough in the series $\sum_{k \geq 1} b_{k}$ that these terms are all included.
Thus, choose $M=\max \{f(k) \mid 1 \leq k \leq N\}$.
It is clear that if $m \geq M$, then $\left(t_{m}-s_{N}\right)$ consists of a finite number of terms, the absolute values of which appear in the tail of $\sum_{k=N+1}^{\infty}\left|a_{k}\right|$. The earlier choice of $N_{2}$ guarantees $\left|t_{m}-s_{N}\right|<\epsilon / 2$, and so

$$
\begin{aligned}
\left|t_{m}-A\right| & =\left|t_{m}-s_{N}+s_{N}-A\right| \\
& \leq\left|t_{m}-s_{N}\right|+\left|s_{N}-A\right| \leq \epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

## Outline

(1) Some Goals
(2) Sequences

3 Limit Theorems
(4) Monotone Sequences

5 Bolzano-Weierstrass
6. Cauchy Criterion
(7) Workshop \#3

8 Series
(9) Properties of Infinite Series
(10) Convergence Tests for Series
(11) Workshop \#4
(12) Typical E-Questions

13 Hourly \#1 Review

## Convergence Tests for Series

3 elementary tests of convergene

- Integral Test
- Ratio Test
- Root Test


## Integral Test

## Theorem (Integral Test)

Let $\sum_{n \geq 0} a_{n}$ be a series of positive terms. If there is a decreasing function $\mathbf{f}(x)$ such that $a_{n} \leq \mathbf{f}(n)$ for large $n$ and

$$
\int_{x=1}^{\infty} \mathbf{f}(x) d x<\infty
$$

then $\sum_{n \geq 0} a_{n}$ converges.
Proof. If $a_{n} \leq \mathbf{f}(n)$ for $n \geq n_{0}$, since $\mathbf{f}(x)$ is decreasing,

$$
a_{n} \leq \int_{n-1}^{n} \mathbf{f}(x) d x, \quad n>n_{0}
$$

From this, and the assumption that $\int_{1}^{\infty} \mathbf{f}(x) d x<\infty$, we get that the partial sums of the series $\sum_{n \geq 0} a_{n}$ are bounded, and therefore converge by the theorem on bounded monotone sequences.

Consider the function $f(x)=1 / x^{p}, x \geq 2$. This is a decreasing function (draw the graph).
Observe

$$
1 / n^{p} \leq \int_{x=n-1}^{n} 1 / x^{p} d x
$$

Therefore its partial sums are bounded by

$$
s_{n} \leq 1+\int_{x=1}^{n} \frac{d x}{x^{p}}=1+\frac{1}{p-1}\left[1-\frac{1}{n^{p-1}}\right]<1+\frac{1}{p-1}
$$

## Convergence

Let us show that

$$
1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\cdots+\frac{1}{n^{p}}+\cdots
$$

for $p>1$ will always converge.
We are going to bound each term $1 / n^{p}$ by the terms of another series, and then argue the new series converges.

## Examples

Comparison gives

$$
\sum_{n \geq 1} \frac{1}{n(n+1)} \leq \sum_{n \geq 1} \frac{1}{n^{2}}
$$

which is convergent. In the same manner, if

$$
\sum_{n \geq 1} \frac{p(n)}{q(n)}
$$

where $p(n)$ and $q(n)$ are positive polynomial expressions with $\operatorname{deg} q \geq 2+\operatorname{deg} p$, then the series converges by the same reason. Do it!

## Ratio Tests

There are very useful tests involving the ratio $a_{n+1} / a_{n}$ of two successive terms of a series. Sometimes we compare the ratio $a_{n+1} / a_{n}$ to another $b_{n+1} / b_{n}$. In these we suppose that $a_{n}$ and $b_{n}$ are strictly positive.
Suppose $a_{n}, b_{n}>0$ and that

$$
\frac{a_{n+1}}{a_{n}} \leq \frac{b_{n+1}}{b_{n}}
$$

for sufficiently large $n$, that is for $n \geq n_{0}$.
Then

$$
\begin{aligned}
a_{n} & =\frac{a_{n_{0}+1}}{a_{n_{0}}} \frac{a_{n_{0}+2}}{a_{n_{0}+1}} \cdots \frac{a_{n}}{a_{n-1}} a_{n_{0}} \\
& \leq \frac{b_{n_{0}+1}}{b_{n_{0}}} \frac{b_{n_{0}+2}}{b_{n_{0}+1}} \cdots \frac{b_{n}}{b_{n-1}} a_{n_{0}}=\frac{a_{n_{0}}}{b_{n_{0}}} b_{n} \\
& =C b_{n}, \quad C=a_{n_{0}} / b n_{0} .
\end{aligned}
$$

## Here are some applications:

## Theorem

Let $\sum a_{n}$ and $\sum b_{n}$ be series of positive terms.
(1) If for $n \geq n_{0}$

$$
\frac{a_{n+1}}{a_{n}} \leq \frac{b_{n+1}}{b_{n}}
$$

and the series $\sum b_{n}$ converges, then $\sum a_{n}$ converges also.
(2) If for $n \geq n_{0}$

$$
\frac{a_{n+1}}{a_{n}} \geq \frac{b_{n+1}}{b_{n}}
$$

and the series $\sum a_{n}$ diverges, then $\sum b_{n}$ diverges also.

## Theorem (d'Alambert Test)

The series $\sum a_{n}$ is convergent if $a_{n+1} / a_{n} \leq r$, where $r<1$, for all sufficiently large $n$.

## Theorem

Given a series $\sum_{n \geq 1} a_{n}$ with $a_{n} \neq 0$, if $\left(a_{n}\right)$ satisfies

$$
\lim \left|\frac{a_{n+1}}{a_{n}}\right|=r<1
$$

then the series converges absolutely.

## Proof.

(1) Let $r^{\prime}$ satisfy $r<r^{\prime}<1$. For $\epsilon=r^{\prime}-r$, there is $N$ such that for $n \geq N\left|a_{n+1} / a_{n}\right|-r \mid<\epsilon$, and therefore

$$
\left|a_{n+1} / a_{n}\right|-r \leq \| a_{n+1} / a_{n}|-r|<\epsilon=r^{\prime}-r
$$

giving $\left|a_{n+1}\right| \leq r^{\prime}\left|a_{n}\right|$ for $n \geq N$.
(2) The above shows that the series $\sum_{n=N}^{\infty}\left|a_{n}\right|$ satisfies $\left|a_{n}\right| \leq\left|a_{N}\right|\left(r^{\prime}\right)^{n-N}$, a geometric series of ratio $r^{\prime}<1$, which converges.

## Exponential

A quick application of the ratio test:
We claim that the series

$$
1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

converges for all values of $x$.
For the ratio of consecutive terms

$$
\frac{a_{n+1}}{a_{n}}=\frac{x^{n+1} /(n+1)!}{x^{n} / n+!}=\frac{x}{n+1}
$$

so that for any $x, \lim a_{n+1} / a_{n}=0$.
This is a well used technique for power series.

## Examples

(1) For the series $\sum_{n \geq 1} \frac{n}{2^{n}}$ we invoke the ratio test:

$$
\frac{a_{n+1}}{a_{n}}=\frac{n+1}{2^{n+1}} / \frac{n}{2^{n}}=\frac{n+1}{n} \frac{1}{2}
$$

which has limit $1 / 2<1$. So the series converges.
(2) Decide [with justification] whether the series

$$
\sum_{n \geq 1} \frac{n!}{n^{n}}
$$

is convergent or divergent?

## Exercises

(1) Show that if $a_{n}>0$ and $\lim n a_{n}=L$, with $L \neq 0$, then the series $\sum a_{n}$ diverges.
(2) Show that if $a_{n}>0$ and $\lim n^{2} a_{n}=L$, with $L \neq 0$, then the series $\sum a_{n}$ converges.
(3) Find examples of two series $\sum a_{n}$ and $\sum b_{n}$ both of which diverge but for which $\sum \min \left\{a_{n}, b_{n}\right\}$ converges. To make it more difficult, choose examples where $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are positive and decreasing.

## Root Test

Let $\sum_{n \geq 1} a_{n}$ be a series of positive terms. We are going to examine how the limit

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}
$$

is used to decide convergence. We recall one special calculation of these limits: If $x>0$

$$
\lim _{n \rightarrow \infty} \sqrt[n]{x}=1
$$

Recall another limit: $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.

## Root Test

## Theorem

If $\sum_{n \geq 1} a_{n}$ is a series of positive terms and $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=r<1$, then the series converges.

Proof. Let $r<r^{\prime}<1$ and pick $\epsilon=r^{\prime}-r$. This is the same subtle point we used above.
(1) There is $N$ so that for $n>N$

$$
\left|\sqrt[n]{a_{n}}-r\right|<\epsilon
$$

(2) This implies that $\sqrt[n]{a_{n}}<r+\epsilon=r^{\prime}<1$ for $n>N$. As a consequence

$$
a_{n}<\left(r^{\prime}\right)^{n}
$$

(3) We now compare the series $\sum n \geq 1 a_{n}$ to the geometric series $\sum_{n \geq 1}\left(r^{\prime}\right)^{n}$ of ratio $r^{\prime}<1$. Thus both series converge.

## Example

Consider the series (for $q>0$ )

$$
1+q+2 q^{2}+\cdots+n q^{n}+\cdots
$$

We invoke the root test

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n q^{n}}=q \lim _{n \rightarrow \infty} \sqrt[n]{n}=q
$$

Therefore it converges if $q<1$
Let us calculate the sum of tbe series. For that we must have an inkling on how the series arose from the geometric series. At these times we replace $q$ by $x$ and recall:

## Nice calculation

(1) Differentiate the 'equality'

$$
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots
$$

(2) To get almost our series

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+\cdots+n x^{n-1}+\cdots
$$

(3) Now multiply by $x$ and add 1

$$
1+\frac{x}{(1-x)^{2}}=1+x+2 x^{2}+\cdots+n x^{n}+\cdots
$$

(a) Thus for $0<q<1$ the series sums to

$$
1+\frac{q}{(1-q)^{2}}
$$

## Exercises

- Show that the series

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots
$$

converges. (Hint: Look up one of the class examples)
To find the limit, sum the geometric series

$$
1-x^{2}+x^{4}-x^{6}+\cdots
$$

and integrate over $[0,1]$. Indicate what steps will have to be properly justified.

- Is the series

$$
\frac{1^{1}}{(101)!}+\frac{2^{2}}{(100+2)!}+\cdots+\frac{n^{n}}{(100+n)!}+\cdots
$$

convergent or divergent? Justify answer.

## More Exercises

(1) Show that

$$
\sum_{n \geq 0}(-1)^{n} \frac{2 n+3}{(n+1)(n+2)}=1
$$

(2) Determine the values of $q$ for which the series

$$
q+2 q^{2}+3 q^{3}+\cdots+n q^{n}+\cdots
$$

is converget.
(3) Show that $\sum_{n \geq 2} \frac{1}{n(\ln n)^{p}}$ converges if $p>1$, and diverges if $p \leq 1$.

## Outline

## (1) Some Goals

(2) Sequences

3 Limit Theorems
(4) Monotone Sequences

5 Bolzano-Weierstrass
6. Cauchy Criterion
(7) Workshop \#3

8 Series
9 Properties of Infinite Series
(10) Convergence Tests for Series
(11) Workshop \#4
(12) Typical E-Questions
(13) Hourly \#1 Review

## Workshop \#4

Think/Do next 4 Questions [in 2 frames]
1 Find the sum of the series

$$
\sum_{n \geq 1} \frac{1}{n(n+4)}
$$

As a warmup, find the sum of the series

$$
\sum_{n \geq 1} \frac{1}{n(n+1)}
$$

2 Show that if $a_{n}>0$ and $\lim n^{p} a_{n}=L$, with $L \neq 0$ for some integer $p>1$, then the series $\sum a_{n}$ converges. An application: If

$$
\sum_{n \geq 1} \frac{p(n)}{q(n)}
$$

where $p(n)$ and $q(n)$ are positive polynomial expressions with $\operatorname{deg} q \geq 2+\operatorname{deg} p$, then the series converges.

## Workshop \#4, Cont'd

3 Determine the values of $q>0$ for which the following series converges and find its sum

$$
1+q+\frac{q^{2}}{2}+\cdots+\frac{q^{n}}{n}+\cdots
$$

Calculate the sum of the series.
4 Is the following series

$$
\sum_{n \geq 0} e^{-n^{2}}
$$

convergent or divergent? Try all [ratio, root, and integral tests]

## Exercises

(1) Show that the sequence

$$
\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}-\sqrt{n+1}}, \quad n \in \mathbb{N}
$$

converges. As a challenge, find also a bound for it.
(2) Let $0 \leq a, b \in \mathbb{R}$ and define recursively $a_{0}=a, b_{0}=b$, $a_{n+1}=\sqrt{a_{n} b_{n}}$ and $b_{n+1}=\left(a_{n}+b_{n}\right) / 2$. Show that $\left[a_{n}, b_{n}\right]$ form a nested sequence of intervals. Prove that the intersection of these intervals is a single point.
(3) If the series $\sum_{n \geq 1} a_{n}^{2}$ and $\sum_{n \geq 1} b_{n}^{2}$ are convergent, prove that $\sum_{n \geq 1} a_{n} b_{n}$ is convergent.

## $\lim \sqrt[n]{n}$

(1) Write $\sqrt[n]{\sqrt{n}}=1+a_{n}$, so that $\sqrt[n]{n}=\left(1+a_{n}\right)^{2}$ and $\sqrt{n}=\left(1+a_{n}\right)^{n}$
(2) By a Lemma we have used often, $\sqrt{n}=\left(1+a_{n}\right)^{n} \geq 1+n a_{n}>n a_{n}$,

$$
\frac{1}{\sqrt{n}}=\frac{\sqrt{n}}{n}>a_{n}
$$

(3) Thus

$$
1 \leq \sqrt[n]{n}=\left(1+a_{n}\right)^{2}=1+2 a_{n}+a_{n}^{2}<1+\frac{2}{\sqrt{n}}+\frac{1}{n}
$$

(4) Therefore, by the Squeeze Theorem, $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$

## Outline

(1) Some Goals
(2) Sequences
(3) Limit Theorems
(4) Monotone Sequences

5 Bolzano-Weierstrass
6. Cauchy Criterion
(7) Workshop \#3

8 Series
(9) Properties of Infinite Series
(10) Convergence Tests for Series
(11) Workshop \#4
(12) Typical E-Questions
(13) Hourly \#1 Review

## Typical E-Questions

- Prove that bounded monotone sequences are convergent.
- Why the cardinalities of $\mathbb{N}$ and of $\mathbb{N}^{4}$ are the same?
- If $\left(a_{n}\right) \rightarrow a$ and $\left(b_{n}\right) \rightarrow b$, with $b_{n}, b \neq 0$, prove that $\lim \left(a_{n} / b_{n}\right)=a / b$.
- What is the nested interval property of $\mathbb{R}$ ? Give an interesting example and sketch the proof.
- If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are sequences such that $\lim a_{n}+b_{n}=5$ and $\lim a_{n}=2$, must $\left(b_{n}\right)$ be convergent? Explain or give counter-example.
- If $\left(a_{n}\right) \rightarrow 5, a_{n} \geq 0$, prove with full details that $\lim \sqrt{a_{n}}=\sqrt{5}$. [You may use $\epsilon=1 / 10$.]
- Find $\lim \sqrt[n]{a^{n+1} b^{n}+b^{n+1} c^{n}+c^{n+1} a^{n}}$, with $a>b>c>0$
- Do all sequences have a convergent subsequence? If not, when? Explain.
- Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two Cauchy sequences. Prove directly that $\left(a_{n} b_{n}\right)$ is a Cauchy sequence.
- If $a$ is a positive integer, give a formula for the sum of the series

$$
\sum_{n \geq 1} \frac{1}{n(n+a)}
$$

## A beautiful limit

- Prove that $\lim n(\sqrt[n]{x}-1), x>0$, exists. [Not easy, not in exam, just tossed as a challenge.]
The limit defines a function $\mathbf{f}(x)$. Observe the property

$$
n(\sqrt[n]{x y}-1)=n(\sqrt[n]{x}-1) \sqrt[n]{y}+n(\sqrt[n]{y}-1)
$$

Taking into account lim $\sqrt[n]{y}=1$ from a Workshop, we get

$$
\mathbf{f}(x y)=\mathbf{f}(x)+\mathbf{f}(y)
$$

a defining property of Logs. [? Maybe $f(x)=e^{x}$ ]

## An old First Hourly

- (15 pts)
(1) What is a countable set?
(2) Why is $\mathbb{Q}$ countable?
(3) Prove that $\mathbb{N}$ and $\mathbb{N}^{2}$ have the same cardinality.
- (10 pts) Prove that the sequence defined by $x_{1}=3$ and

$$
x_{n+1}=\frac{1}{4-x_{n}}
$$

converges.

- (15 pts) Describe very carefully and in full the following terms:
(1) lower bound of a subset $A \subset \mathbb{R}$
(2) Nested Interval Property
(3) give an example for each term.
- (15 pts)
(1) Define precisely the notion of a convergent sequence.
(2) What is a subsequence of a sequence?
(3) Prove that all subsequences of a convergent sequence have the same limit.
- (15 pts)
(1) What is a monotone sequence? Give an example.

If a monotone sequence $\left(a_{n}\right)$ is bounded, prove that it is convergent.

- (15 pts) Find (with proof!) the limit of the sequence

$$
\sqrt[n]{a^{n} b^{n}+b^{n} c^{n}+c^{n} a^{n}}, \quad a>b>c>0
$$

- (15 pts)
(1) What is a Cauchy sequence?
(2) If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are Cauchy sequences, prove directly that $\left(a_{n} b_{n}\right)$ is a Cauchy sequence.


## Exercise

The equation $x^{3}-3 x+1=0$ has a root $\alpha$ between 0 and 1 . To find it, define the sequence

$$
x_{1}=0, \quad x_{n+1}=\frac{1}{3-x_{n}^{2}}
$$

Show that the sequence is monotone and converges to $\alpha$.

## Exercises

(1) Show that if $a_{n}>0$ and $\lim n a_{n}=L$, with $L \neq 0$, then the series $\sum a_{n}$ diverges.
(2) Show that if $a_{n}>0$ and $\lim n^{2} a_{n}=L$, with $L \neq 0$, then the series $\sum a_{n}$ converges.
(3) Find examples of two series $\sum a_{n}$ and $\sum b_{n}$ both of which diverge but for which $\sum \min \left\{a_{n}, b_{n}\right\}$ converges. To make it more difficult, choose examples where $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are positive and decreasing.

## Outline

## (1) Some Goals

(2) Sequences

3 Limit Theorems
(4) Monotone Sequences

5 Bolzano-Weierstrass
6. Cauchy Criterion
(7) Workshop \#3

8 Series
9 Properties of Infinite Series
(10) Convergence Tests for Series
(11) Workshop \#4
(12) Typical E-Questions
(13) Hourly \#1 Review

## Hourly \#1 Review

## Important Topics

- Least Upper Bound
- Axiom of Completeness
- Cardinality: Countable and Uncountable Sets, Power Sets
- Sequences, Convergence/Divergence
- Monotone Sequences
- Bolzano-Weirstrauss Theorem
- Cauchy Sequences
- Series: Backbone Examples
- Convergence of Series: Meaning
- Tests of Convergence: Integral, Ratio, Root

