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What is a Function?

The beginning: Leibniz, Euler (who invented the notation f(x))
Definition of function uses notion of Relation: subset of A× B
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Cartesian Product

Definition
Let A and B be sets. The set of all ordered pairs having first coordinate
in A and second coordinate in B is called the Cartesian product of A
and B and written A× B. Thus

A× B = {(a,b) : a ∈ A and b ∈ B.}

Example: Let A = {a,b}, B = {1,2,3}. Then:

A× B = {(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)}.
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Function

Definition
A function (or mapping) A to B is a relation f from A to B such that

1 the domain of f is A: Dom(f) = A
2 if (x , y) ∈ f and (x , z) ∈ f, then y = z.
3 Convenient notation is f : A→ B, and we read “f is a function from

A to B”, or “f maps A to B”. The set B is called the codomain of f.
4 When A = B, f is called a function on A.
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Example

Let A = {1,2,3} and B = {a,b, c}. Here are some relations (subsets
of A× B):

R1 = {(1,a), (2,b), (3, c), (2, c)}
R2 = {(1,a), (2,b), (3,b)}
R3 = {(1,b), (2, c), (3,b)}
R4 = {(1,a), (3, c)}

Which relation(s) are functions? Note the basic requirement:

(x , y) ∈ R ∨ (x , z) ∈ R ⇒ y = z.

This condition is known as the vertical line test.
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Example

1 Let H = {(x , y) ∈ R× R : x2 + y2 = 1}. Is H a function with
domain [−1,1]? Note that elements

(
√

2/2,
√

2/2) (
√

2/2,−
√

2/2)

are in H, so the requirement fails.
2 If we consider the subset H0 = [0,1]× [0,1], for a given first

coordinate x , the second coordinate is uniquely given as
y =
√

1− x2. So H0 is a function.
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Example

Proposition
The set H = {(x , y) ∈ N× N : x + y = 7} is a function from the set
{1,2,3,4,5,6} to N.

Proof.
First, note that H is a relation from N to N.

1 Suppose x ∈ {1,2,3,4,5,6}. Then 7− x is a natural number and
(x ,7− x) ∈ H. Thus {1,2,3,4,5,6} ⊂ Dom(H). Suppose
x ∈ Dom(H) and (x , y) ∈ H for some y ∈ N. thus x ≤ 6, so
x ∈ {1,2,3,4,5,6}. Therefore, Dom(h) = {1,2,3,4,5,6}.

2 Suppose (x , y) ∈ H and (x , z) ∈ H. Then y = 7− x and
z = 7− x , so y = z.

By (1) and (2), H : {1,2,3,4,5,6} → N.
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Definition
Let f : A→ B. We write y = f(x) when (x , y) ∈ f. We say that y is the
the value of f and x (or the image of f at x), and that x is a pre-image
of y under f.

Pay attention to the articles the and a
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Major Examples
Identity, Inclusion, Constant

Definition
1 Let A be a set. The function IA : A→ A, for x ∈ A given by

IA(x) = x is the identity function of A.
2 If A ⊂ B, the function i : A→ B for x ∈ A given by i(x) = x is the

inclusion function from A to B.
3 If c is a fixed element of B, the function f : A→ B such that for

x ∈ A gives f(x) = c is the constant function c.
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Equality of Two Functions

We need to keep in mind the following observation:

Theorem
Two functions f and g are equal iff

1 Dom(f) = Dom(g), and
2 ∀x ∈ Dom(f), f(x) = g(x).

Proof.
(Just the implication⇒). Assume f = g.

1 If x ∈ Dom(f), then (x , y) ∈ f, for some y and since f = g,
(x , y) ∈ g. Therefore x ∈ Dom(g), which shows
Dom(f) ⊂ Dom(g). The reverse containment is proved in the
same manner, so that together will have Dom(f) = Dom(g).

2 Suppose x ∈ Dom(f). Then for some y , (x , y) ∈ f. Since f = g,
(x , y) ∈ g. Therefore f(x) = g(x).

Wolmer Vasconcelos (Set 4) Intro Math Reasoning Fall 2008 11 / 90



Example

F : {−2,3} → {4,9}, F(x) = x2

G : {−2,3} → {4,9}, G(x) = x + 6

F = G: Different rules but define the same functions.

So in defining a function f : A→ B one pays attention to all the sets
(rules included) needed to defined f. Often f may be defined in more
than one way.
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Exercise

One sacrificial volunteer please:
If A is a set with 5 elements, how many functions are there of the form

f : A→ A

Answer according to Kristin: 55.
How about

f : A→ ∅

Answer: None!

Wolmer Vasconcelos (Set 4) Intro Math Reasoning Fall 2008 13 / 90



Characteristic Function of a Subset

Definition
Let U be a specified universe and A ⊂ U. Define χA : A→ {0,1} by

χA(x) =

{
1 if x ∈ A
0 if x ∈ U \ A.

χA is the characteristic function of A.
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Exercise

Proposition
Let A and B be subsets of the universe U. Then

1 χÃ = 1− χA, where 1 is the constant function defined by 1.
2 A = B iff χA = χB.
3 χA∩B = χA · χB.
4 χA∪B = χA + χB − χA · χB.
5 χA∆B = χA + χB − 2 · χA∩B.

Exercise: Use the proposition to prove easily that
A ∩ (B∆C) = (A ∩ B)∆(A ∩ C): This shows that ∩ works as a product
and ∆ as a sum operation.
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Dirichlet Function

It might be a good idea to have wonderful functions f : R→ R (or from
subsets A ⊂ R) at hand:

1 (Dirichlet Function)

f(x) =

{
0 x ∈ Q
1 x /∈ Q

2

f(x) =

{
x sin(1/x) x 6= 0
0 x = 0

3 Let f(x) be your favorite function: polynomials, rational functions,
trig functions, ζ(x)? You might want to google the last one: after
all, it is the most famous function of Mathematics!
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Sequences

Definition
A sequence is a function f whose domain is N.

f : N→ A.

It can be represented as

{f(1), f(2), f(3), . . .}

{an : n ∈ N}
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Sequences of real numbers

It allows us to look at real numbers in a concrete manner: If

x = A.a1a2 · · · an · · · ,

where ai are the decimal digits, we form the sequence of rational
numbers

x0 = A
x1 = A.a1

x2 = A.a1a2

xn = A.a1a2 · · · an, and so on

This actually says that a real number is what of the sequence?
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More Examples

1 f(n) = 1/n, n ∈ N.
2 f(n) is the nth digit in the decimal expression of π. Makes sense?
3 (c, c, c, c, . . .)
4 (1,−1

2 ,
2
3 ,−

3
4 , . . .)

5 ( 1
2n )∞n=1 = (1

2 ,
1
4 ,

1
8 , . . .)

6 (an), a1 = 1, and an+1 = an+1
2

7 (an), an = (1 + 1/n)n
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Equivalence Relation

Recall: R is an equivalence relation on the set X :

Definition
Let X be a set and R a relation on X .

R is reflexive iff for all x ∈ X , x R x .
R is symmetric iff for all x ∈ X and y ∈ A, if x R y , then y R x .
R is transitive iff for all x , y and z in X , if x R y and y R z, then
x R z.

Definition
A relation R on a set X is an equivalence relation on A iff R is
reflexive, symmetric, and transitive.
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Equivalence Class

Definition
Let R be an equivalence relation on the set X . For x ∈ X , the
equivalence class of x determined by R is the set

x/R = {y ∈ X : x R y}.

This is read “the class of x modulo R.” The set of all equivalence classes
of R is called X modulo R and denoted X/R = {x/R : x ∈ A}. Other
notation for it: [x ]R or xR–may drop the R when well-understood.

Example: Two integers have the same parity if they are both even or
both odd. Let
R = {(x , y) ∈ Z× Z : x and y have the same parity.} R is an equivalence
relation with two equivalence classes: the even integers E and the odd
integers D. Z/R = {E ,D}.
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Big Example

Let m be a fixed, nonzero integer. Let ≡m be the relation on Z,

x ≡m y iff m divides x − y .

This is also written x ≡ y (mod m) or even x = y (mod m).
It is easy to see that Z/ ≡2= {E ,D}. This set is also denoted by Z2
and called the set of integers modulo 2. For m = 3, ≡3 is also an
equivalence relation and there are three distinct equivalence classes.

Theorem
The relation ≡m is an equivalence relation on the integers. The set of
equivalence relations is called Zm and has m distinct elements
0,1,2, . . . ,m − 1.
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Canonical Map

1 Let m be a fixed integer. The map f : Z→ Zm

f(n) := [n] = congruence class of n ∈ Z modulo m

is an example of a canonical mapping.
2 More generally, if R is an equivalence relation on X , the map

f(x) := equivalence class of x ∈ X relative to R

is the canonical mapping relative to R.
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New from Old
Inverses

Definition
If f is a relation from A to B, the inverse of f is

f−1 = {(y , x) : (x , y) ∈ f}.

If f is a function from A to B, f−1 is a relation from B to A. Lets us find
out when f−1 is a function by applying the requirements.

Theorem
Let f be a relation from A to B.

1 f−1 is a relation from B to A.
2 Dom(f−1) = Rng(R).
3 Rng(f−1) = Dom(R).
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Theorem

If f : A→ B is a function then f−1 : B → A is a function iff
1 Rng(f) = B;
2 if (x , z), (y , z) ∈ f then y = z.

Proof. Let us prove that if f satisfies (1) and (2) then f−1 is a function.
1 By (1), for each y ∈ B there is x ∈ A such that (x , y) ∈ f, and

therefore (y , x) ∈ f−1.
2 (Vertical Line Test) If (y , x) ∈ f−1 and (y , z) ∈ f−1, then x = z by

condition (2).
This proves that f−1 is a function. The converse has a similar proof. 2
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Summary: Let f : A→ B be a function such that f−1 : B → A is also a
function:

1 f(x) = y iff f−1(y) = x ;
2 B = Range(f) = Dom(f−1;
3 A = Dom(f) = Range(f−1);
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New Relations from Old
Composition of Functions

Definition
Let f be a function from A to B, and let g be a function from B to C.
The composite of f and g is

g ◦ f = {(a, c) : there exists b ∈ B such that (a,b) ∈ f and (b, c) ∈ g}.

This is more simply written as

(g ◦ f)(a) = g(f(a)) = g(b) = c.
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Confusing Diagram...

Wolmer Vasconcelos (Set 4) Intro Math Reasoning Fall 2008 29 / 90



Theorem
Suppose A,B,C and D are sets. Let f be a function from A to B, g a
function from B to C, and h a function from C to D:

A f−→ B
g−→ C h−→ D.

1 If f−1 exists, then (f−1)−1 = f.
2 h ◦ (g ◦ f) = (h ◦ g) ◦ f.
3 IB ◦ f = f and f ◦ IA = f.
4 If f−1 and g−1 exist, then (g ◦ f)−1 = f−1 ◦ g−1.

Proof of (2): Note both h ◦ (g ◦ f) and (h ◦ g) ◦ f are relations from A to
D, that is they are subsets of A× D.
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To prove h ◦ (g ◦ f) = (h ◦ g) ◦ f, let (a,d) ∈ h ◦ (g ◦ f). Note that g ◦ f is
a relation from A to C.

1 Thus there is c ∈ C such that (a, c) ∈ g ◦ f and (c,d) ∈ h:
(a, c) ∈ g ◦ f and (c,d) ∈ h

2 Hence there is b ∈ B such that (b, c) ∈ g.
3 Therefore (b,d) ∈ h ◦ g.
4 Since (a,b) ∈ f and (b,d) ∈ h ◦ g, it follows that (a,d) ∈ (h ◦ g) ◦ f.
5 This shows that h ◦ (g ◦ f) ⊆ (h ◦ g) ◦ f. The reverse inequality has

a similar proof.
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Composition Summary

1 h ◦ (g ◦ f) = (h ◦ g) ◦ f: Because both make sense and in the
functional notation

(h ◦ (g ◦ f))(a) = h(g(f(a))) = ((h ◦ g) ◦ f)(a)

2 If f−1 and g−1 exist, then (g ◦ f)−1 = f−1 ◦ g−1.
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Restriction and Extension

Let f : A→ B be a function. A simple way to obtain new functions from
f is the following:

Definition
Let C ⊂ A. The function

g : C→ B, ∀c ∈ C, g(c) = f(c)

is called the restriction of f to C. In turn, f is called an extension or
prolongation of g to A.

Note that f has a unique restriction to C, but g may have several
extensions to A.

Wolmer Vasconcelos (Set 4) Intro Math Reasoning Fall 2008 33 / 90



Example of Restriction/Extension
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Gluing Functions

Let f and g be two functions with the same target:

f : A→ C,
g : B→ C

How to define a function

h : A ∪ B→ C

so that f is the restriction of h to A and g is the restriction of f to B?
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Gluing two functions

Proposition
Let h be the relation from A ∪ B to C,

h = {(a,b) ∈ A× C : b = f(a)} ∪ {(c,d) ∈ B× C : d = g(c)}.

Then h is a function from A ∪ B to C if A ∩ B = ∅. More generally, h is
a function from A ∪ B to C if

f(x) = g(x)∀x ∈ A ∩ B.

h is said to be glued from f and g along A ∩ B. Note that if A ∩ B = ∅,
we have no obstruction.
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Gluing of two functions
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Gluing several functions
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Restriction and Extension
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Sum and Product of Functions

Functions whose target space is the set of real numbers R, allow many
new constructions to obtain new functions from old ones. Here are
some

Definition
Let f and g be two functions from A to R. The relations given by

f + g : A→ R (f + g)(a) = f(a) + g(a), a ∈ A,
f · g : A→ R (f · g)(a) = f(a)g(a), a ∈ A,

are called the Sum and the Product of f and g, resp.

Moreover, if g(a) 6= 0 ∀a ∈ A, the quotient f
g can also be defined.
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Homework #9

1 4.2: 3(b), 7(c), 14(d), 16(c)
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Onto Functions

Definition
A function f : A→ B is onto B (or is a surjection) if Rng(f) = B. That
is,

∀b ∈ B ∃a ∈ A : f(a) = b.

Note that all functions f : A→ B gives rise to another function that is
onto

g : A→ Rng(f).

Example: The function f : N→ N, f(n) = 2n, is not a surjection. Its
Range is the set E of nonzero even numbers. The function g : N→ E ,
g(n) = 2n, is a surjection.
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Solving Equations

Let f : R→ R be the function

f(x) = x2 + 2x + 1.

Is f surjective? (another name for a surjection)

To be a surjection means that for any real number b, we must be able
to solve the equation

f(x) = x2 + 2x + 1 = b.

This means that
(x + 1)2 = b,

so b cannot be < 0, so f is not surjective.
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Exercise

Let f be the function f : R→ R, given by

f(x) = ax2 + bx + c, a 6= 0.

Prove that f is NOT surjective.
We must be able to solve ax2 + bx + c = e ∀e ∈ R.

ax2 + bx + (c − e) = 0⇒ x =
−b ±

√
b2 − 4a(c − e)

2a
.

This requires that

b2 + 4a(e − c) ≥ 0⇒ 4a(e − c) ≥ −b2

This means that if a > 0, e ≥ c − b2/4a, and e ≤ c − b2/4a if a < 0.
Both inequalities can be broken by choosing e conveniently.
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Cubics

One sacrificial volunteer please: Prove the following

Theorem
Let f be the function f : R→ R given by

f(x) = ax3 + bx2 + cx + d ,a 6= 0.

(We may assume f(x) = 2x3 + 4x2 − 6x + 8.) Then f is surjective.

The proof uses Cal 1. We are going to sketch the graph of f, paying
attention to the following points:

1 Plot a few points, say x = 0,−1,1
2 Find limx→∞ f(x) and limx→−∞ f(x)

3 Is f a continuous function?
4 What does this means for the graph of f?
5 Argue that the graph of f crosses any horizontal line!
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Bit of Linear Algebra

We can described a linear system of equations in the following
manner:
Let T (i.e. a matrix) be a linear transformation of source V and target
W,

T : V→W.

Problem: Given w ∈W is there v ∈ V such T(v) = w? Such v is
called a solution, or a special solution.

???→ T → given output
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1 Do solutions exist? The answer, in the affirmative case [called
CONSISTENT] carries consequences to the next questions.

2 If solutions exist, what is the nature of the set of solutions?
3 Among the solutions, which is the best?
4 How do we find these things anyway?
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Example

Let F : N× N→ N be defined by F(m,n) = 2m−1(2n − 1).

Claim: F is surjective. Let s ∈ N. We must show that there are
m,n ∈ N such that s = 2m−1(2n − 1). For example, if s = 12,
12 = 4× 3 = 23−1(2× 2− 1) = F(3,2).

If s is odd, it can be written s = 2n − 1, so that
F(1,n) = 20 × (2n − 1) = s.

If s is even, it can be written s = 2k t , where t is odd (why Abdel?)
Choosing m = k + 1 and t = 2n − 1, we have F(m,n) = s.
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Tools

Theorem
Let f : A→ B and g : B → C. Then

1 If f and g are surjections, then g ◦ f is a surjection.
2 If g ◦ f is a surjection then g is a surjection.
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One-to-One Functions

Definition
A function f : A→ B is one-to-one (or is an injection) iff whenever
f(x) = f(y) then x = y .

To prove that a f is one-to-one, one often checks it by contradiction:

x 6= y ⇒ f(x) 6= f(y).

For example, the function f : R→ R, defined by f(x) = |x | is not
injective: |1| = | − 1| = 1.
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Visual Test

The Horizontal Line Test for One-to-One :

f : A→ B is one-to-one iff every horizontal line intersects the graph of f
at most once.
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Back to Earlier Example

Claim: The function F : N× N→ N, F(mn) = 2m−1(2n − 1) is
one-to-one.

1 Suppose F(m,n) = F(r , s). We must show (m,n) = (r , s).

2 We first prove that m = r . We may assume m ≥ r (Why Eric?)
From 2m−1(2n − 1) = 2r−1(2s − 1) we have

2m−r (2n − 1) = (2s − 1).

3 If m > r , this gives that 2s − 1 is an even number, a contradiction.
Thus m = r .

4 Therefore 2n − 1 = 2s − 1, which implies n = s.

5 We conclude that (m,n) = (r , s), as desired.
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Famous Technique from Calculus

Let f be a differentiable function on the interval [a,b]. Probably the
most useful assertion of the differential calculus is the relationship
between the value of the slope of the secant to the graph of f(x),

f(b)− f(a)

b − a
,

and values of the derivative. Even the so-called Fundamental Theorem
of Calculus can be seen as one of its consequences.
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MVT of Calculus

Theorem
Let f : [a,b]→ R be a continuous function on [a,b] and differentiable
on (a,b). Then there exists a point c ∈ (a,b)

f′(c) =
f(b)− f(a)

b − a
.

Corollary

If f′(x) 6= 0 in [a,b] then f : [a,b]→ R is one-to-one.
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IVT: Intermediate Value Theorem of Calculus

Another of the great theorems of Calculus is

Theorem (IVT)
If f : [a,b]→ R is continuous, and if L is any real number satisfying
f(a) < L < f(b) or f(a) > L > f(b), then there exists a point c ∈ (a,b)
where f(c) = L. In particular, if f(a) < 0 and f(b) > 0, there exists a
point c ∈ (a,b) such that f(c) = 0.

It is useful to prove that certain functions are surjections.
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Example

Theorem
Let f(x) = xn + x, where n is an odd natural number. Then the function

f : R→ R

is one-to-one and onto.

Proof.
1 (One-to-One) Since f′(x) = nxn−1 + 1, and n − 1 is even, f′(x) is

never 0. Let us argue by contradiction. If for a < b, f(a) = f(b),
then by the MVT, for some c ∈ (a,b), f′(c) = 0, which can’t
happen. Thus f is one-to-one.

2 (Onto) Since n is odd, limx→∞ f(x) =∞ and limx→−∞ f(x) = −∞.
Thus if L ∈ R, there are a and b such that f(a) < L < f(b). By the
IVT, there is c ∈ [a,b] such that L = f(c). So f is onto.
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Bijections

Definition
A function f : A→ B is a one-to-one correspondence (or is a
bijection) if it is one-to-one and onto.

Example: The function f : R→ R, f(x) = 2x + 1, is a bijection:
1 If f(x) = 2x + 1 = 2y + 1 = f(y), then x = y , so f is one-to-one.
2 If b ∈ R, we can find x so that f(x) = 2x + 1 = b: x = 1/2(b − 1),

so f is onto.
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Tools

Theorem
If f : A→ B and g : B → C are bijections, then

1 g ◦ f : A→ C is bijective.
2 The inverse relation f−1 : B → A is a function and

IA = f−1 ◦ f : A→ A IB = f ◦ f−1 : B → B.
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Homework #10

1 If A is a set with 3 elements and B has 4 elements: (a) How many
functions are there from A to B, (b) how many of these are
surjections, and (c) and how many are injections?

2 4.3: 1(l), 4, 8(c), 15(b,d), 16(b,c)
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Last Class...and Today...

Some properties of functions that are valuable

1 Onto/Surjective Function: f : A→ B, Rng(f) = B, that is

∀b ∈ A ∃x ∈ A : f(x) = b.

2 One-to-One/Injective Function: If f(x) = f(y) then x = y , in
other words (more properly) if x 6= y then f(x) 6= f(y).

3 Bijection: f is both onto and one-to-one. If f : A→ B is a
bijection, f−1 : B → A is a function. The irony is that f may be
given by a ‘formula’ but we may be unable to describe f−1 in a
similar manner.

Calculus has wonderful tools to examine these properties.
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Images of Sets

Giiven
f : A→ B

we are interested in issues like: if a and b are ‘related’, what of f(a)
and f(b)?

Definition
Let f : A→ B and let X ⊂ A and Y ⊂ B.

The image of X is f(X ) = {y ∈ B : y = f(x) for some x ∈ A}.

The inverse image of Y is f−1(Y ) = {x ∈ A : f(x) ∈ Y}.
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Functions of Sets

Observe what this says: If f : A→ B, for every subset X ⊂ A, f(X ) is a
subset of B, in other words we have a new function

f∗ : P(A)→ P(B),

from the power set P(A) to the power set P(B).

Also, a new function
f−1
∗ : P(B)→ P(A),

from the power set P(B) to the power set P(A).

Surprisingly, f−1
∗ is more well-behaved than f∗. (see later)
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Exercise

Let f : N× N→ N given by f(m,n) = 2m3n. Find

1 f(A× B) where A = {1,2,3} and B = {3,4}.

We just collect the images of the 6 elements of A× B:

f(A× B) = {2 · 33,2 · 34,22 · 33,22 · 34,23 · 33,24 · 34}

2 f−1(5,6,7,8,9,10): We find (m,n) so that 2m3n is one of
{5,6,7,8,9,10}. Keep in mind that 0 /∈ N.

Note that 2m3n cannot be 5,7,8,9,10, so
f−1(5,6,7,8,9,10) = {(1,1)}.
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Class Exercise

Let f : R→ R be given by f(x) = 10x − x2. Find: (a) f([1,6)), (b)
f−1((0,21]).

Need the sketch of the graph.
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Exercise

Let f : A→ B. Prove that if f is one-to-one, then for all X ,Y
f(X ) ∩ f(Y ) = f(X ∩ Y ). Is the converse true?

The R.H.S. is always contained in the in the L.H.S. Let z ∈ f(X ) ∩ f(Y ),
that is z = f(x) = f(y) with x ∈ X and y ∈ Y . Since f is one-to-one,
x = y . Thus z ∈ f(X ∩ Y ).

Let us prove by contradiction that the converse holds. If f(x) = f(y) but
x 6= y , consider the sets X = {x}, Y = {y}. Then X ∩ Y = ∅, and
f(X ) ∩ f(Y ) = {f(x)} but f(X ∩ Y ) = f(∅) = ∅.

Wolmer Vasconcelos (Set 4) Intro Math Reasoning Fall 2008 72 / 90



Properties

Theorem
Let f : A→ B, C and D subsets of A, and E and F be subsets of B.
Then

1 f(C ∩ D) ⊂ f(C) ∩ f(D).

2 f(C ∪ D) = f(C) ∪ f(D).

3 f−1(E ∩ F ) = f−1(E) ∩ f−1(F ).

4 f−1(E ∪ F ) = f−1(E) ∪ f−1(F ).
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Classroom Proof by non-willing volunteer
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Exercise

Let f : A→ B. Let R be the relation on A defined by x R y iff
f(x) = f(y).

1 Show that R is an equivalence relation.
2 Describe the partition of A associated with R.

This is like the case in a quiz, when we defined x R y iff sin x = sin y .
It is easy to prove the relation is reflexive, symmetric and transitive.
We have for the equivalence class of x

x/R = {all y such that f(y) = f(x)} = f−1(f(x)).

The partition is
A =

⋃
x∈A

f−1(f(x)).

Note that the subsets f−1(f(x)) are non-empty, pairwise disjoint and
cover A.

Wolmer Vasconcelos (Set 4) Intro Math Reasoning Fall 2008 75 / 90



Outline

1 What is a Function?

2 Building Functions

3 Homework #9

4 Onto and One-to-One Functions

5 Homework #10

6 Last Class...and Today...

7 Images of Sets

8 Homework #11

9 Sequences

Wolmer Vasconcelos (Set 4) Intro Math Reasoning Fall 2008 76 / 90



Homework #11

4.4: 4(a,c), 9(a,b), 17, 19(a,b)
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Sequences of real numbers

Definition
A sequence is a function f whose domain is N.

It can be represented as

{f(1), f(2), f(3), . . .}

{f(0), f(1), f(2), f(3), . . .}

or

{f(n), . . . , n ≥ n0}

We will first examine sequences of real numbers, f : N→ R.
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Sequences allow us to look at real numbers in a concrete manner: If

x = A.a1a2 · · · an · · · ,

where ai are the decimal digits, we form the sequence of rational
numbers

x0 = A
x1 = A.a1

x2 = A.a1a2

xn = A.a1a2 · · · an, and so on
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Examples

We will look for features such as clustering
1 (1, 1

2 ,
2
3 ,

3
4 , . . .)

2 (c, c, c, c, . . .)
3 (1,−1

2 ,
2
3 ,−

3
4 , . . .)

4 ( 1
2n )∞n=1 = (1

2 ,
1
4 ,

1
8 , . . .)

5 (an), a1 = 1, and an+1 = an+1
2

6 (an), an is the nth digit in the decimal expansion of π.
7 (an), an = (1 + 1/n)n
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Why Sequences?

We use sequences to make sense of:∑
n≥1 an: Series

1 + 1/22 + 1/32 + · · ·+ 1/n2 + · · ·

Question: How to handle

(a0 + a1 + · · ·+ an + · · · )(b0 + b1 + · · ·+ bn + · · · )

∑
m,n≥1 am,n: Double [multiple] Series∑

m,n

1
m2 + n2∏

n≥1 an: Infinite Products∏
p

(
1

1− p
), p prime number
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Convergence of a Sequence

Sequences are wonderful ways to represent data, but we are mostly
interested is one of its aspects:

Definition
A sequence (an) converges to a real number a if, for every positive real
number ε, there exists an N ∈ N such that whenever n ≥ N it follows
that |an − a| < ε.

One notation: lim an = a, or (an)→ a. To understand this we introduce
the notion of a neighborhood of a real number a.
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Example

Consider the sequence (an), an = n+1
n . It is natural to expect that

lim an = 1. Let us follow the template:
Given ε > 0, to determine N we solve∣∣∣∣n + 1

n
− 1
∣∣∣∣ < ε

That is ∣∣∣∣1n
∣∣∣∣ < ε ⇒ n >

1
ε

Thus if ε = 1/100, N = 101 will work.
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Neighborhoods

( | )
a− ε a a + ε

Definition
Given a real number a ∈ R and a positive number ε > 0, the set

Vε(a) = {x ∈ R : |x − a| < ε}

is called the ε-neighborhood of a.
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Limit and Neighborhoods

(
a1
•

a2
• •

a3
•
· · ·

• • •
aN

| )
a− ε a a + ε

|
b

a is the limit of (an) if once aN enters the neigbhorhood Vε(a), all an
that follow will stay in it. That is, the an cluster around a in a very
specific manner.

Note that this implies that if (an) converges, its limit is unique: the an
cannot be in both Vε(a) and Vε(b) if ε < 1/2|a− b|.
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Exercise

Let an = 2n2+n+1
n2 . It can be written as

an = 2 +
1
n

+
1
n2

It is now easy to see that lim an = 2: Just notice that

|an − 2| =
1
n

+
1
n2 ≤ 2

1
n

and we can use the argument of the previous Example to finish.
Exercise: For every real number x ∈ R, there exists a sequence (an)
of rational numbers such that (an)→ x .
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Limit Template

Let us summarize the procedure to compute the limit of a sequence:

(an)→ a involves all the following steps:
1 Let ε > 0 be arbitrary
2 Demonstrate a choice for N ∈ N: hard work here often
3 Assume n ≥ N
4 Check that

|a− an| < ε
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Example

Define the sequence

a1 =
√

2, a2 =

√
2
√

2, a3 =

√
2
√

2
√

2, · · ·

Question: (an)→? Note

a1 =
√

2, a2 = a1
4
√

2, a3 = a2
8
√

2, · · ·

an = 21/2+1/4+···+1/2n
< 2

So this sequence is bounded [and increasing]. Show that its least
upper bound is 2.
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Infinity as the limit of a sequence

If a sequence (an) is not convergent, we say that it is divergent. We
also use the following terminology for some divergent sequences:

Definition
The sequence (an) converges to∞, lim an =∞, if given any positive
number b, there is an N ∈ N such that an ≥ b for n ≥ N.

Example: {1,2,3, . . . ,n, . . .}

Some sequences don’t make up their minds:
1 1,−1,1, . . . ,±1, . . .
2 one gets a very complicated sequence by glueing two unrelated

sequences (an), (bn), as in

a0,b0,a1,b1,a2,b2, . . . ,an,bn, . . . ,
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