# Math 300–03

Wolmer V. Vasconcelos

Set 5

Fall 2008

Wolmer Vasconcelos (Set 5)

Intro Math Reasoning

Fall 2008 1 / 65

# Outline

# Cardinality

- 2 Homework #12
- Infinite Sets
- Cantor's Universe
- 5 Homework #13
- 6 The Ordering of Cardinal Numbers

## **7** Final Orientation

Let us begin by introducing a method to size sets. If *A* and *B* are two sets we will use functions

$$\mathbf{f}: \mathbf{A} \to \mathbf{B}$$

to compare their sizes.

#### Definition

For pair of sets (A, B) we write  $A \approx B$  if there is a function  $\mathbf{f} : A \rightarrow B$  that is both **one-to-one** and **onto**.

# Recall

- f one-to-one: If  $x \neq y \Rightarrow f(x) \neq f(y)$
- In particular if  $\mathbf{f} : A \rightarrow B$  and  $\mathbf{g} : B \rightarrow C$  are one-to-one

$$x \neq y \Rightarrow f(x) \neq f(y) \Rightarrow g(f(x)) \neq g(f(y)),$$

so g o f is one-to-one.

- fonto:  $\forall b \in B \quad \exists x \in A : \mathbf{f}(x) = b$
- In particular if  $\mathbf{f} : A \to B$  and  $\mathbf{g} : B \to C$  are onto

 $\forall c \in C \quad \exists b \in B : \mathbf{g}(b) = c \quad \exists a \in A : \mathbf{f}(a) = b.$ 

Thus  $\mathbf{g}(\mathbf{f}(a)) = \mathbf{g}(b) = c$  and so  $\mathbf{g} \circ \mathbf{f}$  is onto.

## Proposition

 $\approx$  is an equivalence relation.

Proof. Let us verify the requirements:

- (reflexivity)  $A \approx A$ : because  $I_A : A \rightarrow A$  is one-to-one onto.
- ② (symmetry)  $A \approx B \Rightarrow B \approx A$ : because if **f** :  $A \rightarrow B$  is one-to-one onto then **f**<sup>-1</sup> :  $B \rightarrow A$  is one-to-one onto.
- (transitivity) If A ≈ B and B ≈ C then A ≈ C: because if f : A → B is one-to-one onto and g : B → C is one-to-one onto then g ∘ f : A → C is one-to-one onto.

#### Definition

The **equivalence class** of A is called the **cardinality** of A, card (A).

Let *E* be the set of even numbers,

$$E = \{2, 4, \dots, 2n, \dots\}$$

The function  $\mathbf{f} : \mathbb{N} \to E$ , given by  $\mathbf{f}(n) = 2n$ , gives a one-to-one & onto correspondence between the sets  $\mathbb{N}$  and E.

We write this as  $\operatorname{card}(E) = \operatorname{card}(\mathbb{N})$ : There are as many even numbers as natural numbers...

### Definition

Two sets *A* and *B* are **equivalent** iff there exists a one-to-one function from *A* onto *B*, and denote  $A \approx B$ .

**Example:** The set *E* of even numbers is equivalent to the set *O* of odd numbers:

$$\mathbf{f}: E \to O, \quad \mathbf{f}(2n) = 2n - 1, \quad n \in \mathbb{N}.$$

#### Theorem

For  $a, b, c, d \in \mathbb{N}$ , with a < b and c < d, the open intervals (a, b) and (c, d) are equivalent.

Proof. Let f be the linear function

$$\mathbf{f}(x)=\frac{d-b}{c-a}(x-a)+c.$$

We must show that  $\mathbf{f}: (a, b) \rightarrow (c, d)$  is one-to-one and onto.

In some cases, [the case above included], it is possible to build  $f^{-1}$  by solving the equation for *x* 

$$f(x) = y, x = f^{-1}(y).$$

$$y=\frac{d-b}{c-a}(x-a)+c,$$

gives

$$x-a=\frac{c-a}{d-b}(y-c)$$

$$x = \mathbf{f}^{-1}(y) = \frac{c-a}{d-b}(y-c) + a$$

 $(0,\infty) \approx [0,\infty)$ 

Split  $(0,\infty)$  and  $[0,\infty)$  as follows

$$\begin{array}{rcl} (0,\infty) & = & (0,1) \cup \{1\} \cup (1,2) \cup \{2\} \cup (2,3) \cup \{3\} \cup \cdots \\ \{0\} \cup (0,\infty) & = & \{0\} \cup (0,1) \cup \{1\} \cup (1,2) \cup \{2\} \cup (2,3) \cup \cdots \end{array}$$

Define the function

$$\begin{aligned} \mathbf{f}(n) &= n-1\\ \mathbf{f}(x) &= x \end{aligned}$$

for all other x.

Wolmer Vasconcelos (Set 5)

As a challenge, prove

Theorem

For  $a, b \in \mathbb{R}$ , with a < b, the intervals (a, b) and [a, b] are equivalent.

**Claim:** Let  $\mathcal{F}$  be the set of functions from  $\mathbb{N}$  to the set of two elements  $\{0, 1\}$ . Then  $\mathcal{F} \approx \mathcal{P}(\mathbb{N})$ , the power set of  $\mathbb{N}$ . Define the correspondence

$$\mathbf{F}: \mathcal{F} \to \mathcal{P}(\mathbb{N}), \quad \mathbf{F}(\mathbf{g}) = \{x \in \mathbb{N}: \mathbf{g}(x) = 1\}.$$

- One-to-one: If **f** and **g** are different functions, then there is *x* ∈ ℕ so that **f**(*x*) ≠ **g**(*x*). This means one of these values is 1, the other is 0. Thus the sets **F**(**f**) and **F**(**g**) different.
- Onto: Let A be a subset of N. Let *χ*<sub>A</sub> be the characteristic function of A (someone recalls?) *χ*<sub>A</sub>(x) = 1 if x ∈ A and 0 otherwise. Note that **F**(*χ*<sub>A</sub>) = A.

#### Theorem

Suppose A, B, C and D are sets and  $A \approx C$  and  $B \approx D$ . Then

 $A \times B \approx C \times D.$ 

If A and B are disjoint and C and D are disjoint, then  $A \cup B \approx C \cup D$ .

**Proof.** Let  $f : A \to C$  and  $g : B \to D$  be one-to-one and onto functions.

- Let  $\mathbf{h} : A \times B \to C \times D$  be given by  $\mathbf{h}(a, b) = (\mathbf{f}(a), \mathbf{g}(b))$ . It is easy to verify that  $\mathbf{h}$  is one-to-one and onto.
- 2 We can glue the functions **f** and **g**:  $\mathbf{f} \cup \mathbf{g} : A \cup B \to C \cup D$ , so that if  $a \in A$ ,  $(\mathbf{f} \cup \mathbf{g})(a) = \mathbf{f}(a)$ , while if  $b \in B$ ,  $(\mathbf{f} \cup \mathbf{g})(b) = \mathbf{g}(b)$ . Again, it is clear that  $\mathbf{f} \cup \mathbf{g}$  is one-to-one and onto.

Those rules extend to other products and sums:

#### Theorem

Suppose  $A_1, A_2, ..., A_n$  and  $C_1, C_2, ..., C_n$  are two families of sets and for all  $i, A_i \approx C_i$ . Then

2 If the  $A_i$  are disjoint and the  $C_i$  are disjoint, then  $A_1 \cup A_2 \cup \cdots \cup A_n \approx C_1 \cup C_2 \cup \cdots \cup C_n$ .

The proof earlier will work. Even works for arbitrary collections of sets.

# **Finite and Countable Sets**

We use the following notation:

$$\mathbb{N}_n = \{1, 2, \ldots, n\} \subset \mathbb{N}$$

and the following terminology

## Definition

A set *S* is **finite** if  $S = \emptyset$  or  $S \approx \mathbb{N}_k$  for some natural number *k*. A set *S* is **infinite** if *S* is not finite.

The attending class today is finite, since we can set a correspondence between it and some  $\mathbb{N}_k$  ( $k \leq 18$ ).

#### Definition

Let *S* be a finite set. If  $S \approx \mathbb{N}_k$ ,  $k \in \mathbb{N}$ , we say that *S* has **cardinal number** *k* (or **cardinality** *k*), and write  $\overline{\overline{S}} = k$ . If  $S = \emptyset$  we say that *S* has **cardinal number** 0 (or **cardinality** 0) and write  $\overline{\overline{\emptyset}} = 0$ .

Wolmer Vasconcelos (Set 5)

## Definition

A set *A* is said to be **countable**, or **denumerable**, if  $A \approx \mathbb{N}$ :

 $\boldsymbol{\mathsf{f}}:\mathbb{N}\to\boldsymbol{\mathsf{A}}$ 

 $A = \{f(1), f(2), \ldots, \}.$ 

We write that card  $(A) = \text{card}(\mathbb{N}) = \aleph_0$ , and say that *A* has **cardinal number**  $\aleph_0$  and write  $\overline{\overline{A}} = \aleph_0$ .

Warning about Terminology: The correct usage is to call a set **countable** if it is equivalent to  $\mathbb{N}$  or finite. We abuse this often by the definition above.

**Exercise:** If card (*A*) is countable and  $B \subset A$ , then *B* is countable or finite.

It is obviously a tricky thing to determine the cardinality of sets, particularly of infinite sets. Let us get our hands busy!

Wolmer Vasconcelos (Set 5)

Intro Math Reasoning

# Pre-Exercise, i.e. a Warm-up

**Question:** Why/How can we list a subset A of the natural numbers  $\mathbb{N}$ ?

- **1** If  $A = \emptyset$ , there is nothing to do.
- If A is not empty, let  $a_1$  be the smallest element of A. (someone: why can we do this?)
- Solution Let  $A_1 = A \setminus \{a_1\}$ . If  $A_1 = \emptyset$  we are done; otherwise let  $a_2$  be its smallest element.
- Let  $A_2 = A \setminus \{a_1, a_2\}$ . If  $A_2 = \emptyset$  we are done; otherwise let  $a_3$  be its smallest element.
- In this manner we list the elements of A:

 $a_1, a_2, a_3, \cdots$ 

**③** If the list stops at  $a_n$ , we have a one-to-one correspondence **f** : {1, 2, ..., *n*} → *A*, **f**(*i*) =  $a_i$ , *i* ≤ *n*.

Otherwise we have a one-to-one correspondence  $\mathbf{f} : \mathbb{N} \to A$ ,  $\mathbf{f}(i) = a_i, i \in \mathbb{N}$ .

## The set $\mathbb{N}\times\mathbb{N}$ is countable: Let define a one-one function

$$f:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$$

Define

$$\mathbf{f}(m,n)=2^m3^n$$

By the unique factorization on integers,

$$2^m 3^n = 2^p 3^q \Rightarrow m = p \quad n = q,$$

which proves the claim that **f** is injective.

**Exercise:** Use the infinity of prime numbers to show that the set **X** of all infinite tuples  $(x_1, x_2, x_3, ...), x_i \in \mathbb{N}$ , such that all  $x_i = 0$  except for finitely many exceptions is countable.

Let *P* be the set of primes,  $P = \{p_1, p_2, p_3, ..., p_n, ...\}.$ 

Now define the function  $\boldsymbol{f}:\boldsymbol{X}\rightarrow\mathbb{N}$  by the rule

$$\mathbf{f}(x_1, x_2, \ldots, x_n, \ldots) = p_1^{x_1} p_2^{x_2} \cdots p_n^{x_n} \cdots$$

**f** is well-defined because almost all  $x_i$  are 0. **f** is one-to-one by the unique factorization of integers by primes.

#### In one of our examples weeks back, we considered the function

 $f:\mathbb{N}\times\mathbb{N}\to\mathbb{N},$ 

given by

$$f(m,n) = 2^{m-1}(2n-1).$$

We proved that **f** is one-to-one & onto.

# Outline

# Cardinality

- 2 Homework #12
- Infinite Sets
- Cantor's Universe
- **5** Homework #13
- 6 The Ordering of Cardinal Numbers
- **7** Final Orientation



# 2 5.1: 3(a, i, n), 6(b), 17(a,b), 20(b)

#### Theorem

Let  $n, r \in \mathbb{N}$ . If  $\mathbf{f} : \mathbb{N}_n \to \mathbb{N}_r$  and n > r then  $\mathbf{f}$  is not one-to-one.

We prove this by induction on *n*.

- If n = 2, since r < n, r = 1. In this case **f** is a constant function, f(1) = f(2) = 1, so **f** is not one-to-one.
- Suppose the Pigeonhole Principle holds for all *r* < *n*. We argue by contradiction. Suppose *r* < *n*+1 and **h** : N<sub>*n*+1</sub> → N<sub>*r*</sub> is one-to-one. The restriction **h**<sub>0</sub> of **h** to N<sub>*n*</sub> is one-to-one. Furthermore the range of this function does not contain **h**(*n*+1) Why Someone?
- **③** There is a one-to-one function  $\mathbf{g}$  :  $\mathbb{N}_r \setminus {\mathbf{h}(n+1)} \to \mathbb{N}_{r-1}$ . Let  $\mathbf{f} = \mathbf{g} \circ \mathbf{h}_0$ . Thus  $\mathbf{f} : \mathbb{N}_n \to \mathbb{N}_{r-1}$  is one-to-one since it is the composite of one-to-one functions. Thus is a contradiction of the induction hypothesis.
- Objective States States and S

**5.1, 20(a)**: Prove that if five points are in or on a square with sides of length 1, then at least two points are no farther apart than  $\sqrt{2}/2$ .

For instance, if 4 points are chosen at the vertices then the fifth point must be chosen in one of the 4 triangles determined by the center. The distance of that point to one of the corner points is at most *sqrt*2/2.

**Solution:** To use the Pigeonhole Principle, split the square into 4 squares of sides of length 1/2. According to the Pigeonhole Principle, we would have to put at least two points in the same little square: they could not be further apart than  $\sqrt{2}/2$ .

• Let *A* be a finite set, that is  $A \approx \mathbb{N}_n$  for some *n*. If  $A \approx \mathbb{N}_m$  then m = n.

**Proof:** The first hypothesis means: There is  $\mathbf{f} : \mathbb{N}_n \to A$  that is one-to-one. The second hypothesis means: There is  $\mathbf{h} : A \to \mathbb{N}_m$  that is one-to-one. It follows that

 $\mathbf{h} \circ \mathbf{f} : \mathbb{N}_n \to \mathbb{N}_m$ 

is one-to-one. Therefore  $n \ge m$ . Reverse the roles of m and n to get  $m \ge n$ . Thus m = n.

## Corollary

A finite set is not equivalent to any of its proper subsets.

**Proof:** We first show that the set  $\mathbb{N}_k$  is not equivalent to any of its proper subsets.

If k = 1, the only proper subset of  $\mathbb{N}_k$  is  $\emptyset$  and  $\{1\}$  is not equivalent to  $\emptyset$ . Assume k > 1 and A is a proper subset of  $\mathbb{N}_k$  and  $\mathbf{f} : \mathbb{N}_k \approx A$  is one-to-one onto.

There are two cases to consider:

If k ∉ A, then A ⊂ N<sub>k-1</sub>, and the inclusion function i : A → N<sub>k-1</sub> is one-to-one. But then the composite i ∘ f : N<sub>k</sub> → N<sub>k-1</sub> would be one-to-one, violating the Pigeonhole Principle.

• Suppose  $k \in A$ . Choose  $y \in \mathbb{N}_k \setminus A$ . Let  $A' = (A \setminus \{k\}) \cup \{y\}$ . Then  $A \approx A'$  as we simply exchanged k by y in A. Thus  $A' \approx \mathbb{N}_k$ . From the previous case we get a contradiction.

# Outline

# Cardinality

- 2 Homework #12
- Infinite Sets
- 4 Cantor's Universe
- 5 Homework #13
- 6 The Ordering of Cardinal Numbers

## **7** Final Orientation

#### Theorem

The sets  $\mathbb{Z}$  and  $\mathbb{Q}$  are countable.

We must establish one-one & onto correspondences between  $\mathbb N$  and each of these sets. In other words, we must describe  $\mathbb Z$  and  $\mathbb Q$  as long lists

 $\{f(1),f(2),\ldots,\}.$ 

For  $\mathbb{Z}$ , this is very easy

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \dots, \pm n, \dots\}$$

for example, 0 = f(1), 23 = f(46), -55 = f(111). If we cared, f can even be made explicit.

A list description of  $\mathbb{Q}$  is not much different. Each  $x \in \mathbb{Q}$ , can be written uniquely as

$$x=\pm rac{p}{q} \mid p \ge 0, q > 0$$

gcd(p,q) = 1 when  $q \neq 0$ . Define the finite subsets of  $\mathbb{Q}$ ,  $A_0 = \{0\}$ , for  $n \geq 1$ 

$$A_n = \left\{ \pm \frac{p}{q} \mid p + q = n \right\}.$$

$$A_{10} = \{\pm 1/9, \pm 3/7\}$$

$$\mathbb{Q} = A_0 \cup A_1 \cup A_2 \cup \cdots \cup A_n \cup \cdots$$

is a disjoint union of finite sets. Listing the elements of each  $A_n$  gives a desired listing for  $\mathbb{Q}$ .

Wolmer Vasconcelos (Set 5)

Intro Math Reasoning

#### Theorem

## If the sets $A_i$ , $i \ge 1$ , are countable, then $A = \bigcup_{i=1}^{\infty} A_i$ is countable.

**Proof.** Here is a way to list the elements of *A*. Since the  $A_i$  are countable, each comes with an injective mapping  $\mathbf{f}_i : A_i \to \mathbb{N}$ . We are going to define an injective mapping from *A* into the set  $\mathbb{N} \times \mathbb{N}$ . (By a previous exercise  $\mathbb{N} \times \mathbb{N}$  is countable.) If  $x \in A$ , *x* belongs to some  $A_i$  and thus there exists an integer *m* such that

$$x \in A_m, \quad x \notin A_i, \quad i < m$$

Define  $\mathbf{f} : \mathbf{A} \to \mathbb{N} \times \mathbb{N}$  by the rule:

$$\mathbf{f}(\mathbf{x})=(m,\mathbf{f}_m(\mathbf{x})).$$

To verify that **f** is one-one we check:

$$\mathbf{f}(x) = \mathbf{f}(y)$$

means

 $(m,\mathbf{f}_m(x))=(n,\mathbf{f}_n(y))$ 

and thus

 $x \& y \in A_m = A_n$ 

and therefore

$$\mathbf{f}_m(x) = \mathbf{f}_m(y)$$

implies that

x = y

since  $\mathbf{f}_m$  is one-one.

#### Theorem

## If the sets $A_i$ , $i \ge 1$ , are countable, then $A = \bigcup_{i=1}^{\infty} A_i$ is countable.



**Proof.** Here is a beautiful way to list the elements of *A*:

**Exercise:** Prove that the set **A** of finite subsets of  $\mathbb{N}$  is countable.

**Solution:** Let  $\mathbf{A}_n$  be the subset of  $\mathbf{A}$  made up of subsets of  $\mathbb{N}$  with *n* elements. Note that  $\mathbf{A}_0 = \{\emptyset\}$  is not the empty set! and that

$$\mathbf{A} = \bigcup_{n \ge 0} \mathbf{A}_n.$$

To apply the theorem above, we prove that each  $A_n$  is countable. There are various ways to do it. • The set of *n*-tuples of natural numbers

$$\mathbb{N}^n = \{(a_1, \ldots, a_n) \mid a_i \in \mathbb{N}\}$$

is countable, by the theorem.

• The set **A**<sub>n</sub> is on a 1-1 correspondence with the *n*-tuples

$$\{(a_1,\ldots,a_n) \mid a_1 < a_2 < \cdots < a_n\}$$

so  $\mathbf{A}_n$  is countable.

#### Definition

A set *S* is **uncountable** if it is neither finite nor denumerable.

Question: Are there such sets?

# Outline

# Cardinality

- 2 Homework #12
- Infinite Sets



- 5 Homework #13
- 6 The Ordering of Cardinal Numbers

## **7** Final Orientation

Let us visit, if briefly, the garden universe that Cantor created for us. It was the first great theory of **infinities**, and has had a profound influence on Mathematics.

It helped that his constructions and proofs [sometimes the same thing] were often beautiful, if not even great fun.

We will touch on two of them.

## Theorem (Cantor's Proof)

The interval (0, 1) is not countable.

**Proof.** It will suffice to show that the open interval (0, 1) is not countable. We are going to represent its elements as infinite decimals  $x = 0.a_1a_2a_3\cdots a_n\cdots$ . We are going to assume, by way of contradiction, that we can list them:

 $\begin{array}{rcl} x_1 &=& 0.\mathbf{a_{11}} a_{12} a_{13} a_{14} \cdots \\ x_2 &=& 0.a_{21} \mathbf{a_{22}} a_{23} a_{24} \cdots \\ x_3 &=& 0.a_{31} a_{32} \mathbf{a_{33}} a_{34} \cdots \\ x_4 &=& 0.a_{41} a_{42} a_{43} \mathbf{a_{44}} \cdots \\ \vdots & \vdots \end{array}$ 

We are going, by focusing on the diagonal entries  $a_{nn}$ , give an element  $x \in (0, 1)$  that is not listed.

Define the integer

$$b_n = \begin{cases} 2 & \text{if } a_{nn} \neq 2 \\ 3 & \text{if } a_{nn} = 2 \end{cases}$$

Set  $x = 0.b_1b_2b_3b_4\cdots b_n\cdots$ . Note that *x* differs from  $x_n$  at the *n* decimal position. So *x* is not listed.

#### Definition

A set *S* has **cardinality** *c* iff *S* is equivalent to the open interval (0, 1); we write card  $(S) = \mathbf{c}$ .

#### Theorem

The set  $\mathbb{R}$  is uncountable and has cardinality **c**.

#### Proof.

Define  $\mathbf{f}: (0,1) \to \mathbb{R}$  by  $\mathbf{f}(x) = \tan(\pi x - \pi/2)$ . Look at the graph:

# $\tan(\pi x - \pi/2) : (0, 1) \approx \mathbb{R}$



# **Exercise**

**Claim:**  $(0,1) \times (0,1) \approx (0,1)$ , that is the interior of the unit square is equivalent to (0,1). Another form;  $\mathbb{R} \times \mathbb{R} \approx \mathbb{R}$ . An element  $(a,b) \in (0,1) \times (0,1)$  can be described as

$$a = 0.a_1a_2a_3\dots a_n\dots$$
  
$$b = 0.b_1b_2b_3\dots b_n\dots$$

Define the function  $\mathbf{f}(a, b) = c \in (0, 1)$  by

$$c = 0.a_1b_1a_2b_2\ldots a_nb_n\ldots$$

f is one-to-one and onto.

If **X** is a set, the collection of its subsets is called the **power set** of **X**: notation  $P(\mathbf{A})$ . If  $\mathbf{X} = \{0, 1\}$ , its subsets are

$$P(\mathbf{X}) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}.$$

One way to represent a subset  $A \subset \mathbf{X}$  is as a function

$$\mathbf{f}_{\mathcal{A}}: \mathbf{X} \to \{\mathbf{0}, \mathbf{1}\}$$

$$\mathbf{f}_{\mathcal{A}}(x) = \begin{cases} 1 & \text{if } x \in \mathcal{A} \\ 0 & \text{if } x \notin \mathcal{A} \end{cases}$$

This leads to the notation  $P(\mathbf{X}) = 2^{\mathbf{X}}$ .

If  $\mathbf{X} = \{x_1, \dots, x_n\}$ , we can also represent its subsets by ordered strings of 0's and 1's as follows:

$$A \leftrightarrow (a_1, a_2, \ldots, a_n)$$

$$a_i = \begin{cases} 1 & \text{if } x_i \in A \\ 0 & \text{if } x_i \notin A \end{cases}$$

This shows that

$$\operatorname{card}(P(\mathbf{X})) = 2^{\operatorname{card}(\mathbf{X})} = 2^n$$

Prove the following statements:

- All circles of positive radius are equivalent.
- The circle  $(x^2 + (y 1/2)^2 = 1/4$  is equivalent to  $\mathbb{R}$ .



# Outline

# Cardinality

- 2 Homework #12
- Infinite Sets
- Cantor's Universe
- 5 Homework #13
- 6 The Ordering of Cardinal Numbers

## **7** Final Orientation

# 5.1: 3(a, i, n), 6(b), 17(a,b), 20(a) 5.2: 1(g), 5(a, d, e), 10

# Outline

# Cardinality

- 2 Homework #12
- Infinite Sets
- Cantor's Universe
- **5** Homework #13

## **6** The Ordering of Cardinal Numbers

## **7** Final Orientation

# The Ordering of Cardinal Numbers

The following shows how to build larger infinities from given ones.

#### Theorem

Given a set **X** there is no function  $\mathbf{f} : \mathbf{X} \to P(\mathbf{X})$  that is onto.

**Proof.** Suppose **f** is such a function: For each  $a \in \mathbf{X}$ ,  $\mathbf{f}(a)$  is a subset of **X** and any subset is a target. Let us build a subset that is not a target.

For each  $a \in X$ ,  $a \in f(a)$  or  $a \notin f(a)$ . Define the subset

 $B = \{a \in \mathbf{X} \mid a \notin \mathbf{f}(a)\}$ 

By assumption,  $B = \mathbf{f}(x)$  for some  $x \in \mathbf{X}$ .

Now look how cool:

 $x \in \mathbf{f}(x) = B$ , contradicts the definition of *B*, while  $x \notin \mathbf{f}(x) = B$ , would make  $x \in B$ , by the definition of *B*.

# A consequence of Cantor's Theorem is to provide chains of increasing cardinals:

$$\aleph_0 = \overline{\overline{\mathbb{N}}} < \overline{\overline{\mathcal{P}(\mathbb{N})}} < \overline{\overline{\mathcal{P}(\mathcal{P}(\mathbb{N}))}} < \overline{\overline{\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))}} < \cdots$$

The cardinality of  $\mathbb{N}$  is  $\aleph_0$ , while we have just proved that

$$\aleph_1 = \operatorname{card} \left( \mathcal{P}(\mathbb{N}) \right) \neq \operatorname{card} (\mathbb{N})$$

We have two infinite sets with well-understood cardinalities larger that  $\aleph_0: \mathcal{P}(\mathbb{N})$  and  $\mathbb{R}$  which has cardinality **c**. One of the most famous unsolved problems of Mathematics is: True or False

Continuum Hypothesis:  $\mathcal{P}(\mathbb{N}) \approx \mathbb{R}$ 

#### Theorem

If 
$$\overline{\overline{A}} \leq \overline{\overline{B}}$$
 and  $\overline{\overline{B}} \leq \overline{\overline{A}}$ , then  $\overline{\overline{A}} = \overline{\overline{B}}$ .







# Outline

# Cardinality

- 2 Homework #12
- Infinite Sets
- Cantor's Universe
- **5** Homework #13
- 6 The Ordering of Cardinal Numbers

# Final Orientation

Final will be comprehensive but topics will be emphasized according to the following classification:

- VITs: Very Important Topics
- BITs: Basic Important Topics
- LITs: Basic but Less Important Topics

- Propositions, Truth tables
- Basic Methods of Proof
- Mathematical Induction (PMI, PCI, Well-Ordering)
- Relations, Equivalence Relations, Classes of
- Functions: Ingridients and Important Types (1-1, onto)
- Cardinality
- Finite, Countable and Uncountable Sets

- Logical connectives, quantifiers
- Set Theory/Operations
- Principles of Counting
- More relations, Partitions
- Constructions of Functions
- Functions from Calculus
- Review homework

- Graphs
- Names to recall: Venn, Fibonacci, Cantor
- Examples in slides
- ٩
- ۲
- •