
Math 300–03

Wolmer V. Vasconcelos

Set 2

Fall 2008

Wolmer Vasconcelos (Set 2) Intro Math Reasoning Fall 2008 1 / 102



Basics of Set Theory

Outline

1 Basics of Set Theory

2 Set Operations

3 Set of Sets

4 Homework #3

5 Mathematical Induction

6 Homework #4

7 Equivalent Forms of Induction

8 Last Class...

9 Art of Counting

10 Homework #5

Wolmer Vasconcelos (Set 2) Intro Math Reasoning Fall 2008 2 / 102



Basics of Set Theory

Defining Sets

A set is a specified collection of objects. The objects of a given set are
called its elements (or members).

Notation: x ∈ A

Description: {x : P(x)}
where P(x) is an open sentence description of the property that
defines the set.
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Basics of Set Theory

Major Examples

Class The students in this class.
Natural numbers N = {1,2,3, . . . , }
Integers Z = {0,±1,±2,±3, . . . , }
Rational numbers Q = {p/q : p,q ∈ Z,q 6= 0}
Real numbers R
(a,b) = {x : x ∈ R and a < x < b} open interval from a to b
[a,b] = {x : x ∈ R and a ≤ x ≤ b} closed interval from a to b
[0,∞) = {x : x ∈ R x ≥ 0}
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Basics of Set Theory

The Empty Set

Definition
Let ∅ = {x : x 6= x}. Then ∅ is a set with no elements and it is called
the empty set.
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Basics of Set Theory

Subsets

Definition
Let A and B be sets. We say that A is a subset of B iff every element of
A is an element of B. Written:

A ⊆ B ⇔ (∀x)(x ∈ A⇒ x ∈ B).

DIRECT PROOF OF A ⊆ B
Let x be any object.
Suppose x ∈ A.
...
Thus x ∈ B.
Therefore A ⊆ B.
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Basics of Set Theory

Exercises

Theorem
For any set A,

1 ∅ ⊆ A.
2 A ⊆ A.

Proof.
1 Let A be any set. Let x be any object. We must show

x ∈ ∅ ⇒ x ∈ A. Since the antecedent is false, then sentence
x ∈ ∅ ⇒ x ∈ A is true. Thus ∅ ⊆ A.

2 Let A be any set. Let x be any object. We must show
x ∈ A⇒ x ∈ A. Here we use the tautology P ⇒ P. Therefore
(∀x)(x ∈ A⇒ x ∈ A), and so A ⊆ A.

Wolmer Vasconcelos (Set 2) Intro Math Reasoning Fall 2008 7 / 102



Basics of Set Theory

Theorem
If A and B are subsets with no elements, then A = B.

Proof. Since A has no elements, the sentence (∀x)(x ∈ A⇒ x ∈ B) is
true. Therefore, A ⊆ B. Similarly, (∀x)(x ∈ B ⇒ x ∈ A) is true. Thus,
B ⊆ A. By definition of equality of sets, A = B. 2
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Basics of Set Theory

Power Set

Definition
Let A be a set. The power set of A is the set P(A) whose elements
are the subsets of A is denoted P(A). Thus

P(A) = {B : B ⊆ A}.

Example: A = {a,b, c}

P(A) = {∅, {a}, {b}, {c}, {a,b}, {a, c}, {b, c},A}.

Achtung: The power set of ∅ is not empty:

P(∅) = {∅}
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Basics of Set Theory

How big is the power set of the set Class?

Wolmer Vasconcelos (Set 2) Intro Math Reasoning Fall 2008 10 / 102



Basics of Set Theory

Theorem
If A is a set with n elements, then P(A) has 2n elements.

Proof. If A is the empty set, that is A has 0 elements, then P(∅) = {∅},
which has 1 element: 1 = 20.

Suppose A has n elements, n ≥ 1. List the elements of A

x1, x2, x3, . . . , xn.

A subset B of A is formed by going through the list and selecting/or not
selecting each element to place in B. Thus, to form ∅ pick none, to
form A pick all. This gives rise to

2 · 2 · 2 · · · 2 = 2n

possibilities. Thus the number of subsets of A of P(A) is 2n.
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Basics of Set Theory

Element-chasing proof

Theorem
Let A and B be sets. Then A ⊆ B iff P(A) ⊆ P(B).

Proof. We first prove that A ⊆ B ⇒ P(A) ⊆ P(B).

1 Suppose X ⊆ A.
2 Since A ⊆ B, we have X ⊆ B.
3 Thus X ∈ P(B).

We must prove that P(A) ⊆ P(B)⇒ A ⊆ B.
1 Assume that P(A) ⊆ P(B).
2 We have that A ⊆ A. Therefore A ∈ P(A).
3 Thus A ∈ P(B). Therefore A ⊆ B.
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Basics of Set Theory

Example

Suppose that

X = {x : x ∈ R x is a solution of x2 − 7x + 12 = 0}
Y = {3,4}

Prove that X = Y
1 For x = 3 or x = 4, we verify that x2 − 7x + 12 = 0, therefore

Y ⊆ X .
2 To prove X ⊆ Y , we must determine more explicitly the elements

of X by solving the quadratic

7±
√

49− 48
2

=
7± 1

2
= {3,4}
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Basics of Set Theory

Almost same Example

Suppose that

X = {x : x ∈ R x is a solution of x3 − 6x2 + 11x − 6 = 0}
Y = {1,2,3}

How do we prove that X = Y?
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Basics of Set Theory

Russell paradox

A set B is called ordinary if B /∈ B. Otherwise the set B is called
extraordinary. Example: The set of all abstract ideas.

Let X = {x : x is an ordinary set}. What is X , an ordinary or an
extraordinary set?

What does this teach us? That you cannot go around campus defining
all manners of sets!
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Set Operations

Binary Operations on Sets

Forming sets from other sets. Basic:

Definition
Let A and B be sets.

The union of A and B is the set A ∪ B = {x : x ∈ A or x ∈ B}.
The intersection of A and B is the set
A ∩ B = {x : x ∈ A and x ∈ B}.
The difference of A and B is the set
A \ B = {x : x ∈ A and x /∈ B}.
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Set Operations

Definition
Two sets A and B are disjoint if A ∩ B = ∅.

Definition
If U is the universe and B ⊆ U, then we define the complement of B
to be the set B̃ = U \ B.
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Set Operations

Venn Diagrams
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Set Operations

Venn Diagram of Set Operations
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Set Operations

A proof by volunteers

Theorem
Let A,B and C be three sets. Then

1

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C).

2

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).

This says that ∪ distributes over ∩ and that ∩ distributes over ∪.
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Set Operations

Proof of (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

We will show that the LHS (left hand side) is contained in the RHS, and
conversely.

1 Let x ∈ (A ∪ B) ∩ C
2 Then x ∈ (A ∪ B) ∧ x ∈ C
3 Therefore (x ∈ A) ∧ (x ∈ C) OR (x ∈ B) ∧ (x ∈ C)

4 Then x ∈ ((A ∩ C) ∪ (B ∩ C)), which proves the forward
containemnt

5 To prove the reverse containemnt, we read the list of equivalences
backwards.
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Set Operations

De Morgan’s Laws

Theorem
Let U be the universe, and let A and B be subsets of U. Then

1 Ã ∪ B = Ã ∩ B̃.
2 Ã ∩ B = Ã ∪ B̃.

Proof. of (1):
1 The object x is a member of Ã ∪ B
2 iff x is not a member of A ∪ B
3 iff it is not the case that x ∈ A or x ∈ B
4 iff x /∈ A and x /∈ B
5 iff x ∈ Ã and x ∈ B̃
6 iff x ∈ Ã ∩ B̃
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Set Operations

Symmetric difference

Definition
Let A and B be sets. The symmetric difference of A and B is the set

A∆B = (A \ B) ∪ (B \ A).

Exercise: Let A,B and C be sets of the universe U. Show that

1 B∆C = (B ∪ C) \ (B ∩ C).
2 A ∩ (B∆C) = (A ∩ B)∆(A ∩ C).
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Set of Sets

Set of Sets

Definition
A set of sets is usually called a family or collection of sets. Let A be a
family of sets of some universe.

1 The union over A is⋃
A∈A

A = {x : x ∈ A for some set A ∈ A}.

2 The intersection over A is⋂
A∈A

A = {x : x ∈ A for every set A ∈ A}.
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Set of Sets

Definition
Let ∆ be a nonempty set such that for every α ∈ ∆ there is a
corresponding set Aα. The family {Aα : α ∈ ∆} is an indexed family
of sets. The set ∆ is the indexing set and each α ∈ ∆ is an index.

Theorem
Let A = {Aα : α ∈ ∆} be an indexed collection of sets. Then

1 ⋂̃
α∈∆

Aα =
⋃

α∈∆

Ãα.

2 ⋃̃
α∈∆

Aα =
⋂

α∈∆

Ãα.
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Set of Sets

Definition
An indexed family A = {Aα : α ∈ ∆} is pairwise disjoint iff for all α
and β in ∆, if Aα 6= Aβ, then Aα ∩ Aβ = ∅.
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Homework #3

Homework #3

1 1.5: 3(d), 6(d), 7(b), 11
2 1.6: 1(e), 2(d), 5(a), 7(e,f), 8(g)
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Mathematical Induction

Peano and Mathematical Induction

http://upload.wikimedia.org/wikipedia/commons/3/3a/Giuseppe_Peano.jpg

http://upload.wikimedia.org/wikipedia/commons/3/3a/Giuseppe_Peano.jpg7/25/2008 2:45:16 PM
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Mathematical Induction

Induction

The set N = {1,2,3, . . .} of natural numbers arises logically from the
following construction of Peano.

Z and Peano’s Axioms

• N contains a particular element 1.
• Successor function: There is an injective [one-one] function
σ : N −→ N, for each n ∈ N, σ(n) 6= 1. [Another notation:
σ(n) = n′]
• Induction axiom: Suppose that S ⊂ N satisfies

1 1 ∈ S;
2 if n ∈ S then σ(n) ∈ S. Then S = N.

The second axiom means 3 things [there are 5 axioms in all]: (1) every
natural number has a successor; (2) no two natural numbers have the
same successor; (3) 1 is not the successor of any natural number.
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Mathematical Induction

Defining Operations + and ×

Operations

•Addition:
m + 1 = m′, m + n′ = (m + n)′

•Multiplication:

m · 1 = m, m · n′ = m · n + m
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Mathematical Induction

With these operations, N satisfies:
Associativity properties: For all x , y and z in N,

x + (y + z) = (x + y) + z.
x(yz) = (xy)z.

Commutativity properties: For all x and y in N,

x + y = y + x .
xy = yx .

Distributivity properties: For all x , y and z in N,

x(y + z) = xy + xz.
(y + z)x = yx + zx .
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Mathematical Induction

Order properties: For all x , y and z in N, x < y if there is w ∈ N
such that x + w = y . Several properties arise: e.g. If x < y then
∀z ∈ N x + z < y + z.
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Mathematical Induction

N can extended by 0 and ‘negatives’: Z. Operations also. Then all the
ordinary properties of addition and multiplication are verified:

Let us illustrate with:

Proof of the associative law of addition for N:

(a + b) + n = a + (b + n) ∀a,b,n ∈ N

From the definitions check n = 1:

(a + b) + 1 = (a + b)′ = a + b′ = a + (b + 1)

Wolmer Vasconcelos (Set 2) Intro Math Reasoning Fall 2008 37 / 102



Mathematical Induction

Assume axiom holds for n and let us check for n′ (induction
hypothesis):

(a + b) + n′ = (a + b) + (n + 1) (definition)

= ((a + b) + n) + 1 (case n = 1)

= (a + (b + n)) + 1 (ind. hypothesis)

= a + ((b + n) + 1) (case n = 1)

= a + (b + (n + 1)) (case n = 1)

= a + (b + n′) (definition)
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Mathematical Induction

Principle of Mathematical Induction

Let us state Peano’s 5th Axiom again:

Definition (PMI)
If S is a subset of N and

1 1 ∈ S,
2 for all n ∈ N, if n ∈ S, then n + 1 ∈ S,

then S = N.

A set with Property (2) is called an inductive set. Examples, besides
N are ∅, S = {x : x ∈ N, x ≥ 10}.N is the only inductive set containing
1: This is PMI.

The PMI is used to define mathematical objects and in proofs galore.
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Mathematical Induction

We are discussing the Principle of Mathematical Induction (PMI for
short). It is a mechanism to study (i.e. prove) certain open sentences
P(n) that depend on n ∈ N when we seek to verify that it is true for all
values.

The method is rooted in the following property of the natural numbers
N:

If S is a subset of N and
1 1 ∈ S,
2 for all n ∈ N, if n ∈ S, then n + 1 ∈ S,

then S = N.
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Mathematical Induction

Verifying P(n)

To verify whether S = {n : P(n)} is equal to N, we follow the template:

1 (Base step) P(1) is true;
2 (Inductive step) If for some n, P(n) is true then P(n + 1) is also

true.

PMI guarantees that S = N.
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Mathematical Induction

Example

Exercise: Prove using the PMI that for each n ∈ N, the sum of the first
n odd numbers satisfies

1 + 3 + 5 + · · ·+ (2n − 1) = n2.

1 Let S be he set of all natural numbers for which this statement is
true.

2 1 ∈ S, as = 12.
3 Let n ∈ S, that is 1 + 3 + 5 + · · ·+ (2n − 1) = n2. We are going to

show that n + 1 ∈ S.
4 The sum of the first n + 1 odd numbers,

1 + 3 + 5 + · · ·+ (2n − 1) + (2n + 1) = n2 + 2n + 1
= (n + 1)2.

This shows that if n ∈ S, then n + 1 ∈ S.
5 By the PMI, S = N. That is, for every natural number n,

1 + 3 + 5 + · · ·+ (2n − 1) = n2.
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Mathematical Induction

Example

Exercise: Prove using the PMI that for each n ∈ N, the sum of the first
n natural numbers satisfies

1 + 2 + 3 + · · ·+ n = n(n + 1)/2.

1 Let S be the set of all natural numbers for which this statement is
true.

2 1 ∈ S, as = (1)(2)/2.
3 Let n ∈ S, that is 1 + 2 + 3 + · · ·+ n = n(n + 1)/2. We are going to

show that n + 1 ∈ S.
4 The sum of the first n + 1 natural numbers,

1 + 2 + 3 + · · ·+ n + (n + 1) = n(n + 1)/2 + (n + 1)

= (n + 1)(n/2 + 1)

= (n + 1)((n + 2)/2))

= (n + 1)(n + 2)/2.

This shows that if n ∈ S, then n + 1 ∈ S.
5 By the PMI, S = N. That is, for every natural number n,

1 + 2 + 3 + · · ·+ n = n(n + 1)/2.
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Mathematical Induction

Proof Templates

Proof using the PMI
Let S = {n ∈ N : the statement is true for n}
(i) Show that 1 ∈ S.
(ii) Show that S is inductive (that is, for all n, if n ∈ S then n + 1 ∈ S).
(iii) By the PMI, S = N.
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Mathematical Induction

Proof of (∀n ∈ N)P(n) by induction
(i) (Base Step) Show that P(1) is true.
(ii) (Induction Step) Show P(n)⇒ P(n + 1): Suppose that P(n) is true for some n ∈ N,
and show that P(n + 1) is true.
(iii) (Conclusion) By the PMI, S = N.

The assertion “Suppose that P(n) is true for some n ∈ N” is called the
induction hypothesis.
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Mathematical Induction

Old Theorem...New Proof

Theorem
If A is a set with n elements, then P(A) has 2n elements.

Proof. Let us prove the theorem using the PMI.
(Base case) The assertion is true if A is empty or A = {x1}.
(Induction hypothesis) Suppose the number of elements of A is
P(A) = 2n if A is a set of n elements.
Assume that A now has n + 1 elements, A = {x1, x2, . . . , xn, xn+1}.
Think of xn+1 in a different color.
The subsets of A are of two kinds: Those that do not contain xn+1
and those that do.
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Mathematical Induction

Therefore

P(A) = P({x1, . . . , xn})
⋃
{({xn+1} ∪ X : X ⊆ {x1, . . . , xn})}

These two sets are disjoint and their number of elements is 2n.

Therefore P(A) = 2n + 2n = 2n+1.
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Mathematical Induction

Example

Proposition

For all natural numbers n3/3 + n5/5 + 7n/15 is an integer.

Proof.
(Base case) 1 ∈ S: 1/3 + 1/5 + 7/15 = (5 + 3 + 7)/15 = 1 ∈ N.
(Induction step) Suppose n3/3 + n5/5 + 7n/15 is an
integer.Consider

(n + 1)3

3
+

(n + 1)5

5
+

7(n + 1)

15
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Mathematical Induction

We have the following expansions from the Binomial Theorem

(n + 1)3

3
=

n3 + 3n2 + 3n + 1
3

=
n3

3
+

1
3

+ (n2 + n)

(n + 1)5

5
=

n5 + 5n4 + 10n3 + 10n2 + 5n + 1
5

=
n5

5
+

1
5

+ (n4 + 2n3 + 2n2 + n)

7(n + 1)

15
=

7n
15

+
1

15

Adding we observe: The sum of the red terms is the induction
hypothesis, the sum of the blue terms is the base case, the green
terms are integers. Thus the sum is an integer. 2
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Mathematical Induction

Example useful in Calculus

Theorem
Suppose a ≥ −1. Then for all n ∈ N, (1 + a)n ≥ 1 + na.

Proof.
We shall prove the statement by induction:

(base case): If n = 1, (1 + a)1 = 1 + a ≥ 1 + a is true
(induction step): Suppose (1 + a)n ≥ 1 + na. Then, since
1 + a ≥ 0 by hypothesis,

(1 + a)n+1 = (1 + a)n(1 + a) ≥ (1 + na)(1 + a)

= 1 + na + a + na2 = 1 + (n + 1)a + na2

≥ 1 + (n + 1)a
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Mathematical Induction

Example in Algebra

Theorem
The polynomial x − y divides the polynomial xn − yn for every natural
number n.

Proof.
1 (Base case) x − y divides x1 − y1: x1 − y1 = 1(x − y)

2 (Induction hyphothesis) Suppose x − y divides xn − yn. We must
show that x − y divides xn+1 − yn+1:

xn+1 − yn+1 = xxn − yyn = xxn − yxn + yxn − yyn

= (x − y)xn + y(xn − yn)

3 Thus x − y divides each term of the sum so divides the sum itself.
4 By the PMI, x − y divides xn − yn for every natural number n.
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Mathematical Induction

Revisiting Old Example

Suppose that

X = {x : x ∈ R x is a solution of x3 − 6x2 + 11x − 6 = 0}
Y = {1,2,3}

How do we prove that Y = X? We use the previous theorem. For
x = 1, x = 2 or x = 3, we verify they are roots of the equation:

x3 − 6x2 + 11x − 12 =

(x3 − 6x2 + 11x − 12)− (13 − 6(1)2 + 11(1)− 6) =

(x3 − 13)− 6(x2 − 12) + 11(x − 1) + 6(1− 1) =

(x − 1)(x2 − x + 1)− 6(x − 1)(x + 1) + 12(x − 1) =

(x − 1)(x2 + x + 1− 6x − 6 + 12)

(x − 1)(x2 − 5x + 6)
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Mathematical Induction

Exercise

Let f(x) be a polynomial of degree n with real coefficients,

f(x) = xn + an−1xn−1 + · · ·+ a1x + an.

Consider the following sets of real numbers

X = {x : x ∈ R x is a solution of f(x) = 0}
Y = {x1, x2, . . . , xn}

where the xi are distinct roots of f(x). Prove the following:

Theorem
X = Y.
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Mathematical Induction

Division Algorithm for Polynomials

The proof above uses the Long Division Algorithm:

Theorem
If f(x) and h(x) are polynomials with real coefficients, then there are
two polynomials q(x) and r(x) such that

f(x) = q(x)h(x) + r(x),

where r(x) is either 0 or degree h(x) > degree r(x). q(x) is called a
quotient of f(x) by q(x) and r(x) is the remainder of the division.

Corollary
If h(x) = x − a, then r(x) = 0 or r(x) = f(a).

Proof: In the formula f(x) = q(x)(x − a) + r(x), r(x) is a polynomial of
degree 0, or a constant, say r . To evaluate it, we set x = a:
f(a) = q(a)(a− a) + r = r .
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Mathematical Induction

Corollary
If f(x) is a polynomial of degree n and x = a is a root, then

f(x) = q(x)(x − a),

where q(x) is a polynomial of degree n − 1.

If x = b is another, but different root of f(x), then

0 = f(b) = q(b)(b − a),

and thus b is a root of q(x). This means that q(x) = p(x)(x − b).
In this manner, we see that if x1, . . . , xn are distinct roots of f(x), then

f(x) = C(x − x1)(x − x2) · · · (x − xn),

where C is a constant. This implies that the xi are the only roots of
f(x).

Wolmer Vasconcelos (Set 2) Intro Math Reasoning Fall 2008 55 / 102



Mathematical Induction

Archimedean Principle

Theorem (Archimedean Principle)
For all natural numbers a and b, there exists a natural number s such
that a < sb.

Proof.
Let a,b ∈ N. The proof proceeds by induction on b.

1 (Base Step) If b = 1, choose s to be a + 1. Then a < a + 1 = sb.
2 (Induction Step) Suppose the statement is true for b = n.

Choosing the same s we have a < sn < s(n + 1).
3 (Conclusion) By the PMI the statement is true for all natural

numbers.

Of course, a direct proof is simpler: Just take s = a + 1. There is a
version of the Archimedean Principle where a and b are positive real
numbers and s is a natural number. Try!Wolmer Vasconcelos (Set 2) Intro Math Reasoning Fall 2008 56 / 102



Mathematical Induction

Generalized PMI

Definition
Let k be a natural number. If S is a subset of N and

1 k ∈ S,
2 for all n ∈ N with n ≥ k , if n ∈ S, then n + 1 ∈ S,

then S contains all natural numbers greater or equal to k .
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Mathematical Induction

Example

Proposition

For n ≥ 5, (n + 1)! > 2n+3.

Proof. We are going to use the Generalized PMI. Let S be the set of
natural numbers for which (n + 1)! > 2n+3. We must show that S is an
inductive subset of N.

1 (Base case) 5 ∈ S: (5 + 1)! = 6! = 620 > 256 = 25+3.
2 (Inductive step) Let n ∈ S.

(n + 2)! = (n + 1)! · (n + 2)

> 2n+3 · (n + 2) > 2n+3 · 2
= 2(n+1)+3

By the Generalized PMI, S = {n : n ∈ N,n ≥ 5}.
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Mathematical Induction

Exercise

Exercise: Consider any map formed by drawing straight lines in a
plane to represent boundaries. Color the countries so that countries
with a common border have different colors.

Task: Argue that 2 colors suffice.

Solution: Will argue by induction of the number n of lines.

Base case: Clear.
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Mathematical Induction
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Mathematical Induction
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Mathematical Induction

Exercise

Exercise: Show that for all nonnegative integers n, 10n + 3 · 4n+2 + 5
is divisible by 9.

Let S be the set of nonnegative integers for which the statement is true.
1 (Base case) 0 ∈ S: 100 + (3)42 + 5 = 1 + 48 + 5 = 56, which is

divisible by 9.
2 (Induction case) Suppose n ∈ S. Consider

10n+1 + 3 · 4n+1+2 + 5 = 10 · 10n + 4 · 3 · 4n+2 + 5
= (9 + 1)10n + (3 + 1)3 · 4n+2 + 5
= (10n + 3 · 4n+2 + 5) + 9(10n + 4n+2),

which is divisible by 9.
3 By the Generalized PMI, S = {0,1,2, · · · }, and the statement is

true for all n ≥ 0.
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Mathematical Induction

Exercise

Let P1,P2, . . . ,Pn be n points in a plane with no three points collinear.
Show that the number of line segments joining all pairs of points is
n2−n

2 .
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Mathematical Induction

We shall use the PMI: Call S the set of all natural numbers for which
the statement is true.

1 (Base case) 1 ∈ S: For a single point there are no line segments:
0 = (11 − 1)/2.

2 (Induction step) Let n ∈ N be in S. For n no collinear points
P1, . . . ,Pn the number of line segments is (n2 − n)/2.

3 Adding another point, Pn+1, not collinear with any of the Pi , i ≤ n,
we add n new linear segments by joining Pn+1 to each of the Pi ,
i ≤ n.

4 The total number of line segments is then

n2 − n
2

+ n =
n2 + n

2

=
(n + 1)2 − (n + 1)

2

5 Thus n + 1 ∈ S, and by PMI S = N.
Therefore the statement is true for all n ∈ N.
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Mathematical Induction

Towers of Hanoi

Exercise: The Towers of Hanoi puzzle consists of a board with 3 pegs
and several disks of different diameters that fit over the pegs. In the
start position, all disks are placed on one peg in order of their sizes
[with the largest at the bottom]. A move is made by removing one disk
off a peg and placing it on another peg so that there is no smaller disk
under it. The object of the puzzle is to transfer all the disks from one
peg to another. Use the PMI to show that with a board with n disks,
this can be done in 2n − 1 moves.
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Mathematical Induction

Towers of Hanoi
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Mathematical Induction

Solution

Call the pegs A, B and C and suppose that initially the n disks are in
peg A and we want to move them to peg B.

1 (Base case) If n = 1, the statement is true: 1 = 21 − 1
2 (Induction step) While keeping the largest disk in peg A, move the

n − 1 other disks to peg C. This can be done in 2n−1 − 1 moves.
3 Move the largest disk to peg B. Then move the n − 1 disks in peg

C to B.
4 Total number of moves

(2n−1 − 1) + 1 + (2n−1 − 1) = 2n − 2 + 1 = 2n − 1.

By the PMI, the statement is true for all natural numbers.
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Outline

1 Basics of Set Theory
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Homework #4

Homework #4

1 Let A,B and C be sets of the universe U. Prove that
1 B∆C = (B ∪ C) \ (B ∩ C).
2 A ∩ (B∆C) = (A ∩ B)∆(A ∩ C).

2 Use the PMI to prove that for all n ∈ N,

13 + 23 + · · ·+ n3 =

(
n(n + 1)

2

)2

.

3 2.4: 15(d).
4 2.5: 4, 6(b), 15(a)
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Equivalent Forms of Induction
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Equivalent Forms of Induction

Principle of Complete Induction

Definition (PCI)
Suppose S is a subset of N with the property:
For all natural numbers n, if {1,2,3, . . . ,n − 1} ⊆ S, then n ∈ S. Then
S = N.

Theorem
The Principle of Complete Induction is equivalent to the Principle of
Mathematical Induction.

PCI⇔ PMI.

Why the PCI is needed?
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Equivalent Forms of Induction

Fibonacci Sequences

1,1,2,3,5,8,13, . . .

f1 = 1, f2 = 1, and fn+2 = fn + fn+1, n ≥ 1.

Variations: f1 = 2, f2 = 3, f3 = 2. For n ≥ 4,

fn+3 = fn + 2fn+1 + 4fn+2
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Equivalent Forms of Induction

Exercise

Example: Let α be the positive of x2 = x + 1. Prove that fn ≤ αn−1 for
all n ≥ 1.

x2 − x − 1 = 0 ⇒ α =
1±
√

5
2

1 Let m be a natural number and assume that for all
k ∈ {1,2, . . . ,m − 1}, fm ≤ αm−1.

2 If m = 1, f1 = 1 ≤ α0 = 1, f2 = 1 ≤ α1 = (1 +
√

5)/2.
3 For m ≥ 3,

fm = fm−1 + fm−2

≤ αm−2 + αm−3 ind. hyp. for m − 1,m − 2 ∈ {1,2, . . . ,m − 1}
= αm−3(α + 1)

= αm−3α2 = αm−1

Therefore fm ≤ αm−1. By the PCI, fn ≤ αn−1 for all n ≥ 1.
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Equivalent Forms of Induction

Proof of PMI⇒ PCI

Assume that the PMI holds for N. Suppose S is a subset of N with the
following property: For all natural numbers m, if
{1,2,3, . . . ,m − 1} ⊆ S, then m ∈ S.
We are going to show that for every natural number n,
{1,2,3, . . . ,n} ⊆ S.

1 For n = 1, the set {1,2,3, . . . ,n − 1} is the empty set. But ∅ ⊆ S,
so by the property of S, 1 ∈ S. Thus {1} ⊆ S.

2 Assume that {1,2,3, . . . ,n} ⊆ S. We must show that
{1,2,3, . . . ,n + 1} ⊆ S. But this follows from the defining property
of S.

3 By (1) and (2), and PMI, {1,2,3, . . . ,n} ⊆ S for every natural
number n. Now let n be a natural number. Since
{1,2,3, . . . ,n} ⊆ S, n ∈ S. Since S is a subset of N, we conclude
S = N.
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Equivalent Forms of Induction

Exercise: Fibonacci

Prove the following properties of Fibonacci numbers:

1 fn+6 = 4fn+3 + fn for all natural numbers n.
2 For any natural number a, fafn + fa+1fn+1 = fa+n+1 for all natural

numbers n.
3 [Binet] If α and β are the positive and negative roots of

x2 = x + 1, respectively, then for all natural numbers n

fn =
αn − βn

α− β
.

Wolmer Vasconcelos (Set 2) Intro Math Reasoning Fall 2008 75 / 102



Equivalent Forms of Induction

Well-Ordering Principle

Definition (WOP)
Every nonempty subset of N has a smallest element.

Theorem
The Well-Ordering Principle is equivalent to the Principle of
Mathematical Induction.

WOP⇔ PMI.

Since we already know that PMI is equivalent to PCI, we will have

WOP⇔ PMI⇔ PCI
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Equivalent Forms of Induction

Proof that PMI⇒WOP

Proof. Part 1: Assume that PMI holds for N. To show WOP we show
that every nonempty subset T of N has a minimal element.
Let S = N \ T . Since T 6= ∅, S 6= N. Suppose that T has no smallest
element.

1 Since 1 is the smallest element of N and T has no smallest
element, 1 /∈ T .

2 Suppose n ∈ S. No number less than n belongs to T , because if
any of the numbers 1,2,3, . . . ,n − 1 were in T , then one of these
numbers would be the smallest element of T . We know n /∈ T
because n ∈ S. Therefore n + 1 cannot be in T , or else it would
be the smallest element of T . Thus n + 1 ∈ S.

3 By (1), (2) and the PMI, S = N, which is a contradiction since
T 6= ∅. Thus T has a smallest element.
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Last Class...

Last Class...

We studied 3 organizing principles that occur in many proofs:

PMI: Principle of Mathematical Induction
PCI: Principle of Complete Induction
WOP: Well-Ordering Principle

They are all equivalent.
Let us give a refresh of their usage:
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Last Class...

Prime Factorization

Proposition
Every natural number n > 1 has a prime factor.

Proof.
If n is prime, then n is a prime factor of n. If n is composite, hen it has
factors other than 1 and n. Let p be the smallest of these factors.
Guaranteed by WOP. We must show that p is prime.
If p is composite, then p has a factor d , 1 < d < p. Since n = pm,
p = qd , n = d(mq), so d would be a factor of n smaller than p. This
contradiction shows that p is prime.
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Last Class...

Theorem
Every natural number n > 1 has a factorization

n = p1 · p2 · · · pm,

where the pi are prime.

Proof. We will argue by contradiction. Suppose the set T of natural
numbers n > 1 without such factorizations is nonempty. By WOP, let a
be the smallest element of T .

a cannot be prime because it then have the stated representation.
Let a = bc be a decomposition of a as a product of natural
numbers a > 1, b > 1. Since a > b, a > c, neither b nor c belong
to T .
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Last Class...

Thus both a and b have factorizations

a = p1 · p2 · · · ps

b = ps+1 · ps+2 · · · pm

where the pi are prime.
Multiplying the factorizations of a and b gives a factorization for n.
The contradiction proves the statement.
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Last Class...

The Division Algorithm for N

Theorem
Let a ∈ N and b ∈ N, with b ≤ a. Then there exists q ∈ N and
r ∈ N ∪ {0} such that a = qb + r , where 0 ≤ r < b. The numbers q
and r are the quotient and the remainder of the division of a by b,
respectively.

Proof.
Let T = {s ∈ N : a < sb}. By the Archimedean Principle, T is
nonempty. By WOP, T contains a minimal element w . Let q = w − 1
and r = a− sb. Since a ≥ b, w > 1 and q ∈ N, a ≥ qb and r ≥ 0. By
definition, r = a− qb. Now suppose r ≥ b. Then a− (w − 1)b ≥ b, so
a ≥ wb. This contradicts the fact that a < wb. Therefore r < b.
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Art of Counting

Art of Counting

Counting a set A means setting up a one-one corresponding between
A and some standard set. We say that A is finite if A = ∅, or there is
such a correspondence

A↔ {1,2,3, . . . ,n},

some natural number n. We say that n is the number of elements of A,
and write:

A = n and ∅ = 0.
Later in the semester, we return to a proper study of cardinality. Now
we treat so basic rules to count sets since these numbers appear often
in our proofs.
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Art of Counting

Sum Rule

Theorem

If A and B are disjoint finite sets with A = m and B = n, then
A ∪ B = m + n.

Corollary

If B ⊆ A are finite sets, then A \ B = A− B.

Proof.
B and A \ B are disjoint sets, and A = B ∪ (A \ B). Now apply the Sum
Rule.
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Art of Counting

Generalized Sum Rule

Theorem
If A = {Ai : i = 1,2, . . . ,n} is a family of distinct pairwise disjoint sets
and Ai = ai , then

n⋃
i=1

Ai =
n∑

i=1

ai .

Proof. The proof is by induction on the number n of subsets in the
family A.

If n = 1, then
⋃1

i=1 Ai = A1 = a1 =
∑1

i=1 ai .
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Art of Counting

Suppose
⋃n

i=1 Ai =
∑n

i=1 ai . Since
⋃n

i=1 Ai and An+1 are disjoint,
by the Sum Rule,

n⋃
i=1

Ai ∪ An+1 =
n⋃

i=1

Ai + An+1

=
n∑

i=1

ai + an+1 =
n+1∑
i=1

ai .

By the PMI, the assertion is true for every family of n sets, for all
n ∈ N.
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Art of Counting

More Rules

Theorem
For finite sets A and B,

1 A ∪ B = A + B − A ∩ B.
2 A ∩ B = A + B − A ∪ B.

Proof. of (1): Write A ∪ B the union of 3 disjoint subsets

A ∪ B = (A \ A ∩ B) ∪ (B \ A ∩ B) ∪ (A ∩ B)

Now apply the sum rule:

A ∪ B = (A \ A ∩ B) + (B \ A ∩ B) + (A ∩ B)

= A− A ∩ B + B − A ∩ B + A ∩ B

= A + B − A ∩ B.
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Art of Counting

Principle of Inclusion and Exclusion

Theorem
1 For finite sets A,B and C,

A ∪ B ∪ C = [A + B + C]− [A ∩ B + A ∩ C + B ∩ C]− A ∩ B ∩ C.

2 For finite sets A,B,C and D,

A ∪ B ∪ C ∪ D = [A + B + C + D]

− [A ∩ B + A ∩ C + A ∩ D + B ∩ C + B ∩ D + C ∩ D]

= [A ∩ B ∩ C + A ∩ B ∩ D + A ∩ C ∩ D + B ∩ C ∩ D]

− [A ∩ B ∩ C ∩ D.
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Art of Counting

Product Rules

Theorem
1 If two independent tasks T1 and T2 are to be performed, and T1

can be performed in m ways and T2 in n ways, then the two tasks
can be performed in mn ways.

2 If k independent tasks T1,T2, . . . ,Tk are to be performed, and the
number of ways task Ti can be performed is ni , then the number
of ways the tasks can be performed in sequence is

k∏
i=1

ai = n1 · n2 · · · nk .
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Art of Counting

Permutations

Definition
A permutation of a set with n elements is an arrangement of the
elements of the set in a specific order.

Theorem
The number of permutations of a set of n elements is n!.
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Art of Counting

Permutation Rule

Theorem
The number of permutations of any r distinct elements from a set of n
objects is

n!

(n − r)!
.
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Art of Counting

Combinations

Definition
A combination of n elements taken r at a time is the selection of an
r -element subset from an n-element set. The number of combinations
of n elements taken r at a time is denoted

(n
r

)
, and read “n choose r ”

or “n binomial r .” The number
(n

r

)
is called a binomial coefficient.

Theorem
Let n be a positive integer and r an integer such that 0 ≤ r ≤ n. Then(

n
r

)
=

n!

r !(n − r)!
.
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Art of Counting

Binomial Theorem

Theorem (Binomial Theorem)
For a,b ∈ R,

(a + b)n =
n∑

r=0

(
n
r

)
ar bn−r .
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Art of Counting

Lemma
Let n be a positive integer and r an integer such that 0 ≤ r ≤ n. Then

1 For r ≥ 0, (
n
r

)
=

(
n

n − r

)
.

2 For r ≥ 1, (
n
r

)
=

(
n − 1

r

)
+

(
n − 1
r − 1

)
.
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Art of Counting

Proof.
1 Selecting r objects of an n-set to form an r -subset, determines

also an (n − r)-subset: the objects not selected. This is a one-one
correspondence:

(n
r

)
=
( n

n−r

)
.

2 The r -subsets of {1,2,3, . . . ,n − 1,n} are of kinds:

r subsets of {1,2,3, . . . ,n − 1}
{n} ∪ (r − 1)-subsets of {1,2,3, . . . ,n − 1}

Since these collections are disjoint, by the Sum Rule,(n
r

)
=
(n−1

r

)
+
(n−1

r−1

)
.
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Art of Counting

Proof of the Binomial Theorem

Proof. We will use the PMI to show

(a + b)n =
n∑

r=0

(
n
r

)
ar bn−r .

1 (Base case) n = 1: (a + b)1 = a + b.
2 (Induction step) For n ≥ 2,

(a + b)n = (a + b)n−1(a + b)

= (a + b)n−1a + (a + b)n−1b

=
n−1∑
r=0

(
n − 1

r

)
ar+1bn−1−r +

n−1∑
r=0

(
n − 1

r

)
ar bn−r

= an +
n−1∑
r=1

[(n − 1
r

)
+

(
n − 1
r − 1

)]
ar bn−r + bn.

Now we apply the Lemma.
Wolmer Vasconcelos (Set 2) Intro Math Reasoning Fall 2008 98 / 102



Art of Counting

Corollary
Let n be a positive integer. Then

n∑
r=0

(
n
r

)
= 2n.

Proof.
Set a = b = 1 in

(a + b)n =
n∑

r=0

(
n
r

)
ar bn−r .
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Art of Counting

Pascal’s Triangle

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1(

n
r

)
=

(
n − 1

r

)
+

(
n − 1
r − 1

)
.

Wolmer Vasconcelos (Set 2) Intro Math Reasoning Fall 2008 100 / 102



Homework #5

Outline

1 Basics of Set Theory

2 Set Operations

3 Set of Sets

4 Homework #3

5 Mathematical Induction

6 Homework #4

7 Equivalent Forms of Induction

8 Last Class...

9 Art of Counting

10 Homework #5

Wolmer Vasconcelos (Set 2) Intro Math Reasoning Fall 2008 101 / 102



Homework #5

Homework #5

2.6: 2(a,d), 3, 11(c), 18(a,b)
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