Math 311-03: Advanced Calculus

Wolmer V. Vasconcelos

Set 1
Spring 2010

Outline

(1) General Orientation
(2) Rational Numbers
(3) Basic Set Theory
(4) \mathbb{R} : Completeness
(5) Last Time \& Today

6 Cardinality and Countability
(7) Workshon \#1
(8) Cardinality of \mathbb{R}
(9) Cantor's Universe
(10) Workshon \#?

General Orientation

- Pre-requisites: Calc 4, Math 300
- web:www.math.rutgers.edu/(tilde)vasconce
- Meetings: MWTh4 1:40-3:00 SEC-205
- Office Hours [Hill 228]: MTh3, or by arrangement
- Textbook: Introduction to Analysis, 5th Ed., by E. D. Gaughan
- All this detailed in General Info page: Look over

Scoring Info

- Quizzes Total: 50
- Workshops Total: 100
- 2 Midterms Total: $2 \times 100=200$
- Final: 200
- Total: 550 pts

Course Symbol

Some Goals

- What is \mathbb{R}, and what are some of its important properties?
- Topology of \mathbb{R} : continuous functions
- Really Understand objects such

$$
\begin{gathered}
\int_{a}^{b} \mathbf{f}(x) d x \\
a_{1}+a_{2}+a_{3}+\cdots
\end{gathered}
$$

FTC

Theorem (FTC)

Let $\mathbf{f}:[a, b] \rightarrow \mathbb{R}$ be a function such that $\int_{a}^{b} \mathbf{f}$ exists. If \mathbf{F} is a function such that

$$
F^{\prime}(c)=\mathbf{f}(c)
$$

for all $c \in[a, b]$, then

$$
\int_{a}^{b} \mathbf{f}(x) d x=\mathbf{F}(b)-\mathbf{F}(a)
$$

Outline

(1) General Orientation

(2) Rational Numbers
(3) Basic Set Theory
(4) \mathbb{R} : Completeness
(5. Iast Time \& Today
6) Cardinality and Countability
(7) Workshop \#1
8. Cardinality of \mathbb{R}
(9) Cantor's Universe
(10) Workshop \#2

Rational Numbers

At the outset of our journey are the natural numbers

$$
\mathbb{N}=\{1,2,3,4, \ldots\}
$$

Its 'modern' construction [e.g. Peano's] is a paradigm of beauty. It is enlarged by the integers

$$
\mathbb{N} \subset \mathbb{Z}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

and the rational numbers

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}=\left\{\frac{m}{n}, \quad m, n \in \mathbb{Z}, n \neq 0\right\}
$$

These sets exhibit different structures: of a monoid, of a ring and of a field, respectively.

Peano

The construction by Peano of the set \mathbb{N} is grounded on two ingredients: The set \mathbb{N} contains a particular element 1.

- [Successor Function] There is a function $s: \mathbb{N} \rightarrow \mathbb{N}$ that is injective, and for every $n \in \mathbb{N} s(n) \neq 1$.
- [Induction Axiom] If the subset $S \subset \mathbb{N}$ has the properties

$$
1 \in S \quad \& \quad \text { whenever } \quad n \in S \Rightarrow s(n) \in S
$$

then $S=\mathbb{N}$

Given these definitions, we can define several operations/compositions and structures on \mathbb{N} :

- $a+b:=$?

$$
\begin{aligned}
a+1 & :=s(a) \\
a+s(n) & :=s(a+n)
\end{aligned}
$$

- $a \times b:=$?

$$
\begin{aligned}
a \times 1 & :=a \\
a \times s(n) & :=a \times n+a
\end{aligned}
$$

Example

Theorem

Suppose $a \geq-1$. Then for all $n \in \mathbb{N},(1+a)^{n} \geq 1+n a$.

Proof.

We shall prove the statement by induction:

- (base case): If $n=1,(1+a)^{1}=1+a \geq 1+a$ is true
- (induction step): Suppose $(1+a)^{n} \geq 1+n a$. Then, since $1+a \geq 0$ by hypothesis,

$$
\begin{aligned}
(1+a)^{n+1} & =(1+a)^{n}(1+a) \geq(1+n a)(1+a) \\
& =1+n a+a+n a^{2}=1+(n+1) a+n a^{2} \\
& \geq 1+(n+1) a
\end{aligned}
$$

Ordering

Out of these notions, addition and multiplication are defined in \mathbb{N}, and then extended to \mathbb{Z} and \mathbb{Q}. An interesting consequence that arises is a notion of order: $\forall a, b \in \mathbb{Q}$, exactly one of the following holds

$$
a<b, \quad a>b, \quad a=b
$$

It has the properties: If $a>b$ then

$$
\begin{aligned}
\forall c & \Rightarrow a+c>b+c \\
\forall c>0 & \Rightarrow a c>b c
\end{aligned}
$$

Significance: This leads to metric properties: lengths, angles, etc.

Fields

A composition on a set \mathbf{X} is a function assigning to pairs of elements of \mathbf{X} an element of \mathbf{X},

$$
(a, b) \mapsto \mathbf{f}(a, b)
$$

That is a function of two variables on \mathbf{X} with values in \mathbf{X}. It is nicely represented in a composition table

\mathbf{f}	$*$	b	$*$
$*$	$*$	$*$	$*$
\mathbf{a}	$*$	$\mathbf{f}(a, b)$	$*$
$*$	$*$	$*$	$*$

We represent it also as

$$
\mathbf{X} \times \mathbf{X} \xrightarrow{\mathbf{f}} \mathbf{X}
$$

An abelian group is a set \mathbf{G} with a composition law denoted ' + '

$$
\begin{gathered}
\mathbf{G} \times \mathbf{G} \rightarrow \mathbf{G} \\
a, b \in \mathbf{G}, \quad a+b \in \mathbf{G}
\end{gathered}
$$

satisfying the axioms

- associative $\forall a, b, c \in \mathbf{G}, \quad(a+b)+c=a+(b+c)$
- commutative $\forall a, b \in \mathbf{G}, \quad a+b=b+a$
- existence of O

$$
\exists O \in \mathbf{G} \quad \text { such that } \forall a \quad a+O=a
$$

- existence of inverses

$$
\forall a \in \mathbf{G} \quad \exists b \in \mathbf{G} \quad \text { such that } a+b=0
$$

This element is unique and denoted $-a$.

Field

A field \mathbf{F} is a set with two composition laws, called 'addition' and 'multiplication', say + and $\times: \forall a, b \in \mathbf{F}$ have compositions $a+b$ and $a \times b$. (The second composition is also written $a \cdot b$, or simply $a b$.)

- $(\mathbf{F},+)$ is an abelian group
- (\mathbf{F}, \times): multiplication is associative, commutative and distributive over + , that is $\forall a, b, c \in \mathbf{F}$,

$$
(a b) c=a(b c), \quad a b=b a, \quad a(b+c)=a b+a c
$$

- existence of identity $\exists \boldsymbol{e} \in \mathbf{F}$ such that

$$
\forall a \in \mathbf{F} \quad a \times e=a
$$

- existence of inverses For every $a \neq 0$, there is $b \in \mathbf{F}$

$$
a \times b=e
$$

There is a unique element e, usually we denote it by 1 . For $a \neq 0$, the element b such that $a b=1$ is unique; it is often denoted by $1 / a$ or a^{-1}.
We can now define scalars: the elements of a field.

Another noteworthy example is \mathbb{F}_{2}, the set made up by two elements $\{0,1\}$ (or (even, odd))with addition defined by the table

$$
\begin{array}{c|c|c}
+ & 0 & 1 \\
\hline 0 & 0 & 1 \\
\hline 1 & 1 & 0
\end{array} \quad 1+1=0!
$$

and multiplication by

\times	0	1
0	0	0
1	0	1

A field is the mathematical structure of choice to do arithmetic. Given a field \mathbf{F}, fractions can defined as follows: If $a, b \in \mathbf{F}, \quad b \neq 0$,

$$
\frac{a}{b}:=a b^{-1}
$$

The usual calculus of fractions then follows, for instance

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

Example: The field of constructable numbers

Class Discussion: Volunteers!

Rational Numbers: Counting and Measuring

- Counting
- Measuring by Counting

Irrationality of $\sqrt{2}$

The arrival of new numbers:

The construction of an irrational number

Example

Theorem

$\sqrt{2} \notin \mathbb{Q}$.

Proof.

- We are going to argue by contradiction: Suppose

$$
\sqrt{2}=\frac{m}{n}
$$

- We may assume that m and n have no common factor.
- Squaring both sides of the equality, we obtain $m^{2}=2 n^{2}$
- This implies that m is even, as the square of an odd number, say $m=2 p+1$, is odd

$$
(2 p+1)^{2}=4 p^{2}+4 p+1=4\left(p^{2}+p\right)+1
$$

- We may then assume that m is even. In $m^{2}=2 n^{2}$, set $m=2 p$ to get

$$
4 p^{2}=2 n^{2}
$$

and therefore

- $n^{2}=2 p^{2}$, which implies that n is also even.
- This contradicts our assumption that m and n have no common factors.

This will also work with $\sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{8}$ and many other cases. Obviously, these numbers need a home.

Exercise

Exercise: Show that $z=\sqrt{2}+\sqrt{3}$ is not a rational number.

- Will argue by contradiction. If z is a rational, then $z^{2}=2+2 \sqrt{6}+3$ is also a rational number.
- From $\sqrt{6}=1 / 2\left(z^{2}-5\right)$, it follows that $\sqrt{6}=m / n$ for $m, n \in \mathbb{N}$. Assume m, n have no common factors.
- This gives $m^{2}=6 n^{2}=2 \times 3 \times n^{2}$. Thus 2 must divide m and therefore 2^{2} divides $m^{2}, m^{2}=2^{2} p=2 \times 3 \times n^{2}$. This shows that 2 divides n, a contradiction.

Exercise: Show that $x=3.1212 \ldots$ (repeating 12 's) is a rational number.

- Note that $100 x=312.1212 \ldots$
- $100 x-x=99 x=312-3=309$
- Thus $x=\frac{309}{99}$
- Same trick works for any repeating decimal.

Outline

(1) General Orientation

(2) Rational Numbers
(3) Basic Set Theory
(4) \mathbb{R} : Completeness
(5) Last Time \& Today
6. Cardinality and Countability
(7) Workshop \#1
(8) Cardinality of \mathbb{R}
(9) Cantor's Univarse
(10) Workshop \#2

Basic Set Theory

- How to specify a set: listing its elements, membership test, etc

$$
\{x, P(x)\}, \quad P(x) \text { is test }
$$

$$
\{x \in \mathbb{N}, \quad 6 \mid x\}=\{6,12,18, \ldots\}
$$

- Pair $(x, y):\{\{x\},\{x, y\}\}$? What is a triple?
- Product of sets \mathbf{A} and $\mathbf{B}:\{(a, b), \quad a \in \mathbf{A}, b \in \mathbf{B}\}$
- Relation: subset of a product of sets

In order to deal with real numbers, we are going to use the language of set theory: If $A, B, C \ldots$ are subsets of the set \mathbf{X}, will assume familiarity with the following notions and notation:

- union: $A \cup B$
- intersection: $A \cap B$
- complement: $A^{c}=\{x \in \mathbf{X} \mid x \notin A\}=\mathbf{X} \backslash A$
- Morgan's laws:

$$
\begin{aligned}
C \cap(A \cup B) & =(C \cap A) \cup(C \cap B) \\
C \cup(A \cap B) & =(C \cup A) \cap(C \cup B) \\
(A \cap B)^{c} & =A^{c} \cup B^{c} \quad \& \quad(A \cup B)^{c}=A^{c} \cap B^{c}
\end{aligned}
$$

- There are various 'infinite' versions of some of these.

Ordered Pair

Definition

Let A and B be sets. For $a \in A$ and $b \in B$, the ordered pair (a, b) is the set

$$
\{\{a\},\{a, b\}\}
$$

a is called the first coordinate of the pair, and b the second coordinate.
Note that (a, b) may be different from (b, a) :

$$
\{\{a\},\{a, b\}\} \neq\{\{b\},\{a, b\}\}
$$

if $a \neq b$.

Definition

Let A and B be sets. The set of all ordered pairs having first coordinate in A and second coordinate in B is called the Cartesian product of A and B and written $A \times B$. Thus

$$
A \times B=\{(a, b): a \in A \quad \text { and } \quad b \in B .\}
$$

Functions

Let \mathbf{X} and \mathbf{Y} be two sets. The general way to define a function of source \mathbf{X} and target $\mathbf{Y}, \mathbf{F}: \mathbf{X} \rightarrow \mathbf{Y}$, is the following:

A function is a subset \mathbf{F} of $\mathbf{X} \times \mathbf{Y}$ with the properties

- $\forall x \in \mathbf{X}$,

$$
\text { there is } y \in \mathbf{Y} \text { such that } \quad(x, y) \in \mathbf{F}
$$

- If

$$
(x, y) \quad \& \quad\left(x, y^{\prime}\right) \in \mathbf{F} \quad \Rightarrow y=y^{\prime}
$$

Sets of Rational Numbers

Define a set of rational numbers

$$
A=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}
$$

by the rules: $x_{1}=1$,

$$
\forall n \quad x_{n+1}=\frac{x_{n}}{2}+1
$$

Let us prove

$$
x_{n}<x_{n+1}<2
$$

We are going to argue by induction. The assertion is true for $n=1$, as $x_{1}=1<x_{2}=3 / 2<2$.

Suppose it holds for n, that is

$$
x_{n}<x_{n+1}<2
$$

If we divide these inequalities by 2 and add 1 , we have

$$
x_{n+1}<x_{n+2}<2
$$

We further claim that there is no rational number $q<2$ such that $x_{n}<q$ for all n.

Outline

(1) General Orientation

(2) Rational Numbers
(3) Basic Set Theory
(4) \mathbb{R} : Completeness
(5) Last Time \& Today

6 Cardinality and Countability
(7) Workshon \#1
(8) Cardinality of \mathbb{R}
(9) Cantor's Universe
(10) Workshon \#?

Upper and Lower Bounds

- The number b is said to be an upper bound of the set $A \subset \mathbb{R}$ if

$$
a \leq b \mid \forall a \in A
$$

- A number ℓ is said to be a lower bound of the set $A \subset \mathbb{R}$ if

$$
a \geq \ell \mid \forall a \in A
$$

- Consider the set $A=\left\{q \in \mathbb{Q} \mid q^{2}<2\right\}$. -2 is a lower bound of A, while $3 / 2$ is an upper bound. Clearly there are many other bounds.

Least Upper and Greatest Lower Bounds

- A number b is said to be a least upper bound of the set $A \subset \mathbb{R}$ if b is an upper bound of A and $b \leq b^{\prime}$ for any other upper bound b^{\prime}. Least upper bounds are also known as the supremum of A. If $b \in A$, it is called the maximum of A.

$$
A=\left\{x_{1}=1, \forall n \quad x_{n+1}=\frac{x_{n}}{2}+1\right\}
$$

has 2 for supremum [needs a proof, as we only proved that 2 is an upper bound]

- Similarly we define greatest lower bound [and of infimum/minimum].

Example

Define the set $\mathbf{A}=\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}$ by the rule

$$
a_{1}=\sqrt{2}, \quad a_{2}=\sqrt{2 \sqrt{2}}, \quad a_{3}=\sqrt{2 \sqrt{2 \sqrt{2}}}, \cdots
$$

Let us show that $\sup \mathbf{A}=2$:

$$
\begin{gathered}
a_{1}=\sqrt{2}, \quad a_{2}=a_{1} \sqrt[4]{2}, \quad a_{3}=a_{2} \sqrt[8]{2}, \cdots \\
a_{n}=2^{1 / 2+1 / 4+\cdots+1 / 2^{n}}<2 \\
a_{n}=2^{r}, \quad r=\frac{1 / 2-1 / 2^{n+1}}{1 / 2}=1-1 / 2^{n}
\end{gathered}
$$

Exercise

For any number $1<a<2$, we can show that there is $n \in \mathbb{N}$ such that

$$
2^{1-1 / 2^{n}}>a
$$

You may need help, try this lemma:

Lemma

For any $p \geq 1$ and all $n \in \mathbb{N}, p^{1-1 / 2^{n}} \geq p-p / n$.

Proof. ?

David Hilbert (1862-1943)

"Physics is much too hard for physicists." - Hilbert, 1912
This site is dedicated to David Hilbert, the funkiest mathematician alive.

Axiom of Completeness

Axiom: Every set A of real numbers with an upper bound has a least upper bound.

This is a defining property of \mathbb{R}. A lot flows out of it. We will explore some of it in the next lectures [Discuss].

Nested Interval Property

Theorem

For each $n \in \mathbb{N}$, assume we are given a closed interval $I_{n}=\left[a_{n}, b_{n}\right]=\left\{x \in \mathbb{R} \mid a_{n} \leq x \leq b_{n}\right\}$. Assume that each I_{n} contains I_{n+1}. Then the resulting nested sequence of closed intervals

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq I_{4} \supseteq \cdots
$$

has a nonempty intersection, that is

$$
\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset
$$

Proof. We plotted the ends of the intervals $I_{n}=\left[a_{n}, b_{n}\right]$. We will use the axiom of completeness to the set A of left ends a_{n} of the intervals. Note that each b_{n} is an upper bound for A.
Let $x=\sup A$. Consider a particular interval $I_{n}=\left[a_{n}, b_{n}\right]$ Since $a_{n} \leq x$ and each b_{n} is an upper bound of $A, x \leq b_{n}$. Thus $x \in I_{n}$, for each n as desired.

Density of \mathbb{Q} in \mathbb{R}

Theorem (Archimedean Property)

(i) Given any number $x \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ satisfying $n>x$.
(ii) Given any real number $y>0$, there exists an $n \in \mathbb{N}$ satisfying $1 / n<y$.

Proof. (i) Assume, by contradiction, that \mathbb{N} is bounded above. By (AoC), \mathbb{N} should have a least upper bound, set $\alpha=\sup \mathbb{N} . \alpha-1$ is not an upper bound, so there is an $n \in \mathbb{N}$ such that $\alpha-1<n$. Thus $\alpha<n+1$.

Part (ii) follows from (i) by letting $x=1 / y$.

Theorem (Density of \mathbb{Q} in \mathbb{R})

For every two real numbers a and b with $a<b$, there is a rational number r satisfying $a<r<b$.

Proof. To simplify matters a little, we assume $0 \leq a<b$. We must find $m, n \in \mathbb{N}$ such that

$$
a<\frac{m}{n}<b .
$$

First, we use the archimedean property to pick $n \in \mathbb{N}$ so that

$$
\frac{1}{n}<b-a
$$

With n chosen, we must find m so that $n a<m<n b$. Pick m the smallest natural number greater than na. That is

$$
m-1 \leq n a<m
$$

Note that this already gives $a<m / n$. Writing $1 / n<b-a$ as $a<b-1 / n$, we can write

$$
m \leq n a+1<n\left(b-\frac{1}{n}\right)+1=n b
$$

which gives $m / n<b$, to complete the proof.

Existence of $\sqrt{2}$

Theorem

The least upper bound α of the set $A=\left\{q \in \mathbb{R} \mid q^{2}<2\right\}$ satisfies $\alpha^{2}=2$.

Proof. We are going to argue that $\alpha^{2}<2$ and $\alpha^{2}>2$ violate the assumption on α.
Let us first show if $\alpha^{2}<2$ then α is not an upper bound of A. We will find elements in A larger than α.

$$
\begin{aligned}
\left(\alpha+\frac{1}{n}\right)^{2} & =\alpha^{2}+\frac{2 \alpha}{n}+\frac{1}{n^{2}} \\
& <\alpha^{2}+\frac{2 \alpha}{n}+\frac{1}{n} \\
& =\alpha^{2}+\frac{2 \alpha+1}{n}
\end{aligned}
$$

If $\alpha^{2}<2$, choose $n_{0} \in \mathbb{N}$ large enough so that

$$
\frac{1}{n_{0}}<\frac{2-\alpha^{2}}{2 \alpha+1}
$$

This implies $(2 \alpha+1) / n_{0}<2-\alpha^{2}$, and consequently

$$
\begin{aligned}
\left(\alpha+\frac{1}{n_{0}}\right)^{2} & <\alpha^{2}+\frac{2 \alpha+1}{n_{0}} \\
& <\alpha^{2}+\left(2-\alpha^{2}\right)=2
\end{aligned}
$$

Thus $\alpha+1 / n_{0} \in A$, so α is not an upper bound of A.

Suppose $\alpha^{2}>2$: Write

$$
\begin{aligned}
\left(\alpha-\frac{1}{n}\right)^{2} & =\alpha^{2}-\frac{2 \alpha}{n}+\frac{1}{n^{2}} \\
& >\alpha^{2}-\frac{2 \alpha}{n}
\end{aligned}
$$

As in the previous case, pick n_{0} large enough so that

$$
\frac{1}{n_{0}}<\frac{\alpha^{2}-2}{2 \alpha+1}
$$

This implies $(2 \alpha+1) / n_{0}<\alpha^{2}-2$, and consequently

$$
\begin{aligned}
\left(\alpha-\frac{1}{n_{0}}\right)^{2} & >\alpha^{2}-\frac{2 \alpha+1}{n_{0}} \\
& >\alpha^{2}-\left(\alpha^{2}-2\right)=2
\end{aligned}
$$

Thus $\alpha-1 / n_{0}$ is an upper bound of A, so α is not the least upper bound.

Outline

(1) General Orientation

(2) Rational Numbers
(3) Basic Set Theory
(4) \mathbb{R} : Completeness
(5) Last Time \& Today
6. Cardinality and Countability
(7) Workshop \#1
8. Cardinality of \mathbb{R}
(9) Cantor's Universe
(10) Workshop \#2

Last Time \& Today

- Bounded sets, least upper bounds
- The Axiom of Completeness
- Cardinality of Sets
- Countable Sets, including a Cool Proof

Wednesday: Workshop \#1

Outline

(1) General Orientation

(2) Rational Numbers
(3. Basic Set Theory
(4) \mathbb{R} : Completeness
(5) Last Time \& Today
6) Cardinality and Countability
(7) Workshop \#1
(8) Cardinality of \mathbb{R}

- Cantor's Universe
(10) Workshop \#2

Cardinality

The Axiom of Completeness creates a lot of order but it is also a burst dam of new relationships and problems. It becomes intimately related to logic and the foundations of mathematics.

Let us begin by introducing a method to size sets. If A and B are two sets, a function

$$
\mathbf{f}: A \rightarrow B
$$

is one-one if $\mathbf{f}(x)=\mathbf{f}(y)$ implies $x=y$, and it is onto if B is the image of \mathbf{f}.
On a nice collection of sets, e.g. the subsets of \mathbb{R}, we can define a relation $A \sim B$ by requiring a function $\mathbf{f}: A \rightarrow B$ as above. This is obviously an equivalence relation. The equivalence class of A is called the cardinality of A, card (A).

A set A is said to be countable if $\operatorname{card}(A)=\operatorname{card}(\mathbb{N})$:

$$
\mathbf{f}: \mathbb{N} \rightarrow A
$$

$$
A=\{\mathbf{f}(1), \mathbf{f}(2), \ldots,\} .
$$

If $A=\{1,2, \ldots, n\} \subset \mathbb{N}$, we write $\operatorname{card}(A)=n$.
If the set $B \sim\{1,2, \ldots, n\}$ we say that B is finite and has n elements.
Exercise: If card (A) is countable and $B \subset A$, then B is countable or finite.

It is obviously a tricky thing to determine the cardinality of sets, particularly of infinite sets. Let us get our hands busy!

Exercise

The set $\mathbb{N} \times \mathbb{N}$ is countable: Let define a one-one function

$$
\mathbf{f}: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}
$$

Define

$$
\mathbf{f}(m, n)=2^{m} 3^{n}
$$

By the unique factorization on integers,

$$
2^{m} 3^{n}=2^{p} 3^{q} \Rightarrow m=p \quad n=q
$$

which proves the claim that \mathbf{f} is injective.
Exercise: Use the infinity of prime numbers to show that the set \mathbf{X} of all infinite tuples $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ such that all $x_{i}=0$ except for finitely many exceptions is countable.

Theorem

The sets \mathbb{Z} and \mathbb{Q} are countable.
We must establish one-one \& onto correspondences between \mathbb{N} and each of these sets. In other words, we must describe \mathbb{Z} and \mathbb{Q} as long lists

$$
\{\mathbf{f}(1), \mathbf{f}(2), \ldots,\} .
$$

For \mathbb{Z}, this is very easy

$$
\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots, \pm n, \ldots\}
$$

for example, $0=\mathbf{f}(1), 23=\mathbf{f}(46),-55=\mathbf{f}(111)$. If we cared, \mathbf{f} can even be made explicit.

A list description of \mathbb{Q} is not much different. Each $x \in \mathbb{Q}$, can be written uniquely as

$$
\left.x= \pm \frac{p}{q} \quad \right\rvert\, \quad p \geq 0, q>0
$$

$\operatorname{gcd}(p, q)=1$ when $q \neq 0$. Define the finite subsets of $\mathbb{Q}, A_{0}=\{0\}$, for $n \geq 1$

$$
\begin{aligned}
& A_{n}=\left\{\left. \pm \frac{p}{q} \right\rvert\, \quad p+q=n\right\} . \\
& A_{10}=\{ \pm 1 / 9, \pm 9 / 1, \pm 7 / 3, \pm 3 / 7\} \\
& \mathbb{Q}=A_{0} \cup A_{1} \cup A_{2} \cup \cdots \cup A_{n} \cup \cdots
\end{aligned}
$$

is a disjoint union of finite sets. Listing the elements of each A_{n} gives a desired listing for \mathbb{Q}.
A more general argument is the following:

Theorem

If the sets $A_{i}, i \geq 1$, are countable, then $A=\bigcup_{i=1}^{\infty} A_{i}$ is countable.
Proof. Here is a way to list the elements of A. Since the A_{i} are countable, each comes with an injective mapping $\mathbf{f}_{i}: A_{i} \rightarrow \mathbb{N}$. We are going to define an injective mapping from A into the set $\mathbb{N} \times \mathbb{N}$. (By a previous exercise $\mathbb{N} \times \mathbb{N}$ is countable.) If $x \in A, x$ belongs to some A_{i} and thus there exists an integer m such that

$$
x \in A_{m}, \quad x \notin A_{i}, \quad i<m
$$

Define $\mathbf{f}: A \rightarrow \mathbb{N} \times \mathbb{N}$ by the rule:

$$
\mathbf{f}(x)=\left(m, \mathbf{f}_{m}(x)\right)
$$

To verify that \mathbf{f} is one-one we check:

$$
\mathbf{f}(x)=\mathbf{f}(y)
$$

means

$$
\left(m, \mathbf{f}_{m}(x)\right)=\left(n, \mathbf{f}_{n}(y)\right)
$$

and thus

$$
x \& y \in A_{m}=A_{n}
$$

and therefore

$$
\mathbf{f}_{m}(x)=\mathbf{f}_{m}(y)
$$

implies that

$$
x=y
$$

since \mathbf{f}_{m} is one-one.

Theorem

If the sets $A_{i}, i \geq 1$, are countable, then $A=\bigcup_{i=1}^{\infty} A_{i}$ is countable.
Proof. Here is a beautiful way to list the elements of A :
$A_{1}:$

Exercise: Prove that the set \mathbf{A} of finite subsets of \mathbb{N} is countable. Solution: Let \mathbf{A}_{n} be the subset of \mathbf{A} made up of subsets of \mathbb{N} with n elements. Note that $\mathbf{A}_{0}=\{\emptyset\}$ is not the empty set! and that

$$
\mathbf{A}=\bigcup_{n \geq 0} \mathbf{A}_{n} .
$$

To apply the theorem above, we prove that each \mathbf{A}_{n} is countable. There are various ways to do it.

- The set of n-tuples of natural numbers

$$
\mathbb{N}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{N}\right\}
$$

is countable, by the theorem.

- The set \mathbf{A}_{n} is on a 1-1 correspondence with the n-tuples

$$
\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{1}<a_{2}<\cdots<a_{n}\right\}
$$

so \mathbf{A}_{n} is countable.

Algebraic Numbers

An (real) algebraic number is a real number $x \in \mathbb{R}$ that satisfies an equation

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}=0, \quad a_{n} \neq 0, a_{i} \in \mathbb{Q}
$$

$\sqrt{2}, \sqrt[n]{3}$ are examples. Clear denominators, we may assume that all a_{i} are integers.
Exercise: The set of algebraic numbers is a field.

Theorem

The set \mathbf{A} of algebraic numbers is countable.
Proof. For an integer m, let A_{m} be the set of all algebraic real numbers which are roots of equations such that

$$
n+\left|a_{n}\right|+\left|a_{n-1}\right|+\cdots+\left|a_{0}\right| \leq m
$$

The number of such polynomials is finite, so the number of its roots is also finite. Since

$$
\mathbf{A}=\bigcup_{m=1}^{\infty} A_{m},
$$

A is countable.

Outline

(1) General Orientation

(2) Rational Numbers
(3) Basic Set Theory
(4) \mathbb{R} : Completeness
(5) Last Time \& Today
(6) Cardinality and Countability
(7) Workshop \#1
(8) Cardinality of \mathbb{R}
(9) Cantor's Universe
(10) Workshop \#2

Concepts Needed for Workshop

Draw pictures [whenever possible] of the following notions:

- Bounded sets
- Least Upper Bound: LUB
- Axiom of Completeness: Recall what it says
- Consider example:

$$
\mathbf{A}=\left\{x_{1}, x_{2}, \ldots,\right\}, \quad x_{1}=1, \quad x_{n}=x_{n-1} / 2+1, n \geq 2
$$

$$
\mathbf{A}=\{1,3 / 2,7 / 4,15 / 8, \ldots\}
$$

- Function

$$
\mathbf{f}: \mathbf{X} \rightarrow \mathbf{Y}
$$

Subset \mathbf{f} of $\mathbf{X} \times \mathbf{Y}$ with the properties:
(1) For each $x \in \mathbf{X}$ there is $y \in \mathbf{Y}$ such that $(x, y) \in \mathbf{f}$
(2) If $(x, y) \&\left(x, y^{\prime}\right) \in \mathbf{f}$, then $y=y^{\prime}$

- Cardinality The sets \mathbf{X} and \mathbf{Y} have the same cardinality if there is a function

$$
\mathbf{f}: \mathbf{X} \rightarrow \mathbf{Y}
$$

that is one-one and onto. Other terminology: injective and surjective

Workshop \# 1

Problem 1: Find the least upper bound [if it exists] for the set of numbers $\mathbf{A}=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}, x_{n}=\sqrt{2+\sqrt{2+\sqrt{\cdots+\sqrt{2}}}}, n$ square roots.

- Label the terms of the sequence and look for relationships
- Prove the set is bounded
- Find the LUB
- Write solution

Workshop \# 1, cont'd

Problem 2: The goal is to show that given $a<b$, there is a 1-1 onto function $\mathbf{f}:(a, b) \rightarrow[a, b]$, that is, these intervals are equivalent. We shall begin with the cases $a=0, b=1$.

Define $\mathbf{f}:(0,1) \rightarrow \mathbb{R}$ as follows

$$
\begin{aligned}
\mathbf{f}(1 / n) & =\frac{1}{n-1}, \quad n \in \mathbb{N}, n \geq 2 \\
\mathbf{f}(x) & =x \text { otherwise }
\end{aligned}
$$

- Prove that \mathbf{f} is $1-1$ onto $(0,1]$
- Find a 1-1 function from $[0,1)$ onto $[0,1]$
- Prove that $[0,1)$ is equivalent to $(0,1]$
- Prove that $(0,1)$ is equivalent to $[0,1]$
- For $a<b$, prove that (a, b) is equivalent to $[a, b]$

Exercise

Exercise: Consider the functions \mathbf{f} and \mathbf{g} defined as follows

$$
\begin{aligned}
\mathbf{f}(x)=\frac{x-3}{x-2}, & x \in \mathbb{R}, x \neq 2 \\
\mathbf{g}(x)=3-x, & x \in \mathbb{R}
\end{aligned}
$$

Find all the functions that are generated by composing \mathbf{f} and \mathbf{g}. It will be a finite number. You may to look at $\mathbf{f} \circ \mathbf{g}, \mathbf{g} \circ \mathbf{f}, \mathbf{f} \circ \mathbf{f}, \mathbf{g} \circ \mathbf{g}, \mathbf{f} \circ(\mathbf{g} \circ \mathbf{f})$, and so on. Make sure the compositions are valid.

Outline

(1) General Orientation

(2) Rational Numbers
(3) Basic Set Theory
(4) \mathbb{R} : Completeness
(5) Last Time \& Today
6. Cardinality and Countability
(7) Workshop \#1
(8) Cardinality of \mathbb{R}
(9) Cantor's Universe
(10) Workshop \#2

Theorem

\mathbb{R} is not countable.
Proof. Suppose we could list the real numbers

$$
\mathbb{R}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}
$$

We are going to build a sequence I_{n} of nested intervals and derive a contradiction to (NIP).
Let $l_{1}=\left[a_{1}, b_{1}\right]$ be an (non-empty) interval not containing x_{1}. Now, choose a subinterval I_{2} of I_{1} not containg x_{2}. This is clearly possible. Proceed in this fashion, for each $n>1$ pick a subinterval I_{n} of I_{n-1} not containing x_{n}.

This produces a nested sequence $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots$ of non-empty intervals. By (NIP), $\cap I_{n} \neq \emptyset$. Let y be an element in this intersection. It must be one of the x_{n}, say $y=x_{m}$. But the intersection is contained in I_{m}, which does not contain x_{m}, by construction.

The cardinality of \mathbb{R} is denoted $\operatorname{card}(\mathbb{R})=c, c$ for continuum. There are many unresolved questions about c.

Outline

(1) General Orientation

(2) Rational Numbers
(3. Basic Set Theory
(4) \mathbb{R} : Completeness
(5) Last Time \& Today
6. Cardinality and Countability
(7) Workshop \#1
(8) Cardinality of \mathbb{R}
(9) Cantor's Universe
(10) Workshop \#2

Let us visit, if briefly, the garden universe that Cantor created for us. It was the first great theory of infinities, and has had a profound influence on Mathematics.

It helped that his constructions and proofs [sometimes the same thing] were often beautiful, if not even great fun.

We will touch on two of them.

Theorem (Cantor's Proof)

The interval $(0,1)$ is not countable.
Proof. It will suffice to show that the open interval $(0,1)$ is not countable. We are going to represent its elements as infinite decimals $x=0 . a_{1} a_{2} a_{3} \cdots a_{n} \cdots$. We are going to assume, by way of contradiction, that we can list them:

$$
\begin{aligned}
x_{1} & =0 . \mathbf{a}_{11} a_{12} a_{13} a_{14} \cdots \\
x_{2} & =0 . a_{21} a_{22} a_{23} a_{24} \cdots \\
x_{3}= & 0 . a_{31} a_{32} a_{33} a_{34} \cdots \\
x_{4}= & 0 . a_{41} a_{42} a_{43} \mathbf{a}_{44} \cdots \\
\vdots & \vdots
\end{aligned}
$$

We are going, by focusing on the diagonal entries $a_{n n}$, give an an element $x \in(0,1)$ that is not listed.

Define the integer

$$
b_{n}= \begin{cases}2 & \text { if } a_{n n} \neq 2 \\ 3 & \text { if } a_{n n}=2\end{cases}
$$

Set $x=0 . b_{1} b_{2} b_{3} b_{4} \cdots b_{n} \cdots$. Note that x differs from x_{n} at the n decimal position. So x is not listed.

Definition

A set S has cardinality c iff S is equivalent to the open interval $(0,1)$; we write $\operatorname{card}(S)=\mathbf{c}$.

Theorem

The set \mathbb{R} is uncountable and has cardinality \mathbf{c}.

Proof.

Define $\mathbf{f}:(0,1) \rightarrow \mathbb{R}$ by $\mathbf{f}(x)=\tan (\pi x-\pi / 2)$. Look at its graph.

Exercise

Claim: $(0,1) \times(0,1) \approx(0,1)$, that is the interior of the unit square is equivalent to $(0,1)$. Another form; $\mathbb{R} \times \mathbb{R} \approx \mathbb{R}$.
An element $(a, b) \in(0,1) \times(0,1)$ can be described as

$$
\begin{aligned}
& a=0 . a_{1} a_{2} a_{3} \ldots a_{n} \ldots \\
& b=0 . b_{1} b_{2} b_{3} \ldots b_{n} \ldots
\end{aligned}
$$

Define the function $f(a, b)=c \in(0,1)$ where

$$
c=0 . a_{1} b_{1} a_{2} b_{2} \ldots a_{n} b_{n} \ldots
$$

\mathbf{f} is one-to-one and onto.

Power Sets

If \mathbf{X} is a set, the collection of its subsets is called the power set of \mathbf{X} : notation $P(\mathbf{A})$.
If $\mathbf{X}=\{0,1\}$, its subsets are

$$
P(\mathbf{X})=\{\emptyset,\{0\},\{1\},\{0,1\}\} .
$$

One way to represent a subset $A \subset \mathbf{X}$ is as a function

$$
\begin{gathered}
\mathbf{f}_{A}: \mathbf{X} \rightarrow\{0,1\} \\
\mathbf{f}_{A}(x)= \begin{cases}1 & \text { if } x \in A \\
0 & \text { if } x \notin A\end{cases}
\end{gathered}
$$

This leads to the notation $P(\mathbf{X})=2^{\mathrm{X}}$.
If $\mathbf{X}=\left\{x_{1}, \ldots, x_{n}\right\}$, we can also represent its subsets by ordered strings of 0 's and 1's as follows:

$$
\begin{aligned}
& A \leftrightarrow\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& a_{i}= \begin{cases}1 & \text { if } x_{i} \in A \\
0 & \text { if } x_{i} \notin A\end{cases}
\end{aligned}
$$

This shows that

$$
\operatorname{card}(P(\mathbf{X}))=2^{\operatorname{card}(\mathbf{X})}=2^{n}
$$

Cantor's Theorem

The following shows how to build larger infinities from given ones.

Theorem

Given a set \mathbf{X} there is no function $\mathbf{f}: \mathbf{X} \rightarrow P(\mathbf{X})$ that is onto.
Proof. Suppose \mathbf{f} is such a function: For each $a \in \mathbf{X}, \mathbf{f}(a)$ is a subset of \mathbf{X} and any subset is a target. Let us build a subset that is not a target.

For each $a \in \mathbf{X}, a \in \mathbf{f}(a)$ or $a \notin \mathbf{f}(a)$. Define the subset

$$
B=\{a \in \mathbf{X} \mid a \notin \mathbf{f}(a)\}
$$

By assumption, $B=\mathbf{f}(x)$ for some $x \in \mathbf{X}$.
Now look how cool:
$x \in \mathbf{f}(x)=B$, contradicts the definition of B, while $x \notin \mathbf{f}(x)=B$, would make $x \in B$, by the definition of B.

Outline

(1) General Orientation

(2) Rational Numbers
(3) Basic Set Theory
(4) \mathbb{R} : Completeness
(5) Last Time \& Today
(6) Cardinality and Countability
(7) Workshop \#1
(8) Cardinality of \mathbb{R}
(9) Cantor's Universe
(10) Workshop \#2

Concepts Needed for Workshop

- What are Countable Sets? View some examples
- Counting Techniques: Review the Beautiful zig-zag [diagonal] proof
- Visit Example: \mathbb{Q}
- Supremum and Infimum: Least Upper Bound and Greatest Lower Bound of sets of real numbers

Workshop \# 2

(1) Prove that the set of all polynomials $\mathbb{Q}[x]$ is countable.
(2) Prove that the set of all polynomials $\mathbb{Q}[x, y]$ is countable.
(3) Consider the following statements about subsets of real numbers and decide whether they are true or false. In the latter case, provide a counterexample:
(a) A finite, nonempty set always contains its supremum.
(b) If A and B are sets with the property that $a<b$ for every $a \in A$ and every $b \in B$, then it follows that $\sup A<\inf B$.
(c) If $\sup A=s$ and $\sup B=t$, then $\sup (A+B)=s+t$. [If A and B are sets of real numbers, their sum is defined as follows: $A+B=\{a+b \mid a \in A, b \in B\}$.

Some Exercises

Establish a 1-1 correspondence with a set of known cardinality:
(1) Is the set of all functions from $\{0,1\}$ to \mathbb{N} countable or uncountable?
(2) Is the set of all functions from \mathbb{N} to $\{0,1\}$ countable or uncountable?

