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Equivalence of Sets: Foundation to Counting

Let us begin by introducing a method to size sets. If A and B are two
sets we will use functions

f : A→ B

to compare their sizes.

Definition
For pair of sets (A,B) we write A ≈ B if there is a function f : A→ B
that is both one-to-one and onto.
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Recall

f one-to-one: If x 6= y ⇒ f(x) 6= f(y)

In particular if f : A→ B and g : B → C are one-to-one

x 6= y ⇒ f(x) 6= f(y)⇒ g(f(x)) 6= g(f(y)),

so g ◦ f is one-to-one.

f onto: ∀b ∈ B ∃x ∈ A : f(x) = b

In particular if f : A→ B and g : B → C are onto

∀c ∈ C ∃b ∈ B : g(b) = c ∃a ∈ A : f(a) = b.

Thus g(f(a)) = g(b) = c and so g ◦ f is onto.
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Proposition
≈ is an equivalence relation.

Proof. Let us verify the requirements:
1 (reflexivity) A ≈ A: because IA : A→ A is one-to-one onto.

2 (symmetry) A ≈ B ⇒ B ≈ A: because if f : A→ B is one-to-one
onto then f−1 : B → A is one-to-one onto.

3 (transitivity) If A ≈ B and B ≈ C then A ≈ C: because if f : A→ B
is one-to-one onto and g : B → C is one-to-one onto then
g ◦ f : A→ C is one-to-one onto.

Definition
The equivalence class of A is called the cardinality of A, card (A).
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Let E be the set of even numbers,

E = {2,4, . . . ,2n, . . .}

The function f : N→ E , given by f(n) = 2n, gives a one-to-one & onto
correspondence between the sets N and E .

We write this as card (E) = card (N): There are as many even numbers
as natural numbers...
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Equivalence of Sets

Definition
Two sets A and B are equivalent iff there exists a one-to-one function
from A onto B, and denote A ≈ B.

Example: The set E of even numbers is equivalent to the set O of odd
numbers:

f : E → O, f(2n) = 2n − 1, n ∈ N.
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Example

Theorem
For a,b, c,d ∈ N, with a < b and c < d, the open intervals (a,b) and
(c,d) are equivalent.

Proof. Let f be the linear function

f(x) =
d − b
c − a

(x − a) + c.

We must show that f : (a,b)→ (c,d) is one-to-one and onto.
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In some cases, [the case above included], it is possible to build f−1 by
solving the equation for x

f(x) = y , x = f−1(y).

y =
d − b
c − a

(x − a) + c,

gives

x − a =
c − a
d − b

(y − c)

x = f−1(y) =
c − a
d − b

(y − c) + a
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(0,∞) ≈ [0,∞)

Split (0,∞) and [0,∞) as follows

(0,∞) = (0,1) ∪ {1} ∪ (1,2) ∪ {2} ∪ (2,3) ∪ {3} ∪ · · ·
{0} ∪ (0,∞) = {0} ∪ (0,1) ∪ {1} ∪ (1,2) ∪ {2} ∪ (2,3) ∪ · · ·

Define the function

f(n) = n − 1
f(x) = x

for all other x .
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Exercise: Will be in next Homework

As a challenge, prove

Theorem
For a,b ∈ R, with a < b, the intervals (a,b) and [a,b] are equivalent.
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Marvelous Example

Claim: Let F be the set of functions from N to the set of two elements
{0,1}. Then F ≈ P(N), the power set of N.
Define the correspondence

F : F → P(N), F(g) = {x ∈ N : g(x) = 1}.

1 One-to-one: If f and g are different functions, then there is x ∈ N
so that f(x) 6= g(x). This means one of these values is 1, the other
is 0. Thus the sets F(f) and F(g) different.

2 Onto: Let A be a subset of N. Let χA be the characteristic function
of A (someone recalls?) χA(x) = 1 if x ∈ A and 0 otherwise. Note
that F(χA) = A.
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Product/Sums Rules

Theorem
Suppose A,B,C and D are sets and A ≈ C and B ≈ D. Then

1 A× B ≈ C × D.
2 If A and B are disjoint and C and D are disjoint, then

A ∪ B ≈ C ∪ D.

Proof. Let f : A→ C and g : B → D be one-to-one and onto functions.
1 Let h : A×B → C ×D be given by h(a,b) = (f(a),g(b)). It is easy

to verify that h is one-to-one and onto.
2 We can glue the functions f and g: f∪ g : A∪B → C ∪D, so that if

a ∈ A, (f ∪ g)(a) = f(a), while if b ∈ B, (f ∪ g)(b) = g(b). Again, it
is clear that f ∪ g is one-to-one and onto.
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Those rules extend to other products and sums:

Theorem
Suppose A1,A2, . . . ,An and C1,C2, . . . ,Cn are two families of sets and
for all i , Ai ≈ Ci . Then

1 A1 × A2 × · · · × An ≈ C1 × C2 × · · · × Cn.
2 If the Ai are disjoint and the Ci are disjoint, then

A1 ∪ A2 ∪ · · · ∪ An ≈ C1 ∪ C2 ∪ · · · ∪ Cn.

The proof earlier will work. Even works for arbitrary collections of sets.
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Finite and Countable Sets

We use the following notation:

Nn = {1,2, . . . ,n} ⊂ N

and the following terminology

Definition
A set S is finite if S = ∅ or S ≈ Nk for some natural number k . A set S
is infinite if S is not finite.

The attending class today is finite, since we can set a correspondence
between it and some Nk (k ≤ 18).

Definition
Let S be a finite set. If S ≈ Nk , k ∈ N, we say that S has cardinal
number k (or cardinality k ), and write S = k . If S = ∅ we say that S
has cardinal number 0 (or cardinality 0) and write ∅ = 0.
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Definition
A set A is said to be countable, or denumerable, if A ≈ N:

f : N→ A

A = {f(1), f(2), . . . , }.

We write that card (A) = card (N) = ℵ0, and say that A has cardinal
number ℵ0 and write A = ℵ0.

Warning about Terminology: The correct usage is to call a set
countable if it is equivalent to N or finite. We abuse this often by the
definition above.

Exercise: If card (A) is countable and B ⊂ A, then B is countable or
finite.

It is obviously a tricky thing to determine the cardinality of sets,
particularly of infinite sets. Let us get our hands busy!
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Pre-Exercise, i.e. a Warm-up

Question: Why/How can we list a subset A of the natural numbers N?

1 If A = ∅, there is nothing to do.
2 If A is not empty, let a1 be the smallest element of A. (someone:

why can we do this?)
3 Let A1 = A \ {a1}. If A1 = ∅ we are done; otherwise let a2 be its

smallest element.
4 Let A2 = A \ {a1,a2}. If A2 = ∅ we are done; otherwise let a3 be

its smallest element.
5 In this manner we list the elements of A:

a1,a2,a3, · · ·

6 If the list stops at an, we have a one-to-one correspondence
f : {1,2, . . . ,n} → A, f(i) = ai , i ≤ n.

7 Otherwise we have a one-to-one correspondence f : N→ A,
f(i) = ai , i ∈ N.
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Exercise

The set N× N is countable: Let define a one-one function

f : N× N→ N

Define
f(m,n) = 2m3n

By the unique factorization on integers,

2m3n = 2p3q ⇒ m = p n = q,

which proves the claim that f is injective.
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Exercise

Exercise: Use the infinity of prime numbers to show that the set X of
all infinite tuples (x1, x2, x3, . . .), xi ∈ N, such that all xi = 0 except for
finitely many exceptions is countable.

Let P be the set of primes, P = {p1,p2,p3, . . . ,pn, . . .}.

Now define the function f : X→ N by the rule

f(x1, x2, . . . , xn, . . .) = px1
1 px2

2 · · · p
xn
n · · · .

f is well-defined because almost all xi are 0. f is one-to-one by the
unique factorization of integers by primes.
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A variant of this Example

In one of our examples weeks back, we considered the function

f : N× N→ N,

given by
f(m,n) = 2m−1(2n − 1).

We proved that f is one-to-one & onto.
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Homework #12

1 Prove that [0,1] ≈ (0,1)

2 5.1: 3(a, i, n), 6(b), 17(a,b), 20(b)
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Pigeonhole Principle

Theorem
Let n, r ∈ N. If f : Nn → Nr and n > r then f is not one-to-one.
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Proof of the Pigeonhole Principle

We prove this by induction on n.

1 If n = 2, since r < n, r = 1. In this case f is a constant function,
f(1) = f(2) = 1, so f is not one-to-one.

2 Suppose the Pigeonhole Principle holds for all r < n. We argue by
contradiction. Suppose r < n +1 and h : Nn+1 → Nr is one-to-one.
The restriction h0 of h to Nn is one-to-one. Furthermore the range
of this function does not contain h(n + 1) Why Someone?

3 There is a one-to-one function g : Nr \ {h(n + 1)} → Nr−1. Let
f = g ◦ h0. Thus f : Nn → Nr−1 is one-to-one since it is the
composite of one-to-one functions. Thus is a contradiction of the
induction hypothesis.

4 By the PMI, for every n ∈ N if r < n there is no one-to-one function
from Nn to Nr .
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Exercise

5.1, 20(a): Prove that if five points are in or on a square with sides of
length 1, then at least two points are no farther apart than

√
2/2.

For instance, if 4 points are chosen at the vertices then the fifth point
must be chosen in one of the 4 triangles determined by the center. The
distance of that point to one of the corner points is at most sqrt2/2.

Solution: To use the Pigeonhole Principle, split the square into 4
squares of sides of length 1/2. According to the Pigeonhole Principle,
we would have to put at least two points in the same little square: they
could not be further apart than

√
2/2.
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Corollaries of the Pigeonhole Principle

Let A be a finite set, that is A ≈ Nn for some n. If A ≈ Nm then
m = n.

Proof: The first hypothesis means: There is f : Nn → A that is
one-to-one. The second hypothesis means: There is h : A→ Nm
that is one-to-one. It follows that

h ◦ f : Nn → Nm

is one-to-one. Therefore n ≥ m. Reverse the roles of m and n to
get m ≥ n. Thus m = n.
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Corollary to Pigeonhole Principle

Corollary
A finite set is not equivalent to any of its proper subsets.

Proof: We first show that the set Nk is not equivalent to any of its
proper subsets.
If k = 1, the only proper subset of Nk is ∅ and {1} is not equivalent to
∅. Assume k > 1 and A is a proper subset of Nk and f : Nk ≈ A is
one-to-one onto.
There are two cases to consider:

If k /∈ A, then A ⊂ Nk−1, and the inclusion function i : A→ Nk−1 is
one-to-one. But then the composite i ◦ f : Nk → Nk−1 would be
one-to-one, violating the Pigeonhole Principle.
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Suppose k ∈ A. Choose y ∈ Nk \ A. Let A′ = (A \ {k}) ∪ {y}.
Then A ≈ A′ as we simply exchanged k by y in A. Thus A′ ≈ Nk .
From the previous case we get a contradiction.
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Harder Examples

Theorem
The sets Z and Q are countable.

We must establish one-one & onto correspondences between N and
each of these sets. In other words, we must describe Z and Q as long
lists

{f(1), f(2), . . . , }.

For Z, this is very easy

Z = {0,±1,±2, . . . ,±n, . . .}

for example, 0 = f(1), 23 = f(46), −55 = f(111). If we cared, f can
even be made explicit.
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A list description of Q is not much different. Each x ∈ Q, can be written
uniquely as

x = ±p
q
| p ≥ 0,q > 0

gcd(p,q) = 1 when q 6= 0. Define the finite subsets of Q, A0 = {0}, for
n ≥ 1

An =

{
±p

q
| p + q = n

}
.

A10 = {±1/9,±3/7}

Q = A0 ∪ A1 ∪ A2 ∪ · · · ∪ An ∪ · · ·

is a disjoint union of finite sets. Listing the elements of each An gives a
desired listing for Q. 2

A more general argument is the following:
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Theorem
If the sets Ai , i ≥ 1, are countable, then A =

⋃∞
i=1 Ai is countable.

Proof. Here is a way to list the elements of A. Since the Ai are
countable, each comes with an injective mapping fi : Ai → N.
We are going to define an injective mapping from A into the set N× N.
(By a previous exercise N× N is countable.) If x ∈ A, x belongs to
some Ai and thus there exists an integer m such that

x ∈ Am, x /∈ Ai , i < m

Define f : A→ N× N by the rule:

f(x) = (m, fm(x)).
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To verify that f is one-one we check:

f(x) = f(y)

means
(m, fm(x)) = (n, fn(y))

and thus
x&y ∈ Am = An

and therefore
fm(x) = fm(y)

implies that
x = y

since fm is one-one. 2
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Theorem
If the sets Ai , i ≥ 1, are countable, then A =

⋃∞
i=1 Ai is countable.

Proof. Here is a beautiful way to list the elements of A:
A1 : • // •
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• // •
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��

��
��

• // •

����
��

��
��

· · ·

A2 : •
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•
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•
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•
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•
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• · · ·

A3 : •

AA��������
•
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•

AA��������
•
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��
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��

• • · · ·

A4 : •

��

•

AA��������
•

����
��

��
��

• • • · · ·

A5 : •

AA��������
• • • • • · · ·
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Exercise: Prove that the set A of finite subsets of N is countable.

Solution: Let An be the subset of A made up of subsets of N with n
elements. Note that A0 = {∅} is not the empty set! and that

A =
⋃
n≥0

An.

To apply the theorem above, we prove that each An is countable.
There are various ways to do it.
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The set of n-tuples of natural numbers

Nn = {(a1, . . . ,an) | ai ∈ N}

is countable, by the theorem.

The set An is on a 1-1 correspondence with the n-tuples

{(a1, . . . ,an) | a1 < a2 < · · · < an}

so An is countable.
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Uncountable Sets

Definition
A set S is uncountable if it is neither finite nor denumerable.

Question: Are there such sets?
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Let us visit, if briefly, the garden universe that Cantor created for us. It
was the first great theory of infinities, and has had a profound
influence on Mathematics.
It helped that his constructions and proofs [sometimes the same thing]
were often beautiful, if not even great fun.
We will touch on two of them.
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Theorem (Cantor’s Proof)
The interval (0,1) is not countable.

Proof. It will suffice to show that the open interval (0,1) is not
countable. We are going to represent its elements as infinite decimals
x = 0.a1a2a3 · · · an · · · . We are going to assume, by way of
contradiction, that we can list them:

x1 = 0.a11a12a13a14 · · ·
x2 = 0.a21a22a23a24 · · ·
x3 = 0.a31a32a33a34 · · ·
x4 = 0.a41a42a43a44 · · ·

...
...

We are going, by focusing on the diagonal entries ann, give an element
x ∈ (0,1) that is not listed.
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Define the integer

bn =

{
2 if ann 6= 2
3 if ann = 2

Set x = 0.b1b2b3b4 · · · bn · · · . Note that x differs from xn at the n
decimal position. So x is not listed. 2
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Definition
A set S has cardinality c iff S is equivalent to the open interval (0,1);
we write card (S) = c.

Theorem
The set R is uncountable and has cardinality c.

Proof.
Define f : (0,1)→ R by f(x) = tan(πx − π/2). Look at the graph:
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tan(πx − π/2) : (0,1) ≈ R
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Exercise

Claim: (0,1)× (0,1) ≈ (0,1), that is the interior of the unit square is
equivalent to (0,1). Another form; R× R ≈ R.
An element (a,b) ∈ (0,1)× (0,1) can be described as

a = 0.a1a2a3 . . . an . . .

b = 0.b1b2b3 . . . bn . . .

Define the function f(a,b) = c ∈ (0,1) by

c = 0.a1b1a2b2 . . . anbn . . .

f is one-to-one and onto.
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Power Sets

If X is a set, the collection of its subsets is called the power set of X:
notation P(A).
If X = {0,1}, its subsets are

P(X) = {∅, {0}, {1}, {0,1}}.

One way to represent a subset A ⊂ X is as a function

fA : X→ {0,1}

fA(x) =

{
1 if x ∈ A
0 if x /∈ A
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This leads to the notation P(X) = 2X.

If X = {x1, . . . , xn}, we can also represent its subsets by ordered
strings of 0’s and 1’s as follows:

A↔ (a1,a2, . . . ,an)

ai =

{
1 if xi ∈ A
0 if xi /∈ A

This shows that
card (P(X)) = 2card (X) = 2n

Wolmer Vasconcelos (Set 5) Intro Math Reasoning Fall 2008 46 / 65



Exercise

Prove the following statements:

All circles of positive radius are equivalent.
The circle (x2 + (y − 1/2)2 = 1/4 is equivalent to R.
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R ≈ Circles
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Homework #13

1 5.1: 3(a, i, n), 6(b), 17(a,b), 20(a)
2 5.2: 1(g), 5(a, d, e), 10
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The Ordering of Cardinal Numbers
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Cantor’s Theorem

The following shows how to build larger infinities from given ones.

Theorem
Given a set X there is no function f : X→ P(X) that is onto.

Proof. Suppose f is such a function: For each a ∈ X, f(a) is a subset of
X and any subset is a target. Let us build a subset that is not a target.
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For each a ∈ X, a ∈ f(a) or a /∈ f(a). Define the subset

B = {a ∈ X | a /∈ f(a)}

By assumption, B = f(x) for some x ∈ X.

Now look how cool:
x ∈ f(x) = B, contradicts the definition of B, while
x /∈ f(x) = B, would make x ∈ B, by the definition of B. 2
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Ever larger cardinals

A consequence of Cantor’s Theorem is to provide chains of increasing
cardinals:

ℵ0 = N < P(N) < P(P(N)) < P(P(P(N))) < · · ·
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Are they equal?

The cardinality of N is ℵ0, while we have just proved that

ℵ1 = card (P(N)) 6= card (N)

We have two infinite sets with well-understood cardinalities larger that
ℵ0: P(N) and R which has cardinality c. One of the most famous
unsolved problems of Mathematics is: True or False

Continuum Hypothesis: P(N) ≈ R

Wolmer Vasconcelos (Set 5) Intro Math Reasoning Fall 2008 56 / 65



Cantor-Schröder-Bernstein Theorem

Theorem

If A ≤ B and B ≤ A, then A = B.
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Fig 511
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Fig 512
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Fig 513
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Final Orientation

Final will be comprehensive but topics will be emphasized according to
the folliowing classification:

VITs: Very Important Topics
BITs: Basic Important Topics
LITs: Basic but Less Important Topics
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VITs

Propositions, Truth tables
Basic Methods of Proof
Mathematical Induction (PMI, PCI, Well-Ordering)
Relations, Equivalence Relations, Classes of
Functions: Ingridients and Important Types (1-1, onto)
Cardinality
Finite, Countable and Uncountable Sets
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BITs

Logical connectives, quantifiers
Set Theory/Operations
Principles of Counting
More relations, Partitions
Constructions of Functions
Functions from Calculus
Review homework
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LITs

Graphs
Names to recall: Venn, Fibonacci, Cantor
Examples in slides

Wolmer Vasconcelos (Set 5) Intro Math Reasoning Fall 2008 65 / 65


	Cardinality
	Homework #12
	Infinite Sets
	Cantor's Universe
	Homework #13
	The Ordering of Cardinal Numbers
	Final Orientation

