Math 311–03: Advanced Calculus

Wolmer V. Vasconcelos

Set 1

Spring 2010

Wolmer Vasconcelos (Set 1)

Advanced Calculus

Outline

- Rational Numbers
- **3** Basic Set Theory
- 4 R: Completeness
- 5 Last Time & Today
- 6 Cardinality and Countability
- Workshop #1
- **8** Cardinality of \mathbb{R}
- Ocantor's Universe
- 10 Workshop #2

- Pre-requisites: Calc 4, Math 300
- web:www.math.rutgers.edu/(tilde)vasconce
- Meetings: MWTh4 1:40-3:00 SEC-205
- Office Hours [Hill 228]: MTh3, or by arrangement
- Textbook: Introduction to Analysis, 5th Ed., by E. D. Gaughan
- All this detailed in General Info page: Look over

- Quizzes Total: 50
- Workshops Total: 100
- 2 Midterms Total: 2 x 100 = 200
- Final: 200
- Total: 550 pts

Course Symbol

Wolmer Vasconcelos (Set 1)

- What is \mathbb{R} , and what are some of its important properties?
- Topology of \mathbb{R} : continuous functions
- Really Understand objects such

$$\int_{a}^{b} \mathbf{f}(x) dx$$

 $a_1 + a_2 + a_3 + \cdots$

Theorem (FTC)

Let $f:[a,b]\to\mathbb{R}$ be a function such that $\int_a^b f$ exists. If F is a function such that

$$\mathbf{F}'(c) = \mathbf{f}(c)$$

for all $c \in [a, b]$, then

$$\int_{a}^{b} \mathbf{f}(x) dx = \mathbf{F}(b) - \mathbf{F}(a).$$

Outline

- General Orientation
- Rational Numbers
- **3 Basic Set Theory**
- 4 R: Completeness
- 5 Last Time & Today
- 6 Cardinality and Countability
- Workshop #1
- **8** Cardinality of \mathbb{R}
- Ocantor's Universe
- 10 Workshop #2

At the outset of our journey are the **natural** numbers

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

Its 'modern' construction [e.g. Peano's] is a paradigm of beauty. It is enlarged by the **integers**

$$\mathbb{N} \subset \mathbb{Z} = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}$$

and the rational numbers

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} = \left\{ \frac{m}{n}, \quad m, n \in \mathbb{Z}, n \neq 0 \right\}$$

These sets exhibit different **structures**: of a monoid, of a ring and of a field, respectively.

The construction by Peano of the set \mathbb{N} is grounded on two ingredients: The set \mathbb{N} contains a particular element 1.

- [Successor Function] There is a function s : N → N that is injective, and for every n ∈ N s(n) ≠ 1.
- [Induction Axiom] If the subset $S \subset \mathbb{N}$ has the properties

$$1 \in S$$
 & whenever $n \in S \Rightarrow s(n) \in S$

then $S = \mathbb{N}$

Given these definitions, we can define several operations/compositions and structures on \mathbb{N} :

• *a* + *b* :=?

$$a+1 := s(a)$$

 $a+s(n) := s(a+n)$

• **a** × **b** :=?

$$a \times 1 := a$$

 $a \times s(n) := a \times n + a$

Theorem

Suppose $a \ge -1$. Then for all $n \in \mathbb{N}$, $(1 + a)^n \ge 1 + na$.

Proof.

We shall prove the statement by induction:

• (base case): If n = 1, $(1 + a)^1 = 1 + a \ge 1 + a$ is true

• (induction step): Suppose $(1 + a)^n \ge 1 + na$. Then, since $1 + a \ge 0$ by hypothesis,

$$(1+a)^{n+1} = (1+a)^n (1+a) \ge (1+na)(1+a)$$

= $1+na+a+na^2 = 1+(n+1)a+na^2$
 $\ge 1+(n+1)a$

Ordering

Out of these notions, addition and multiplication are defined in \mathbb{N} , and then extended to \mathbb{Z} and \mathbb{Q} . An interesting consequence that arises is a notion of **order**: $\forall a, b \in \mathbb{Q}$, exactly one of the following holds

$$a < b$$
, $a > b$, $a = b$

It has the properties: If a > b then

$$orall c \Rightarrow a+c > b+c$$

 $orall c > 0 \Rightarrow ac > bc$

Significance: This leads to metric properties: lengths, angles, etc.

Fields

A composition on a set X is a function assigning to pairs of elements of X an element of X,

 $(a,b)\mapsto \mathbf{f}(a,b).$

That is a function of two variables on **X** with values in **X**. It is nicely represented in a composition table

f	*	b	*
*	*	*	*
а	*	f (<i>a</i> , <i>b</i>)	*
*	*	*	*

We represent it also as

$$\mathbf{X} \times \mathbf{X} \stackrel{f}{\longrightarrow} \mathbf{X}$$

An abelian group is a set **G** with a composition law denoted '+'

 $\mathbf{G} \times \mathbf{G} \rightarrow \mathbf{G}$,

$$a, b \in \mathbf{G}, \quad a+b \in \mathbf{G}$$

satisfying the axioms

- associative $\forall a, b, c \in \mathbf{G}$, (a+b) + c = a + (b+c)
- commutative $\forall a, b \in \mathbf{G}, a+b=b+a$
- existence of O

 $\exists O \in \mathbf{G}$ such that $\forall a \ a + O = a$

• existence of inverses

 $\forall a \in \mathbf{G} \quad \exists b \in \mathbf{G} \quad \text{such that } a + b = O$

This element is unique and denoted -a.

Wolmer Vasconcelos (Set 1)

A field **F** is a set with two composition laws, called 'addition' and 'multiplication', say + and \times : $\forall a, b \in \mathbf{F}$ have compositions a + b and $a \times b$. (The second composition is also written $a \cdot b$, or simply ab.)

- (**F**, +) is an abelian group
- (F, ×): multiplication is associative, commutative and distributive over +, that is ∀*a*, *b*, *c* ∈ F,

$$(ab)c = a(bc), \quad ab = ba, \quad a(b+c) = ab + ac$$

• existence of identity $\exists e \in \mathbf{F}$ such that

 $\forall a \in \mathbf{F} \quad a \times e = a$

• existence of inverses For every $a \neq 0$, there is $b \in \mathbf{F}$

 $a \times b = e$.

There is a unique element *e*, usually we denote it by 1. For $a \neq 0$, the element *b* such that ab = 1 is unique; it is often denoted by 1/a or a^{-1} .

We can now define scalars: the elements of a field.

Another noteworthy example is \mathbb{F}_2 , the set made up by two elements $\{0, 1\}$ (or (even, odd))with addition defined by the table

and multiplication by

$$\begin{array}{c|c|c} \times & 0 & 1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 0 & 1 \\ \end{array}$$

A field is the mathematical structure of choice to do arithmetic. Given a field **F**, fractions can defined as follows: If $a, b \in \mathbf{F}$, $b \neq 0$,

$$\frac{a}{b} := ab^{-1}.$$

The usual calculus of fractions then follows, for instance

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

Class Discussion: Volunteers!

- Counting
- Measuring by Counting

Irrationality of $\sqrt{2}$

The arrival of new numbers:

The construction of an irrational number

Wolmer Vasconcelos (Set 1)

Advanced Calculus

Example

Theorem $\sqrt{2} \notin \mathbb{Q}.$

Proof.

• We are going to argue by contradiction: Suppose

$$\sqrt{2} = \frac{m}{n}$$

- We may assume that *m* and *n* have no common factor.
- Squaring both sides of the equality, we obtain $m^2 = 2n^2$
- This implies that *m* is even, as the square of an odd number, say m = 2p + 1, is odd

$$(2p+1)^2 = 4p^2 + 4p + 1 = 4(p^2 + p) + 1$$

• We may then assume that *m* is even. In $m^2 = 2n^2$, set m = 2p to get

$$4p^2 = 2n^2$$

and therefore

- $n^2 = 2p^2$, which implies that *n* is also even.
- This contradicts our assumption that *m* and *n* have no common factors.

This will also work with $\sqrt{3}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{8}$ and many other cases. Obviously, these **numbers** need a **home**. **Exercise:** Show that $z = \sqrt{2} + \sqrt{3}$ is not a rational number.

- Will argue by contradiction. If z is a rational, then $z^2 = 2 + 2\sqrt{6} + 3$ is also a rational number.
- From $\sqrt{6} = 1/2(z^2 5)$, it follows that $\sqrt{6} = m/n$ for $m, n \in \mathbb{N}$. Assume m, n have no common factors.
- This gives $m^2 = 6n^2 = 2 \times 3 \times n^2$. Thus 2 must divide *m* and therefore 2^2 divides m^2 , $m^2 = 2^2p = 2 \times 3 \times n^2$. This shows that 2 divides *n*, a contradiction.

Exercise: Show that x = 3.1212... (repeating 12's) is a rational number.

- Note that 100x = 312.1212...
- 100x x = 99x = 312 3 = 309
- Thus $x = \frac{309}{99}$
- Same trick works for any repeating decimal.

Outline

- General Orientation
- Rational Numbers
- Basic Set Theory
 - 4 R: Completeness
- 5 Last Time & Today
- 6 Cardinality and Countability
- Workshop #1
- **8** Cardinality of \mathbb{R}
- Ocantor's Universe
- 10 Workshop #2

• How to specify a set: listing its elements, membership test, etc

 $\{x, P(x)\}, P(x)$ is test

$$\{x \in \mathbb{N}, 6 | x\} = \{6, 12, 18, \ldots\}$$

- Pair (x, y): {{x}, {x, y}} ? What is a triple?
- Product of sets A and B: $\{(a, b), a \in A, b \in B\}$
- Relation: subset of a product of sets

In order to deal with real numbers, we are going to use the language of set theory: If A, B, C... are subsets of the set **X**, will assume familiarity with the following notions and notation:

- union: $A \cup B$
- intersection: $A \cap B$
- complement: $A^c = \{x \in \mathbf{X} \mid x \notin A\} = \mathbf{X} \setminus A$
- Morgan's laws:

$$C \cap (A \cup B) = (C \cap A) \cup (C \cap B)$$

$$C \cup (A \cap B) = (C \cup A) \cap (C \cup B)$$

$$(A \cap B)^{c} = A^{c} \cup B^{c} \& (A \cup B)^{c} = A^{c} \cap B^{c}$$

• There are various 'infinite' versions of some of these.

Definition

Let A and B be sets. For $a \in A$ and $b \in B$, the **ordered pair** (a, b) is the set

 $\{\{a\}, \{a, b\}\}.$

a is called the first coordinate of the pair, and *b* the second coordinate.

Note that (a, b) may be different from (b, a):

 $\{\{a\},\{a,b\}\} \neq \{\{b\},\{a,b\}\},\$

if $a \neq b$.

Definition

Let *A* and *B* be sets. The set of all ordered pairs having first coordinate in *A* and second coordinate in *B* is called the **Cartesian product** of *A* and *B* and written $A \times B$. Thus

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B.\}$$

Let **X** and **Y** be two sets. The general way to define a function of source **X** and target **Y**, $\mathbf{F} : \mathbf{X} \to \mathbf{Y}$, is the following:

A function is a subset ${\bf F}$ of ${\bf X}\times {\bf Y}$ with the properties

• $\forall x \in \mathbf{X}$, there is $y \in \mathbf{Y}$ such that $(x, y) \in \mathbf{F}$

If

$$(x,y)$$
 & $(x,y') \in \mathbf{F} \Rightarrow y = y'$

Define a set of rational numbers

$$A = \{x_1, x_2, ..., x_n, ...\}$$

by the rules: $x_1 = 1$,

$$\forall n \quad x_{n+1} = \frac{x_n}{2} + 1$$

Let us prove

$$x_n < x_{n+1} < 2$$

We are going to argue by induction. The assertion is true for n = 1, as $x_1 = 1 < x_2 = 3/2 < 2$.

Suppose it holds for *n*, that is

$$x_n < x_{n+1} < 2.$$

If we divide these inequalities by 2 and add 1, we have

$$x_{n+1} < x_{n+2} < 2$$

We further claim that there is no rational number q < 2 such that $x_n < q$ for all n.

Outline

- General Orientation
- 2 Rational Numbers
- **3** Basic Set Theory
 - R: Completeness
- 5 Last Time & Today
- 6 Cardinality and Countability
- Workshop #1
- **8** Cardinality of \mathbb{R}
- Ocantor's Universe
- 10 Workshop #2

• The number *b* is said to be an **upper bound** of the set $A \subset \mathbb{R}$ if

$$a \leq b \mid \forall a \in A$$

• A number ℓ is said to be a **lower bound** of the set $A \subset \mathbb{R}$ if

 $a \ge \ell \mid \forall a \in A$

Consider the set A = {q ∈ Q | q² < 2}. -2 is a lower bound of A, while 3/2 is an upper bound. Clearly there are many other bounds.
A number *b* is said to be a least upper bound of the set *A* ⊂ ℝ if *b* is an upper bound of *A* and *b* ≤ *b*' for any other upper bound *b*'. Least upper bounds are also known as the supremum of *A*. If *b* ∈ *A*, it is called the maximum of *A*.

$$A = \{x_1 = 1, \forall n \ x_{n+1} = \frac{x_n}{2} + 1\}$$

has 2 for supremum [needs a proof, as we only proved that 2 is an upper bound]

• Similarly we define greatest lower bound [and of infimum/minimum].

Example

Define the set $\mathbf{A} = \{a_1, a_2, a_3, \cdots\}$ by the rule

$$a_1=\sqrt{2},\quad a_2=\sqrt{2\sqrt{2}},\quad a_3=\sqrt{2\sqrt{2\sqrt{2}}},\cdots$$

Let us show that sup A = 2:

$$a_1 = \sqrt{2}, \quad a_2 = a_1 \sqrt[4]{2}, \quad a_3 = a_2 \sqrt[8]{2}, \cdots$$

$$a_n = 2^{1/2 + 1/4 + \dots + 1/2^n} < 2$$

$$a_n = 2^r$$
, $r = \frac{1/2 - 1/2^{n+1}}{1/2} = 1 - 1/2^n$

For any number 1 < a < 2, we can show that there is $n \in \mathbb{N}$ such that

$$2^{1-1/2^n} > a$$

You may need help, try this lemma:

Lemma

For any
$$p \ge 1$$
 and all $n \in \mathbb{N}$, $p^{1-1/2^n} \ge p - p/n$.

Proof. ?

David Hilbert (1862-1943)

David Hilbert

David Hilbert (1862 - 1943)**Mathematician** Algebraist Topologist Geometrist Number Theorist Physicist Analyst Philosopher Genius And modest too...

This site is dedicated to David Hilbert, the funkiest mathematician alive.

Advanced Calculus

Axiom: Every set *A* of real numbers with an upper bound has a least upper bound.

This is a defining property of \mathbb{R} . A lot flows out of it. We will explore some of it in the next lectures **[Discuss]**.

Theorem

For each $n \in \mathbb{N}$, assume we are given a closed interval $I_n = [a_n, b_n] = \{x \in \mathbb{R} \mid a_n \le x \le b_n\}$. Assume that each I_n contains I_{n+1} . Then the resulting nested sequence of closed intervals

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \supseteq \cdots$$

has a nonempty intersection, that is

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$

$$a_1 a_2 \cdots a_n x b_n \cdots b_2 b_1$$

Proof. We plotted the ends of the intervals $I_n = [a_n, b_n]$. We will use the axiom of completeness to the set *A* of left ends a_n of the intervals. Note that each b_n is an upper bound for *A*.

Let $x = \sup A$. Consider a particular interval $I_n = [a_n, b_n]$ Since $a_n \le x$ and each b_n is an upper bound of A, $x \le b_n$. Thus $x \in I_n$, for each n as desired.

Theorem (Archimedean Property)

- (i) Given any number $x \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ satisfying n > x.
- (ii) Given any real number y > 0, there exists an $n \in \mathbb{N}$ satisfying 1/n < y.

Proof. (i) Assume, by contradiction, that \mathbb{N} is bounded above. By (AoC), \mathbb{N} should have a least upper bound, set $\alpha = \sup \mathbb{N}$. $\alpha - 1$ is not an upper bound, so there is an $n \in \mathbb{N}$ such that $\alpha - 1 < n$. Thus $\alpha < n + 1$.

Part (ii) follows from (i) by letting x = 1/y.

Theorem (Density of $\mathbb Q$ in $\mathbb R$)

For every two real numbers a and b with a < b, there is a rational number r satisfying a < r < b.

Proof. To simplify matters a little, we assume $0 \le a < b$. We must find $m, n \in \mathbb{N}$ such that

$$a < \frac{m}{n} < b.$$

First, we use the archimedean property to pick $n \in \mathbb{N}$ so that

$$\frac{1}{n} < b - a$$

With *n* chosen, we must find *m* so that na < m < nb. Pick *m* the smallest natural number greater than *na*. That is

$$m - 1 \leq na < m$$

Note that this already gives a < m/n. Writing 1/n < b - a as a < b - 1/n, we can write

$$m \leq na+1 < n(b-\frac{1}{n})+1 = nb$$

which gives m/n < b, to complete the proof.

Existence of $\sqrt{2}$

Theorem

The least upper bound α of the set $A = \{q \in \mathbb{R} \mid q^2 < 2\}$ satisfies $\alpha^2 = 2$.

Proof. We are going to argue that $\alpha^2 < 2$ and $\alpha^2 > 2$ violate the assumption on α .

Let us first show if $\alpha^2 < 2$ then α is not an upper bound of *A*. We will find elements in *A* larger than α .

$$(\alpha + \frac{1}{n})^2 = \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n^2}$$
$$< \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n}$$
$$= \alpha^2 + \frac{2\alpha + 1}{n}$$

If $\alpha^2 < 2$, choose $n_0 \in \mathbb{N}$ large enough so that

$$\frac{1}{n_0} < \frac{2-\alpha^2}{2\alpha+1}$$

This implies $(2\alpha + 1)/n_0 < 2 - \alpha^2$, and consequently

$$(\alpha + \frac{1}{n_0})^2 < \alpha^2 + \frac{2\alpha + 1}{n_0} < \alpha^2 + (2 - \alpha^2) = 2$$

Thus $\alpha + 1/n_0 \in A$, so α is not an upper bound of A.

Suppose $\alpha^2 > 2$: Write

$$(\alpha - \frac{1}{n})^2 = \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2}$$

> $\alpha^2 - \frac{2\alpha}{n}$

As in the previous case, pick n_0 large enough so that

$$\frac{1}{n_0} < \frac{\alpha^2 - 2}{2\alpha + 1}$$

This implies $(2\alpha + 1)/n_0 < \alpha^2 - 2$, and consequently

$$(\alpha - \frac{1}{n_0})^2 > \alpha^2 - \frac{2\alpha + 1}{n_0}$$

> $\alpha^2 - (\alpha^2 - 2) = 2$

Thus $\alpha - 1/n_0$ is an upper bound of *A*, so α is not the least upper bound.

Wolmer Vasconcelos (Set 1)

Outline

- General Orientation
- 2 Rational Numbers
- **3** Basic Set Theory
- R: Completeness
- 5 Last Time & Today
- 6 Cardinality and Countability
- Workshop #1
- **8** Cardinality of \mathbb{R}
- Ocantor's Universe
- 10 Workshop #2

- Bounded sets, least upper bounds
- The Axiom of Completeness
- Cardinality of Sets
- Countable Sets, including a Cool Proof

Wednesday: Workshop #1

Outline

- General Orientation
- 2 Rational Numbers
- **3** Basic Set Theory
- 4 R: Completeness
- 5 Last Time & Today
- 6 Cardinality and Countability
- Workshop #1
- **8** Cardinality of \mathbb{R}
- Ocantor's Universe
- 10 Workshop #2

The Axiom of Completeness creates a lot of order but it is also a burst dam of new relationships and problems. It becomes intimately related to logic and the foundations of mathematics.

Let us begin by introducing a method to size sets. If *A* and *B* are two sets, a function

$$f: A \rightarrow B$$

is **one-one** if f(x) = f(y) implies x = y, and it is **onto** if *B* is the image of **f**.

On a nice collection of sets, e.g. the subsets of \mathbb{R} , we can define a relation $A \sim B$ by requiring a function $\mathbf{f} : A \to B$ as above. This is obviously an **equivalence relation**. The **equivalence class** of *A* is called the **cardinality** of *A*, card (*A*).

A set *A* is said to be **countable** if card $(A) = card (\mathbb{N})$:

 $\mathbf{f}:\mathbb{N} o \mathbf{A}$

$$A = \{\mathbf{f}(1), \mathbf{f}(2), \ldots, \}.$$

If $A = \{1, 2, \dots, n\} \subset \mathbb{N}$, we write card (A) = n.

If the set $B \sim \{1, 2, ..., n\}$ we say that *B* is finite and has *n* elements.

Exercise: If card (*A*) is countable and $B \subset A$, then *B* is countable or finite.

It is obviously a tricky thing to determine the cardinality of sets, particularly of infinite sets. Let us get our hands busy!

The set $\mathbb{N}\times\mathbb{N}$ is countable: Let define a one-one function

 $f:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$

Define

$$\mathbf{f}(m,n)=\mathbf{2}^m\mathbf{3}^n$$

By the unique factorization on integers,

$$2^m 3^n = 2^p 3^q \Rightarrow m = p \quad n = q,$$

which proves the claim that **f** is injective.

Exercise: Use the infinity of prime numbers to show that the set **X** of all infinite tuples $(x_1, x_2, x_3, ...)$ such that all $x_i = 0$ except for finitely many exceptions is countable.

Theorem

The sets \mathbb{Z} and \mathbb{Q} are countable.

We must establish one-one & onto correspondences between $\mathbb N$ and each of these sets. In other words, we must describe $\mathbb Z$ and $\mathbb Q$ as long lists

 $\{f(1), f(2), \ldots, \}.$

For \mathbb{Z} , this is very easy

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \dots, \pm n, \dots\}$$

for example, 0 = f(1), 23 = f(46), -55 = f(111). If we cared, f can even be made explicit.

A list description of \mathbb{Q} is not much different. Each $x \in \mathbb{Q}$, can be written uniquely as

$$x=\pm rac{p}{q} \mid p \ge 0, q > 0$$

gcd(p,q) = 1 when $q \neq 0$. Define the finite subsets of \mathbb{Q} , $A_0 = \{0\}$, for $n \geq 1$

$$A_n = \left\{ \pm rac{p}{q} \mid p + q = n
ight\}.$$

$$\textit{A}_{10} = \{\pm 1/9, \pm 9/1, \pm 7/3, \pm 3/7\}$$

$$\mathbb{Q} = A_0 \cup A_1 \cup A_2 \cup \cdots \cup A_n \cup \cdots$$

is a disjoint union of finite sets. Listing the elements of each A_n gives a desired listing for \mathbb{Q} .

Theorem

If the sets A_i , $i \ge 1$, are countable, then $A = \bigcup_{i=1}^{\infty} A_i$ is countable.

Proof. Here is a way to list the elements of *A*. Since the A_i are countable, each comes with an injective mapping $\mathbf{f}_i : A_i \to \mathbb{N}$. We are going to define an injective mapping from *A* into the set $\mathbb{N} \times \mathbb{N}$. (By a previous exercise $\mathbb{N} \times \mathbb{N}$ is countable.) If $x \in A$, *x* belongs to some A_i and thus there exists an integer *m* such that

$$x \in A_m, \quad x \notin A_i, \quad i < m$$

Define $\mathbf{f} : \mathbf{A} \to \mathbb{N} \times \mathbb{N}$ by the rule:

$$\mathbf{f}(\mathbf{x})=(m,\mathbf{f}_m(\mathbf{x})).$$

To verify that **f** is one-one we check:

$$\mathbf{f}(x) = \mathbf{f}(y)$$

means

 $(m,\mathbf{f}_m(x))=(n,\mathbf{f}_n(y))$

and thus

 $x \& y \in A_m = A_n$

and therefore

$$\mathbf{f}_m(x) = \mathbf{f}_m(y)$$

implies that

x = y

since \mathbf{f}_m is one-one.

Theorem

If the sets A_i , $i \ge 1$, are countable, then $A = \bigcup_{i=1}^{\infty} A_i$ is countable.

Proof. Here is a beautiful way to list the elements of *A*:

Exercise: Prove that the set **A** of finite subsets of \mathbb{N} is countable.

Solution: Let \mathbf{A}_n be the subset of \mathbf{A} made up of subsets of \mathbb{N} with *n* elements. Note that $\mathbf{A}_0 = \{\emptyset\}$ is not the empty set! and that

$$\mathbf{A} = \bigcup_{n \ge 0} \mathbf{A}_n.$$

To apply the theorem above, we prove that each A_n is countable. There are various ways to do it. • The set of *n*-tuples of natural numbers

$$\mathbb{N}^n = \{(a_1, \ldots, a_n) \mid a_i \in \mathbb{N}\}$$

is countable, by the theorem.

• The set **A**_n is on a 1-1 correspondence with the *n*-tuples

$$\{(a_1,\ldots,a_n) \mid a_1 < a_2 < \cdots < a_n\}$$

so \mathbf{A}_n is countable.

An (real) **algebraic** number is a real number $x \in \mathbb{R}$ that satisfies an equation

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 = 0, \quad a_n \neq 0, a_i \in \mathbb{Q}$$

 $\sqrt{2}$, $\sqrt[n]{3}$ are examples. Clear denominators, we may assume that all a_i are integers.

Exercise: The set of algebraic numbers is a field.

Theorem

The set **A** of algebraic numbers is countable.

Proof. For an integer m, let A_m be the set of all algebraic real numbers which are roots of equations such that

$$n+|a_n|+|a_{n-1}|+\cdots+|a_0|\leq m.$$

The number of such polynomials is finite, so the number of its roots is also finite. Since

$$\mathbf{A}=\bigcup_{m=1}^{\infty}A_{m},$$

A is countable.

Outline

- General Orientation
- 2 Rational Numbers
- **3** Basic Set Theory
- 4 R: Completeness
- 5 Last Time & Today
- Cardinality and Countability
- Workshop #1
- **8** Cardinality of \mathbb{R}
- Ocantor's Universe
- 10 Workshop #2

Draw pictures [whenever possible] of the following notions:

- Bounded sets
- Least Upper Bound: LUB
- Axiom of Completeness: Recall what it says
- Consider example:

$$\mathbf{A} = \{x_1, x_2, \dots, \}, \quad x_1 = 1, \quad x_n = x_{n-1}/2 + 1, n \ge 2$$

$$\bm{A} = \{1, 3/2, 7/4, 15/8, \ldots\}$$

Function

$$f: X \to Y$$

Subset **f** of **X** × **Y** with the properties: • For each $x \in \mathbf{X}$ there is $y \in \mathbf{Y}$ such that $(x, y) \in \mathbf{f}$ • If $(x, y)\&(x, y') \in \mathbf{f}$, then y = y'

• Cardinality The sets X and Y have the same cardinality if there is a function

 $f: X \to Y$

that is **one-one** and **onto**. Other terminology: injective and surjective

Problem 1: Find the least upper bound [if it exists] for the set of numbers $\mathbf{A} = \{x_1, \dots, x_n, \dots\}, x_n = \sqrt{2 + \sqrt{2 + \sqrt{\dots + \sqrt{2}}}}, n$ square roots.

- Label the terms of the sequence and look for relationships
- Prove the set is bounded
- Find the LUB
- Write solution

Problem 2: The goal is to show that given a < b, there is a 1-1 onto function $\mathbf{f} : (a, b) \rightarrow [a, b]$, that is, these intervals are equivalent. We shall begin with the cases a = 0, b = 1.

Define $\mathbf{f}: (0, 1) \to \mathbb{R}$ as follows

$$\begin{aligned} \mathbf{f}(1/n) &= \frac{1}{n-1}, \quad n \in \mathbb{N}, n \geq 2 \\ \mathbf{f}(x) &= x \quad \text{otherwise} \end{aligned}$$

- Prove that f is 1-1 onto (0, 1]
- Find a 1-1 function from [0, 1) onto [0, 1]
- Prove that [0, 1) is equivalent to (0, 1]
- Prove that (0,1) is equivalent to [0,1]
- For *a* < *b*, prove that (*a*, *b*) is equivalent to [*a*, *b*]

Exercise: Consider the functions f and g defined as follows

$$egin{array}{rcl} {f f}(x)&=&rac{x-3}{x-2}, \quad x\in \mathbb{R}, x
eq 2\ {f g}(x)&=&3-x, \quad x\in \mathbb{R} \end{array}$$

Find **all** the functions that are generated by composing **f** and **g**. It will be a finite number. You may to look at $\mathbf{f} \circ \mathbf{g}$, $\mathbf{g} \circ \mathbf{f}$, $\mathbf{f} \circ \mathbf{f}$, $\mathbf{g} \circ \mathbf{g}$, $\mathbf{f} \circ (\mathbf{g} \circ \mathbf{f})$, and so on. Make sure the compositions are valid.

Outline

- General Orientation
- 2 Rational Numbers
- **3** Basic Set Theory
- 4 R: Completeness
- 5 Last Time & Today
- 6 Cardinality and Countability
- 7 Workshop #1
- **8** Cardinality of \mathbb{R}
- 9 Cantor's Universe
- 10 Workshop #2
Theorem

 \mathbb{R} is not countable.

Proof. Suppose we could list the real numbers

 $\mathbb{R} = \{x_1, x_2, x_3, \ldots\}$

We are going to build a sequence I_n of nested intervals and derive a contradiction to (NIP).

Let $I_1 = [a_1, b_1]$ be an (non-empty) interval not containing x_1 . Now, choose a subinterval I_2 of I_1 not containing x_2 . This is clearly possible. Proceed in this fashion, for each n > 1 pick a subinterval I_n of I_{n-1} not containing x_n .

This produces a nested sequence $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ of non-empty intervals. By (NIP), $\bigcap I_n \neq \emptyset$. Let *y* be an element in this intersection. It must be one of the x_n , say $y = x_m$. But the intersection is contained in I_m , which does not contain x_m , by construction.

The cardinality of \mathbb{R} is denoted card $(\mathbb{R}) = c$, *c* for **continuum**. There are many unresolved questions about *c*.

Outline

- General Orientation
- 2 Rational Numbers
- **3** Basic Set Theory
- 4 R: Completeness
- 5 Last Time & Today
- 6 Cardinality and Countability
- Workshop #1
- **8** Cardinality of \mathbb{R}
- Ocantor's Universe
- 10 Workshop #2

Let us visit, if briefly, the garden universe that Cantor created for us. It was the first great theory of **infinities**, and has had a profound influence on Mathematics.

It helped that his constructions and proofs [sometimes the same thing] were often beautiful, if not even great fun.

We will touch on two of them.

Theorem (Cantor's Proof)

The interval (0, 1) is not countable.

Proof. It will suffice to show that the open interval (0, 1) is not countable. We are going to represent its elements as infinite decimals $x = 0.a_1a_2a_3\cdots a_n\cdots$. We are going to assume, by way of contradiction, that we can list them:

 $\begin{array}{rcl} x_1 &=& 0.\mathbf{a_{11}} a_{12} a_{13} a_{14} \cdots \\ x_2 &=& 0.a_{21} \mathbf{a_{22}} a_{23} a_{24} \cdots \\ x_3 &=& 0.a_{31} a_{32} \mathbf{a_{33}} a_{34} \cdots \\ x_4 &=& 0.a_{41} a_{42} a_{43} \mathbf{a_{44}} \cdots \\ \vdots & \vdots \end{array}$

We are going, by focusing on the diagonal entries a_{nn} , give an an element $x \in (0, 1)$ that is not listed.

Define the integer

$$b_n = \begin{cases} 2 & \text{if } a_{nn} \neq 2 \\ 3 & \text{if } a_{nn} = 2 \end{cases}$$

Set $x = 0.b_1b_2b_3b_4\cdots b_n\cdots$. Note that *x* differs from x_n at the *n* decimal position. So *x* is not listed.

Definition

A set *S* has **cardinality** *c* iff *S* is equivalent to the open interval (0, 1); we write card $(S) = \mathbf{c}$.

Theorem

The set \mathbb{R} is uncountable and has cardinality **c**.

Proof.

Define $\mathbf{f}: (0, 1) \to \mathbb{R}$ by $\mathbf{f}(x) = \tan(\pi x - \pi/2)$. Look at its graph.

Exercise

Claim: $(0, 1) \times (0, 1) \approx (0, 1)$, that is the interior of the unit square is equivalent to (0, 1). Another form; $\mathbb{R} \times \mathbb{R} \approx \mathbb{R}$. An element $(a, b) \in (0, 1) \times (0, 1)$ can be described as

$$a = 0.a_1a_2a_3\ldots a_n\ldots$$

$$b = 0.b_1b_2b_3\ldots b_n\ldots$$

Define the function $\mathbf{f}(a, b) = c \in (0, 1)$ where

$$c = 0.a_1b_1a_2b_2\ldots a_nb_n\ldots$$

f is one-to-one and onto.

If **X** is a set, the collection of its subsets is called the **power set** of **X**: notation $P(\mathbf{A})$. If $\mathbf{X} = \{0, 1\}$, its subsets are

$$P(\mathbf{X}) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}.$$

One way to represent a subset $A \subset \mathbf{X}$ is as a function

$$\boldsymbol{f}_{\mathcal{A}}:\boldsymbol{X}\to\{0,1\}$$

$$\mathbf{f}_{\mathcal{A}}(x) = \left\{ \begin{array}{ll} 1 & \text{if } x \in \mathcal{A} \\ 0 & \text{if } x \notin \mathcal{A} \end{array} \right.$$

This leads to the notation $P(\mathbf{X}) = 2^{\mathbf{X}}$.

If $\mathbf{X} = \{x_1, \dots, x_n\}$, we can also represent its subsets by ordered strings of 0's and 1's as follows:

$$A \leftrightarrow (a_1, a_2, \ldots, a_n)$$

$$a_i = \begin{cases} 1 & \text{if } x_i \in A \\ 0 & \text{if } x_i \notin A \end{cases}$$

This shows that

$$\operatorname{card}(P(\mathbf{X})) = 2^{\operatorname{card}(\mathbf{X})} = 2^n$$

The following shows how to build larger infinities from given ones.

Theorem

Given a set **X** there is no function $\mathbf{f} : \mathbf{X} \to P(\mathbf{X})$ that is onto.

Proof. Suppose **f** is such a function: For each $a \in \mathbf{X}$, $\mathbf{f}(a)$ is a subset of **X** and any subset is a target. Let us build a subset that is not a target.

For each $a \in X$, $a \in f(a)$ or $a \notin f(a)$. Define the subset

 $B = \{a \in \mathbf{X} \mid a \notin \mathbf{f}(a)\}$

By assumption, $B = \mathbf{f}(x)$ for some $x \in \mathbf{X}$.

Now look how cool:

 $x \in \mathbf{f}(x) = B$, contradicts the definition of *B*, while $x \notin \mathbf{f}(x) = B$, would make $x \in B$, by the definition of *B*.

Outline

- General Orientation
- 2 Rational Numbers
- **3** Basic Set Theory
- 4 R: Completeness
- 5 Last Time & Today
- 6 Cardinality and Countability
- Workshop #1
- **8** Cardinality of \mathbb{R}
- Ocantor's Universe
- Workshop #2

- What are Countable Sets? View some examples
- Counting Techniques: Review the Beautiful zig-zag [diagonal] proof
- Visit Example: Q
- Supremum and Infimum: Least Upper Bound and Greatest Lower Bound of sets of real numbers

- **1** Prove that the set of all polynomials $\mathbb{Q}[x]$ is countable.
- 2 Prove that the set of all polynomials $\mathbb{Q}[x, y]$ is countable.
- Consider the following statements about subsets of real numbers and decide whether they are true or false. In the latter case, provide a counterexample:
 - (a) A finite, nonempty set always contains its supremum.
 - (b) If *A* and *B* are sets with the property that a < b for every $a \in A$ and every $b \in B$, then it follows that sup $A < \inf B$.

(c) If sup A = s and sup B = t, then sup(A + B) = s + t. [If A and B are sets of real numbers, their sum is defined as follows: $A + B = \{a + b \mid a \in A, b \in B\}$.] Establish a 1–1 correspondence with a set of known cardinality:

- Is the set of all functions from $\{0, 1\}$ to \mathbb{N} countable or uncountable?
- Is the set of all functions from N to {0,1} countable or uncountable?