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General Orientation

• Pre-requisites: Calc 2

• web:www.math.rutgers.edu/(tilde)vasconce

• Meetings: TF3 12:00-1:20 SEC-212

• email: vasconce at math.rutgers.edu

• Office Hours [Hill 228]: M 2:00-4:00, or by arrangement

• Textbook: A Transition to Advanced Mathematics, 6th Ed., by
D. Smith, M. Eggen & R. St. Andre
• All this detailed in General Info page: Look it over
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Scoring Info

• Weekly Homework Total: 100
• 2 Midterms Total: 2 x 100 = 200
• Final: 200
• Total: 500 pts
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Some Goals

Reading and Writing Mathematics
What are Theorems and what are Proofs: How to go About?
Understand Statements such as

ln 2 =

∫ 2

1

1
x

dx

ln 2 = 1− 1
2

+
1
3
− 1

4
+ · · ·
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Language of Math

Before we start, we ponder the following:

The language of mathematics is set theory: All mathematical
objects can be regarded as sets, and relations between them can
be reduced to expressions that use only the belongs to relation: ∈.
For instance, integers are certain finite sets, rational numbers are
pairs of integers, real numbers are identified to some sets called
Dedekind cuts of rational numbers,functions are some sets of
pairs.
We are not going to begin at the beginning... Means what?
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Numbers

We are not start at the very beginning, but will visit it occasionally. At
the outset of our journey are the natural numbers

N = {1, 2, 3, 4, . . .}

Its ‘modern’ construction [e.g. Peano’s] is a paradigm of beauty. It is
enlarged by the integers

N ⊂ Z = {. . . ,−4,−3,−2,−1, 0, 1, 2, 3, 4, . . .}

and the rational numbers

N ⊂ Z ⊂ Q =
{m

n
, m, n ∈ Z, n 6= 0

}
We will also meet R, real numbers: Q ⊂ R
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Propositions

One of our goals is to determine which mathematical statements are
true and which are false. A statement that is either true or false is
called a proposition.

Definition
A proposition is a sentence that is either true or false.

Examples from book:
1 5(8)-42 is a positive number.
2 1+1 = 5.
3 The elephant will become extinct by the year 2525.
4 Julius Caesar had two eggs for breakfast on his tenth birthday.
5 What did you say?
6 x2 = 25.
7 She has your car keys.
8 This sentence is false.
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Examples: Which statements are Propositions?

RU will be the football champs this season.
RU will be the football champs this season!
Will RU be the football champs this season?
RU has a 10% chance to be the football champs this season.
Half the class will ace the course.
Half the class will ace the course, one third will get a B, one
quarter will get a C.
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Grand Examples

Theorem

If f is continuous on [a, b] then
∫ b

a f(x)dx exists.

Theorem (FTC)

Let f : [a, b]→ R be a function such that
∫ b

a f exists. If F is a function
such that F′(c) = f(c) for all c ∈ [a, b], then∫ b

a
f(x)dx = F(b)− F(a).
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Representing Propositions

While not absolutely necessary, it is convenient to represent
statements by Letters or Abbreviations.

P =“RU will be the football champs this season.”
Q = “RU will be the football champs this season!”
R = “There will be assigned HW every week [collected the
following week for grading]”
S = “John has classes on Tuesdays”
T 5 = “John has classes on Thursdays”
U2 = “Mary enjoyed the The Dark Knight”
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Logical Connectives

A compound proposition is a proposition formed from simpler
propositions by the use of connectives such as AND, OR and NOT.

Definition
Given propositions P and Q,

The conjunction of P and Q, denoted by P ∧Q, is the proposition
“P and Q.” P ∧Q is true exactly when both P and Q are true.
The disjunction of P and Q, denoted by P ∨Q, is the proposition
“P or Q.” P ∨Q is true when at least one of P or Q is true.
The negation of P, denoted by ∼ P, is the proposition “not P.”
∼ P is true exactly when P is false.

Comment: Noticed how the usage of “OR” may differ from the usual?
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Examples: Still from book

If P is “1 6= 3” and Q is “7 is odd”
1 P ∧Q is “1 6= 3 and 7 is odd”
2 P ∨Q is “1 6= 3 or 7 is odd”
3 ∼ Q is “It is not the case that 7 is odd”

Note that P ∧Q is true, P ∨Q is true, but ∼ Q is false.
The following are examples of true propositions:

1 “It is not true that
√

10 > 4”
2 “
√

2 <
√

3 or chickens have lips.”
3 “ Venus is smaller than Earth or 1 + 4 = 5.”
4 “6 < 7 and 7 < 8”
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XOR: The Exclusive OR

Given propositions P and Q,
The inclusive OR of P and Q, denoted by P ∨Q, is the
proposition “P or Q.” P ∨Q is true when at least one of P or Q are
true.
The exclusive OR of P and Q, denoted by P XOR Q, is the
proposition “P or Q but not both.” P XOR Q is true when P or Q
are true but not both.
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Propositional Forms

Definition
A propositional variable is a (usually capital) letter representing a
proposition. A propositional form is an expression of propositional
variables involving connectives, formed according to the following
rules:

1 If P is a propositional form then ∼ P is a proposition form.
2 If P, Q are propositional forms then P ∨Q, P ∧Q are propositional

forms.
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Predicates: From CTW

Some statements are not propositions because they contain
unknowns. For instance, she loves that kind of ice-cream: both she
and kind are unknown.
A collection of possible values of a variable is called an universe. What
are some of the universes for she and kind above?
A statement containing variables that becomes a proposition after a
substitute for each variable is a predicate. For example, the statement
P(x) given by x2 = 4 is a predicate. If we substitute x = 2, P(x)
becomes a proposition which happens to be true. If we substitute
x = 3, P(x) becomes another proposition which happens to be false.
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Truth Tables

Let P, Q be propositions and f(P, Q) a proposition obtained by using
the rules above. To determine when f(P, Q) is true or false, we build its
truth table:

P Q f(P, Q)

T T f(T , T )
T F f(T , F )
F T f(F , T )
F F f(F , F )
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Examples

P Q P ∧Q

T T T
T F F
F T F
F F F

P Q P ∨Q P XOR Q

T T T F
T F T T
F T T T
F F F F

Wolmer Vasconcelos (Set 1) Intro Math Reasoning Fall 2008 19 / 90



Long Tables

True tables can be very large if there are many variables:

P Q R f(P, Q, R)

T T T f(T , T , T )
T T F f(T , T , F )
T F T f(T , F , T )
T F F f(T , F , F )
F T T f(F , T , T )
F T F f(F , T , F )
F F T f(F , F , T )
F F F f(F , F , F )

If there are 4 variables, the table has 16 rows.
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Comparing Propositional Forms

P Q f(P, Q) h(P, Q)

T T f(T , T ) h(T , T )
T F f(T , F ) h(T , F )
F T f(F , T ) h(F , T )
F F f(F , F ) h(F , F )
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Example

P ∼ P ∼ (∼ P)

T F T
F T F

Look: “P is equivalent to ∼ (∼ P)” [have the same truth tables]
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Truth Tables of some well-defined Forms

P Q P ∧Q P ∨Q ∼ P ∼ (∼ P)

T T T T F T
T F F T F T
F T F T T F
F F F F T F
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Equivalent Forms

Definition
Two propositional forms are equivalent if and only if they have the
same truth tables.

For example, the forms P and ∼ (∼ P) are equivalent:

P ∼ P ∼ (∼ P)

T F T
F T F
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Examples

P Q ∼ (P ∨Q) ∼ P∧ ∼ Q

T T F F
T F F F
F T F F
F F T T

P Q ∼ (P ∧Q) ∼ P∨ ∼ Q

T T F F
T F T T
F T T T
F F T T
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Last Class...

Last time we introduced the notions:
Proposition
The logical connectives: ∨, ∧, ∼, XOR disjunction,
conjunction, negation, exclusive OR
Propositional form
Predicate
Truth table

P ∼ P ∼ (∼ P)

T F T
F T F

Equivalence of propositional forms
Today we begin by mentioning some special propositional forms
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Tautology

Definition
A tautology is a propositional form that is true for every assignment of
truth values to its components.

Example: Law of Excluded Middle, P∨ ∼ P

P ∼ P P∨ ∼ P

T F T
F T T
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Contradiction and Denial

Definition
A contradiction is a propositional form that is false for every
assignment of truth values to its components.

P∧ ∼ P is an example of a contradiction.

Definition
A denial of a proposition P is any proposition equivalent to ∼ P.

Example: The proposition “
√

2 is irrational” has numerous denials:
“It is not the case that

√
2 is irrational”

“
√

2 is the quotient of two integers”
“The decimal expansion of

√
2 is repeating or terminating”

“It is not the case that it is not the case that
√

2 is rational”
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Conditionals and Biconditionals

Definition
For propositions P and Q, the conditional sentence P ⇒ Q is the
proposition “If P then Q”. Proposition P is called the antecedent and
Q is the consequent.The conditional sequence P ⇒ Q is true if and
only if P is false or Q is true.

P Q P ⇒ Q

T T T
F T T
T F F
F F T

The truth table for P ⇒ Q only gives the value F when P is true and Q
is false, so agrees with the common usage “if ..., then ... “.
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P Q P ⇒ Q

T T T
F T T
T F F
F F T

Suppose A tells her friend B: “If 1 + 1 = 2, then I will give you a dollar.”
Since 1 + 1 = 2 is true, we must find the value of the statement in lines
1 or 3. If A does not give B one dollar (line 3) the promise is broken
and the statement is false.To keep the promise and thus make the
sentence true, A must give B one dollar (line 1).
When the antecedent is false, the promise is always true: If A said to
B: “If 1 + 1 = 5, then I will give you a dollar,” she would keep her
promise.According to lines 2 and 4, this sentence is true whether A
gives B a dollar or not.
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Converse and Contrapositive

Two propositions closely related to P ⇒ Q are its converse and
contrapositive.

Definition
Let P and Q be propositions.

The converse of P ⇒ Q is Q ⇒ P.
The contrapositive of P ⇒ Q is (∼ Q)⇒ (∼ P).

Conditional sentence: “If f(x) is differentiable at x0, then f is
continuous at x0.
Contrapositive: “If f is not continuous at x0, then f is not
differentiable at x0” also true.
Converse: “If f is continuous at x0, then f is differentiable at x0”
which is false for f(x) = |x | and x0 is 0.
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Remarks on⇒

P Q P ⇒ Q ∼ P ∨Q

T T T T
F T T T
T F F F
F F T T

The truth table of says that P ⇒ Q is true whenever the
antecedent is true or the consequent is false.
The first row of the table is the only line where both P ND P ⇒ Q
are true. Note that Q is also true. In other words, if P and P ⇒ Q
are true, then Q is also true. This rule is known as modus
ponens.
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Theorem
1 A conditional proposition and its contrapositive are equivalent.
2 A conditional proposition and its converse are not equivalent.

Proof. We will compare the truth tables of the forms P ⇒ Q,
(∼ Q)⇒ (∼ P) and Q ⇒ P.

P Q P ⇒ Q ∼ P ∼ Q (∼ Q)⇒ (∼ P) Q ⇒ P

T T T F F T T
F T T T F T F
T F F F T F T
F F T T T T T

Note that the tables for P ⇒ Q and (∼ Q)⇒ (∼ P) identical.
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Biconditionals

Definition
For propositions P and Q, the biconditional sentence P ⇔ Q is the
proposition “P if and only if Q”. P ⇔ Q is true exactly when P and Q
have the same truth values.

P Q P ⇔ Q

T T T
F T F
T F F
F F T
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A long theorem...

Theorem
1 P ⇒ Q is equivalent to (∼ P) ∨Q.
2 P ⇔ Q is equivalent to (P ⇒ Q) ∨ (Q ⇒ P).
3 ∼ (P ∧Q) is equivalent to (∼ P) ∨ (∼ Q).
4 ∼ (P ∨Q) is equivalent to (∼ P) ∧ (∼ Q).
5 ∼ (P ⇒ Q) is equivalent to P ⇒ ∧ ∼ Q.
6 ∼ (P ∧Q) is equivalent to P ⇒∼ Q.
7 P ∧ (Q ∨ R) is equivalent to (P ∧Q) ∨ (P ∧ R).
8 P ∨ (Q ∧ R) is equivalent to (P ∨Q) ∧ (P ∨ R).
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HowTo Prove?

Consider the first statement: P ⇒ Q is equivalent to (∼ P) ∨Q. To
prove it we build and compare their truth tables:

P Q P ⇒ Q (∼ P) ∨Q

T T ? ?
F T ? ?
T F ? ?
F F ? ?

The last two columns must be identical.
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Exercise

The inverse, or opposite of the conditional sentence P ⇒ Q is
∼ P ⇒∼ Q. Show that P ⇒ Q and its inverse are not equivalent:
Compare their truth tables

P Q P ⇒ Q ∼ P ⇒∼ Q

T T T T
F T T F
T F F T
F F T T
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Exercise

Which is equivalent to the converse of a conditional sentence, the
contrapositive of its inverse, or the inverse of its contrapositive?
Suggest write them out:

1 conditional sentence: P ⇒ Q
2 its inverse: ∼ P ⇒∼ Q
3 its converse: Q ⇒ P
4 its contrapositive: ∼ Q ⇒∼ P
5 contrapositive of its inverse: ∼ (∼ Q)⇒∼ (∼ P)

6 inverse of its contrapositive: ∼ (∼ Q)⇒∼ (∼ P)

Note that (3) = (5) = (6)
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Quantifiers

open sentence or predicate: a sentence P(x), P(x1, . . . , xn)
which depends on one or more variables. For instance the
sentence “s ≥ 3” is not a proposition, but becomes one once the
value of x is assigned. Thus if x is given the value 5, “5 > 3” is a
true proposition.

Another example of an open sentence: the sentence P given by
x + y = z written P(x , y , z). Thus P(2, 4, 6) is true but P(1, 2, 4) is
false.
truth set of a sentence: the collection of objects that make an
open sentence a true proposition.
universe of discourse: the set of objects which are available for
consideration
typical universes: N = {1, 2, 3, . . .};
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}; Q rational numbers; R real
numbers.
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Definition
With a specified universe, two open sentences P(x) and Q(x) are
equivalent iff they have the same truth set.

Examples: “3x + 2 = 20” and “x = 6” are equivalent open sentences.
“x2 = 4” and “x = 2” are not equivalent when the universe is R, but are
equivalent when the universe is N.
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Existential and Universal Quantifier

Definition
For an open sentence P(x), the sentence (∃x)P(x) is read “ there is x
such that P(x)”, or “for some x , P(x)” and is true if the truth set of
P(x) is nonempty. The symbol ∃ is called the existential qualifier.

Definition
For an open sentence P(x), the sentence (∀x)P(x) is read “for all x ,
P(x)” and is true if the truth set of P(x) is the entire universe. The
symbol ∀ is called the universal qualifier.
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technical name meaning notation other meanings

universal for all ∀ for every

existential there exists ∃ there is, there are some
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Example

Universe: All living things, and let H be the set of all people.

Some people are tall:

(∃x)(x ∈ H ∧ x is tall)

Everyone has some faults:

(∀x)(x ∈ H ⇒ x has some faults)

(∀x)(x ∈ H)(x has some faults)
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About Proofs

1 Most theorems are of the form P ⇒ Q.
2 Scan the statements and assure yourself that you understand all

the definitions.
3 Since there are various methods of proof...look up in notes.
4 Write very clearly, you will not just trying to convince yourself [this

for sure] but maybe a machine intelligence as well...
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Homework #1

1 Section 1.1 problems 2 (b,e,h,k) 3 (d,f,i) 4 (a,d,g,i,k) 5 (a,b,d) 8
(a,c).

2 Section 1.2 4 (a,b,d,h,i) 5 (a,b,d,k) 6 (a,d) 9 (a,e,f) 10 (b,c) 13
(b,d,f).
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Last Class...

We last discussed several types of propositional forms, conditional
sentences, transformations of conditional propositions:

Tautoloty, contradiction, denial
Conditional and Biconditional
Converse, contrapositive
Equivalence of propositions
Inverse or opposite
Universe of discourse
Quantifiers, existencial quantifier, universal quantifier
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Equivalence of Quantified Sentences

Definition
Two quantified sentences are equivalent in a given universe iff they
have the same truth value in that universe. Two quantified sentences
are equivalent iff they have the same truth value in every universe.

Example: (∀x)(x > 3) and (∀x)(x ≥ 4) are equivalent in the universe
of the integers (they are both false), the universe of integers greater
than 10 (when they are both true), but in the universe of real numbers
larger than 3.4 they are not equivalent.
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Theorem
If A(x) is an open sentence with variable x, then

1 ∼ (∀x)A(x) is equivalent to (∃x) ∼ A(x).
2 ∼ (∃x)A(x) is equivalent to (∀x) ∼ A(x).

Proof.
Let U be any universe.
The sentence ∼ (∀x)(A(x)) is true in U
iff (∀x)A(x) is false in U
iff the truth set of A(x) is not the universe.
iff the truth set of ∼ A(x) is nonempty.
iff (∃x) ∼ A(x) is true in U.
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Proof. of ∼ (∃x)A(x) is equivalent to (∀x) ∼ A(x).

Let U be any universe.
The sentence ∼ (∃x)A(x) is true in U
iff (∃x)A(x) is false in U.
iff the truth set of A(x) is the universe.
iff the truth set of ∼ A(x) is empty.
iff (∀x) ∼ A(x) is true in U.
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∃!

Definition
For an open sentence P(x), the proposition (∃!x)P(x) is read “ there
exists a unique x such that P(x)”, or “for some x , P(x)” and is true
iff the truth set of P(x) has exactly one element. The symbol ∃! is
called the unique existential qualifier.

Key points: Truth set of (∃x)P(x) has at least one element, while the
truth set of (∃!x)P(x) has exactly one element.

Theorem
If A(x) is an open sentence with variable x, then

1 (∃!x)A(x)⇒ (∃x)A(x).
2 (∃!x)A(x) is equivalent to

(∃x)A(x) ∧ (∀y)(∀z)A(y) ∧ A(z)⇒ y = z.

Wolmer Vasconcelos (Set 1) Intro Math Reasoning Fall 2008 56 / 90



Outline

1 General Orientation

2 Numbers

3 Last Class...

4 Conditionals and Biconditionals

5 Quantifiers

6 Homework #1

7 Last Class...

8 Quantified Sentences

9 Proof Methods I

10 Proof Methods II

11 Homework #2

Wolmer Vasconcelos (Set 1) Intro Math Reasoning Fall 2008 57 / 90



Proof Methods I

A theorem is a sentence involving mathematical objects and
constructions.Typically one seeks to ascertain that it is a proposition.
A proof is the justification of its truth value.

Theorem
Suppose a, b, and c are integers. If a divides b and a divides c, then a
divides b − c.

Proof.
1 First we parse the keywords integers and divides for their

meanings [these are assumptions]
2 Then b = am and c = an.
3 Thus, b − c = am − an = a(m − n).
4 Since m − n is an integer, a divides b − c.
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Rewording

The universe of discourse is N: the natural numbers.
Consider the sentence P(x , y): “ ∃z such that y = xz”

Theorem
P(a, b) ∧ P(a, c)⇒ P(a, b − c).

Another way:

Theorem
If a, b and c are integers, then

(a|b) ∧ (a|c)⇒ a|(b − c).

Theorem
If a, b and c are integers, then

a|b ∧ a|c ⇒ a|(b − c).
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Proof of a Conditional Proposition

DIRECT PROOF OF P ⇒ Q
Proof.

Assume P.
...

Therefore, Q.
Thus, P ⇒ Q.

1 Determine precisely the hypotheses (if any) and the antecedent
and consequent.

2 Replace (if necessary) the antecedent with a more usable
equivalent.

3 Replace (if necessary) the consequent by something equivalent or
more readily shown.

4 Develop a chain of statements, each deducible from its
predecessors or other known results, that leads from the
antecedent to the consequent.
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Example

Theorem
If x < −4 and y > 2, then the distance from (x , y) to (1,−2) is at least
6.

Proof. Assume that x < −4 and y > 2. Then x − 1 < −5, so
(x − 1)2 > 25. Also y + 2 > 4, so (y + 2)2 > 16. Therefore√

(x − 1)2 + (y + 2)2 >
√

25 + 16 >
√

36,

so the distance from (x , y) to (1,−2) is at least 6.
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Proposition
If x , y are positive real numbers then

x + y
2
≥
√

xy .

Proof. We work backward, start with the consequent, decide what
statement could be used to prove, another statement that could be
used to prove that one, and so forth. Continue until you reach the
hypothesis, the antecedent, or a known fact.

1 Squaring the consequent,

(
x + y

2
)2 =

x2 + y2 + 2xy
4

≥ xy .

2 Thus, (x2 + y2) ≥ 2xy .
3 Hence, x2 + y2 − 2xy ≥ 0.
4 Therefore, (x − y)2 ≥ 0.
5 A direct proof is obtained by reversing the steps.
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Example

Theorem

If n is a natural number then n2 + n + 3 is odd.

Proof. P(n) “n is a natural number” can be seen as

P(n) = Q(n) ∨ R(n),

with Q(n) “n is even” and R(n): “n is odd”.
We will make use of the tautology

[(P ∨Q)⇒ R]⇔ [(P ⇒ R) ∨ (Q ⇒ R)].

Case 1: If n is even, n = 2m and therefore

n2 +n +3 = (2m)2 +2m +3 = 4m2 +2m +2+1 = 2(2m2 +m +1)+1,

an odd integer.
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Case 2: If n is odd, n = 2m + 1 and therefore

n2 + n + 3 = (2m + 1)2 + (2m + 1) + 3
= (4m2 + 4m + 1) + (2m + 1) + 3
= 2(2m2 + 3m) + 1 + 1 + 3
= 2(2m2 + 3m + 2) + 1,

which is also an odd integer. �
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Theorem

∀n ∈ N, n2 + n + 3 is an odd integer.

Proof. (Direct) Write

n2 + n + 3 = n(n + 1) + 3.

In the product n(n + 1) one of the factors is even, so the product is
even.
Thus n(n + 1) + 3 is a sum of an even integer and an odd integer,
therefore it is odd. �
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More Proof Techniques

PROOF BY CONTRAPOSITION OF P ⇒ Q
Proof.
Assume ∼ Q.
...
Therefore, ∼ P.
Thus, ∼ Q ⇒∼ P.
Thus, P ⇒ Q.

This is helpful when we have more direct access to the denials of P
and Q.
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Examples

Proposition

Let m be an integer. If m2 is odd, then m is odd.

P means “m2 is odd”, and Q means “m is odd.”
Proof.

1 Let m be an integer. Suppose m is not odd. (Suppose ∼ Q, where
Q is “m is odd.”)

2 Then m = 2k for some integer k .
3 Then m2 = (2k)2 = 2(2k2) is even.
4 Thus m2 is not odd. (We have proved ∼ P.)
5 Therefore if m is not odd, then m2 is not odd.
6 By contraposition, if m2 is odd, then m is odd.
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Proof by Contradiction

PROOF OF P BY CONTRADICTION
Proof.
Suppose ∼ P.
...
Therefore, Q.
...
Therefore, ∼ Q.
Hence, Q∧ ∼ Q, a contradiction.
Thus, P.

If a statement cannot be false, then it must be true.
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Example

Proposition

(P) The graphs of y = x2 + x + 2 and y = x − 2 do not intersect.

Proof.
1 (∼ P): Suppose the graphs do intersect at some point (a, b).
2 Thus b = a− 2 and b = a2 + a + 2.
3 Therefore, b = (a− 2) = a2 + a + 2.
4 Therefore, a2 + 4 = 0,
5 Hence, a2 = −4. But a is a real number so a2 ≥ 0.
6 This is a contradiction. ( (a2 < 0 ∧ a2 > 0 is a contradiction).
7 Therefore, the graphs do not intersect.
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Two Beautiful Examples

Theorem
√

2 is an irrational number.

1 P : irrational means “not a fraction”, that is
√

2 6= s/t , for any choices of
the integers s, t , t 6= 0.

2 Assume ∼ P:
√

2 = s/t , s, t ∈ N.
3 We may assume that s and t have no common factor, since s = as′ and

t = at ′ gives s/t = s′/t ′. (Q: “s, t have no common factor)
4 Thus 2 = s2/t2, 2t2 = s2.
5 Since s2 is even, s must be even since a square of an odd integer is odd

(previous proposition!)
6 Thus, s = 2p and therefore 2t2 = s2 = 4p2.
7 Hence, t2 = 2p2.
8 Therefore, t is even, t = 2q for some integer.
9 Hence t and s have a common factor (which is a contradiction).

10 We conclude that
√
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Irrationality of
√

2

The arrival of new numbers:

�
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�
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�
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1

1

√
2

&%
'$

The construction of an irrational number
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Example

Theorem
√

2 /∈ Q.

Proof.

• We are going to argue by contradiction: Suppose

√
2 =

m
n

• We may assume that m and n have no common factor.
• Squaring both sides of the equality, we obtain m2 = 2n2

• This implies that m is even, as the square of an odd number, say
m = 2p + 1, is odd

(2p + 1)2 = 4p2 + 4p + 1 = 4(p2 + p) + 1
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• We may then assume that m is even. In m2 = 2n2, set m = 2p to
get

4p2 = 2n2

and therefore
• n2 = 2p2, which implies that n is also even.
• This contradicts our assumption that m and n have no common

factors. �

This will also work with
√

3,
√

5,
√

6,
√

8 and many other cases.
Obviously, these numbers need a home.
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Euclid’s Theorem

Theorem (Euclid)
The set of primes is infinite.

Proof.
1 We assume ∼ P, that the set of primes is finite, that is made up of
{p1, p2, . . . , pk}.

2 Let n = p1 · p2 · · · pk + 1.
3 If n is prime, we have a contradiction already since n is different

from all pi .
4 If n is not prime, then it must be divisible by some prime p.
5 Thus, p divides n and the product p1 · p2 · · · pk (being one of the

pi).
6 Therefore p divides the difference which is 1.
7 Hence p is not prime.
8 Therefore, the set of primes is infinite.
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TWO-PART PROOF OF P ⇔ Q
Proof.
Show P ⇒ Q by any method.
Show Q ⇒ P by any method.
Therefore, P ⇔ Q.
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Example: Multiple Proofs

Proposition

(x is odd ∧ y is odd)⇒ xy is odd.

Direct Proof: Assume x and y are odd. Then there are integers m, n
such that x = 2m + 1 and y = 2n + 1. Thus,

xy = (2m + 1)(2n + 1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1.

Thus, xy is an odd integer. �

Proof by Contraposition: The contraposite of the sentence is

(xy is even)⇒ ∼ [x is odd ∧ y is odd] = [y is even) ∨ x is even].

Assume xy is even.Then 2 divides xy .Since 2 is prime, it divides x or y .
Therefore either x or y is even. Thus, if x ∨ y are odd, then xy is odd.
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Proof by Contradiction: Suppose x and y are odd and xy is even. (This
is ∼ P.) Then there are integers m, n such that x = 2m + 1 and
y = 2n + 1. Thus,

xy = (2m + 1)(2n + 1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1.

Thus xy is the next integer to the even integer 2(mn + m + n). Thus xy
is odd.
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Proofs involving Quantifiers

Existence Propositions are statements of the form

∃xP(x)

A constructive proof we name the object that makes P(a) true, which
directly shows that the truth set of P(x) is nonempty.

Prove that (∃x)(x is prime and even): Proof. 2 is both prime and
even.
Prove that exists a natural number whose fourth power is the sum
of three other (nonzero) fourth powers: Proof.

206156734 = 26824404 + 153656394 + 187967604.
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PROOF OF (∃x)P(x) BY CONTRADICTION
Proof.
Suppose ∼ (∃x)P(x).
Then (∀x) ∼ P(x)
...
Therefore, ∼ Q ∧Q, a contradiction
Thus, (∀x) ∼ P(x) is false
Therefore, (∃x)P(x) is true.
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Euclid’s Algorithm

Definition
Let a, b and c be positive integers.

1 c is a common divisor of a and b iff c divides both a and b.
2 If d is a common divisor of a and b and every common divisor c of

a and b is less than or equal to d , then we say that d is the
greatest common divisor of a and b. We write d = gcd(a, b).

Example: The common divisors of 18 and 45 are: 1, 3, 9. Thus
gcd(18, 45) = 9.

Question: What are the properties of the function gcd? They are
based on a remarkable method to determine gcd(a, b).
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Lemmata

Proposition (Long Division Algorithm)
If a and b are natural numbers and a ≥ b, then there exists a natural
number q (the quotient) and a nonnegative integer r (the remainder),
such that

a = bq + r ,

where 0 ≤ r < b.

Note: We will borrow a proof from the past [middle school], or from the
future [Chapter 2]. Practice with one example!
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Lemma
Let a, b and c be integers. If c divides a and c divides b, then c divides
any combination an + bm, where n and m are integers.

Proof. Let n and m be integers. Suppose that c divides a and c divides
b. Then there are integers h and k such that a = ch and b = ck . Then

an + bm = chn + ckm = c(hn + km).

Thus c divides an + bm. �
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Lemma (The heart of the proof)
Let a and b be natural numbers and a ≥ b. Suppose a = bq + r ,
where 0 ≤ r < b.

1 If r = 0, then gcd(a, b) = b.
2 If r 6= 0, then gcd(a, b) = gcd(b, r).

Proof. (1) is clear since b divides a.
(2) Since a can be written as a = bq + r , by the previous lemma, any
divisor c of b and r will divide the combination bq + r . Thus,
gcd(b, r) ≤ gcd(a, b).
Conversely, the equation a = bq + r can also be written as r = a− bq.
Thus every divisor d of a and b, will also divide r . Thus
gcd(a, b) ≤ gcd(b, r).
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Euclid’s Algorithm

Theorem (Euclid)
Let a and b be two positive integers with a ≥ b. Let d = gcd(a, b).
Then there two lists of positive integers qi and ri such that

b > r1 > r2 > r3 > · · · > rk−1 > rk > rk+1 = 0
a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3
...

rk−2 = rk−1qk + rk

rk−1 = rkqk+1

and rk = gcd(a, b).
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Corollary
The GCD of a and b may be written as a combination of a and b; that
is,

d = gcd(a, b) = ax + by ,

for some integers x and y.

Proof. To show that d = ax + by , we start with the equation
rk−2 = rk−1qk + rk , where d = rk .

d = rk−2 − rk−1qk .

Now we use the previous equation,rk−1 = rk−3 − rk−2qk−1, to write

d = rk−2 − rk−1qk = rk−2 − (rk−3 − rk−2qk − 1)qk

= rk−2(1 + qk−1qk ) + rk−3(−qk ).

Continuing is this manner, d may eventually be written as a
combination ax + by .
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Example

Find gcd(44, 144), and write it as a combination of 144 and 44.

144 = 44(2) + 16
44 = 16(2) + 12
16 = 12(1) + 4
12 = 4(3)

4 = gcd(144, 44).

4 = 16− 12
= 16− (44− 16(2)) = 16(3)− 44
= (144− 44(2))(3)− 44
= 144(3) + 44(−7).
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Example

Theorem
The only triple a, b, c of consecutive odd prime numbers is 3, 5, 7.

Proof.
1 We begin by writing the assumption in a convenient form: a = x ,

b = x + 2, and c = x + 4. We must prove that x = 3.
2 We are going to use the remainders of these numbers mod 3: We

are going to write all the possible remainders.

a b c
0 2 1
1 0 2
2 1 0

3 The table shows that in each possible case, one of a, b or c is
divisible by 3.

Wolmer Vasconcelos (Set 1) Intro Math Reasoning Fall 2008 88 / 90



Outline

1 General Orientation

2 Numbers

3 Last Class...

4 Conditionals and Biconditionals

5 Quantifiers

6 Homework #1

7 Last Class...

8 Quantified Sentences

9 Proof Methods I

10 Proof Methods II

11 Homework #2

Wolmer Vasconcelos (Set 1) Intro Math Reasoning Fall 2008 89 / 90



Homework #2

1 Section 1.3: 1 (a,c,j), 5 (a,b,i), 6 (b,d,g), 8 (d), 11
2 Section 1.4: 2, 8, 9(e), 11
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