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Abstract. For a graded algebra A, its jdeg(A) is a global degree that can be
used to study issues of complexity of the normalization A. Here some techniques
grounded on Rees algebra theory are used to estimate jdeg(A). A closely related
notion, of divisorial generation, is introduced to count numbers of generators of A.

1. Introduction

Let R be a commutative Noetherian ring, A a semistandard graded R-algebra, and M
a finitely generated graded A-module. The terminology semistandard graded algebra
will mean a finite extension of a standard graded algebra. They typically occur in
processes of normalization. The jdeg of M is an invariant of M built out of all the
local j-multiplicities of M . The local j–multiplicity was introduced and developed
by Flenner, O’Carroll and Vogel ([6]), and has evolved into a rich extension of the
ordinary multiplicity ([1], [7], [14], [18]). It is defined as follows. If R is a Noetherian
local ring with maximal ideal m, H0

m(M) is the largest graded submodule of M which
is annihilated by a sufficiently large power of m. Therefore, H0

m(M) can be considered
as a graded module over the Artinian ring R/mk for some k � 0. We will make use
of its Hilbert polynomial to define a new multiplicity function of M . If dimM = d,
then the j-multiplicity of M with respect to m is

jm(M) =

{
deg(H0

m(M)) if dimH0
m(M) = d,

0 if dimH0
m(M) < d.

It is noteworthy to observe that the condition on the equality dimH0
m(M) = d can

be verified by checking that dimM/mM = d, according to [16, Propposition 1].
As the j-multiplicity is defined with respect to a maximal ideal m, by localization

we can extend this definition to all primes. For a ring R (not necessarily local), the
j-multiplicity of M at a given prime p of R is defined as jpRp(Mp), written simply as
jp(M). We are now ready to define jdeg(M) ([15]):

Definition 1.1. Let R be a commutative Noetherian ring and A be a finitely gener-
ated semistandard graded R-algebra. For a finitely generated graded A-module M ,
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the jdeg of M is the integer

jdeg(M) :=
∑

p∈Spec R

jp(M).

This is a finite sum. Often it does not say much about M , for instance if R is
an integral domain and A = M = R[x], then jdeg(M) = 1. The main use of this
degree in [16] was to measure the change between A and one of its integral extensions
B. (Throughout, to ensure the finiteness of integral closure, we assume that R is
unmixed.) The original framework for the use of jdeg were two results of [16]:

(1) ([16, Theorem 2]) Let R be a Noetherian domain and A a semistandard graded
R-algebra. Consider a sequence of integral graded extensions

A ⊆ A0 → A1 → A2 → · · · → An = A,

where the Ai satisfy the S2 condition of Serre. Then n ≤ jdeg(A/A).
(2) ([16, Theorem 3]) Let R be a reduced, locally analytically unramified ring and

I an R-ideal of Briançon-Skoda number c(I). (This is the smallest integer c
such that In+c ⊂ Jn for all n and all reductions J of I.) Then

jdeg(R[It]/R[It]) ≤ c(I) · jdeg(grI(R)).

Since A may not be accessible, we have sought to estimate jdeg(A/A) in terms
of other invariants of A. Thus in the second of the results above, it devolves on
the knowledge of the Briançon-Skoda number c(I) (for which there are estimates in
many cases of interest) and of jdeg(grI(R)). For the latter, an important technique
is the length formula of [1, Theorem 3.8] that asserts that if (R,m) is a local ring
of dimension d > 0 and infinite residue field, then for sufficiently general elements
a1, a2, . . . , ad of I, for n� 0

jm(grI(R)) = λ(R/((a1, . . . , ad−1) : In + adR.

There is a detailed discussion of this formula in [14], with numerous applications.

We treat two aspects of these functions, one extending to blowup algebras of mod-
ules certain results on Rees algebras of ideals, and give applications on the use of
jdeg to estimate the number of generators of a normalization. This paper is a sequel
to [16], but while that paper focused on the connection between jdeg and normaliza-
tion processes, here we aim at methods to estimate jdeg. Our approach emphasizes
the use of symmetric algebras and approximation complexes. Our main results are
Theorem 2.7, Theorem 4.2 and Theorem 5.1. In detail, the first of these asserts:

Theorem 2.7. Let k be a perfect field, and let (R,m) be a local domain which is
a k-algebra essentially of finite type and dimension d. Suppose that R has isolated
singularities and L is the Jacobian ideal of R. If E ⊂ mRr is a module such that
λ(Rr/E) <∞ and Buchsbaum-Rim multiplicity br(E), then

jdeg(S[(E)t]/S[(E)t]) ≤ (d+ r + λ(R/L)− 2) · (br(E) + 1).
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The other results (Theorems 4.2, 5.1 and 5.4) are estimations of the jdeg of certain
symmetric algebras of modules and of Rees algebras of prime ideals of dimension one
and two.

Most of the notation and terminology are standard. Thus ν(E) stands for the
minimal number of generators of a finitely generated R-module and λ(E) for the
length if E is also Artinian. For an R-ideal I, a reduction is an ideal J ⊂ I such that
Ir+1 = JIr for some integer r, the smallest of which is referred to as the reduction
number. In the treatment here, if R is a local ring of infinite residue field the minimal
reductions of an ideal I all have the same number of generators, called the analytic
spread of I and denoted by `(I). For an ideal I, its integral closure is denoted by I.
The extensions of these notions to modules is discussed in the text (see also [20]).

The authors are grateful to the referee for the pointed comments that enhanced
and clarified several points in the original exposition.

2. Normalization of modules

Let us recall the notion of the Rees algebra of a module. Let R be a Noetherian
ring, let E be a finitely generated torsionfree R–module having a rank, and choose
an embedding ϕ : E ↪→ Rr. The Rees algebra R(E) of E is the subalgebra of the
polynomial ring R[t1, . . . , tr] generated by all linear forms a1t1 + · · · + artr, where
(a1, . . . , ar) is the image of an element of E in Rr under the embedding ϕ. The Rees
algebra R(E) is a standard graded algebra whose nth component is denoted by En

and is independent of the embedding ϕ since E is torsionfree and has a rank. Let U
be a submodule of E. The module E is integral over the module U if the Rees algebra
of E is integral over the R-subalgebra generated by U . In this case we say that U is
a reduction of E. A reduction is said to be minimal if it is minimal with respect to
containment.

The algebra R(E) is a subring of the polynomial ring S = R[t1, . . . , tr]. Following
[10], we consider the ideal (E) of S generated by the forms in E. Denote by G the
associated graded ring gr(E)(S). The jdeg(gr(E)(S)) encodes information about the
Buchsbaum-Rim multiplicity of the module E according to [16, Proposition 7]:

Proposition 2.1. Let (R,m) be a Noetherian local domain of dimension d and let E
be a torsionfree R–module of rank r with a fixed embedding E ↪→ Rr. Then

(a) The components of G =
⊕

n≥0E
nS/En+1S have a natural grading

Gn = En + EnS1/E
n+1 + EnS2/E

n+1S1 + · · · .

(b) There is a decomposition

G = R(E) +H,

where R(E) is the Rees algebra of E and H is the R-torsion submodule of G.
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(c) If E ⊂ mRr and λ(Rr/E) < ∞, H = H0
m(G) has dimension d + r and

multiplicity equal to the Buchsbaum-Rim multiplicity of E, that is jm(G) =
br(E).

Corollary 2.2. Let E be a module as above. Then jdeg(G) = br(E) + 1.

Proof. It suffices to note that AssR(G) = {0,m}, and use the calculation above for
jm(G) and take into account that j(0)(G) = deg(R(E)(0)) = deg(K[t1, . . . , tr]) = 1.

We can extract additional degrees information from the decomposition G = H +
R(E).

Definition 2.3. Suppose E ↪→ Rr is a submodule of rank r. For each p ∈ Spec (R)\
(0), the Buchsbaum-Rim multiplicity of E is the j-multiplicity of H,

brp(E) = jp(H).

When p is a minimal associated prime of Rr/E, this definition coincides with the
Buchsbaum-Rim multiplicity of E (or, of the embedding E ↪→ Rr).

Let (R,m) be a Noetherian local ring and let E be a finitely generated R-module
having a rank r. The analytic spread of E is defined to be the dimension of the special
fiber ring R(E)/mR(E) and is denoted by `(E). For a minimal reduction U of E,
one has ν(U) = `(E) where ν(·) denotes minimal number of generators.

Let R be an integral domain, and let E ⊂ Rr be an R-module of rank r. Suppose
U ⊂ E is a submodule. Denote S = R[T1, . . . , Tr].

Proposition 2.4. U is a reduction of E if and only if the S-ideal (U) is a reduction
of the ideal S-ideal (E).

Proof. Another way to express that U is a reduction of E is to say that U and E
have the same integral closure in Rr, in other words, for every valuation V of R,
V U = V E ⊂ V r. A similar observation applies to the ideals (U) and (E) of S. In
this case, instead of using all the valuations of S, it suffices to verify that for every
valuation domain V of R, (U)V [T1, . . . , Tr] = (E)V [T1, . . . , Tr], which is equivalent
to UV = EV .

Theorem 2.5 ([18, Theorem 1.1]). Let R be a universally catenary integral domain
and let E be a torsionfree R-module of rank r with an embedding E ↪→ Rr. Suppose U
is a submodule of E of rank r, and fix the induced embedding U ↪→ Rr. The following
conditions are equivalent:

(1) br(Up) = br(Ep) for each p ∈ Spec (R).
(2) U is a reduction of E.
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Proof. Under the conditions, it suffices to apply [7, Theorem 3.3] together with
Proposition 2.4. (A more general proof is that of [18].) �

One application of these estimations is to provide a module version of [16, Theorem
3]. For that we recall the notion of the Briançon-Skoda number of a module following
[10]. If E is a submodule of rank r of Rr, the Briançon-Skoda number c(E) of E is
the smallest integer c such that En+c ⊂ F nSc for every n and every reduction F of E.
In contrast, the Briançon-Skoda number of the ideal (E) of S is the smallest integer

c = c((E)) such that (E)n+cS ⊂ F nS for every n and every reduction F of E. In
particular this implies that in degree n + c, En+c ⊂ F nSc, so that c(E) ≤ c((E)).
Note that one has equality of analytic spreads `(E) = `((E)).

We shall refer to both c(E) and c((E)) as the Briançon-Skoda numbers of E.
When R is a regular local ring, applying the Briançon-Skoda theorem to S, gives
c((E)) ≤ `(E)− 1.

Example 2.6. Let R = K[x, y] and E the submodule of the free R–module Re1⊕Re2
generated by x2e1, y

2e2. E is a free R-module so c(E) = 0. As for the ideal (E)
of S = R[e1, e2], an application of Normaliz ([4]) shows that its normalization is
S[Et, xye1e2t]; it follows that c((E)) = 1.

Let k be a perfect field, let R be a reduced and equidimensional k-algebra essentially
of finite type, and assume that R is affine with d = dimR. Recall that the Jacobian
ideal of R is defined as the d-th Fitting ideal of the module of differentials Ωk(R), it
can be computed explicitly from a presentation of the algebra.

Theorem 2.7. Let k be a perfect field, and let (R,m) be a local domain which is
a k-algebra essentially of finite type and dimension d. Suppose that R has isolated
singularities and L is the Jacobian ideal of R. If E ⊂ mRr is a module such that
λ(Rr/E) <∞, then

jdeg(S[(E)t]/S[(E)t]) ≤ (d+ r + λ(R/L)− 2) · (br(E) + 1).

Proof. The argument is nearly identical to that of [16, Theorem 5]. First, note that
LS is the Jacobian ideal of S = R[T1, . . . , Tr]. Let D be a S2-ification of S[(E)t].

From [16, Theorem 4], setting C = S[(E)t] and c = `(E) − 1 = d + r − 2, we have

L(E)n+c ⊂ Dn. Observe that for all large n, Cn+1 = (E)Cn ⊂ mCn. Consider the
diagram

Dn/Dn+c Cn+c/LCn+c

����
0 // (LCn+c + Dn+c)/Dn+c

//
?�

OO

Cn+c/Dn+c
// Cn+c/(LCn+c + Dn+c) // 0.
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Considering that the modules in the short exact sequence have dimension d+ r− 1
and that the module on the right is supported in m alone, it follows that

jdeg(C/D) = jdeg((LC+D)/D)+jdeg(C/LC+D) = jdeg((LC+D)/D)+deg(C/LC+D).

Given the embedding on the left and the surjection on the right, we have that

jdeg((LC + D)/D) ≤ jdeg(D/D[−c]) = c · jdeg(gr(D)),

and

deg(C/LC + D) ≤ deg(C/LC) ≤ λ(R/L)deg(C/mC).

Since jdeg(gr(D)) = jdeg(grI(R)) by [16, Theorem 1], we obtain the estimate of
multiplicities

jdeg(C/D) ≤ c · jdeg(grI(R)) + λ(R/L) · f0(C),

where f0(C) = deg(C/mC).
Finally, we consider the exact sequence

0→ mCn/Cn+1 −→ Cn/Cn+1 −→ Cn/mCn → 0.

Taking into account that gr(C) is a ring which has the condition S1, the ideal⊕
n mCn/Cn+1 either vanishes or has the same dimension as the ring. Arguing as

above, we have

jdeg(gr(C)) = jdeg(
⊕

n

mCn/Cn+1) + f0(C).

A final application of [16, Theorem 1] gives

jdeg(S[(E)t]/S(E)t]) ≤ (d+ r + λ(R/L)− 2) · (br(E) + 1),

since jdeg(gr(E)(S)) = br(E) + 1. �

3. Divisorial generation

Several of the modules that occur in the construction of normalizations have the
property S2 of Serre. It suggests the following notion of generation.

Definition 3.1. Let R be a Noetherian ring and M a finitely generated R-module. M
is divisorially generated by r elements if there exists a submodule E ⊂ M generated
by r elements such that M is the S2-closure of E.

Theorem 3.2. Let R be a Noetherian domain and A a semistandard graded R-algebra
of finite integral closure A. Then A is the S2-closure of a subalgebra generated by
homogeneous elements A[z1, . . . , zr], for r ≤ 1 + jdeg(A/A).

Proof. This is a direct consequence of [16, Theorem 2]. Let A0 be the S2-closure of
A. If A 6= A0, choose a homogeneous element z1 ∈ A \A0. Let A1 be the S2-closure
of A0[z1]. In the same manner, if A 6= A1, choose z2 ∈ A \ A1 and let A2 be the
S2-closure of A1[z2]. Iterate, if needed, and form the chain

A0 ⊂ A1 ⊂ · · · ⊂ Ar ⊂ A.
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Set B = A[z1, . . . , zr]. Its S2-closure contains all Ai, as desired.

To give an application, consider the observation on bounding number of generators
of modules with Hilbert coefficients. If (R,m) is a local ring, and M is a finitely
generated module, we take for its Hilbert coefficients those of the graded module
grm(M) =

⊕
n mnM/mn+1M over the associated graded ring of m.

Proposition 3.3. Suppose that R is a normal standard graded algebra over a field
(or a normal Noetherian local domain) and that E ⊂ F are homogeneous modules of
the same rank. If E is Cohen-Macaulay and F is a reflexive module with depth F ≥
dimR− 1, then

ν(F ) ≤ e0(F ) + e1(E)− e1(F ),

where the ei(·) denote the coefficients of the corresponding Hilbert functions.

Proof. The module F/E is Cohen-Macaulay of multiplicity e1(E)− e1(F ), which will
bound ν(F/E).

Remark 3.4. Suppose (R,m) is a two-dimensional local normal domain and I is
m-primary with a minimal reduction J = (a, b), then in the sequence

0→ A = R[Jt] −→ A −→ C → 0,

the module C is Cohen-Macaulay, since A is Cohen-Macaulay and A satisfes S2.
These facts can be used to bound the number of generators of A.

The module C =
⊕

n J
n/Jn has multiplicity read off the Hilbert polynomials of

the filtrations {Jn} and {Jn}: The Hilbert polynomial of C is the difference

(e0(J)

(
n+ 2

2

)
− e1(J)(n+ 1) + e2(J))− (e0(J)

(
n+ 2

2

)
− e1(J)(n+ 1) + e2(J)),

and therefore deg(C) = e1(J)− e1(J) = e1(J), because e0(J) = e0(J), and e1(J) = 0

as R is Cohen-Macaulay. Thus R[Jt] will be generated over R[Jt] by 1 + e1(J)
elements.

If I is an ideal of codimension one, what is the bound? Suppose I is unmixed. Then
there is a minimal reduction (we may assume the residue field of R is infinite) J =

(a, b). It is easy to see that R[Jt] is Cohen-Macaulay. The module C = R[Jt]/R[Jt]
is Cohen-Macaulay and since at every prime ideal p of R of codimension one R[Jt] is

normal, the support of C is {m}. Thus jdeg(C) = deg(C), therefore R[Jt] is generated
by

1 + jdeg(R[Jt]/R[Jt])

elements over R[Jt].
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4. Symmetric algebras

Let R be an integral domain and let M be an R-module of rank r ≥ 1. Let S be
the symmetric algebra of M , S = SymR(M). If M is a free (or projective) R-module,
jdeg(S) = jdeg(R) = 1. For more general modules though the associated primes of S
are difficult to determine (see [11]). Let us consider one special case.

Proposition 4.1. Let (R,m) be a Noetherian local domain of dimension d > 0 and
let M be a non-free module of rank r that is free on the punctured spectrum, and let
S = SymR(M). Then

jdeg(S) =

{
1 + jm(S), if ν(M) ≥ dimR + rank(M)
1, otherwise

Proof. If S is not an integral domain, the only possible associated primes of S over
R are (0) and m. According to [16, Proposition 1], we must check whether ν(M) =
dimS, and which by [11, Theorem 2.6] (see also [19, Theorem 1.2.1]) is equivalent to
the assertion on the dimension of S.

To obtain more explicit bounds, one needs other kind of data. Let us consider one
of these that will be used later.

Theorem 4.2. Let (R,m) be a Noetherian local domain of dimension 1, with a finite
integral closure. Let M be a module of rank r that is minimally generated by n = r+1
elements. Let

0→ L→ Rn −→M → 0

be a minimal presentation of M . Denote by c(L) the R-ideal generated by the coef-
ficients of the elements of L, that is the Fitting ideal Fittr(M). If S = SymR(M),
then

jdeg(S) ≤ 1 + e0(c(L)) + ν(L) · λ(R/R).

Proof. L is a module of rank 1, whose generators define the symmetric algebra of M ,

0→ (L) = LB −→ B = R[x1, . . . , xn] −→ S = SymR(M)→ 0.

If R is integrally closed, that is, a discrete valuation domain (or more generally a
PID), (L) would be generated by a linear form, (L) = (cf), where the coefficients
of f generate the unit ideal. In this case M ' R/(c) ⊕ Rr, and therefore jm(S) =
λ(R/(c)) = deg(R/(c)). To take advantage of this elementary fact, let us make a
change of rings, R→ R.

Consider the exact sequence

TorR
1 (R/R, S) −→ S −→ S = R⊗R S −→ R/R⊗R S → 0.
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It gives the inequality

jm(S) ≤ jm(S) + deg(TorR
1 (R/R, S))

≤ λ(S/c(L)S) + deg(TorR
1 (R/R, S))

≤ e0(c(L)) + ν(L)λ(R/R),

where we used that L is isomorphic to an ideal of R, and therefore ν(L) ≤ degR,
and for λ(R/R), we need to recall a bound in terms of deg(R). It will follow that
TorR

1 (R/m, S) = R/m ⊗R LB. As for the equality λ(S/c(L)S) = e0(c(L)), this is a
general fact.

If dimR > 1, but M is still free on the punctured spectrum and dimR+rank(M) =
ν(M), it is harder to estimate jdeg(S). One reason is that the ideal LB now has
codimension ν(M)− rank(M) = dimR > 1, although it is still generated by 1-forms.
One approach, is the following. Let H = H0

m(S) ⊂ S. Denote by L the inverse image
of H in B = R[x1, . . . , xn]. Since S/H is an integral domain, we actually have the
primary decomposition

LB = L ∩Q,
where Q is mB-primary. We can express L as

L =
⋃
r≥1

(LB :B mr).

The ideal L is preferably obtained by elimination ([9, Section 4]). The index r
where the operation stabilizes could be called the elimination index of M .

Proposition 4.3. Let R, M and r be as above. Then

jm(S) ≤ λ(R/mr).

Proof. We note that mrH = 0. Consider the exact sequence

0→ H −→ S −→ S/H → 0.

Tensoring it by k = R/m, we have the exact sequence

TorR
1 (k, S/H) −→ k ⊗R H −→ k ⊗R S −→ k ⊗R S/H → 0.(1)

Let us examine the dimensions of the terms at the ends. Since dimS = dimR +
rank(M) and m is not an associated prime of S/H, dim k ⊗R S/H < dimS.

At the other end, TorR
1 (k, S/H) is a finitely generated S/H-module that is an-

nihilated by m. Thus its dimension is also bounded by dimS − 1. Counting the
multiplicities in (1) we only have to account for the modules of dimension dimS.
This gives deg(k ⊗R H) = deg(k ⊗R S) = 1, and therefore using a composition series
for R/mr, we get deg(H) = deg(H ⊗R R/m

r) ≤ λ(R/mr), as desired.
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Remark 4.4. A computational approach to this calculation is the following. Let
I = (a1, . . . , an) ⊂ R be an ideal, let

0→ I −→ B = R[T1, . . . , Tn] −→ R[It]→ 0

be a presentation of its Rees algebra. Setting

L = (Q, I),

L′ = L : m∞,

one has H = L′/L. Consider the following example computed by R. Villarreal,

I = (x, y, z)2 + w(x, y) ⊂ R = k[x, y, z, w].

Using Macaulay 2 ([8]), one verifies that

L : m∞ = L : m3,

deg(H) = 12,

λ(R/m3) = 15.

5. Approximation complexes

Let (R,m) be a Noetherian local ring of dimension d, and let I be an ideal. If
A = {In, n ≥ 0} is an I-good filtration, for

A =
∑
n≥0

Int
n,

the invariance theorem [16, Theorem 1] asserts that

jdeg(grI(R)) = jdeg(gr(A)).

We can further profit by selecting a minimal reduction J of I, and seeking to determine
jdeg(grJ(R)). We are going to discuss two cases: dimR/I = 1, 2.

Let (R,m) be a Gorenstein local ring of dimension d and let p be a prime ideal
of dimension 1, that is codim p = d − 1. Assume that p is generically a complete
intersection. In order to approach the calculation of jdeg(grp(R)), we select a minimal
reduction J of p. If `(p) = d− 1, J = p and jdeg(grp(R)) = deg(R/p).

We are going to assume that `(p) = d, and that J is one of its minimal reductions
with ν(J) = d. Under these conditions, from the theory of approximation complexes
([19, Chapter 5]), there is an exact complex (B = R[T1, . . . , Td])

0→ H1(J)⊗R B[−1] −→ B0 = H0(J)⊗R B −→ G = grJ(R)→ 0,

where Hi(J) are the Koszul homology modules on a minimal set of generators of J .

Theorem 5.1. Let p be a one-dimensional prime ideal as above. Set S = R/p. If Z1

is the module of syzygies of J ,

jdeg(grp(R)) ≤ 1 + λ(p/J) + λ(S/S) · ν(L) + λ(S/c(Z1)S).
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Proof. H1(J) is the canonical module of H0(J) = R/J . According to [19, Proposition
5.3.3], H1(J) is isomorphic to the canonical module of S = R/p. It is thus a torsionfree
S-module, while p/J is an R-module of finite length. This implies that the submodule
pB0 maps one-one onto pG.

The exact sequence

0→ pB0 ' pG −→ G −→ G0 = R/p⊗R G→ 0

gives the cohomology exact sequence

0→ pB0 −→ H0
m(G)) −→ H0

m(G0)→ 0,

and therefore

jm(G) = λ(p/J) + jm(G0).

We are now in the setting of Theorem 4.2: In

R/p⊗R grJ(R) = R/p⊗R SymR/J(J/J2) = SymR/p(J/pJ),

J/pJ is an R/p-module of rank d−1, free on the punctured spectrum of R/p, we can
apply the estimation of Theorem 4.2.

Example 5.2. Let k be a field of characteristic 6= 2. In the normal hypersurface ring
R = k[x, y, z]/(x2 + yz) let J = p = (x, y). Set S = R/p; then S = S = k[z] and
c(Z1) = (z). It follows that jdeg(grp(R)) = 2.

Let now p be a prime ideal of dimension 2 that is a complete intersection on the
punctured spectrum (e.g. R is a regular local ring and R/p is normal). We shall
assume that p is Cohen-Macaulay. Suppose `(I) = d (as otherwise the analysis is
simple), and let J be a minimal reduction (generated by d elements). The approxi-
mation complex associated to J ,

0→ H2(J)⊗R B[−2] −→ H1(J)⊗R B[−1]→ H0(J)⊗R B −→ grJ(R)→ 0,

where Hi(J) are the Koszul homology modules of J , and B = R[T1, . . . , Td], can be
quickly examined. We set ourselves in the context of [19, Theorem 5.3.4].

Proposition 5.3. Let (R,m) be a Gorenstein local ring of dimension d, and let I be
a prime ideal of codimension d − 2. Suppose I is Cohen-Macaulay, and a complete
intersection in codimension d− 1, `(I) = d, and let J be a minimal reduction. Then
the Koszul homology modules of J satisfy: H2(J) is the canonical module of R/I and
depth H1(J) ≥ 1.

The proof is analogous to that of [19, Theorem 5.3.4]. A consequence is that both
H2(J) and H1(J) are R/I-modules, since IH1(J) vanishes at each localization in
codimension d − 1. As was the case in Theorem 4.2, these facts lead to the exact
sequences: (set B0 = B/JB)

0→ IG = IB0 −→ G −→ G0 = R/I ⊗R G→ 0



12 T. PHAM AND W. V. VASCONCELOS

and the exact sequence of R/I-modules

0→ H2(J)⊗R B[−2] −→ H1(J)⊗R B[−1]→ R/I ⊗R B −→ G0 → 0.

Theorem 5.4. Let I be as above and J a minimal reduction of I. Then

jdeg(G) = λ(I/J) + jdeg(G0) = λ(I/J) + 1 + jm(G0).

We note that the second sequence says that G0 is the symmetric algebra of the
R/I-module J/IJ , and by the acyclicity lemma G0 is Cohen-Macaulay. The issue
is how to make use of the approximation complex beyond what is already done in
Proposition 4.3.

Remark 5.5. A remaining issue is to extend these estimations to the case of a prime
p of a regular local ring R, such that R/p has isolated singularities.
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