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Cartesian Products and Relations

Cartesian Products and Relations

Two of the most important mathematical objects are relations and
functions.

They reflect special relationships between elements of a set A or of
pairs of elements of two sets A and B.
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Cartesian Products and Relations

Ordered Pair

Definition
Let A and B be sets. For a ∈ A and b ∈ B, the ordered pair (a,b) is
the set

{{a}, {a,b}}.

a is called the first coordinate of the pair, and b the second coordinate.

Note that (a,b) may be different from (b,a):

{{a}, {a,b}} 6= {{b}, {a,b}},

if a 6= b.
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Cartesian Products and Relations

Definition
Let A and B be sets. The set of all ordered pairs having first coordinate
in A and second coordinate in B is called the Cartesian product of A
and B and written A× B. Thus

A× B = {(a,b) : a ∈ A and b ∈ B.}

Example: Let A = {a,b}, B = {1,2,3}. Then:

A× B = {(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)}.

Theorem
If A and B are finite sets, then

A× B = A · B.
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Cartesian Products and Relations

Ordered triples, quad...

Ordered triples, quadruples, n-tuples–can also be defined:

Definition
Let A,B and C be sets. For a ∈ A,b ∈ B and c ∈ c, the ordered triple
(a,b, c) is the set

{{a}, {a,b}, {a,b, c}}.

a is called the first coordinate of the pair, b the second coordinate, and
c the third coordinate.
The set of all these ordered triples is the cartesian product A× B × C.

For a finite collection A1,A2, . . . ,An, we may define

A1 × A2 × · · · × An.
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Cartesian Products and Relations

Some Tools

Theorem
If A,B,C and D are sets, then

1 A× (B ∪ C) = (A× B) ∪ (A× C).
2 A× (B ∩ C) = (A× B) ∩ (A× C).
3 A× ∅ = ∅.
4 (A× B) ∩ (C × D) = (A ∩ C)× (B ∩ D).
5 (A× B) ∪ (C × D) ⊆ (A ∪ C)× (B ∪ D).
6 (A× B) ∩ (B × A) = (A ∩ B)× (B ∩ A).
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Cartesian Products and Relations

Proof. To prove (1), A× (B ∪ C) = (A× B) ∪ (A× C),
1 The ordered pair (x , y) ∈ A× (B ∪ C)

2 iff x ∈ A and y ∈ B ∪ C
3 iff x ∈ A and (y ∈ B or y ∈ C)
4 iff (x ∈ A and y ∈ B) or (x ∈ A and y ∈ C)
5 iff (x , y) ∈ A× B or (x , y) ∈ A× C
6 iff (x , y) = (A× B) ∪ (A× C),
7 Therefore, A× (B ∪ C) = (A× B) ∪ (A× C).
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Cartesian Products and Relations

Relations

Definition
Let A and B be sets. R is a relation from A to B iff R is a subset of
A× B,

R ⊂ A× B.

If (a,b) ∈ R we write a R b and say that a is R-related to b. If
(a,b) /∈ R, we write a 6 R b. A relation R from A to A is called a
relation of A: R ⊂ A× A.

There are many notations for relations: familiar ones are a ' b, a ≥ b,
a | b, etc.
Example: IA (identity of A is the relation a ' b iff a = b. Another:
a R b for all a,b ∈ A.
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Cartesian Products and Relations

Graphical Representation
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Cartesian Products and Relations

Example
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Cartesian Products and Relations

Definition
The domain of a relation R from A to B is the set

Dom(R)= {x ∈ A : there exists y ∈ B such that x R y}.

The range of the relation R is the set

Rng(R)= {y ∈ B : there exists x ∈ A such that x R y}.
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Cartesian Products and Relations

Example
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Cartesian Products and Relations

From Relations to Graphs
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Cartesian Products and Relations

Plenty of Relations

Question: If A is a set with m elements, and B is another set with n
elements, how many relations are there from A to B?

Answer: A lot: Since A× B has mn elements, and relations are
subsets of A× B, each relation is an element of the power set
P(A× B) of ×B. Thus there are 2mn relations. Thus, if A = {a,b}, the
number of relations of A (that is, from A to A) is 2(2)(2) = 24 = 16.
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Cartesian Products and Relations

New Relations from Old

Definition
If R is a relation from A to B, the inverse of R is

R−1 = {(y , x) : (x , y) ∈ R}.
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Cartesian Products and Relations

Theorem
Let R be a relation from A to B.

1 R−1 is a relation from B to A.
2 Dom(R−1) = Rng(R).
3 Rng(R−1) = Dom(R).

Proof.
1 Suppose (x , y) ∈ R−1. Then (y , x) ∈ R. Since R is a relation from

A to B, R ⊆ A× B. Thus y ∈ A and x ∈ B. Therefore
(y , x) ∈ B × A, which proves R−1 ⊆ B × A.

2 y ∈Dom(R−1) iff there exists y ∈ A such that (x , y) ∈ R iff
x ∈Rng(R).

3 Same argument as (2).
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Cartesian Products and Relations

New Relations from Old

Definition
Let R be a relation from A to B, and let S be a relation from B to C. the
composite of R and S is

S ◦ R = {(a, c) : there exists b ∈ B such that (a,b) ∈ R and (b, c) ∈ S}.
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Cartesian Products and Relations

Confusing Diagram...
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Cartesian Products and Relations

Theorem
Suppose A,B,C and D are sets. Let R be a relation from A to B, S a
relation from B to C, and T a relation from C to D:

A R−→ B S−→ C T−→ D.

1 (R−1)−1 = R.
2 T ◦ (S ◦ R) = (T ◦ S) ◦ R.
3 IB ◦ R = R and R ◦ IA = R.
4 (S ◦ R)−1 = R−1 ◦ S−1.

Proof of (2): Note both T ◦ (S ◦ R) and (T ◦ S) ◦ R are relations from A
to D, that is they are subsets of A× D.
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Cartesian Products and Relations

To prove T ◦ (S ◦ R) = (T ◦ S) ◦ R, let a T ◦ (S ◦ R) d . Note that S ◦ R
is a relation from A to C.

1 Thus there is c ∈ C such that a S ◦ R c and c T d .
2 Hence there is b ∈ B such that b S c.
3 Therefore b T ◦ S d .
4 Since a R b and b T ◦ S d , it follows that a (T ◦ S) ◦ R d .
5 This shows that T ◦ (S ◦ R) ⊆ (T ◦ S) ◦ R. The reverse inequality

has a similar proof.
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Cartesian Products and Relations

Last Class ... and Today ...
Relation

A relation from a set A to a set B is a subset

R ⊂ A× B.

If (a,b) ∈ R, we also write

a R b a R→ b a→ b

The two extreme examples are: R = {(a,a) : a ∈ A},
R = {(a,b) : a,b ∈ A}. The first is the identity of A.
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Cartesian Products and Relations

4 Examples

Let N be the set of natural numbers. Define

a→1 b a divides b

a→2 b a = b + 1

a→3 b a does not divide b

a→4 b a and b are prime numbers and a = b + 2

Goldbach conjecture
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Equivalence Relations

Equivalence Relations

Definition
Let A be a set and R a relation on A.

R is reflexive iff for all x ∈ A, x R x .
R is symmetric iff for all x ∈ A and y ∈ A, if x R y , then y R x .
R is transitive iff for all x , y and z in A, if x R y and y R z, then
x R z.
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Equivalence Relations

Example

Let R be the set of all (x , y) ∈ N×N such that x + y is divisible by 3. Is
this relation symmetric? reflexive? transitive?

1 If (x , y) ∈ R, x + y = 3m, for some m. Then y + x = 3m also, so
(y , x) ∈ R: Symmetric

2 (1,1) /∈ R: Not Reflexive
3 (1,2), (2,1) ∈ R but (1,1) /∈ R: Not Transitive
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Equivalence Relations

Example

Let R be the set of all (x , y) ∈ N× N such that x + y2 is divisible by 2.
Is this relation symmetric? reflexive? transitive?

1 If (x , y) ∈ R, x + y2 = 2m, for some m, that is x + y2 is even. If x
is even then y2 must be even so y must be even, while if x is odd
then both y2 and y must be odd. Then y + x2 = 2n also, so
(y , x) ∈ R: Symmetric

2 (x , x) ∈ R since x + x2 = x(x + 1) is even: Reflexive
3 If (x , y), (y , z) ∈ R we have: If (x , y) ∈ R, if x is even (odd), y is

also even (odd), so if (y , z) ∈ R, x is also even (odd).Thus x , z are
both even or both odd, so (x , z) ∈ R: Transitive
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Equivalence Relations

Equivalence Relation

Definition
A relation R on a set A is an equivalence relation on A iff R is
reflexive, symmetric, and transitive.
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Equivalence Relations

Let R be a relation on the set A.
R Reflexive: a→ a ∀a ∈ A
R Symmetric: a→ b ⇒ b → a
R Transitive: a→ b and b → c ⇒ a→ c

Wolmer Vasconcelos (Set 3) Intro Math Reasoning Fall 2008 29 / 86



Equivalence Relations

Exercise

Problem: If A = {a,b}, we saw that there are 16 relations of A. How
many of these are equivalence relations? List them all. What if
A = {a,b, c}, a set with 29 = 512 relations, how many of these are
equivalence relations?
One Volunteer:
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Equivalence Relations

Equivalence Class

Definition
Let R be an equivalence relation on the set A. For x ∈ A, the
equivalence class of x determined by R is the set

x/R = {y ∈ A : x R y}.

This is read “the class of x modulo R.” The set of all equivalence classes
of R is called A modulo R and denoted A/R = {x/R : x ∈ A}.

Example: Two integers have the same parity if they are both even or
both odd. Let
R = {(x , y) ∈ Z× Z : x and y have the same parity.} R is an equivalence
relation with two equivalence classes: the even integers E and the odd
integers D. Z/R = {E ,D}.
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Equivalence Relations

Big Example

Let m be a fixed, nonzero integer. Let ≡m be the relation on Z,

x ≡m y iff m divides x − y .

This is also written x ≡ y (mod m) or even x = y (mod m).
It is easy to see that Z/ ≡2= {E ,D}. This set is also denoted by Z2
and called the set of integers modulo 2. For m = 3, ≡3 is also an
equivalence relation and there are three distinct equivalence classes.

Theorem
The relation ≡m is an equivalence relation on the integers. The set of
equivalence relations is called Zm and has m distinct elements
0,1,2, . . . ,m − 1.
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Equivalence Relations

Proof

We first prove that ≡m is an equivalence relation. Observe that x ≡m y
means that x − y = am, for some integer a.

1 reflexive: x ≡m x : x − x = 0 ·m.
2 symmetric: x ≡m y : x − y = a ·m for some a ∈ Z. Thus

y − x = (−a)m, therefore y ≡m x .
3 transitive: If x ≡m y and y ≡m z, x − y = am and y − z = bm for a

and b in Z. Then

x − z = (x − y) + (y − z) = am + bm = (a + b)m.

Therefore x ≡m z.
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Equivalence Relations

Now we determine the equivalence classes of ≡m.

1 The numbers 0,1,2, . . . ,m − 1 lie in different equivalence classes:
For any pair of them, i and j , we cannot have i ≡m j since i − j
cannot be divisible by m.

2 If x is an integer, by the Euclidean algorithm,

x = qm + r , 0 ≤ r < m.

Thus, x ≡m r . Therefore r ∈ Z/ ≡m (usually denoted by r ).
3 Therefore

Zm = {0,1,2, . . . ,m − 1}.
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Equivalence Relations

Bonus

The Z2, the set made up by two elements {0,1} (or (even, odd))with
addition defined by the table

+ 0 1
0 0 1
1 1 0

1 + 1 = 0!

and multiplication by
× 0 1
0 0 0
1 0 1

Wolmer Vasconcelos (Set 3) Intro Math Reasoning Fall 2008 35 / 86



Equivalence Relations

More Bonus

The Z3, the set made up by three elements {0,1,2} (or more simply,
{0,1,2} )has similar properties. For instance, with addition defined by
the table

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

1 + 2 = 0!

and multiplication by

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

2× 2 = 1!
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Equivalence Relations

Exercise

Let A be the set of all vectors of the plane. We look at A as the set of
all pairs (a,b) of real numbers. The usual notation for A is R2.
Define the following relation of A:

(a,b) ' (c,d) (a,b)− (c,d) = (r , r) for some r ∈ R

This means that the two vectors (a,b) and (c,d) differ by a vector
along the diagonal of the first quadrant.

1 Prove that ' is an equivalence relation of A.
2 Prove that every equivalence class contains exactly a vertical

vector (that is, a vector of the form (0, c)).
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Homework #6

1 3.1: 6(g), 8(d), 9(a), 12, 13(c), 16
2 3.2: 2(f), 4(b), 5(b), 8, 10(a), 13
3 How many equivalence relations are there on the set
{a,b, c,d ,e}? Explain [This is a typical exam question]
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Partitions
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Partitions

Partitions

Definition
Let A be a nonempty set. A partition of A is a set A of subsets of A
such that

1 If X ∈ A, then X 6= ∅.
2 If X ∈ A and Y ∈ A, X 6= Y , then X ∩ Y = ∅.
3
⋃

X∈A X = A.

How do partitions arise? It will be a pretty straight answer.
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Partitions

Example

Let A = {a,b, c}–the following are partitions of A:
{{a,b, c}}
{{a}, {b}, {c}},
{{a}, {b, c}},
{{b}, {a, c}}
{{c}, {a,b}}

Are they all?
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Partitions

Partitions versus Equivalence Classes

Theorem
Let B be a partition of the nonempty set A. For x and y in A, define
x Q y iff there exists C ∈ B such that x ∈ C and y ∈ C. Then

1 Q is an equivalence relation on A.
2 A/Q = B.

Example: Define the following sets of Z:

A0 = {3k : k ∈ Z} = {. . . ,−6,−3,0,3,6, . . .}
A1 = {3k + 1 : k ∈ Z} = {. . . ,−5,−2,1,4,7, . . .}
A2 = {3k + 2 : k ∈ Z} = {. . . ,−4,−1,2,5,8, . . .}

The partition defines the relation we denoted ≡3.
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Partitions

How Partitions arise

Theorem
Let R be an equivalence relation on a nonempty set A. Then

1 For all x ∈ A, x/R ⊆ A and x ∈ x/R. (Thus x/R 6= ∅.
2
⋃

x∈A x/R = A.
3 x R y iff x/R = y/R.
4 x 6 R y iff x/R ∩ y/R = ∅.

Thus, the set {x/R : x ∈ A} of equivalence classes is a partition of A.

In words: An equivalence relation on the set A gives rise to a partition
of A and vice-versa.
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Last Class ... and Today ...

Last Class ... and Today ...

• Relations
• Equivalence Relation
• Partitions and Equivalent Classes
◦ Order Relations
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Ordering Relations

Ordering Relations

Definition
A relation R on a set A is antisymmetric if, for all x , y ∈ A, if x R y and
y R x , then x = y :

x → y → x ⇒ x = y .

Definition
A relation R on a set A is a partial order (or partial ordering) for A if
R is reflexive on A, antisymmetric and transitive. A set A with a partial
order R is called a partially ordered set, or poset.
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Ordering Relations

Typical Digraph

Observe the antisymmetry and transitivity:
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Ordering Relations

Top Example

Let X be a set and let P(X ) be its power set. If A and B are in P(X ),
i.e. A and B are subsets of X , define the relation

A R B iff A ⊂ B.

Let us check for the reflexive, antisymmetric and transitive
properties of a relation:

1 (A,A) ∈ R since A ⊂ A;

2 If (A,B) ∈ R and (B,A) ∈ R then A ⊂ B and B ⊂ A and therefore
A = B by the definition of equality of sets (same elements);

3 If (A,B) ∈ R and (B,C) ∈ R then A ⊂ C and therefore (A,C) ∈ R.
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Ordering Relations

Example: Divisors

Let M be a positive integer and let A be the set

A = {n ∈ N : n | M.}

Consider the relation D ‘divides’
For example, for M = 12, A = {1,2,3,4,6,12}. Then D consists of the
pairs (a,b) where a divides b. For example, (2,6) ∈ D but not (4,6).
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Ordering Relations

Theorem
If R is a partial order for a set A and x R x1, x1 Rx2, x2 R x3,
. . . , xn R x,

x1 → x2 → x3 → · · · → xn → x1,

then x = x1 = x2 = x3 = · · · = xn.

This means:

x → x1 → x2 → x ⇒ x → x2 → x ⇒ x = x2 ⇒ x → x1 → x

and
x → x1 → x ⇒ x = x1

Therefore x = x1 = x2.
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Ordering Relations

Proof. By induction on n.
1 For n = 1: If x R x1 and x1 R x , by antisymmetry x = x1.
2 Suppose that whenever x R x1, x1 Rx2, x2 R x3, . . . , xk R x , then

x = x1 = x2 = x3 = · · · = xk for some natural number k , and
suppose x R x1, x1 Rx2, x2 R x3, . . . , xk R xk+1, xk+1 R x . By
transitivity applied to xk R xk+1, xk+1 R x , we have xk R x . Now
we use he induction hypothesis to deduce x = x1 = x2 = · · · = xk .
Since xk = x , we have x R xk+1 and xk+1 R x , so x = xk+1.
Therefore x = x1 = x2 = x3 = · · · = xk+1.

Wolmer Vasconcelos (Set 3) Intro Math Reasoning Fall 2008 53 / 86



Ordering Relations

Digraphs
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Ordering Relations

Some Terminology

Definition
Let R be a partial ordering on a set A, and let a,b ∈ A with a 6= b.
Then a is an immediate predecessor of b if a R b and there does not
exist c ∈ A such that a 6= c, b 6= c, a R c and c R b.

Example: For X = {1,2,3,4,5}, partially order P(X ) by set inclusion
⊆. For b = {2,3,5}, there are 3 immediate predecessors: {2,3},
{3,5} and {2,5}.
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Ordering Relations

Example

Let M = {1,2,3,5,6,10,15,30} be the set of divisors of 30, and let D
be the relation “divides”.
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Ordering Relations

Example

Let A = P({1,2,3}), ordered by ⊆:
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Ordering Relations

More Terminology

Definition
Let R be a partial order for A and let B be a subset of A. Then a ∈ A is
an upper bound for B if for every b ∈ B, b R a. Also, a is called a
least upper bound (or supremum) for B if

1 a is an upper bound for B, and
2 a R x for every upper bound x for B.

Similarly, a ∈ A is an lower bound for B if for every b ∈ B, a R b. Also,
is called a greatest lower bound (or infimum) for B if

1 a is a lower bound for B, and
2 for every lower bound x for B, x R a.

In notation: sup(B) will denote the supremum of B, and inf(B) will
denote the infimum.
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Ordering Relations

Example

Examples: Subsets of R with the relation ≤:

A = [0,4): Sup(A) = 4 and Inf(A) = 0.
B = {2k : k ∈ N}: Sup(B) does not exist and Inf(B) = 2.
C = {x : x ∈ Q, x2 < 2}: Sup(C) =

√
2 and Inf(C) does not exist.

D = the set of roots of x2 − 3x + 2 = 0: ??
E = numbers in (0,1) which are not fractions (not
p/q,p 6= 0,q ∈ N): ??
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Ordering Relations

More Terminology

Definition
Let R be a partial order for a set A. Let B ⊆ A. If the greatest lower
bound for B exists and is an element of B, it is called the smallest (or
least) element of B. If the least upper bound for B is in B, it is called
the largest (or greatest) element of B.

Definition
A partial ordering R on A is called a linear order(or total order) on A if
for any two elements x and y of A, either x R y or y R x , that is

x →R y or y →R x .

Definition
Let L be a linear ordering on a set A. L is a well ordering on A if every
nonempty subset B of A contains a smallest element.
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Ordering Relations

Examples

1 WOP: The Well-Ordering Principle says that N, with the ordering
given by ≤, is a linear ordering with property above.

2 Let A be a partial ordered set, called “the alphabet.” Let W be the
set of all “words’ of length two–that is, combinations of two letters
of the alphabet. Define a relation ≤ on W as follows: for x1x2 ∈W
and y1y2 ∈W , x1x2 ≤ y1y2 iff (i) x1 ≤ x2 or (ii) x1 = x2 and
y1 ≤ y2. We claim that W is a partial ordering of W (called
lexicographic ordering, as in a dictionary).
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Ordering Relations

Example

Let A = {a,b, c}. Given an example of a relation on A that is
1 antisymmetric and symmetric

{a R a,b R b}

2 symmetric and not antisymmetric

{a R b,b R a, c R c}

3 antisymmetric, reflexive on A and not symmetric

{a R a,b R b, c R ,̧a R b}
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Ordering Relations

1 antisymmetric, not reflexive on A and not symmetric

{a R b,b R c,a R c}
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Ordering Relations

Exercise

Existence: Let S = {(x , y) ∈ R× R : x = 1− y}. Is S antisymmetric?
Need to show: If (x , y), (y , x) ∈ S then (x , x) ∈ S

(1,0) ∈ S and (0,1) ∈ S but (0,0) 6∈ S.

x = 1− y ⇒ y = 1− x therefore S is symmetric.
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Ordering Relations

Upper and Lower Bounds

• The number b is said to be an upper bound of the set A ⊂ R if

a ≤ b | ∀a ∈ A

• A number ` is said to be a lower bound of the set A ⊂ R if

a ≥ ` | ∀a ∈ A

• Consider the set A = {q ∈ Q | q2 < 2}. −2 is a lower bound of A,
while 3/2 is an upper bound. Clearly there are many other
bounds.
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Ordering Relations

Least Upper and Greatest Lower Bounds

• A number b is said to be a least upper bound of the set A ⊂ R if
b is an upper bound of A and b ≤ b′ for any other upper bound b′.
Least upper bounds are also known as the supremum of A. If
b ∈ A, it is called the maximum of A.

A = {x1 = 1, ∀n xn+1 =
xn

2
+ 1}

has 2 for supremum [needs a proof, as we only proved that 2 is an
upper bound]
• Similarly we define greatest lower bound [and of

infimum/minimum].
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Ordering Relations

Example

Define the set A = {a1,a2,a3, · · · } by the rule

a1 =
√

2, a2 =

√
2
√

2, a3 =

√
2
√

2
√

2, · · ·

Let us show that sup A = 2:

a1 =
√

2, a2 = a1
4
√

2, a3 = a2
8
√

2, · · ·

an = 21/2+1/4+···+1/2n
< 2

an = 2r , r =
1/2− 1/2n+1

1/2
= 1− 1/2n
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Ordering Relations

Axiom of Completeness

Axiom: Every set A of real numbers with an upper bound has a least
upper bound.

This is a defining property of R. A lot flows out of it. For example
consider the set A of all rational numbers x such that x2 < 2. This set
has an upper bound (in fact many). For instance, x ≤ 3. The axiom
of completeness guarantees that there is a real number α such that

α2 = 2.
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Homework #7

Outline

1 Cartesian Products and Relations

2 Equivalence Relations

3 Homework #6

4 Partitions

5 Last Class ... and Today ...

6 Ordering Relations

7 Homework #7

8 Graphs

9 Homework #8
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Homework #7

Homework #7

1 3.3: 3(a,b,c), 7(b), 9, 12
2 3.4: 2(a,b), 3(all), 9, 12, 13(b), 20
3 Let D be a positive integer and let A be the set

A = {n ∈ N : n | D.}

Prove that A is linearly ordered iff D is the power of a prime.
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Graphs

Outline

1 Cartesian Products and Relations

2 Equivalence Relations

3 Homework #6

4 Partitions

5 Last Class ... and Today ...

6 Ordering Relations

7 Homework #7

8 Graphs

9 Homework #8
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Graphs

Graphs

Definition
A graph G is a pair (V ,E), where V is a nonempty set and E is a set
of unordered pairs of distinct elements of V .
An element of V is called a vertex and an element of E is called an
edge. An edge between the vertices u and v is written uv rather than
as the set {u, v}.
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Graphs

Terminology

Definition
Let G = (V ,E) be a graph. The order of the graph G is the number of
vertices. The size of the graph G is the number of edges.
Vertices u and v are adjacent if uv ∈ E ; the edge uv is said to be
incident with u and v .
The degree of a vertex u is the number of edges incident with u.

A graph G of order n, may have no edges, all the vertices are isolated.
Such a graph is called the null graph.
A graph such that every pair of vertices are adjacent is called a
complete graph. If it has n vertices, its size is

(n
2

)
. Its notation; Kn.
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Graphs

Kn
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Graphs

Exercises

If possible, give an example of a graph

1 with order 6 and size 6

2 with order 4 and size 6

3 with order 3 and size 6

4 with order 6 and size 3
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Graphs

Properties of Graphs

Theorem
(The Handshaking Lemma) For each graph G, the sum of the
degrees of the vertices of G is even.
For every graph G the number of vertices of G having odd degree
is even.

Proof.

Each edge is incident with two vertices. Thus∑
v∈V

deg(v) = 2× (number of edges).

Let V1 be the subset of vertices of odd degree and V2 the subset of
vertices of even degree.∑

v∈V

deg(v)︸ ︷︷ ︸
even number

=
∑
v∈V1

deg(v) +
∑
v∈V2

deg(v)︸ ︷︷ ︸
even number

.
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Graphs

Therefore the term ∑
v∈V1

deg(v)

being a difference of two even numbers is even. Since each term
deg(v), v ∈ V1, is odd, we must have an even number of them for the
sum to be even. 2
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Graphs

Walks

Definition
A walk (or path) in a graph G is a finite sequence of vertices

v0, v1, v2, . . . , vm

where each vivi+1 is an edge in G. The vertex v0 is the initial vertex
and vm is the terminal vertex. The length of the walk is m, the number
of edges. If v0 = vm the walk is closed. A path in G is a walk where all
the vertices, except for possibly the initial and terminal vertices, are
distinct.
The walk v0, v1, v2, . . . , vm is said to traverse the vertices of the
sequence.
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Graphs

Theorem
Let G be a graph of order n.

1 If there is a walk originating at v and terminating at u, then there is
a path from v to u.

2 The length of a path in G that is not closed is at most n − 1. The
length of a closed path is at most n.

Proof. Let v , v1, v2, . . . ,u be a walk with u 6= v . If the walk is not a
path, some vertex vi appears twice in the sequence. Let x be the first
such vertex. Then the walk contains at least a closed walk of the form
x , vj , . . . , vm, x . Delete the vertices vj , . . . , vm, x . If the result is a path,
we are done. Otherwise another repeated vertex occurs and we repeat
the process until all duplications are deleted. The process will result in
a path.
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Graphs

Proof Cont’d

In case v = u the process produces a closed path [where v is the only
repeated vertex].
The walks that arise at the end are:

v → v1 → v2 → · · · → vm → u, v 6= u

v → v1 → v2 → · · · → vm → u, v = u

Note that the length is the number of arrows. Counting the→ gives the
assertions: at most n − 1 in the first case, and at most n in the second.
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Graphs

Reachability

Definition
Let G be a graph and u a vertex of G. The vertex v is reachable (or
accessible) from u if there is a path from u to v . The number of edges
in a path of minimum length from u to v is called the distance from u
to v , written d(u, v). We say that any vertex u is reachable from itself
and d(u,u) = 0.
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Graphs

Connected Components

Definition
Let G be a graph. If u is a vertex of G, the component containing u is
C(u) = {v ∈ V : v is reachable from u}.

Theorem
Let G be a graph with vertex set V and let R be the relation defined by
v R u if u is reachable from v. Then R is an equivalence relation on V
and the set of equivalence classes for R is {C(u) : u ∈ V}.
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Graphs

Definition
A graph G is connected iff every vertex is reachable from every other
vertex. G is disconnected if it is not connected.
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Graphs

Exercise

Give an example of a graph G with 6 vertices having
1 One component
2 two components
3 three components
4 six components
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Homework #8

Outline

1 Cartesian Products and Relations

2 Equivalence Relations

3 Homework #6

4 Partitions

5 Last Class ... and Today ...

6 Ordering Relations

7 Homework #7

8 Graphs

9 Homework #8
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Homework #8

Homework #8

1 3.5: 7, 9, 11
2 4.1: 2(a,b,c,d), 3(e), 9, 12(a,b), 16(b), 17(a)
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