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Outline

o Cartesian Products and Relations
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Cartesian Products and Relations

Two of the most important mathematical objects are relations and
functions.

They reflect special relationships between elements of a set A or of
pairs of elements of two sets A and B.
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Ordered Pair

Definition
Let A and B be sets. For a € Aand b € B, the ordered pair (a, b) is
the set

{{a}, {a b}}.

ais called the first coordinate of the pair, and b the second coordinate.

Note that (a, b) may be different from (b, a):

{{a}.{a b}} # {{b},{a b}},
if a# b.
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Cartesian Products and Relations

Definition

Let A and B be sets. The set of all ordered pairs having first coordinate
in A and second coordinate in B is called the Cartesian product of A
and B and written A x B. Thus

AxB={(ab):acA and be B}

Example: Let A= {a, b}, B={1,2,3}. Then:
AxB={(a1),(a?2),(a3),(b,1),(b,2),(b,3)}.

Theorem
If A and B are finite sets, then
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Ordered triples, quad...

Ordered triples, quadruples, n-tuples—can also be defined:
Definition
Let A Band C be sets. Forac A,b € B and ¢ € c, the ordered triple
(a, b, c) is the set
{{a}.{a b},{a b, c}}.
ais called the first coordinate of the pair, b the second coordinate, and

¢ the third coordinate.
The set of all these ordered triples is the cartesian product A x B x C.

For a finite collection Ay, Az, ..., A, we may define

Ai X Ao X -+ X Ap.
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Some Tools

Theorem

If A, B, C and D are sets, then

Q@ Ax(BUC)=(AxB)U(Ax C).

Q Ax(BNC)=(AxB)n(Ax C).
°A><(Z) 0.

Q (AxB)Nn(CxD)=(AnC) x (Bn D).
Q@ (AxB)U(CxD)C(AUC) x (BuUD).
Q A )ﬂ(BxA) (AN B) x (BN A).
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Cartesian Products and Relations

Proof. To prove (1), Ax (BUC)=(Ax B)U (A x C),
@ The ordered pair (x,y) € Ax (BUC)

Q iffxeAandye BuC

Q iffxeAand (y € Bory e C)

Q iff(xeAandy e B)or(xc€ Aand y € C)

Q iff (x,y)e AxBor(x,y)e AxC

Q iff (x,y) = (Ax B)U(Ax C),

@ Therefore, Ax (BUC) = (Ax B)U(Ax C).
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Relations

Definition
Let A and B be sets. R is a relation from A to B iff R is a subset of
A x B,

Rc AxB.

If (a,b) € R we write a R b and say that a is R-related to b. If
(a,b) ¢ R, we write a AR b. Arelation R from Ato Ais called a
relation of A: R C A x A.

There are many notations for relations: familiar ones are a~ b, a > b,
al b, etc.

Example: /, (identity of A is the relation a ~ b iff a = b. Another:
aRbforall abe A
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Graphical Representation
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Cartesian Products and Relations

Example

Let A={1,2.3,4) and B = [—1, 1, 2.4, 5). We first describe a rel.-

tion R from A o B with an explicit list of pairs

R={(1.4), (2, 5), (2, =13, (4. 1)}

In table form, we would write R as

1 4
2 5
2 -1
4 1
The same relation & may be written as R = [(x, v e A x B:|x —y| =3}. Tz
graph of & is shown in Figure 3.1
B
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Figure 3.1
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Cartesian Products and Relations

Definition
The domain of a relation R from A to B is the set

Dom(R)= {x € A : there exists y € B such that x R y}.

The range of the relation R is the set

Rng(R)= {y € B : there exists x € Asuch that x R y}.
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Example

) _ x? i
LetS=q(x,¥) € R x K: —— + = =< 1 }. The graph of §is given =
Figure 3.3. 324 o4
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e ——— |
Dom(S) = [-18,18] |
Figure 3.3
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From Relations to Graphs
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Plenty of Relations

Question: If Ais a set with m elements, and B is another set with n
elements, how many relations are there from Ato B?

Answer: A lot: Since A x B has mn elements, and relations are
subsets of A x B, each relation is an element of the power set

P(A x B) of xB. Thus there are 2™ relations. Thus, if A = {a, b}, the
number of relations of A (that is, from Ato A) is 2(2)(2) = 24 — 16.
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New Relations from Old

Definition
If Ris a relation from A to B, the inverse of R is

R ={(y.x): (x,y) € R}.

The digraph of the inverse of a relation on a set ditters trom the digraph ot the
relation only in that the directions of the arrows are reversed. Figure 3.8 shows the
digraphs of R and R~', where R is the relation € on the set {&, {1}, {3}. {1.2}
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Cartesian Products and Relations

Theorem

Let R be a relation from A to B.
@ R is arelation from B to A.
@ Dom(R~") = Rng(R).
© Rng(R~") = Dom(R).

Proof.

© Suppose (x,y) € R~'. Then (y, x) € R. Since R is a relation from
Ato B,RC Ax B. Thus y € Aand x € B. Therefore
(v,x) € B x A, which proves R~' C B x A.

@ y cDom(R") iff there exists y € A such that (x, y) € R iff
x €Rng(R).

© Same argument as (2).
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New Relations from Old

Definition
Let R be a relation from A to B, and let S be a relation from B to C. the
composite of Rand Sis

So R = {(a,c) : there exists b € B such that (a,b) € Rand (b, c) € S}.
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Confusing Diagram...

Let A=1{1,2,3,4.5), and B={p.g.r.5.t}, and C = {x, y, 2, w}.
Let R be the relation from A to B:

R=1{(1,p)(l,q)(2,9)(3 r) (45}
and § the relation from B o C:

§ = {(p. x). (g. x). (g. y). (5. 2), (£, 2)}.

A B (
S e
e ———— -
22— =
I
I ———
4- S P
P W
5 |
Figure 3.10
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Cartesian Products and Relations

Theorem

Suppose A, B, C and D are sets. Let R be a relation from Ato B, S a
relation from B to C, and T a relation from C to D:

Al B S ¢c- LD

Q (RY'=R

Q To(SoR)=(ToS)oR.
©Q lsoR=RandRoly=R.
Q (SoR'"=R1085".

v

Proof of (2): Note both T o (So R) and (T o S) o R are relations from A
to D, that is they are subsets of A x D.
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Cartesian Products and Relations

Toprove To(SoR)=(ToS)oR,letaTo(SoR)d. Notethat So R
is a relation from A to C.

@ Thusthereiscec CsuchthataSoRcandc T d.

© Hence thereis b € Bsuchthat b S c.

© Therefore b To S d.

Q SinceaRband b To Sd,itfollows thata (T o S)o R d.

© This shows that To (So R) C (T o S) o R. The reverse inequality
has a similar proof.
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Cartesian Products and Relations

Last Class ... and Today ...

Relation

A relation from a set A to a set B is a subset

RcAxB.

If (a, b) € R, we also write

aRb aflb a—b

The two extreme examples are: R = {(a, a) : a € A},
R ={(a,b): a, b € A}. The first is the identity of A.
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4 Examples

Let N be the set of natural numbers. Define

a—1 b adivides b
a—»b a=b+1
a—3 b adoes not divide b

a—4 b aand b are prime numbers and a = b + 2

bach conjecture
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Outline

e Equivalence Relations
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Equivalence Relations

Definition
Let Abe a set and R a relation on A.
@ Risreflexiveiffforall x € A, x R x.
@ Rissymmetriciffforall x c Aandy € A, it x Ry,theny R x.

@ Ris iff forall x,yand zin A,if x Ry and y R z, then
xRz
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Example

Let R be the set of all (x, y) € N x N such that x + y is divisible by 3. Is
this relation symmetric? reflexive? transitive?

Q If(x,y) € R x+y =23m, forsome m. Then y + x = 3m also, so
(¥, x) € R: Symmetric

@ (1,1) ¢ R: Not Reflexive

Q (1,2),(2,1) € Rbut (1,1) ¢ R: Not Transitive
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Example

Let R be the set of all (x, y) € N x N such that x + y? is divisible by 2.
Is this relation symmetric? reflexive? transitive?

Q If(x,y) € R, x + y? =2m, for some m, that is x + y? is even. If x
is even then y2 must be even so y must be even, while if x is odd
then both y? and y must be odd. Then y + x2 = 2n also, so
(¥, x) € R: Symmetric

@ (x,x) € Rsince x + x2 = x(x + 1) is even: Reflexive

Q If(x,y),(y,2z) € Rwe have: If (x,y) € R, if x is even (odd), y is
also even (odd), so if (y,z) € R, x is also even (odd).Thus x, z are
both even or both odd, so (x, z) € R: Transitive
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Equivalence Relation

Definition

A relation R on a set Ais an equivalence relation on A iff R is
reflexive, symmetric, and transitive.
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Equivalence Relations

Let R be a relation on the set A.
@ R Reflexive: a — avVac A
@ RSymmetric:a— b=b— a
@ R Transitive: a—bandb—c=a—c¢
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Exercise

Problem: If A= {a, b}, we saw that there are 16 relations of A. How
many of these are equivalence relations? List them all. What if

A = {a, b, c}, a set with 2° = 512 relations, how many of these are
equivalence relations?

One Volunteer:
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Equivalence Class

Definition

Let R be an equivalence relation on the set A. For x € A, the

equivalence class of x determined by R is the set
x/R={yeA: xRy}

This is read “the class of x modulo R.” The set of all equivalence classes
of R is called Amodulo R and denoted A/R = {x/R : x € A}.

Example: Two integers have the same parity if they are both even or
both odd. Let

R ={(x,y) € Z x Z : x and y have the same parity.} R is an equivalence
relation with two equivalence classes: the even integers E and the odd
integers D. Z/R = {E, D}.
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Big Example

Let m be a fixed, nonzero integer. Let =, be the relation on Z,
X =m y ifft mdivides x — y.

This is also written x = y (mod m) or even x = y (mod m).

It is easy to see that Z/ =,= {E, D}. This set is also denoted by Z,
and called the set of integers modulo 2. For m = 3, =3 is also an
equivalence relation and there are three distinct equivalence classes.

Theorem

The relation =p, is an equivalence relation on the integers. The set of
equivalence relations is called 7., and has m distinct elements

0,1,2,....,m—1.

Wolmer Vasconcelos (Set 3) Intro Math Reasoning Fall 2008 32/86



Proof

We first prove that =, is an equivalence relation. Observe that x =, y
means that x — y = am, for some integer a.

@ reflexive: x=p x:x—x=0-m.

@ symmetric: x =p, y: x — y = a- mfor some a € Z. Thus
y — x = (—a)m, therefore y =, x.

O fx=pnyandy=mnz,x—y=amandy—z=bmfora
and bin Z. Then

X—z=X—-y)+(y—2z)=am+bm=(a+ b)m.

Therefore x =, z.
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Equivalence Relations

Now we determine the equivalence classes of =,.

@ The numbers 0,1,2,..., m— 1 lie in different equivalence classes:
For any pair of them, / and j, we cannot have i =, j since i —
cannot be divisible by m.

@ If x is an integer, by the Euclidean algorithm,
x=qgm+r, 0<r<m

Thus, x =, r. Therefore r € Z/ =5, (usually denoted by 7).
© Therefore

Zm—=1{0,7,2,..., m—1}.
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Equivalence Relations

Bonus

The Z,, the set made up by two elements {0, 1} (or (even, odd))with
addition defined by the table

+ (01
0 1 1+1=0!
111]0
and multiplication by
x 01
0
1101
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Equivalence Relations

More Bonus

The Z3, the set made up by three elements {0, 1,2} (or more simply,
{0, 1,2} )has similar properties. For instance, with addition defined by

the table

2

N = O+

and multiplication by

N = OO

1
3
2
0

— ol

N = O X

Wolmer Vasconcelos (Set 3)

[efelielie]

N = O] —

=N O N

142=0

2x2=1!

Intro Math Reasoning

Fall 2008

36 /86



Exercise

Let A be the set of all vectors of the plane. We look at A as the set of
all pairs (a, b) of real numbers. The usual notation for A is R?.
Define the following relation of A:

(a,b) ~ (c,d) (a,b)—(c,d)=(r,r)forsomer cR

This means that the two vectors (a, b) and (c, d) differ by a vector
along the diagonal of the first quadrant.

@ Prove that ~ is an equivalence relation of A.

© Prove that every equivalence class contains exactly a vertical
vector (that is, a vector of the form (0, ¢)).

Wolmer Vasconcelos (Set 3) Intro Math Reasoning Fall 2008 37/86



Outline

e Homework #6
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Homework #6

@ 3.1: 6(g), 8(d), 9(a), 12, 13(c), 16
Q 3.2: 2(f), 4(b), 5(b), 8, 10(a), 13

© How many equivalence relations are there on the set
{a, b, c,d, e}? Explain [This is a typical exam question]
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Outline

0 Partitions
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Partitions

Definition

Let A be a nonempty set. A partition of Ais a set A of subsets of A
such that

Q If X € A, then X # 0.

QliXeAdandYe A X# Y, thenXNY =0.

o UXeAX =A

How do partitions arise? It will be a pretty straight answer.
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Example

Let A= {a, b, c}—the following are partitions of A:

e {{ab,c}}

o {{a},{b},{c}},

o {{a},{b,c}},

o {{b}.{a c}}

o {{c},{a b}}
Are they all?
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Partitions versus Equivalence Classes

Theorem

Let B be a partition of the nonempty set A. For x and y in A, define
x Q y iff there exists C € B suchthatx € C andy € C. Then

@ Q is an equivalence relation on A.

Q A/Q=5.

Example: Define the following sets of Z:

Ay = {3k:keZ}=1{...,—6,-3,0,3,6,...}
Al = {8k+1:keZ})={..,-5-21,47..}
Ao = {8k+2:keZ}={.., —4,-1,258,.. .}

The partition defines the relation we denoted =3.
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How Partitions arise

Theorem
Let R be an equivalence relation on a nonempty set A. Then
@ Forallxe A, x/RC Aandx € x/R. (Thus x/R # 0.
Q Uycax/R=A
Q xRyiffx)R=y/R.
Q x Ryiffx/Rny/R=1.
Thus, the set {x/R : x € A} of equivalence classes is a partition of A.

In words: An equivalence relation on the set A gives rise to a partition
of A and vice-versa.
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Outline

e Last Class ... and Today ...
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Last Class ... and Today ...

e Relations

e Equivalence Relation

e Partitions and Equivalent Classes
o Order Relations
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Outline

e Ordering Relations
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Ordering Relations

Definition
A relation R on a set Ais antisymmetric if, forall x,y € A, if x R y and
y Rx,thenx =y:

X—>y—X =X=Y.

Definition

A relation R on a set A is a partial order (or partial ordering) for A if
R is reflexive on A, antisymmetric and transitive. A set A with a partial
order R is called a partially ordered set, or poset.
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Typical Digraph

Observe the antisymmetry and transitivity:

Figure 3.14
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Top Example

Let X be a set and let P(X) be its power set. If Aand B are in P(X),
i.e. Aand B are subsets of X, define the relation

A R B iff AcB.

Let us check for the reflexive, antisymmetric and transitive
properties of a relation:

Q@ (A A) € Rsince AC A;

@ If (A,B) € Rand (B, A) € Rthen Ac Band B C Aand therefore
A = B by the definition of equality of sets (same elements);

© If (A,B) € Rand (B, C) € Rthen A c C and therefore (A, C) € R.
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Example: Divisors

Let M be a positive integer and let A be the set
A={neN:n| M.}

Consider the relation D ‘divides’
For example, for M =12, A= {1,2,3,4,6,12}. Then D consists of the
pairs (a, b) where a divides b. For example, (2,6) € D but not (4, 6).
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Ordering Relations

Theorem
If R is a partial order for a set A and x R x1, x1 RX2, X2 R X3,
..., Xnp R X,
X{ — Xo — Xg — -+ — Xp — Xy,
This means:

X=X =>Xo = X=X—=>Xo > X=X=Xo=>X—>X1 =X

and
X—Xg = X=> X=X

Therefore x = xy = xo.
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Ordering Relations

Proof. By induction on n.

@ Forn=1:1f x R x; and x; R x, by antisymmetry x = x;.

© Suppose that whenever x R x1, x; BRxo, Xo R X3, ..., Xx R x, then
X =X = Xo = X3 = --- = X for some natural number k, and
suppose x R x1, x1 Rx2, Xo R X3, ..., Xk R Xk+1, Xk+1 A x. By
transitivity applied to xx R Xx11, Xk+1 R X, we have xx R x. Now
we use he induction hypothesis to deduce x = x; = Xo = - - - = X.
Since xx = x, we have x R X1 and Xx11 R X, SO X = Xk41.
Therefore x = x1 = Xp = X3 = -+ - = Xk 1.
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Digraphs
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Some Terminology

Definition

Let R be a partial ordering on a set A, and let a, b € A with a # b.
Then ais an immediate predecessor of b if a R b and there does not
existce Asuchthata#c¢,b#c,aRcandc R b.

Example: For X = {1,2,3, 4,5}, partially order P(X) by set inclusion
C. For b ={2,83,5}, there are 3 immediate predecessors: {2, 3},
{3,5} and {2,5}.
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Example

Let M ={1,2,3,5,6,10,15,30} be the set of divisors of 30, and let D

be the relation “divides”.

e

o =\
“}><j)
(3} 5)
\:[/ =

ot

(b)

Figure 3.15
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Example

Let A="P({1,2,3}), ordered by C:

Figure 3.16
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More Terminology

Definition

Let R be a partial order for A and let B be a subset of A. Thena€ Ais
an upper bound for B if for every b € B, b R a. Also, ais called a
least upper bound (or supremum) for B if

@ ais an upper bound for B, and
© a R x for every upper bound x for B.

Similarly, a € Ais an lower bound for B if for every b € B, a R b. Also,
is called a greatest lower bound (or infimum) for B if

@ ais alower bound for B, and
@ for every lower bound x for B, x R a.

In notation: sup(B) will denote the supremum of B, and inf(B) will
denote the infimum.
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____________ Ordering Relations |
Example

Examples: Subsets of R with the relation <:
@ A=[0,4): Sup(A) =4 and Inf(A) = 0.
@ B = {2%: k ¢ N}: Sup(B) does not exist and Inf(B) = 2.
@ C={x:xeQ, x> <2}: Sup(C) = v2 and Inf(C) does not exist.
@ D = the set of roots of x2 — 3x +2 = 0: ??

@ E = numbers in (0, 1) which are not fractions (not
p/q,p #0,q € N): ??
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More Terminology

Definition

Let R be a partial order for a set A. Let B C A. If the greatest lower
bound for B exists and is an element of B, it is called the smallest (or
least) element of B. If the least upper bound for Bis in B, it is called
the largest (or greatest) element of B.

Definition
A partial ordering R on A is called a linear order(or total order) on A if
for any two elements x and y of A, either x Ry or y R x, that is

X—RYy or y—pg X

Definition
Let L be a linear ordering on a set A. L is a well ordering on A if every
nonempty subset B of A contains a smallest element.
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Examples

@ WOP: The Well-Ordering Principle says that N, with the ordering
given by <, is a linear ordering with property above.

© Let Abe a partial ordered set, called “the alphabet.” Let W be the
set of all “words’ of length two—that is, combinations of two letters
of the alphabet. Define a relation < on W as follows: for x;xo € W
and V1Yo € w, X1Xo < Vi)Yo iff (I) X1 < Xo OF (II) X1 = Xo and
y1 < y». We claim that W is a partial ordering of W (called
lexicographic ordering, as in a dictionary).
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Example

Let A= {a, b, c}. Given an example of a relation on A that is
@ antisymmetric and symmetric

{aRa,bRb}

© symmetric and not antisymmetric

{aRb,bRa,cRc}

© antisymmetric, reflexive on A and not symmetric

{aRabRb,cR,aRb}

Wolmer Vasconcelos (Set 3) Intro Math Reasoning Fall 2008

62 /86



Ordering Relations

@ antisymmetric, not reflexive on A and not symmetric

{aRb,bRc,aRc}
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Exercise

Existence: Let S= {(x,y) e RxR: x =1 — y}. Is S antisymmetric?
Need to show: If (x, y),(y,x) € Sthen (x,x) € S

(1,0) € Sand (0,1) € Sbut (0,0) ¢ S.

x=1—-y=y=1- xtherefore Sis symmetric.
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Upper and Lower Bounds

e The number b is said to be an upper bound of the set A C R if

a<b|VacA

e A number / is said to be a lower bound of the set A C R if

a>/l|vVaeA

e Considerthe set A= {qc Q| g? < 2}. —2is a lower bound of A,
while 3/2 is an upper bound. Clearly there are many other
bounds.
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Least Upper and Greatest Lower Bounds

e A number b is said to be a least upper bound of the set A C R if
b is an upper bound of A and b < b’ for any other upper bound b'.
Least upper bounds are also known as the supremum of A. If
b € A, it is called the maximum of A.

Xn

A:{X~| =1,Vn Xny1 = 5

+1}

has 2 for supremum [needs a proof, as we only proved that 2 is an
upper bound]

e Similarly we define greatest lower bound [and of
infimum/minimum].
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Example

Define the set A = {ay, ap, as, - - - } by the rule

Let us show that supA = 2:

312\/57 32:31\4/57 33282\8/5,"'

a, — 21/2H1/4++1/2" _ o

_1/2—1/2nt

_ r
an =2, 172

—1-1/2"
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Axiom of Completeness

Axiom: Every set A of real numbers with an upper bound has a least
upper bound.

This is a defining property of R. A lot flows out of it. For example

consider the set A of all rational numbers x such that x*> < 2. This set
has an upper bound (in fact many). For instance, x < 3. The axiom
of completeness guarantees that there is a real number « such that

o = 2.

Wolmer Vasconcelos (Set 3) Intro Math Reasoning Fall 2008 68 /86



Outline

0 Homework #7
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Homework #7

@ 3.3: 3(a,b,c), 7(b), 9, 12
©Q 3.4: 2(a,b), 3(all), 9, 12, 13(b), 20
© Let D be a positive integer and let A be the set

A={neN:n|D}

Prove that A is linearly ordered iff D is the power of a prime.
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Outline

e Graphs
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Graphs

Definition
A graph Gis a pair (V, E), where V is a nonempty set and E is a set

of unordered pairs of distinct elements of V.
An element of V is called a vertex and an element of E is called an
edge. An edge between the vertices u and v is written uv rather than

as the set {u, v}.

Wolmer Vasconcelos (Set 3) Intro Math Reasoning Fall 2008 72/86



Terminology

Definition

Let G = (V, E) be a graph. The order of the graph G is the number of
vertices. The size of the graph G is the number of edges.

Vertices u and v are adjacent if uv € E; the edge uv is said to be
incident with v and v.

The degree of a vertex u is the number of edges incident with v.

A graph G of order n, may have no edges, all the vertices are isolated.
Such a graph is called the null graph.

A graph such that every pair of vertices are adjacent is called a
complete graph. If it has n vertices, its size is (3). Its notation; Kj.
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Exercises

If possible, give an example of a graph
@ with order 6 and size 6

@ with order 4 and size 6
© with order 3 and size 6
© with order 6 and size 3
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Properties of Graphs

Theorem

@ (The Handshaking Lemma) For each graph G, the sum of the
degrees of the vertices of G is even.

@ For every graph G the number of vertices of G having odd degree
is even.

Proof.
@ Each edge is incident with two vertices. Thus

Z deg(v) = 2 x (number of edges).
veV

@ Let Vi be the subset of vertices of odd degree and V> the subset of
vertices of even degree.

> deg(v) = > deg(v)+ ) deg(v).
veV veV veV,

even number even number
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Therefore the term

> deg(v)

veV,

being a difference of two even numbers is even. Since each term
deg(v), v € V4, is odd, we must have an even number of them for the
sum to be even. a
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Walks

Definition
A walk (or path) in a graph G is a finite sequence of vertices

V07V1,V2a---an

where each v;v;, 1 is an edge in G. The vertex v, is the initial vertex
and vy, is the terminal vertex. The length of the walk is m, the number
of edges. If vy = v, the walk is closed. A path in G is a walk where all
the vertices, except for possibly the initial and terminal vertices, are
distinct.

The walk vy, vq, Vo, ..., vy is said to traverse the vertices of the
sequence.
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Theorem
Let G be a graph of order n.
@ Ifthere is a walk originating at v and terminating at u, then there is
a path from v to u.

© The length of a path in G that is not closed is at mostn — 1. The
length of a closed path is at most n.

Proof. Let v, vy, vo,..., u be a walk with u # v. If the walk is not a
path, some vertex v; appears twice in the sequence. Let x be the first
such vertex. Then the walk contains at least a closed walk of the form
X,Vj,...,Vm, X. Delete the vertices v;,..., vy, x. If the result is a path,
we are done. Otherwise another repeated vertex occurs and we repeat
the process until all duplications are deleted. The process will result in
a path.
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Proof Cont'd

In case v = u the process produces a closed path [where v is the only
repeated vertex].
The walks that arise at the end are:

VoV —V— = Vyp— U, V#U

V—oVi—>V—---—Vyp—Uu, V=1U

Note that the length is the number of arrows. Counting the — gives the
assertions: at most n — 1 in the first case, and at most n in the second.
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Reachability

Definition

Let G be a graph and u a vertex of G. The vertex v is reachable (or
accessible) from u if there is a path from u to v. The number of edges
in a path of minimum length from u to v is called the distance from u
to v, written d(u, v). We say that any vertex u is reachable from itself
and d(u,u) = 0.
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Connected Components

Definition
Let G be a graph. If u is a vertex of G, the component containing v is
C(u) = {v € V : visreachable from u}.

Theorem

Let G be a graph with vertex set V and let R be the relation defined by
v R u if u is reachable from v. Then R is an equivalence relation on V
and the set of equivalence classes for R is {C(u) : u € V}.
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Definition
A graph G is connected iff every vertex is reachable from every other
vertex. G is disconnected if it is not connected.
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Exercise

Give an example of a graph G with 6 vertices having
@ One component
@ two components
© three components
© six components

Wolmer Vasconcelos (Set 3) Intro Math Reasoning Fall 2008 84 /86



Outline

e Homework #8
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Homework #8

@ 35:7,9, 11
Q 4.1:2(a,b,c,d), 3(e), 9, 12(a,b), 16(b), 17(a)
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