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General Orientation

• Pre-requisites: Calc 4, Math 300

• web:www.math.rutgers.edu/(tilde)vasconce

• Meetings: MWTh4 1:40-3:00 SEC-205

• Office Hours [Hill 228]: MTh3, or by arrangement

• Textbook: Introduction to Analysis, 5th Ed., by E. D. Gaughan
• All this detailed in General Info page: Look over
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Scoring Info

• Quizzes Total: 50
• Workshops Total: 100
• 2 Midterms Total: 2 x 100 = 200
• Final: 200
• Total: 550 pts
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Course Symbol

R
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Some Goals

What is R, and what are some of its important properties?

Topology of R: continuous functions

Really Understand objects such∫ b

a
f(x)dx

a1 + a2 + a3 + · · ·
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FTC

Theorem (FTC)

Let f : [a,b]→ R be a function such that
∫ b

a f exists. If F is a function
such that

F′(c) = f(c)

for all c ∈ [a,b], then ∫ b

a
f(x)dx = F(b)− F(a).
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Rational Numbers

At the outset of our journey are the natural numbers

N = {1,2,3,4, . . .}

Its ‘modern’ construction [e.g. Peano’s] is a paradigm of beauty. It is
enlarged by the integers

N ⊂ Z = {. . . ,−4,−3,−2,−1,0,1,2,3,4, . . .}

and the rational numbers

N ⊂ Z ⊂ Q =
{m

n
, m,n ∈ Z,n 6= 0

}
These sets exhibit different structures: of a monoid, of a ring and of a
field, respectively.
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Peano

The construction by Peano of the set N is grounded on two ingredients:
The set N contains a particular element 1.

• [Successor Function] There is a function s : N→ N that is
injective, and for every n ∈ N s(n) 6= 1.
• [Induction Axiom] If the subset S ⊂ N has the properties

1 ∈ S & whenever n ∈ S ⇒ s(n) ∈ S

then S = N
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Given these definitions, we can define several operations/compositions
and structures on N:

a + b :=?

a + 1 := s(a)

a + s(n) := s(a + n)

a× b :=?

a× 1 := a
a× s(n) := a× n + a
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Example

Theorem
Suppose a ≥ −1. Then for all n ∈ N, (1 + a)n ≥ 1 + na.

Proof.
We shall prove the statement by induction:

(base case): If n = 1, (1 + a)1 = 1 + a ≥ 1 + a is true
(induction step): Suppose (1 + a)n ≥ 1 + na. Then, since
1 + a ≥ 0 by hypothesis,

(1 + a)n+1 = (1 + a)n(1 + a) ≥ (1 + na)(1 + a)

= 1 + na + a + na2 = 1 + (n + 1)a + na2

≥ 1 + (n + 1)a
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Ordering

Out of these notions, addition and multiplication are defined in N, and
then extended to Z and Q. An interesting consequence that arises is a
notion of order: ∀a,b ∈ Q, exactly one of the following holds

a < b, a > b, a = b

It has the properties: If a > b then

∀c ⇒ a + c > b + c
∀c > 0 ⇒ ac > bc

Significance: This leads to metric properties: lengths, angles, etc.
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Fields

A composition on a set X is a function assigning to pairs of elements of
X an element of X,

(a,b) 7→ f(a,b).

That is a function of two variables on X with values in X.
It is nicely represented in a composition table

f ∗ b ∗
∗ ∗ ∗ ∗
a ∗ f(a,b) ∗
∗ ∗ ∗ ∗

We represent it also as
X× X f−→ X
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An abelian group is a set G with a composition law denoted ‘+’

G×G→ G,

a,b ∈ G, a + b ∈ G

satisfying the axioms
• associative ∀a,b, c ∈ G, (a + b) + c = a + (b + c)

• commutative ∀a,b ∈ G, a + b = b + a
• existence of O

∃O ∈ G such that ∀a a + O = a

• existence of inverses

∀a ∈ G ∃b ∈ G such that a + b = O

This element is unique and denoted −a.
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Field

A field F is a set with two composition laws, called ‘addition’ and
‘multiplication’, say + and ×: ∀a,b ∈ F have compositions a + b and
a× b. (The second composition is also written a · b, or simply ab.)

• (F,+) is an abelian group

• (F,×): multiplication is associative, commutative and distributive
over +, that is ∀a,b, c ∈ F,

(ab)c = a(bc), ab = ba, a(b + c) = ab + ac
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• existence of identity ∃e ∈ F such that

∀a ∈ F a× e = a

• existence of inverses For every a 6= 0, there is b ∈ F

a× b = e.

There is a unique element e, usually we denote it by 1. For a 6= 0, the
element b such that ab = 1 is unique; it is often denoted by 1/a or a−1.

We can now define scalars: the elements of a field.
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Another noteworthy example is F2, the set made up by two elements
{0,1} (or (even, odd))with addition defined by the table

+ 0 1
0 0 1
1 1 0

1 + 1 = 0!

and multiplication by
× 0 1
0 0 0
1 0 1
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A field is the mathematical structure of choice to do arithmetic. Given a
field F, fractions can defined as follows: If a,b ∈ F, b 6= 0,

a
b

:= ab−1.

The usual calculus of fractions then follows, for instance

a
b

+
c
d

=
ad + bc

bd
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Example: The field of constructable numbers

Class Discussion: Volunteers!
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Rational Numbers: Counting and Measuring

Counting
Measuring by Counting
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Irrationality of
√

2

The arrival of new numbers:

�
�

�
�

�
�

�
�

�
�

1

1

√
2

&%
'$

The construction of an irrational number
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Example

Theorem
√

2 /∈ Q.

Proof.

• We are going to argue by contradiction: Suppose

√
2 =

m
n

• We may assume that m and n have no common factor.
• Squaring both sides of the equality, we obtain m2 = 2n2

• This implies that m is even, as the square of an odd number, say
m = 2p + 1, is odd

(2p + 1)2 = 4p2 + 4p + 1 = 4(p2 + p) + 1
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• We may then assume that m is even. In m2 = 2n2, set m = 2p to
get

4p2 = 2n2

and therefore
• n2 = 2p2, which implies that n is also even.
• This contradicts our assumption that m and n have no common

factors. �

This will also work with
√

3,
√

5,
√

6,
√

8 and many other cases.
Obviously, these numbers need a home.
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Exercise

Exercise: Show that z =
√

2 +
√

3 is not a rational number.

Will argue by contradiction. If z is a rational, then
z2 = 2 + 2

√
6 + 3 is also a rational number.

From
√

6 = 1/2(z2 − 5), it follows that
√

6 = m/n for m,n ∈ N.
Assume m,n have no common factors.

This gives m2 = 6n2 = 2× 3× n2. Thus 2 must divide m and
therefore 22 divides m2, m2 = 22p = 2× 3× n2. This shows that 2
divides n, a contradiction.
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Exercise: Show that x = 3.1212... (repeating 12’s) is a rational
number.

Note that 100x = 312.1212....

100x − x = 99x = 312− 3 = 309

Thus x = 309
99

Same trick works for any repeating decimal.
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Basic Set Theory

How to specify a set: listing its elements, membership test, etc

{x ,P(x)}, P(x) is test

{x ∈ N, 6|x} = {6,12,18, . . .}

Pair (x , y): {{x}, {x , y}} ? What is a triple?
Product of sets A and B: {(a,b), a ∈ A,b ∈ B}
Relation: subset of a product of sets
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In order to deal with real numbers, we are going to use the language of
set theory: If A,B,C . . . are subsets of the set X, will assume familiarity
with the following notions and notation:

• union: A ∪ B
• intersection: A ∩ B
• complement: Ac = {x ∈ X | x /∈ A} = X \ A
• Morgan’s laws:

C ∩ (A ∪ B) = (C ∩ A) ∪ (C ∩ B)

C ∪ (A ∩ B) = (C ∪ A) ∩ (C ∪ B)

(A ∩ B)c = Ac ∪ Bc & (A ∪ B)c = Ac ∩ Bc

• There are various ‘infinite’ versions of some of these.

Wolmer Vasconcelos (Set 1) Advanced Calculus Spring 2010 29 / 88



Ordered Pair

Definition
Let A and B be sets. For a ∈ A and b ∈ B, the ordered pair (a,b) is
the set

{{a}, {a,b}}.

a is called the first coordinate of the pair, and b the second coordinate.

Note that (a,b) may be different from (b,a):

{{a}, {a,b}} 6= {{b}, {a,b}},

if a 6= b.
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Definition
Let A and B be sets. The set of all ordered pairs having first coordinate
in A and second coordinate in B is called the Cartesian product of A
and B and written A× B. Thus

A× B = {(a,b) : a ∈ A and b ∈ B.}
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Functions

Let X and Y be two sets. The general way to define a function of
source X and target Y, F : X→ Y, is the following:

A function is a subset F of X× Y with the properties

∀x ∈ X,
there is y ∈ Y such that (x , y) ∈ F

If
(x , y) & (x , y ′) ∈ F ⇒ y = y ′
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Sets of Rational Numbers

Define a set of rational numbers

A = {x1, x2, . . . , xn, . . .}

by the rules: x1 = 1,
∀n xn+1 =

xn

2
+ 1

Let us prove
xn < xn+1 < 2

We are going to argue by induction. The assertion is true for n = 1, as
x1 = 1 < x2 = 3/2 < 2.

Wolmer Vasconcelos (Set 1) Advanced Calculus Spring 2010 33 / 88



Suppose it holds for n, that is

xn < xn+1 < 2.

If we divide these inequalities by 2 and add 1, we have

xn+1 < xn+2 < 2

We further claim that there is no rational number q < 2 such that
xn < q for all n.
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Upper and Lower Bounds

• The number b is said to be an upper bound of the set A ⊂ R if

a ≤ b | ∀a ∈ A

• A number ` is said to be a lower bound of the set A ⊂ R if

a ≥ ` | ∀a ∈ A

• Consider the set A = {q ∈ Q | q2 < 2}. −2 is a lower bound of A,
while 3/2 is an upper bound. Clearly there are many other
bounds.
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Least Upper and Greatest Lower Bounds

• A number b is said to be a least upper bound of the set A ⊂ R if
b is an upper bound of A and b ≤ b′ for any other upper bound b′.
Least upper bounds are also known as the supremum of A. If
b ∈ A, it is called the maximum of A.

A = {x1 = 1, ∀n xn+1 =
xn

2
+ 1}

has 2 for supremum [needs a proof, as we only proved that 2 is an
upper bound]
• Similarly we define greatest lower bound [and of

infimum/minimum].
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Example

Define the set A = {a1,a2,a3, · · · } by the rule

a1 =
√

2, a2 =

√
2
√

2, a3 =

√
2
√

2
√

2, · · ·

Let us show that sup A = 2:

a1 =
√

2, a2 = a1
4
√

2, a3 = a2
8
√

2, · · ·

an = 21/2+1/4+···+1/2n
< 2

an = 2r , r =
1/2− 1/2n+1

1/2
= 1− 1/2n
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Exercise

For any number 1 < a < 2, we can show that there is n ∈ N such that

21−1/2n
> a

You may need help, try this lemma:

Lemma

For any p ≥ 1 and all n ∈ N, p1−1/2n ≥ p − p/n.

Proof. ?
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David Hilbert (1862-1943)
David Hilbert

David Hilbert 
(1862 - 1943) 
Mathematician 

Algebraist 

Topologist 

Geometrist 

Number Theorist 

Physicist 

Analyst 

Philosopher 

Genius 

And modest too... 

 

"Physics is much too hard for physicists." - Hilbert, 1912

This site is dedicated to David Hilbert, the funkiest mathematician alive.  
(Well, at least the funkiest when  he was alive. He's dead now, but he's still pretty 
funky. I don't mean funky like he smells funky, but I'm sure he does since he's been dead for 
over half a century. Of course, he was German, so the term probably wouldn't be applied to 
him. It would probably be more like funkisch. Hey, there's five years of German classes well 
spent. And he was born way before disco was king, so the term funky or funkisch probably 
wasn't used at all back then. I'm not saying that Davey wouldn't like disco. He was known to 
be a very good dancer in his time. That was mostly big band music hall stuff, but I'm sure he 
could manage to do the Hustle. And that's pretty hip for a mathematician. Not that all 
mathematicians aren't hip, mind you. I know one that even had a beer party recently. Of 
course, he did take that opportunity to gather beer tasting data in the form a block design 
using random permutations of 4-subsets of a 6-set. I'll stop now.) 

"Every boy in the streets of Gottingen understands more about four-dimensional geometry 
than Einstein. Yet, in spite of that, Einstein did the work and not the mathematicians." - 
Hilbert, 1915

http://www.math.umn.edu/~wittman/hilbert.html (1 of 2) [11/28/2008 3:43:37 PM]
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Axiom of Completeness

Axiom: Every set A of real numbers with an upper bound has a least
upper bound.

This is a defining property of R. A lot flows out of it. We will explore
some of it in the next lectures [Discuss].
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Nested Interval Property

Theorem
For each n ∈ N, assume we are given a closed interval
In = [an,bn] = {x ∈ R | an ≤ x ≤ bn}. Assume that each In contains
In+1. Then the resulting nested sequence of closed intervals

I1 ⊇ I2 ⊇ I3 ⊇ I4 ⊇ · · ·

has a nonempty intersection, that is

∞⋂
n=1

In 6= ∅.
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• • • • • • •
a1 a2 · · · an x bn · · · b2 b1

Proof. We plotted the ends of the intervals In = [an,bn]. We will use
the axiom of completeness to the set A of left ends an of the intervals.
Note that each bn is an upper bound for A.

Let x = sup A. Consider a particular interval In = [an,bn] Since an ≤ x
and each bn is an upper bound of A, x ≤ bn. Thus x ∈ In, for each n as
desired.
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Density of Q in R

Theorem (Archimedean Property)
(i) Given any number x ∈ R, there exists an n ∈ N satisfying n > x.

(ii) Given any real number y > 0, there exists an n ∈ N satisfying
1/n < y.

Proof. (i) Assume, by contradiction, that N is bounded above. By
(AoC), N should have a least upper bound, set α = sup N. α− 1 is not
an upper bound, so there is an n ∈ N such that α− 1 < n. Thus
α < n + 1.

Part (ii) follows from (i) by letting x = 1/y . �
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Theorem (Density of Q in R)
For every two real numbers a and b with a < b, there is a rational
number r satisfying a < r < b.

Proof. To simplify matters a little, we assume 0 ≤ a < b. We must find
m,n ∈ N such that

a <
m
n
< b.

First, we use the archimedean property to pick n ∈ N so that

1
n
< b − a
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With n chosen, we must find m so that na < m < nb. Pick m the
smallest natural number greater than na. That is

m − 1 ≤ na < m

Note that this already gives a < m/n. Writing 1/n < b − a as
a < b − 1/n, we can write

m ≤ na + 1 < n(b − 1
n

) + 1 = nb

which gives m/n < b, to complete the proof. �
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Existence of
√

2

Theorem

The least upper bound α of the set A = {q ∈ R | q2 < 2} satisfies
α2 = 2.

Proof. We are going to argue that α2 < 2 and α2 > 2 violate the
assumption on α.

Let us first show if α2 < 2 then α is not an upper bound of A. We will
find elements in A larger than α.

(α+
1
n

)2 = α2 +
2α
n

+
1
n2

< α2 +
2α
n

+
1
n

= α2 +
2α+ 1

n
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If α2 < 2, choose n0 ∈ N large enough so that

1
n0

<
2− α2

2α+ 1

This implies (2α+ 1)/n0 < 2− α2, and consequently

(α+
1
n0

)2 < α2 +
2α+ 1

n0

< α2 + (2− α2) = 2

Thus α+ 1/n0 ∈ A, so α is not an upper bound of A.
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Suppose α2 > 2: Write

(α− 1
n

)2 = α2 − 2α
n

+
1
n2

> α2 − 2α
n

As in the previous case, pick n0 large enough so that

1
n0

<
α2 − 2
2α+ 1

This implies (2α+ 1)/n0 < α2 − 2, and consequently

(α− 1
n0

)2 > α2 − 2α+ 1
n0

> α2 − (α2 − 2) = 2

Thus α− 1/n0 is an upper bound of A, so α is not the least upper
bound.
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Last Time & Today

• Bounded sets, least upper bounds

• The Axiom of Completeness

◦ Cardinality of Sets

◦ Countable Sets, including a Cool Proof

Wednesday: Workshop #1
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Cardinality

The Axiom of Completeness creates a lot of order but it is also a burst
dam of new relationships and problems. It becomes intimately related
to logic and the foundations of mathematics.

Let us begin by introducing a method to size sets. If A and B are two
sets, a function

f : A→ B

is one-one if f(x) = f(y) implies x = y , and it is onto if B is the image
of f.
On a nice collection of sets, e.g. the subsets of R, we can define a
relation A ∼ B by requiring a function f : A→ B as above. This is
obviously an equivalence relation. The equivalence class of A is
called the cardinality of A, card (A).
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A set A is said to be countable if card (A) = card (N):

f : N→ A

A = {f(1), f(2), . . . , }.

If A = {1,2, . . . ,n} ⊂ N, we write card (A) = n.

If the set B ∼ {1,2, . . . ,n} we say that B is finite and has n elements.

Exercise: If card (A) is countable and B ⊂ A, then B is countable or
finite.

It is obviously a tricky thing to determine the cardinality of sets,
particularly of infinite sets. Let us get our hands busy!
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Exercise

The set N× N is countable: Let define a one-one function

f : N× N→ N

Define
f(m,n) = 2m3n

By the unique factorization on integers,

2m3n = 2p3q ⇒ m = p n = q,

which proves the claim that f is injective.

Exercise: Use the infinity of prime numbers to show that the set X of
all infinite tuples (x1, x2, x3, . . .) such that all xi = 0 except for finitely
many exceptions is countable.
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Theorem
The sets Z and Q are countable.

We must establish one-one & onto correspondences between N and
each of these sets. In other words, we must describe Z and Q as long
lists

{f(1), f(2), . . . , }.

For Z, this is very easy

Z = {0,±1,±2, . . . ,±n, . . .}

for example, 0 = f(1), 23 = f(46), −55 = f(111). If we cared, f can
even be made explicit.
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A list description of Q is not much different. Each x ∈ Q, can be written
uniquely as

x = ±p
q
| p ≥ 0,q > 0

gcd(p,q) = 1 when q 6= 0. Define the finite subsets of Q, A0 = {0}, for
n ≥ 1

An =

{
±p

q
| p + q = n

}
.

A10 = {±1/9,±9/1,±7/3,±3/7}

Q = A0 ∪ A1 ∪ A2 ∪ · · · ∪ An ∪ · · ·

is a disjoint union of finite sets. Listing the elements of each An gives a
desired listing for Q. �
A more general argument is the following:
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Theorem
If the sets Ai , i ≥ 1, are countable, then A =

⋃∞
i=1 Ai is countable.

Proof. Here is a way to list the elements of A. Since the Ai are
countable, each comes with an injective mapping fi : Ai → N.
We are going to define an injective mapping from A into the set N× N.
(By a previous exercise N× N is countable.) If x ∈ A, x belongs to
some Ai and thus there exists an integer m such that

x ∈ Am, x /∈ Ai , i < m

Define f : A→ N× N by the rule:

f(x) = (m, fm(x)).
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To verify that f is one-one we check:

f(x) = f(y)

means
(m, fm(x)) = (n, fn(y))

and thus
x&y ∈ Am = An

and therefore
fm(x) = fm(y)

implies that
x = y

since fm is one-one. �
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Theorem
If the sets Ai , i ≥ 1, are countable, then A =

⋃∞
i=1 Ai is countable.

Proof. Here is a beautiful way to list the elements of A:
A1 : • // •

����
��

��
��

• // •

����
��

��
��

• // •

����
��

��
��

· · ·

A2 : •

��

•

AA��������
•

����
��

��
��

•

AA��������
•

����
��

��
��

• · · ·

A3 : •

AA��������
•

����
��

��
��

•

AA��������
•

����
��

��
��

• • · · ·

A4 : •

��

•

AA��������
•

����
��

��
��

• • • · · ·

A5 : •

AA��������
• • • • • · · ·
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Exercise: Prove that the set A of finite subsets of N is countable.

Solution: Let An be the subset of A made up of subsets of N with n
elements. Note that A0 = {∅} is not the empty set! and that

A =
⋃
n≥0

An.

To apply the theorem above, we prove that each An is countable.
There are various ways to do it.
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The set of n-tuples of natural numbers

Nn = {(a1, . . . ,an) | ai ∈ N}

is countable, by the theorem.

The set An is on a 1-1 correspondence with the n-tuples

{(a1, . . . ,an) | a1 < a2 < · · · < an}

so An is countable.
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Algebraic Numbers

An (real) algebraic number is a real number x ∈ R that satisfies an
equation

anxn + an−1xn−1 + · · ·+ a0 = 0, an 6= 0,ai ∈ Q

√
2, n
√

3 are examples. Clear denominators, we may assume that all ai
are integers.

Exercise: The set of algebraic numbers is a field.
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Theorem
The set A of algebraic numbers is countable.

Proof. For an integer m, let Am be the set of all algebraic real numbers
which are roots of equations such that

n + |an|+ |an−1|+ · · ·+ |a0| ≤ m.

The number of such polynomials is finite, so the number of its roots is
also finite. Since

A =
∞⋃

m=1

Am,

A is countable. �
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Concepts Needed for Workshop

Draw pictures [whenever possible] of the following notions:

Bounded sets

Least Upper Bound: LUB

Axiom of Completeness: Recall what it says

Consider example:

A = {x1, x2, . . . , }, x1 = 1, xn = xn−1/2 + 1,n ≥ 2

A = {1,3/2,7/4,15/8, . . .}
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Function
f : X→ Y

Subset f of X× Y with the properties:
1 For each x ∈ X there is y ∈ Y such that (x , y) ∈ f
2 If (x , y)&(x , y ′) ∈ f, then y = y ′

Cardinality The sets X and Y have the same cardinality if there is
a function

f : X→ Y

that is one-one and onto. Other terminology: injective and
surjective
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Workshop # 1

Problem 1: Find the least upper bound [if it exists] for the set of

numbers A = {x1, . . . , xn, . . .}, xn =

√
2 +

√
2 +

√
· · ·+

√
2, n square

roots.

Label the terms of the sequence and look for relationships

Prove the set is bounded

Find the LUB

Write solution
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Workshop # 1, cont’d

Problem 2: The goal is to show that given a < b, there is a 1-1 onto
function f : (a,b)→ [a,b], that is, these intervals are equivalent. We
shall begin with the cases a = 0, b = 1.

Define f : (0,1)→ R as follows

f(1/n) =
1

n − 1
, n ∈ N,n ≥ 2

f(x) = x otherwise

Wolmer Vasconcelos (Set 1) Advanced Calculus Spring 2010 69 / 88



Prove that f is 1-1 onto (0,1]

Find a 1-1 function from [0,1) onto [0,1]

Prove that [0,1) is equivalent to (0,1]

Prove that (0,1) is equivalent to [0,1]

For a < b, prove that (a,b) is equivalent to [a,b]
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Exercise

Exercise: Consider the functions f and g defined as follows

f(x) =
x − 3
x − 2

, x ∈ R, x 6= 2

g(x) = 3− x , x ∈ R

Find all the functions that are generated by composing f and g. It will
be a finite number. You may to look at f ◦ g, g ◦ f, f ◦ f, g ◦ g, f ◦ (g ◦ f),
and so on. Make sure the compositions are valid.
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Theorem
R is not countable.

Proof. Suppose we could list the real numbers

R = {x1, x2, x3, . . .}

We are going to build a sequence In of nested intervals and derive a
contradiction to (NIP).
Let I1 = [a1,b1] be an (non-empty) interval not containing x1. Now,
choose a subinterval I2 of I1 not containg x2. This is clearly possible.
Proceed in this fashion, for each n > 1 pick a subinterval In of In−1 not
containing xn.

This produces a nested sequence I1 ⊇ I2 ⊇ I3 ⊇ · · · of non-empty
intervals. By (NIP),

⋂
In 6= ∅. Let y be an element in this intersection. It

must be one of the xn, say y = xm. But the intersection is contained in
Im, which does not contain xm, by construction. �
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The cardinality of R is denoted card (R) = c, c for continuum. There
are many unresolved questions about c.
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Let us visit, if briefly, the garden universe that Cantor created for us. It
was the first great theory of infinities, and has had a profound
influence on Mathematics.

It helped that his constructions and proofs [sometimes the same thing]
were often beautiful, if not even great fun.

We will touch on two of them.
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Theorem (Cantor’s Proof)
The interval (0,1) is not countable.

Proof. It will suffice to show that the open interval (0,1) is not
countable. We are going to represent its elements as infinite decimals
x = 0.a1a2a3 · · · an · · · . We are going to assume, by way of
contradiction, that we can list them:

x1 = 0.a11a12a13a14 · · ·
x2 = 0.a21a22a23a24 · · ·
x3 = 0.a31a32a33a34 · · ·
x4 = 0.a41a42a43a44 · · ·

...
...

We are going, by focusing on the diagonal entries ann, give an an
element x ∈ (0,1) that is not listed.
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Define the integer

bn =

{
2 if ann 6= 2
3 if ann = 2

Set x = 0.b1b2b3b4 · · · bn · · · . Note that x differs from xn at the n
decimal position. So x is not listed. �
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Definition
A set S has cardinality c iff S is equivalent to the open interval (0,1);
we write card (S) = c.

Theorem
The set R is uncountable and has cardinality c.

Proof.
Define f : (0,1)→ R by f(x) = tan(πx − π/2). Look at its graph.
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Exercise

Claim: (0,1)× (0,1) ≈ (0,1), that is the interior of the unit square is
equivalent to (0,1). Another form; R× R ≈ R.
An element (a,b) ∈ (0,1)× (0,1) can be described as

a = 0.a1a2a3 . . . an . . .

b = 0.b1b2b3 . . . bn . . .

Define the function f(a,b) = c ∈ (0,1) where

c = 0.a1b1a2b2 . . . anbn . . .

f is one-to-one and onto.
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Power Sets

If X is a set, the collection of its subsets is called the power set of X:
notation P(A).
If X = {0,1}, its subsets are

P(X) = {∅, {0}, {1}, {0,1}}.

One way to represent a subset A ⊂ X is as a function

fA : X→ {0,1}

fA(x) =

{
1 if x ∈ A
0 if x /∈ A
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This leads to the notation P(X) = 2X.

If X = {x1, . . . , xn}, we can also represent its subsets by ordered
strings of 0’s and 1’s as follows:

A↔ (a1,a2, . . . ,an)

ai =

{
1 if xi ∈ A
0 if xi /∈ A

This shows that
card (P(X)) = 2card (X) = 2n
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Cantor’s Theorem

The following shows how to build larger infinities from given ones.

Theorem
Given a set X there is no function f : X→ P(X) that is onto.

Proof. Suppose f is such a function: For each a ∈ X, f(a) is a subset of
X and any subset is a target. Let us build a subset that is not a target.
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For each a ∈ X, a ∈ f(a) or a /∈ f(a). Define the subset

B = {a ∈ X | a /∈ f(a)}

By assumption, B = f(x) for some x ∈ X.

Now look how cool:
x ∈ f(x) = B, contradicts the definition of B, while
x /∈ f(x) = B, would make x ∈ B, by the definition of B. �
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Concepts Needed for Workshop

What are Countable Sets? View some examples

Counting Techniques: Review the Beautiful zig-zag [diagonal]
proof

Visit Example: Q

Supremum and Infimum: Least Upper Bound and Greatest Lower
Bound of sets of real numbers
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Workshop # 2

1 Prove that the set of all polynomials Q[x ] is countable.
2 Prove that the set of all polynomials Q[x , y ] is countable.
3 Consider the following statements about subsets of real numbers

and decide whether they are true or false. In the latter case,
provide a counterexample:

(a) A finite, nonempty set always contains its supremum.

(b) If A and B are sets with the property that a < b for every a ∈ A
and every b ∈ B, then it follows that sup A < inf B.

(c) If sup A = s and sup B = t , then sup(A + B) = s + t . [If A and
B are sets of real numbers, their sum is defined as follows:
A + B = {a + b | a ∈ A,b ∈ B}.]
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Some Exercises

Establish a 1–1 correspondence with a set of known cardinality:

1 Is the set of all functions from {0,1} to N countable or
uncountable?

2 Is the set of all functions from N to {0,1} countable or
uncountable?
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