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Abstract

Let (R, m) be a local Cohen–Macaulay ring and let I be an m-primary ideal. In
this paper we give sharp bounds on the multiplicity of the special fiber ring F of I in
terms of other well-known invariants of I. Special attention is then paid in studying
when equality holds in these bounds, with a particular interest in the unmixedness
or, better, the Cohen–Macaulayness of F .

1. Introduction

Let (R, m) be a Noetherian local ring with dimension d > 0 and infinite residue field
and let I be an R-ideal. The Rees algebraR(=R(I) =R[It]), the associated graded ring
G(=G(I)), and the special fiber ring F(=F(I)) of I

R =
∞⊕

m=0

Im tm , G = R/IR, F = R/mR

play an important role in the process of blowing up the variety Spec(R) along the
subvariety V (I). For this reason these objects are often referred to as blowup algeb-
ras of I. However, they are also extensively used as the means to examine diverse
properties of the ideal I. Therefore, much attention has been paid in the past to find
under which circumstances these algebras have a good structure.
In this paper we focus on the special fiber ring F , as there is lack of knowledge

about its properties in comparison to the remaining blowup algebras of I. From an
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algebraic point of view, F yields (asymptotic) information about the ideal I. For
example, its Hilbert function is the numerical function that measures the growth of
the minimal number of generators µ(Im ) of the powers of I. Form�0 this function is
a polynomial inm of degree dimF−1, whose leading coefficient f0 = f0(I) is called the
multiplicity (or degree) of the special fiber ring F . Another significant datum attached
to F is its (Krull) dimension, dubbed the analytic spread �= �(I) of I. It is bounded
below by the height g of I and bounded above by the dimension of R. It coincides
with the minimal number of generators of any minimal reduction of I. A minimal
reduction – a notion that has been crucial in the study of the Rees algebra of an ideal,
as it carries most of the information about the original ideal but, in general, with
fewer generators – arises from a Noether normalization of F . From a more geometric
perspective, Proj(F) corresponds to the fiber over the closed point of the blowup of
Spec(R) along V (I). When R is a standard graded domain over a field k and I is
the R-ideal generated by forms a0, . . . , an of the same degree, then F describes the
homogeneous coordinate ring of the image of the rational map Proj(R) ��� P

n
k given

by (a0, . . . , an ). As a special case this construction yields homogeneous coordinate
rings of Gauss images and of secant varieties. More recently, special fiber rings also
find an application in the theory of evolutions, due to Mazur [13] and inspired by the
work of Wiles [30] on semistable curves. Indeed, in this context, Hübl and Huneke
[8] were the first to use the special fiber ring F in studying the issue of the integral
closedness of the ideal mI. See [4] for subsequent work.
In Section 2 we prove our main results, which deal with an m-primary ideal I of

a local Cohen–Macaulay ring R. In Theorem 2·1 we show that the multiplicity f0 of
the special fiber ring F satisfies the inequality

f0 � e1 − e0 + λ(R/I) + µ(I)− d + 1,

where e0 = e0(I) and e1 = e1(I) are the first two coefficients of the Hilbert polynomial
of I and λ(·) denotes the length function. We recall that for m�0 the Hilbert-
Samuel function of an m-primary ideal I of a local Cohen–Macaulay ring R – that
is the numerical function that measures the growth of λ(R/Im ) for all m � 1 – is a
polynomial in m of degree d, whose coefficients e0, e1, . . . , ed are called the Hilbert
coefficients of I. The leading term e0 of this polynomial is called the multiplicity
(of the associated graded ring) of I: it is the only coefficient which is geometrically
well understood as it equals λ(R/J), for any minimal reduction J of I. Even though
equality in the above bound does not assure the Cohen–Macaulayness of F (see
Example 2·3), it nevertheless yields useful information about the associated primes
of F . In fact, in Theorem 2·5 we show that if f0 = e1− e0 +λ(R/I) +µ(I)− d+1
then F is unmixed. In particular the ideals mIm are integrally closed for all m
wheneverR is normal (see Corollary 2·8). An immediate consequence of Theorem 2·5
is that the above equality for f0 forces depthF � min{depthG +1, d}. In particular,
if depthG � d− 1 then F is Cohen–Macaulay (see Corollary 2·6).
Another motivation for estimating f0 in terms of natural data attached to the

ideal I is based on the general philosophy that bounds on f0 coupled with depth
information on F provide constraints on the reduction number r of the ideal. We
recall that J is a reduction of I if Ir+1 = JIr for some non-negative integer r or,
equivalently, if the inclusion of Rees algebras R(J) ↪→ R(I) is module finite [14].
The least such r is called the reduction number rJ (I) of I with respect to J . One
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then defines the reduction number of I to be the least rJ (I), where J varies over
all minimal reductions of I. A reduction is said to be minimal if it is minimal with
respect to containment. The reduction number of an ideal is a key control element
of the blowup algebras, often measuring the interplay among the other invariants
of the ideal. For example, if I is generated by forms of the same degree then F is a
domain and the reduction number r of I is bounded by f0, at least in characteristic
zero [24]. Thus, in Section 3 we use the results on f0, established earlier in the
paper, to estimate the reduction number of an m-primary ideal I. For instance, if
the residue field R/m has characteristic 0 and f0 = e1− e0 +λ(R/I) +µ(I)− d+1 we
conclude that r � e1− e0 +λ(R/I) +µ(I)− d (see Corollary 3·1). If, in addition, F
is Cohen–Macaulay this inequality can be improved and in Corollary 3·5 we obtain
that r � e1− e0 +λ(R/I) + 1. The latter result has been shown without any additional
assumption by Rossi [19] if the dimension of the ring is at most 2. It seems to hold
in full generality.
In Section 4 we strengthen the estimate on f0 obtained in Section 2. With the same

assumption as in Theorem 2·1, we first prove that the multiplicity f0 of the special
fiber ring F of I satisfies the tighter bound f0 � e1− e0 +λ(R/Ĩ) +µ(Ĩ)− d+1, where
Ĩ denotes the Ratliff–Rush closure of I (see Corollary 4·3). We recall that if I is an
m-primary ideal containing a regular element, then the Ratliff–Rush closure Ĩ of an
ideal I is the largest ideal containing I with the same Hilbert polynomial as I [18].
We can actually improve the estimate on f0 by giving a different derivation, that
we carry out in Theorem 4·2, of the construction, originally due to Shah [21], of a
canonical sequence of ideals containing I with partially identical Hilbert polynomials
to the one of I. In Corollary 4·4 we then show that f0 � e1− e0 +λ(R/Ǐ) +µ(Ǐ)− d+1,
where Ǐ is the degree one component of the S2-ification of the Rees algebra of I. As
the ideal Ǐ is the largest ideal containing I with the same e0 and e1 as I [2], the
crucial issue is to show that the multiplicity f0 of the special fiber ring is unchanged
when passing from I to Ǐ.
The main idea behind the proofs of Theorem 2·1 and Theorem 2·5 is the use of the

Sally module SJ (I) of I with respect to a minimal reduction J . This object is defined
by the following exact sequence of R(J)-modules

0 −→ IR(J) −→ IR(I) −→ SJ (I) =
⊕
m�2

Im/IJm−1 −→ 0

and was introduced by Vasconcelos [23]. In this paper, though, we make use of a new
approach to SJ (I) by means of the following exact sequence

R(J)⊕R(J)n−�[−1] −→ R(I) −→ SJ (I)[−1] −→ 0,

where n=µ(I) and � is the analytic spread of I. The advantage of this approach is
that it is suitable to study the multiplicity of the special fiber ring F of any ideal,
not necessarily m-primary. In addition, this approach avoids the technique, typical
in the theory of Hilbert functions, of going modulo a superficial sequence.

2. General bounds

We start describing some general bounds on the multiplicity f0 of the special
fiber ring F of I. Special attention is then paid to studying when equality holds in
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these bounds, with a particular interest in the unmixedness or, better, the Cohen–
Macaulayness of F .

2·1. Upper bounds
In [27, 2·4] Vasconcelos has shown that the multiplicity f0 of the special fiber ring

F of an m-primary ideal I of a local Cohen–Macaulay ring R satisfies the inequality

f0 � min{e0, e1 + 1}, (1)

where e0 and e1 are the first two coefficients of the Hilbert polynomial of I. In
the following theorem we give a better bound on f0 of a different nature, using the
structure of the Sally module SJ (I) of I with respect to a minimal reduction J .

Theorem 2·1. Let (R, m) be a local Cohen–Macaulay ring of dimension d > 0 and let
I be an m-primary ideal. Then the multiplicity f0 of the special fiber ring F of I satisfies

f0 � e1 − e0 + λ(R/I) + µ(I)− d + 1.

Proof. We may assume that the residue field R/m is infinite. Let J be a minimal
reduction of I and write I = (J, a1, . . . , an−d), where n=µ(I) and d=µ(J) = �. Now,
let SJ (I) denote the Sally module of I with respect to J [23, 2·1]. Let us consider the
exact sequence

R(J)⊕R(J)n−d[−1] ϕ−→ R(I) −→ SJ (I)[−1] −→ 0,

where ϕ is the map defined by ϕ(r0, r1, . . . , rn − d) = r0 + r1a1t+ · · · + rn − dan − dt, for
any element (r0, r1, . . . , rn − d) ∈ R(J) ⊕ R(J)n − d[−1]. Tensoring the above exact
sequence with R/m yields

F(J)⊕F(J)n−d[−1] −→ F(I) −→ SJ (I)[−1]⊗ R/m −→ 0. (2)

As the three modules in (2) have the same dimension, we obtain the multiplicity
estimate

f0 � deg(SJ (I)[−1]⊗ R/m) + deg(F(J)⊕F(J)n−d[−1]).

Since SJ (I)⊗R/m is a homomorphic image of SJ (I), its multiplicity is bounded by the
one of SJ (I), which – according to [23, 3·3] – is e1− e0 +λ(R/I). On the other hand,
F(J) ⊕ F(J)n − d[−1] is a free F(J)-module of rank n− d+1. Thus, its multiplicity
is n− d+1, as F(J) is isomorphic to a ring of polynomials.

Proposition 2·2. Let (R, m) be a local Cohen–Macaulay ring of dimension d > 0 and
infinite residue field. Let I be an m-primary ideal. We have that

f0 � e1 − e0 + λ(R/I) + µ(I)− d + 1 � e1 + 1.

In particular, if f0 = e1 + 1 then I has minimal multiplicity in the sense of Goto, that is
mI =mJ for any minimal reduction J of I. If, in addition, R is a local Gorenstein ring
then F is Cohen–Macaulay.

Proof. Without loss of generality, we may assume I�J . As e0 =λ(R/J), from
the identity λ(I/mI) +λ(mI/mJ) =λ(I/J) +λ(J/mJ) it readily follows that − e0 +
λ(R/I) +µ(I)− d= −λ(mI/mJ). Thus

f0 � e1 − e0 + λ(R/I) + µ(I)− d + 1 = e1 − λ(mI/mJ) + 1 � e1 + 1,
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as desired. Therefore, the equality f0 = e1 + 1 forces mI =mJ and hence m= J : I. If,
in addition, R is a local Gorenstein ring, we have that I = J : m as well. Thus I2 = JI
by [3, 2·2]. Finally, the Cohen–Macaulayness of F follows from [11, 3·3].
We notice that equality in (1) – and a fortiori in the bound established in The-

orem 2·1 – does not imply, in general, the Cohen–Macaulayness of F if the ring R is
not Gorenstein.

Example 2·3. Let k be a field of characteristic 0 and let R be the power series
ring k[[T1, T2, T3, T4, T5]] modulo the ideal generated by the two by two minors of the
matrix

ϕ =
[

T1 T2 T3 T4
T2 T3 T4 T5

]
.

The ring R is a local Cohen–Macaulay ring of dimension two and type three. Let ti

denote the image of Ti in R and consider the ideal I = (t1, t2, t4, t5). Then

f0 = 4 = e0 = e1 + 1 = e1 − e0 + λ(R/I) + µ(I)− d + 1.

However, the special fiber ring F of I has depth one.

Next, we give a very general estimate for the multiplicity of F , which is valid for
any ideal I of a Noetherian local ring (R, m) with infinite residue field. We observe
that a characterization of the Cohen–Macaulayness of F in terms of the multiplicity
of F can also be found in [22, 5].

Proposition 2·4. Let (R, m) be a Noetherian local ring with infinite residue field and
let I be an ideal with a minimal reduction J . If r= rJ (I) then

f0 � 1 +
r∑

j=1

µ(Ij/JIj−1),

and equality holds if and only if F is Cohen–Macaulay.

Proof. Set A=F(J) = k[x1, . . . , x�], where � is the analytic spread of I, and
F(I) =

⊕
j � 0 Fj . LetN be the minimal number of generators of F(I) as a A-module.

As f0 = degF(I)� N degA=N , we only need to estimate N . As an A-module, F(I)
is minimally generated by

dimk (F(I)/A+F(I)) = 1 +
r∑

j=1

dimk (Fj/(x1, . . . , x�)Fj−1)

elements. But these summands are µ(Ij/JIj − 1). The second assertion follows from
the standard criterion for Cohen–Macaulayness as applied to graded A-modules.

Note that the ideal I of Example 2·3 has reduction number 2 with re-
spect to the ideal J = (t1, t2). Moreover, µ(I/J) = 2 and µ(I2/JI) = 2. Thus, the
failure of the Cohen–Macaulayness of F is explained by the strict inequality
f0 = 4< 5= 1+µ(I/J) +µ(I2/JI).

Even though the equality in the bound described in Theorem 2·1 does not assure
the Cohen–Macaulayness of F , nevertheless it yields useful information about the
associated primes of F .
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Theorem 2·5. Let (R, m) be a Cohen–Macaulay local ring of dimension d > 0. Let I
be an m-primary ideal. If f0 = e1− e0 +λ(R/I) +µ(I)− d+1, then F is unmixed.

Proof. We may assume that the residue field R/m is infinite and that the reduc-
tion number of I is strictly greater than 1. From the sequence (2) in the proof of
Theorem 2·1, we obtain the following diagram

0
↓

K2

↓
SJ (I)[−1]

↓
0 −→ K1 −→ F(J)⊕F(J)n−d[−1] −→ F(I) −→ SJ (I)[−1]⊗ R/m −→ 0.

↓
0

The asserted equality f0 = e1− e0 +λ(R/I) +n− d+1 implies that both K1 and K2

have multiplicity zero. Now, K1 is a submodule of the free F(J)-module F(J) ⊕
F(J)n − d[−1], hence K1 is zero. On the other hand any non-zero submodule of SJ (I)
must have positive multiplicity because SJ (I) has no associated primes of height � 2
(see [23, 2·2]). Thus K2 is zero as well. Hence we have an exact sequence

0 −→ F(J)⊕F(J)n−d[−1] −→ F(I) −→ SJ (I)[−1] −→ 0, (3)

from which the desired conclusion follows.

Next, we observe that the previous theorem gives us a relation between the depths
of F and SJ (I), and a fortiori a relation between the depths of F and G. In particular,
good depth conditions on G and the equality in the bound established in Theorem 2·1
force the Cohen–Macaulayness of F .

Corollary 2·6. Let (R, m) be a Cohen–Macaulay local ring of dimension d > 0 and
infinite residue field. Let I be an m-primary ideal. If f0 = e1−e0 +λ(R/I) +µ(I)−d+1,
then

depthF � min{depthG + 1, d}.

If, in addition, depthG � d − 1 then F is Cohen–Macaulay.

Proof. The inequality follows from a depth count on (3) and the equality
depthSJ (I) = min{depthG +1, d}, which follows from [29, 1·2·11] and [28, 2·1].

The associated primes of F play a role in the integral closedness of the product
mI. To see how this comes about, we recall an observation of [8, 1·5], later refined in
[4, 4·1], and in Corollary 2·8, we give an application in its spirit.

Proposition 2·7. Let (R, m) be a normal local domain of dimension d > 0 and let I
be a normal ideal of analytic spread d. If F is unmixed then mIm =mIm for all m.

Corollary 2·8. Let (R, m) be a normal Cohen–Macaulay local domain of dimension
d > 0 and let I be an m-primary normal ideal. If f0 = e1 − e0 +λ(R/I) +µ(I) − d+1,
then mIm =mIm for all m.
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In the same fashion as Theorem 2·1 and Theorem 2·5, one can show a bound on the

first two Hilbert coefficients of I, which possibly yields information on the associated
graded ring G of I. The following inequality is of interest in the case of exotic local
Cohen–Macaulay rings of small dimension, that are not regular local rings. The bound
was proved by Elias and Valla in the case of the maximal ideal [6, section 2].

Remark 2·9. Let (R, m) be a local Cohen–Macaulay ring of dimension d > 0 and
infinite residue field. Let I be an m-primary ideal. Then the coefficients e0 and e1 of
the Hilbert polynomial of I satisfy

2e0 − e1 � λ(R/I)(µ(I)− d + 2).

Moreover, if equality holds one has that the associated graded ring G is unmixed and
the Hilbert coefficients of I have a precise value in terms of e0, namely

e1 = 2e0 − λ(R/I)(µ(I)− d + 2), e2 = e0 − λ(R/I)(µ(I)− d + 1), e3 = e4 = · · · = 0.
If, in addition, the Sally module SJ (I) of I with respect to a minimal reduction J is
Cohen–Macaulay then G is Cohen–Macaulay as well.
Another interesting example, where we can argue the Cohen–Macaulayness of F

and hence the integral closedness of the ideals mIm for all m, is due to Huckaba and
Huneke [9, 3·11]. It is the first explicit example of the failure in dimension three of a
two-dimensional version (due to Sancho de Salas) of a vanishing theorem of Grauert
and Riemenschneider. This example complements nicely a family of such examples
over C constructed by Cutkosky [5, section III].

Example 2·10. Let k be a field of characteristic �3 and set R= k[[x, y, z]],
where x, y, z are indeterminates. Let P = (x4, x(y3 + z3), y(y3 + z3), z(y3 + z3)) and set
I =P +m5, where m is the maximal ideal of R. The ideal I is a 16 generated, nor-
mal, m-primary ideal with depthG(Im ) = dimR − 1(=2) for all m � 1. Moreover, we
have that I4 = JI3, where J = (x4, z(y3 + z3), y(y3 + z3) + z5). The Cohen–Macaulayness
of F follows from Proposition 2·4 since we have that f0 = 16, µ(I/J) = 13 and
µ(I2/JI) =µ(I3/JI2) = 1. On the other hand, as far as the bound in Theorem 2·1
is concerned, we have that f0 = 16< 17= e1 − e0 +λ(R/I) +µ(I) − d+1. In fact one
has that e0 = 76, e1 = 48 and λ(R/I) = 31.

2·2. Lower bounds
Let (R, m) be a Noetherian local ring and let I be an m-primary ideal. Let

R/I =A0 ⊃ A1 ⊃ · · · ⊃ As =0, with λ(Ai/Ai + 1) = 1 for 0� i� s − 1 and s=λ(R/I),
be a composition series of R/I. Thus we can find ui ∈ R such that Ai = (Ai + 1, ui)
and m ui ∈ Ai + 1. On the other hand, this composition series induces a filtration
G =A0G ⊃ A1G ⊃ · · · ⊃ AsG =0 on the associated graded ring G of I, whose factors
AiG/Ai + 1G � uiG are F(I)-modules. A bookkeeping in the family of epimorphisms
F → uiG → 0 yields the bound e0 �λ(R/I) f0, or, equivalently,

e0
λ(R/I)

� f0.

It has been proved in [7, 2·6] that if the associated primes of F have the same
dimension then equality in the above formula is equivalent to Im/Im + 1 being R/I-
free for all m � 1. In this situation, R is said to be normally flat along I. We also
observe that an earlier version of this latter characterization can be found in [22, 8].
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3. Special bounds

In [20, 2·2], Sally proved that the reduction number of the maximal ideal of a
local Cohen–Macaulay ring of dimension d is bounded by d! e0 − 1. In [25, 6·12 and
6·16], Vasconcelos improved this bound and for any m-primary ideal he showed that
r � d(e0 − 2) + 1. In this Section we give bounds on the reduction number of an m-
primary ideal via the estimates on the multiplicity of the special fiber ringF obtained
earlier.

Corollary 3·1. Let (R, m) be a Cohen–Macaulay local ring of dimension d > 0. Let I
be anm-primary ideal with reduction number r. If the residue fieldR/m has characteristic
0 and f0 = e1 − e0 +λ(R/I) +µ(I)− d+1, then

r � e1 − e0 + λ(R/I) + µ(I)− d.

Proof. From Theorem 2·5 we conclude that F is unmixed. Hence the reduction
number of I is at most f0 − 1, by a result of Vasconcelos [24, 7 and 9] (see also [26,
2·2(a)]).
We note that the above bound on r can actually be sharpened if the special fiber

ring F is Cohen–Macaulay: see Corollary 3·5 below.

Remark 3·2. Let R be a local Cohen–Macaulay ring of dimension d > 0 and infinite
residue field. Let I be an m-primary ideal of reduction number r. If the special fiber
ring F of I is Cohen–Macaulay then

r � f0 − µ(I) + d,

where f0 is the multiplicity of F .

Proof.We seek to estimate the degree r of the last basis element of the vector space
V =F/(z)F , where z= z1, . . . , zd is a superficial sequence. As V has one basis element
in degree zero, µ(I) − d basis elements in degree one and at least one basis element
in each degree, we get 1+µ(I)− d+ r − 1�dimV = f0. Hence our claim.

The assumption on the Cohen–Macaulayness of F is necessary as the next example
shows.

Example 3·3. Let R= k[[t6, t11, t15, t31]], where k is an infinite field, and let
I = (t6, t11, t31). The ideal I has height 1, analytic spread 1 and reduction number
2. Furthermore G(I) is Cohen–Macaulay, but F is not Cohen–Macaulay. One has that
e0 = 6, e1 = 5 and f0 = 3. Thus r=2> 1= f0 − µ(I) + d. On the other hand one has
r=2= e1 − e0 +λ(R/I) + 1.

Next, we point out a consequence of Remark 3·3 and Theorem 2·1 in the special
case of ideals with reduction number one. It easily recovers an earlier result of Shah
[22, 7(b)].

Corollary 3·4. Let R be a local Cohen–Macaulay ring of dimension d > 0 and in-
finite residue field. Let I be an m-primary ideal of reduction number one. Then the
multiplicity f0 of the special fiber ring F of I is given by f0 =µ(I)− d+1.

Proof. As I has reduction number one it follows from [10, 2·1] and [15, 3·2 and 3·3]
that e1−e0 +λ(R/I) = 0. Thus, Theorem 2·1 gives that f0 � µ(I)−d+1. On the other
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hand, the special fiber ring of I is Cohen–Macaulay by [11, 3·3], so that the reverse
inequality follows from either Remark 3·2 or Abhyankar’s bound [1, 1].
The following result has been proved without any assumption on the special fiber

ring by Rossi for local Cohen–Macaulay rings of dimension at most two [19, 1·5]. It
also holds whenever depthG �dimR − 1.

Corollary 3·5. Let R be a local Cohen–Macaulay ring of dimension d > 0 and infin-
ite residue field. Let I be an m-primary ideal of reduction number r. If the special fiber
ring F of I is Cohen–Macaulay then

r � e1 − e0 + λ(R/I) + 1.

Proof. By combining Remark 3·2 and Theorem 2·1 one has that
r � f0 − µ(I) + d (by Remark 3·2)

� (e1 − e0 + λ(R/I) + µ(I)− d + 1)− µ(I) + d (by Theorem 2·1)
= e1 − e0 + λ(R/I) + 1,

as claimed.

If R is a 2-dimensional regular local ring, we obtain an estimate on the reduction
number r and on the multiplicity f0 of an ideal I which does not explicitly involve
the Hilbert coefficients of the ideal I.

Corollary 3·6. Let (R, m) be a 2-dimensional regular local ring of infinite residue
field. Let I be an m-primary ideal of reduction number r. Then

r � λ(I/I) + 1 and f0 � λ(I/I) + µ(I)− 1,
where I denotes the integral closure of I.

Proof. We have that e1(I)� e1(I) by [16, 2·2], where e1(I) is the corresponding
Hilbert coefficient arising from the filtration given by the integral closure of the
powers of I rather than the I-adic filtration. On the other hand, using the fact I is
a normal ideal of reduction number one [12, 5·5], one has that e1(I) = e1(I) =λ(I/J)
for any minimal reduction J of I. As e0 =λ(R/J), one finally concludes from Rossi’s
bound [19, 1·5] that

r � e1 − e0 + λ(R/I) + 1 � λ(I/J)− e0 + λ(R/I) + 1 = λ(I/I) + 1,

as claimed.

Remark 3·7. Observe that whenever I�m one has that the above bounds translate
into

r � e0 − 2 and f0 � λ(R/I) + µ(I)− 3.

The first one compares favorably with Vasconcelos’ earlier bound, which says
r � 2e0 − 3.

4. Partially identical Hilbert polynomials

To compare I to its integral closure I it is useful to track their numerical measures
as expressed by appropriate Hilbert functions. An approach was given in [21, 1] by
Shah to construct a ‘canonical’ sequence of ideals I ⊆ I0 ⊆ I1 ⊆ · · · ⊆ Id−1 ⊆ Id = I,
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with Hilbert polynomials partially identical to the one of I. More recently, Ciuperca
[2, 2·5] has shown that (In )d−1, for all n � 1, is the degree n component of the
S2-ification of the Rees algebra of I.
We give below another derivation of Shah and Ciuperca’s results as it will be

relevant for an improvement of our earlier bounds on f0. In the sequel R[It, t−1] will
always denote the extended Rees algebra of the ideal I.

Lemma 4·1. Let (R, m) be a Noetherian local ring of dimension d > 0. Let I ⊆ L be m-
primary ideals contained in I and with Hilbert coefficients ei(I) and ei(L), respectively.
For any integer 0� j � d, one has ei(I) = ei(L) for all 0� i� j if and only if the cokernel
M in the exact sequence of R[It, t−1]-modules

0 −→ R[It, t−1] −→ R[Lt, t−1] −→ M −→ 0 (4)

has dimension at most d − j.

Proof. The exact sequence in (4) induces the following diagram

0
↓

0 0 K
↓ ↓ ↓

0 −→ R[It, t−1][1] −→ R[Lt, t−1][1] −→ M [1] −→ 0

↓·t−1 ↓·t−1 ↓·t−1

0 −→ R[It, t−1] −→ R[Lt, t−1] −→ M −→ 0
↓ ↓ ↓

G(I) G(L) C
↓ ↓ ↓
0 0 0

from which we obtain, using the Snake Lemma, the exact sequences

0 −→ K −→ G(I) −→ G(L) −→ C −→ 0, (5)

0 −→ K −→ M [1] ·t−1

−→ M −→ C −→ 0. (6)

Notice that all modules in (5) and (6) are finitely generated graded modules over
R[It], all of whose components have finite length. From (5) and (6) we also get that the
first difference ∆H1(M, m) =H1(M, m+1)−H1(M, m) of theHilbert–Samuel function
ofM is a polynomial type function equal toH1(G(I), m)−H1(G(L), m). Now dimM =
degreeH1(M, m) = degree∆H1(M, m) + 1=degree(H1(G(I), m)−H1(G(L), m)) + 1.

Let R be a Noetherian local ring of dimension d and let A denote the extended
Rees algebra R[It, t−1] of I. For each integer 0� j � d, let B(j ) be the subring of
C =R[t, t−1] � A defined by

B(j ) = {h ∈ C | dim (A/A :A h) � d − j}.

This gives a filtration of graded subalgebras A=B(d + 1) ⊆ B(d) ⊆ · · · ⊆ B(1) ⊆
B(0) =C. Notice that by considering only the component A(j ) of B(j ) in non-negative
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degrees we have:

A(0) = integral closure of R[It] in R[t]
A(1) =S2-ification of R[It] in case the ring R

has S2 and is universally catenary
A(d) =Ratliff-Rush closure of R[It]

A(d+1) =Rees algebra R[It] of I.

We are now ready to relate these algebras to the ideals of Shah and to prove the
assertion about their Hilbert polynomials.

Theorem 4·2. Let (R, m) be a Noetherian local ring of dimension d > 0 and let I be
an m-primary ideal. Let 0� j � d and let Id−j be the R-ideal generated by all the forms
of degree 1 of B(j ). Then Id−j is the largest ideal such that I ⊆ Id−j ⊆ I with

ei(I) = ei(Id−j ), i = 0, . . . , j.

Proof. Consider the exact sequences of finitely generated modules over R[It, t−1]

0 −→ R[It, t−1] −→ R[Id−j t, t
−1] −→ Md−j −→ 0.

Notice that by definition Id−j is the largest ideal such that the module Md−j has
dimension at most d − j. The statement now follows from Lemma 4·1.
Remark 4·3. Using the same proof of Theorem 4·2, we obtain that (In )d−j , for

n � 1, is the R-ideal generated by the forms of degree n of B(j ). This generalizes
Ciuperca’s result [2, 2·5].

We recall that the Ratliff–Rush closure Ĩ of an m-primary ideal I is the ideal I0 in
the terminology established in Theorem 4·2.
Corollary 4·3. Let R be a local Cohen–Macaulay ring of dimension d > 0. Let I be

an m-primary ideal. Then the multiplicity f0 of the special fiber ring F of I satisfies

f0 � e1 − e0 + λ(R/Ĩ) + µ(Ĩ)− d + 1, (7)

where Ĩ is the Ratliff–Rush closure of I.

Proof. The special fiber rings F(Ĩ) and F(I) have the same multiplicity, since these
two algebras differ at most in a finite number of components. The assertion now
follows from Theorem 2·1, applied to Ĩ, and Theorem 4·2.
Observe that Corollary 4·3 sharpens the estimate of f0 established in Theorem 2·1.

Indeed the relations

λ(R/Ĩ) = λ(R/I)− λ(Ĩ/I) and µ(Ĩ) � µ(I) + λ(Ĩ/I)

implies that λ(R/Ĩ) +µ(Ĩ)�λ(R/I) +µ(I).

An additional improvement occurs from the following consideration. Let Ǐ denote
the ideal Id−1 in the terminology established in Theorem 4·2. Notice that if R is S2
and universally catenary then Ǐ is the ideal generated by all forms of degree 1 of the
S2-ification of the Rees algebra of I.

Corollary 4·4. Let R be a local Cohen–Macaulay ring of dimension d > 0. Let I be
an m-primary ideal. Then the multiplicity f0 of the special fiber ring F of I satisfies

f0 � e1 − e0 + λ(R/Ǐ) + µ(Ǐ)− d + 1.
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Proof. According to Theorem 4·2, Ǐ is the largest ideal containing I with the same
values for the Hilbert coefficients e0 and e1. By Lemma 4·1 Ǐ is also the largest ideal
containing I such that in the embedding of Rees algebras

0 −→ R(I) −→ R(Ǐ) −→ M −→ 0, (8)

dimM � d − 1. From equation (8) it follows that there is an induced sequence

0 −→ N −→ F(I) −→ F(Ǐ) −→ M/mM −→ 0

of finitely generated F(I)-modules such that the dimensions of M/mM and N are
at most d − 1. Indeed, in the case of N one has the map Tor1(M, R/m) → N → 0,
which justifies our assertion about the dimension. Thus, the special fiber rings F(Ǐ)
and F(I) have the same multiplicity. Therefore if we write formula (7) for Ǐ instead
of Ĩ,

f0 � e1 − e0 + λ(R/Ǐ) + µ(Ǐ)− d + 1

we can only achieve gains, as the function λ(R/·) +µ(·) is monotone non-increasing.

Corollary 4·5. Let R= k[x, y] with k a field of characteristic zero and x, y variables,
and let m denote the maximal homogeneous ideal of R. Let I be an m-primary monomial
ideal with a monomial 2-generated reduction. Then the multiplicity f0 of the special fiber
ring F of I is given by f0 =µ(Ǐ)− 1.

Proof. By [17], Ǐ has reduction number one. Our assertion then follows from
Corollary 3·4.

The assertion of Corollary 4·5 seems to hold for all m-primary ideals of a two-
dimensional regular local ring. The following example is taken from [2, 3·3], where it
is erroneously stated that R(Ǐ) is not Cohen–Macaulay.

Example 4·7. Let R= k[x, y](x,y ) with k a field of characteristic zero. The
ideal I = (x8, x3y2, x2y4, y8) has S2-ification Ǐ = (x8, x3y2, x2y4, xy6, y8). We have that
f0 = 4, e0 = 40 and e1 = 12 whereas λ(R/I) = 30 and λ(R/Ǐ) = 28. Thus in one case we
have that f0 = 4< 5= e1 − e0 +λ(R/I) +µ(I) − d+1 while in the other we have that
f0 = 4= e1 − e0 +λ(R/Ǐ) +µ(Ǐ)− d+1. By choosing J = (x8 + y8 +x2y4, x3y2) we have
that Ǐ2 = JǏ so that f0 =µ(Ǐ)− 1.
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