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Cohomological Degrees and the HomAB Conjecture

Kia Dalili and Wolmer V. Vasconcelos

Abstract. We consider a question, which we label the HomAB Conjecture,

asserting that the number of generators of HomR(A, B), where A and B are
finitely generated modules over the Noetherian ring R, is bounded by a fixed

quadratic polynomial defined on invariants of R, and evaluated at invariants
of A and B. The main motivation comes from the fact that several algorithms

employed in the computation of the normalization of algebras and in primary

decomposition involve rounds of the Hom operation. For several classes of mod-
ules, in arbitrary dimensions, we derive effective bounds for ν(HomR(A, A)).
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1. Introduction

Let R be a Noetherian ring and let A and B be finitely generated R-modules.
The HomAB question asks for uniform estimates for the number of generators of
HomR(A,B) in terms of invariants of R, A and B.

In addition to the appeal of the question in basic homological algebra, such
modules of endomorphisms appear frequently in several constructions, particularly
in the algorithms that seek the integral closure of algebras (see [12, Chapter 6]).
Another natural application is for primary decomposition of ideals, given the preva-
lence of computation of ideal quotients.
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K. Dalili ([3]) was the first to consider various cases of the HomAB problem and
raised a broadly based conjecture (the HomAB Conjecture) about the character of
the bounds. The scales he used to measure the invariants were the cohomological
degree functions introduced in [4]. These are extensions (denoted by Deg) of the
ordinary multiplicity function deg but encoding also some of the properties of its
cohomology (we will discuss them briefly soon). The bounds treated have the
general format

ν(HomR(A,B)) ≤ f(Deg(A),Deg(B)),(1)

where f(x, y) is a quadratic polynomials whose coefficients depend on various in-
variants of R. Although it can be presented in the form f(Deg(A),Deg(B)) =
c(R)Deg(A)Deg(B), we will emphasize polynomials in various other invariants of
the modules, such as number of generators ν(A) and the classical multiplicity
deg(A).

Our outlook here has a slightly different perspective. To obviate the non-
interchangeable roles A and B play in HomR(A,B), we consider only the case
E = A = B. On one hand, this choice enables the additional structure of algebra
in HomR(E,E). Naturally the consideration of E = A ⊕ B makes for a rough
equivalence. The real distinction from [3] comes in the classes of modules chosen
for examination. We substitute the modules of low dimension treated in [3] by a few
classes of modules of arbitrary dimension, but that still affirm the basic conjecture
(1).

The setup we employ is derived from the analysis of duality of [1]: There is a
homomorphism of R-algebras

E∗ ⊗R E −→ HomR(E,E) −→ TorR
1 (D(E), E) → 0(2)

where D(E) is the Auslander dual of E (see Definition 2.9). Considering that the
number of generators of E∗ can be estimated from certain invariants of E and R
(see Theorem 2.12), the question turns on the understanding of TorR

1 (D(E), E), a
module that by [6, Theorem 1.3] is identified with the module of natural endomor-
phisms HomR(Ext1R(E, ·),Ext1R(E, ·)). In several cases, TorR

1 (D(E), E) is actually
identified to another ring of endomorphisms HomR(C,C), with C having much
smaller support than E and explicitly related to E.

To track estimates of the number of generators of TorR
1 (D(E), E) to properties

of E, we make use of extended degree multiplicity, particularly those labelled hdeg
and bdeg (see Definitions 2.2 and 2.6).

We are now going to describe our results. They will be framed in the different
ways the analysis of TorR

1 (D(E), E) takes place by examining several classes of
modules. Since the problem is a local question, we may assume that (R,m) is a
local Noetherian ring of dimension d. We will see that in good many cases this ends
up in the consideration of Cohen-Macaulay modules. A successful resolution of this
case would have a major impact on all these problems. We are going to list the
classes of modules considered and describe the corresponding estimates obtained.

Section 2 introduces the various generalized multiplicity functions used to es-
timate ν(HomR(E,E)) and the broad setting of Auslander duals. The following 3
sections treat each specific classes of modules. It is grouped under four labels, but
the first two are parts of section 3.

• Vector bundles: Those are modules free on certain distinguished open
X sets of Spec R. For instance, if X is the punctured spectrum of R,
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TorR
1 (D(E), E) is a module of finite length. When E is a module of

finite projective dimension, which is free in codimension dim R− 2, this is
treated in [3]. This remains unresolved in general, with several undecided
examples.

• Isolated singularities: When (R,m) is a Gorenstein local ring essentially
of finite type over a field, whose Jacobian ideal J is m-primary, nearly all
known results that required the modules to have finite projective resolu-
tion are extended. For that we introduce a new extended degree function
that makes use of Samuel’s multiplicities relative to J . Thus Theorem 3.4
shows that if E is a maximal Cohen-Macaulay module,

ν(HomR(E,E)) ≤ deg(E) · ν(E) + e(J) · ν(E)2.

It is then used to show that for any R-module, free in codimension ≤
dim R − 2, bounds similar to those of [3] (that use proj dim E < ∞) are
proved.

• Modules of syzygies of near-perfect modules: If M is a perfect mod-
ule (or has this property on the punctured spectrum of R) and E is
one of its modules of syzygies, we will exhibit a natural identification
TorR

1 (D(E), E) = HomR(M,M). The difference of dimensions between
E and M leads to several very explicit formulas for ν(HomR(E,E)), e.g.
(Theorem 4.2): If M is a perfect module and E is its module of k-syzygies
(k ≥ 2), there exists an exact sequence

0 → E∗ ⊗ E −→ HomR(E,E) −→ HomR(M,M) → 0.

• Ideal modules: An ideal module is a torsionfree R-module E such that E∗∗

is R-free. This is a property of ideals of grade at least two. The quotient
module C = E∗∗/E has the property that TorR

1 (D(E), E) = HomR(C,C).
One application is (Corollary 5.5): Let (R,m) be a Gorenstein local ring
of dimension d and let E be a torsionfree ideal module free in codimension
d− 3. Then

ν(HomR(E,E)) ≤ (rank(E) + ν(E))(hdeg(E)− deg(E)) + rank(E) · ν(E).

These bounds are useful in the estimation of the number of generators of
ideal quotients I : J in rings of polynomials.

The last section list some open problems.

2. Degree functions and Auslander duals

In this preliminary section we will recall the scales we employ to measure the
various complexities and also the framework were our calculations take place. Our
setting is the category M(R) of finitely generated modules over a Noetherian local
ring (R,m), of residue field k. Basic facts and terminology are be found in [2].

Big degs. Clearly, to estimate the number of generators of HomR(A,B), the
knowledge ν(A) and ν(B) are far from enough. Even more strongly, data provided
from the multiplicities deg(A) and deg(B) will also fall far short of the goal. We
will focus instead on the so-called extended and cohomological degree functions of
[4]. (See [12, Section 2.4] for a discussion.)
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An ingredient to the definition of these functions is a method to select appro-
priate hyperplane sections, a requirement that may require that the residue fields
of the rings to be infinite.

Definition 2.1. A cohomological degree, or extended multiplicity function, is
a function

Deg(·) : M(R) 7→ N,

that satisfies the following conditions.

(i) If L = Γm(M) is the submodule of elements of M that are annihilated by
a power of the maximal ideal and M = M/L, then

Deg(M) = Deg(M) + λ(L),(3)

where λ(·) is the ordinary length function.
(ii) (Bertini’s rule) If M has positive depth , there is h ∈ m \m2, such that

Deg(M) ≥ Deg(M/hM).(4)

(iii) (The calibration rule) If M is a Cohen-Macaulay module, then

Deg(M) = deg(M),(5)

where deg(M) is the ordinary multiplicity of M .

These functions will be referred to as big Degs. If dimR = 0, λ(·) is the unique
Deg function. For dim R = 1, Deg(M) = λ(L)+deg(M/L). When d ≥ 2, there are
several big Degs. An explicit Deg, for all dimensions, was introduced in [11].

Definition 2.2. Let M be a finitely generated graded module over the graded
algebra A and S a Gorenstein graded algebra mapping onto A, with maximal graded
ideal m. Set dim S = r, dim M = d. The homological degree of M is the integer

hdeg(M) = deg(M) +(6)
r∑

i=r−d+1

(
d− 1

i− r + d− 1

)
· hdeg(Exti

S(M,S)).

This expression becomes more compact when dim M = dim S = d > 0:

hdeg(M) = deg(M) +(7)
d∑

i=1

(
d− 1
i− 1

)
· hdeg(Exti

S(M,S)).

Remark 2.3. A family of such functions arise when we use Samuel multiplic-
ities. That is, if (R,m) is a local ring and I is an m-primary ideal, instead of the
ordinary multiplicity function deg M = e(m;M) we employ e(I;M). The generic
hyperplane section are now to be chosen in I \mI.

In the case of hdeg, for a local ring with isolated singularities, we shall have
the opportunity to employ the construction when I is the Jacobian ideal. The
corresponding function will be denoted hdegI (see also [7]).

We are going to recall some of the bounds afforded by a Deg function, partic-
ularly as they pertain to the HomAB issue.
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Theorem 2.4 ([12, Theorem 2.94]). For any Deg function and any finitely
generated R-module M ,

βi(M) ≤ Deg(M)βi(k),
where βi(·) is the ith Betti number function.

Theorem 2.5 ([8]). Let A be an standard graded algebra over an infinite field
and let M be a nonzero finitely generated A-module. Then for any Deg(·) function,
we have

reg(M) < Deg(M) + α(M),
where α(M) is the maximal degree in a minimum graded generating set of M .

Another cohomological degree, called bdeg, was introduced in T. Gunston thesis
([5]):

Definition 2.6. Let (R,m) be a Noetherian local ring. For any finitely gen-
erated R-module M ,

bdeg(M) := min{Deg(M) | Deg is a cohomological degree}.

It has the property that if M has positive depth there are generic hyperplane
sections such that

bdeg(M) = bdeg(M/hM).
This property has a very useful behavior with respect to certain exact sequences:

Proposition 2.7 ([3, Propositions 3.2 and 3.3]). Let (R,m) be a Noetherian
local ring and let

0 → A −→ B −→ C → 0
be an exact sequence of finitely generated R-modules. Then

bdeg(B) ≤ bdeg(A) + bdeg(C), and
bdeg(A) ≤ bdeg(B) + (dim A− 1)bdeg(C).

Question 2.8. Is there a polynomial f(x) such that for any Deg,

hdeg(E) ≤ f(Deg(E)),

for all R-modules E? It would suffice to prove

hdeg(E) ≤ f(bdeg(E)).

Auslander dual. The setting of our calculations is the following construction
of Auslander ([1]).

Definition 2.9. Let E be a finitely generated R-module with a projective
presentation

F1
ϕ−→ F0 −→ E → 0.

The Auslander dual of E is the module D(E) = coker (ϕt),

0 → E∗ −→ F ∗
0

ϕt

−→ F ∗
1 −→ D(E) → 0.(8)

The module D(E) depends on the chosen presentation but it is unique up to
projective summands. In particular the values of the functors Exti

R(D(E), ·) and
TorR

i (D(E), ·), for i ≥ 1, are independent of the presentation. Its use here lies in
the following result (see [1, Chapter 2]):
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Proposition 2.10. Let R be a Noetherian ring and E a finitely generated
R-module. There are two exact sequences of functors:

0 → Ext1R(D(E), ·) −→ E ⊗R · −→ HomR(E∗, ·) −→ Ext2R(D(E), ·) → 0(9)

0 → TorR
2 (D(E), ·) −→ E∗ ⊗R · −→ HomR(E, ·) −→ TorR

1 (D(E), ·) → 0.(10)

Corollary 2.11. Let R be a Noetherian ring and E a finitely generated R-
module and denote by D(E) its Auslander dual. Then

ν(HomR(E,E)) ≤ ν(E∗)ν(E) + ν(TorR
1 (D(E), E)).

In one important case, one can zoom in further ([3, Theorem 5.3]):

Theorem 2.12. Let R be a Gorenstein local ring of dimension d and let E be
a finitely generated R-module. Then

ν(E∗) ≤ (deg(E) + d(d− 1)/2)hdeg(E).

As a consequence, the focus is placed on TorR
1 (D(E), E), a module with many

interesting properties:

Corollary 2.13. The image of E∗⊗R E is a two-sided ideal of HomR(E,E),
so TorR

1 (D(E), E) has a ring structure. Moreover, the module E is projective if and
only if TorR

1 (D(E), E) = 0. In particular, the support of TorR
1 (D(E), E) determines

the free locus of E.

Proof. The first assertion is routine, considering the actions of HomR(E,E) on E
and on E∗. The surjection of the natural mapping E∗ ⊗R E → HomR(E,E) gives
a representation of the identity of HomR(E,E),

I =
∑

i

fi ⊗ ei, fi ∈ E∗, ei ∈ E,

that is
e =

∑
i

fi(e)ei, ∀e ∈ E,

one of the standard descriptions of finitely generated projective modules. 2

We single out from the examination of (8) the following effective description of
HomR(E,E).

Proposition 2.14. Let E be a finitely generated R-modules with a presentation

Rm ϕ−→ Rn −→ E → 0.

Choose bases {e1, . . . , en} and {f1, . . . , fm} in Rn and Rm. Then HomR(E,E) is
isomorphic to the kernel of the induced mapping Φ : E ⊗R (Rn)t → E ⊗ (Rm)t.

Proof. We let e∗i be corresponding dual basis of (Rn)t. An element z =
∑

xi ⊗ e∗i
lies in the kernel of Φ if

∑
xi⊗e∗i ◦ϕt = 0, a condition that means [x1, . . . , xn]·ϕt = 0.

This will imply that if we let ai be the image of ei in E, the assignment ai → xi

will define an endomorphism α : E → E.
Conversely, given such α, ζ =

∑
i α(ai)⊗e∗i ∈ ker(Φ). The mappings are clearly

inverses of one another. 2
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3. Isolated singularities and vector bundles

Let (R,m) be a Gorenstein local ring which is essentially of finite type over
the field k. Denote by J be Jacobian ideal of R. We will assume that J is an
m-primary ideal. For any maximal Cohen-Macaulay (MCM for short) module E,
we are going to give a bound for ν(HomR(E,E)) in terms of the multiplicity of E
and the Samuel multiplicity of J .

We are going to gather information on the number of generators of TorR
1 (D(E), E)

when E is a MCM module. First, since R is Gorenstein, E∗ = HomR(E,R) is also
a MCM module of the same multiplicity. In particular we have

ν(HomR(E,E)) ≤ ν(E) deg(E) + ν(TorR
1 (D(E), E)).(11)

Let
0 → L −→ F1 −→ F0 −→ E → 0

be a minimal projective presentation of E. Since all these modules are maximal
Cohen-Macaulay and R is Gorenstein, dualizing we get another exact sequence of
MCM modules

0 → E∗ −→ F ∗
0 −→ F ∗

1 −→ D(E) → 0.

We now quote in full two results [13] that we require.

Theorem 3.1 ([13, Theorem 5.3]). Let R be a Cohen-Macaulay local ring of
dimension d, essentially of finite type over a field, and let J be its Jacobian ideal.
Then J · Extd+1

R (M, ·) = 0 for any finitely generated R-module M .

Proposition 3.2 ([13, Proposition 1.5]). Let R be a commutative ring, M and
R-module, and x ∈ R. If xExt1R(M, ·) = 0 then xTorR

1 (M, ·) = 0.

Since D(E) is MCM and R is Gorenstein, it is a d+1 syzygy for an appropriate
module L, and thus Extd+1

R (L, ·) = Ext1R(D(E), ·), a functor that according to
Theorem 3.1 is annihilated by the Jacobian ideal J of R. On the other hand,
appealing to Proposition 3.2, J · TorR

1 (D(E), ·) = 0.

We now integrate these strands. Let z = z1, . . . , zr be a regular sequence in J .
To provide a modicum of generality, if J has dimension 1, we take r = d− 1, while
if J is m-primary, we pick z to be a minimal reduction of J .

Consider the exact sequence induced by multiplication by z1

0 → E
z1−→ E −→ E/z1E → 0.

Since J · TorR
1 (D(E), ·) = 0, TorR

1 (D(E), E) embeds in TorR
1 (D(E), E/z1E). Iter-

ating we will get
TorR

1 (D(E), E) ↪→ TorR
1 (D(E), E/zE).

Now we derive a bound for the number of generators of TorR
1 (D(E), E) in terms of

the properties of TorR
1 (D(E), E/zE).

Let
· · · −→ G2 −→ G1 −→ G0 −→ D(E) → 0

be a minimal projective resolution of D(E). To tensor with E/zE, we first do
with R/(z), which gives a minimal free resolution of D(E)/zD(E) over the ring
R = R/(z). We now tensor with E = E/(z)E over R. Denote by K the kernel of

G1 ⊗ E −→ G0 ⊗ E,
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and by B the corresponding module of boundaries

0 → B −→ K −→ TorR
1 (D(E), E) → 0.

We apply the next lemma to obtain

ν(TorR
1 (D(E), E)) ≤ DegK ≤ Deg(G1 ⊗ E),

since dim R ≤ 1.

Lemma 3.3. Let R be a local Noetherian ring of dimension 1 and consider the
diagram of finitely generated R-modules

A
ϕ // B // O,

C
?�

OO

that is, C is a subquotient of A. Then ν(C) ≤ Deg(A).

Proof. Let D = ϕ−1(C). Since in dimension 1 Deg(D) ≤ Deg(A), and as
ν(D) ≤ Deg(D) always, the assertion follows. 2

We note that G1 = F ∗
0 and that G1 ⊗ E is a Cohen-Macaulay that is a homo-

morphic image of G1 ⊗ F0. If dim R = 0, it is an Artin ring of length e(J), the
Samuel multiplicity of the ideal J . We have the bound

λ(G1 ⊗ E) ≤ e(J)ν(E)2.

We can put together these considerations in the following.

Theorem 3.4. Let (R,m) be a Gorenstein local ring as above, let E be a MCM
module and let J be the Jacobian ideal of R.

(i) If J of R is m-primary,

ν(HomR(E,E)) ≤ deg(E) · ν(E) + e(J) · ν(E)2.

(ii) If J has dimension 1, then for any regular sequence z ⊂ J of length
dim R− 1,

ν(HomR(E,E)) ≤ deg(E)ν(E) + deg(R/(z))ν(E)2.

We are now going to formulate two results of [3] on modules of finite projective
dimension. They are [3, Theorem 6.5], asserting that the conjectural bound (1)
holds for modules which are free on the punctured spectrum of R, and [3, Theorem
7.3], where the same bound is established for torsionfree modules if dim R = 4.

Proposition 3.5. Let (R,m) be a Gorenstein local ring essentially of finite
type over the field k and denote by J its Jacobian ideal. If J is m-primary and i
is a fixed positive integer, then for every maximal Cohen-Macaulay module M and
every finitely generated R-module B,

λ(TorR
i (M,B)) ≤ βi(M)Deg(B).

Proof. We will argue by induction on dim B, the case dim B = 0 being clear. Let
H0

m(B) = B0 6= 0; the exact sequence

0 → B0 −→ B −→ B′ → 0
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yields Deg(B) = λ(B0) + Deg(B′). On the other hand, the long exact homology
sequence

TorR
i (M,B0) −→ TorR

i (M,B) −→ TorR
i (M,B′)

gives
λ(TorR

i (M,B)) ≤ λ(TorR
i (M,B0)) + λ(TorR

i (M,B′)).
It suffices to consider the case of modules of positive depth. Let z ∈ J be a generic
hyperplane section for the module B:

0 → B
·z−→ B −→ B → 0.

By Proposition 3.2, zTorR
i (M,B) = 0, and therefore

TorR
i (M,B) ↪→ TorR

i (M,B).

Since dim B = dim B − 1 and Deg(B) ≤ Deg(B), the induction is complete. 2

We now treat the mentioned results of [3], with the assumption of finite pro-
jective dimension removed. Let E be a finitely generated R-module with a minimal
presentation

0 → Fd → Fd−1 −→ · · · −→ F1 −→ F0 −→ E → 0,

d = dim R, where Fi is a free R-module for i ≤ d − 1. Fd is a MCM module of
multiplicity controlled by Deg(E). Applying HomR(·, R) we get a complex which
is broken up into short exact sequences:

0 → Z0 −→ F ∗
0 −→ B1 → 0
...

0 → Zi −→ F ∗
i −→ Bi+1 → 0
...

0 → Bd −→ F ∗
d −→ Extd

R(E,R) → 0
along with the exact sequences, 1 ≤ i ≤ d− 1,

0 → Bi −→ Zi −→ Exti
R(E,R) → 0

and
0 −→ Ext1R(E,R) −→ D(E) −→ B2 → 0.

It is the last exact sequence that will become the focus of interest, as we need to
estimate ν(TorR

1 (D(E), E)).

Suppose E is free in dimension 2. This implies that the modules Exti
R(E,R),

i ≥ 1, have dimension at most 1. Tensoring the last sequence by E, we obtain a
complex

TorR
1 (Ext1R(E,R), E) −→ TorR

1 (D(E), E) −→ TorR
1 (B2, E)(12)

for which we gather information from the homology of the other exact sequences

TorR
2 (Ext2R(E,R), E) −→ TorR

1 (B2, E) −→ TorR
1 (Z2, E)

Tor1(Z2, E) = TorR
2 (B3, E)

TorR
3 (Ext3R(E,R), E) −→ TorR

2 (B3, E) −→ TorR
2 (Z3, E)

Tor2(Z3, E) = TorR
3 (B4, E)

...
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TorR
d (Extd

R(E,R), E) −→ TorR
d−1(Bd, E) −→ TorR

d−1(F
∗
d , E).

For each i ≥ 1, TorR
i (Exti

R(E,R), E) is a subquotient of Rβi(E)⊗Exti
R(E,R), a

module whose Deg value is βi(E)Deg(Exti
R(E,R)). By Lemma 3.3, dim Exti

R(E,R) ≤
1, and thus every submodule of TorR

i (Exti
R(E,R), E) is generated by at most

βi(E)Deg(Exti
R(E,R)) elements.

Finally, note that TorR
d−1(Bd, E) must be handled differently. To estimate a

bound for the number of generators for its submodules: to βd(E)Deg(Extd
R(E,R))

we must add the bound for ν(TorR
d−1(F

∗
d , E)), derived in Proposition 3.5, since F ∗

d

is a MCM module.

Theorem 3.6. Let (R,m) be a Gorenstein local ring essentially of finite type
over the field k and denote by J its Jacobian ideal. If J is m-primary, then for any
R-module that is free in dimension d− 2,

ν(HomR(E,E)) ≤ ν(E)(deg E + d(d− 1)/2)hdeg(E) + hdeg(E)
d∑

i=1

βi(E)

+ βd−1(k)βd(E) deg(E)hdegJ(E).

Proof. The first summand corresponds to the number of generators for E∗ ⊗ E,
according to Theorem 2.12. The second arises from the consideration of short exact
sequences of modules of dimension at most 1,

A −→ B −→ C,

where the bounds a and c for the numbers of generators of A and C, respectively,
we get that a + c bounds the number of generators for any submodule of B.

To obtain the last term, we apply Proposition 3.5 to the module F ∗
d , a Cohen-

Macaulay module with deg(Fd) ≤ βd(E) deg(R). 2

Remark 3.7. Now we outline quickly the proof of the conjecture for rings
of dimension 4 and torsionfree modules. (More generally, for rings of arbitrary
dimension and torsionfree modules with the condition Sd−3.) These modules have
a presentation

0 → F3 −→ F2 −→ F1 −→ F0 −→ E → 0,

where Fi are free, for i ≤ 2, and F3 is a MCM module. The only significant
deviation from the proof above, in the exact sequence

TorR
1 (Ext1R(E,R), E) −→ TorR

1 (B2, E) −→ TorR
1 (Z2, E),

we must deal with the fact that ExtR
1 (E,R) has dimension at most two, the in-

equality hdeg(Ext1R(E,R)) < hdeg(E), and all the other homology modules having
dimension at most 1. This is handled in [3] to give ν(TorR

1 (Ext1R(E,R), E)) ≤
hdeg(Ext1R(E,R))ν(E).

4. Syzygies of near-perfect modules

Let R be a Gorenstein local ring of dimension d. Let us consider some modules
with a very rich structure–the modules of syzygies of Cohen-Macaulay modules, or
of mild generalizations thereof.

Let us begin this discussion with an example, the modules of cycles of a Koszul
complex K(x) associated to a regular sequence x = {x1, . . . , xn}, n ≥ 4:

K(x) : 0 → Kn → Kn−1 → Kn−2 → · · · → K2 → K1 → K0 → 0.
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First order syzygies have a more general treatment in the next section. For
simplicity we take for module E the 2-cycles Z2 of K. There is a pairing in the
subalgebra Z of cycles leading to

Z2 × Zn−3 → Zn−1 = R,

that identifies Zn−3 with the dual E∗ of E.
We are now ready to put this data into the framework of the Auslander dual.

Dualizing the projective presentation of E,

0 → Kn −→ · · · −→ K3 −→ K2 −→ E → 0,

gives us the exact complex

0 → E∗ −→ K∗
2 −→ K∗

3 −→ D(E) → 0.

In other words, to the identification D(E) = Zn−4:

0 → Zn−3 −→ Kn−2 −→ Kn−3 −→ Zn−4 → 0.

Now for the computation of TorR
1 (D(E), E):

TorR
1 (D(E), E) = TorR

1 (Zn−4, E) = TorR
2 (Zn−5, E) = · · ·

= TorR
n−3(Z0, E) = TorR

n−2(R/I,E) = Kn−2 ⊗R/I.

Remark 4.1. The number of generators of HomR(E,E) is bounded by

ν(E)ν(E∗) + ν(Kn−2) =
(

n

2

) ((
n

3

)
+ 1

)
.

For the purpose of a comparison, let us evaluate hdeg(E). The multiplicity of
E is (n− 1) deg(R). Applying HomR(·, R) to the projective resolution of E, we get
Extn−2

R (E,R) = Extn
R(R/I,R) = R/I is Cohen-Macaulay, and its contribution in

the formula for hdeg(E) becomes

hdeg(E) = deg(E) +
(

d− 1
n− 3

)
hdeg(Extn−2

R (E,R)) = (n− 1) +
(

d− 1
n− 3

)
deg(R/I).

It is clear that in appealing to [3, Theorem 5.2], to get information about ν(E∗),
a similar calculation can be carried out for any module of cycles of a projective
resolution of broad classes of Cohen-Macaulay modules.

Let (R,m) be a Gorenstein local ring of dimension d. Let M be a perfect
R-module with a minimal free resolution

K : 0 → Kn → Kn−1 → Kn−2 → · · · → K2 → K1 → K0 → M → 0.

We observe that dualizing K gives a minimal projective resolution L of Extn
R(M,R).

Let E be the module Zk = Zk(K) of k-cycles of K,

Kk+1 −→ Kk −→ E → 0.

Dualizing, to define the Auslander dual D(E), gives the complex

0 → E∗ −→ Ln−k −→ Ln−k−1 −→ D(E) → 0.

It identifies E∗ with the (n−k+1)–cycles of L, and D(E) with its (n−k−2)–cycles.
In particular this gives ν(E) = βk(M) and ν(E∗) = βk−1(M).
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Let us now determine hdeg(E). From the complex

0 → E −→ Kk−1 −→ · · · −→ K1 −→ K0 −→ M → 0,

we obtain that proj. dim. E = n− k and that the Cohen-Macaulay property of M
gives that Extn

R(M,R) = Extn−k
R (E,R) is also Cohen-Macaulay. This is all that is

required:

hdeg(E) = deg(E) +
(

d− 1
n− k − 1

)
deg(Extn

R(M,R))

= rank(E) deg(R) +
(

d− 1
n− k − 1

)
deg(M).

Note that rank(E) = β0(M)− β1(M) + · · · (−1)k−1βk−1(M).

Now to make use of the Auslander dual setup, we seek some control over
TorR

1 (D(E), E). We make use first of the complex

0 → D(E) −→ Ln−k−2 −→ · · · −→ L0 −→ Extn
R(M,R) → 0,

to get
TorR

1 (D(E), E) ' TorR
n−k(Extn(M,R), E),

and then of the minimal resolution of E to obtain

TorR
1 (D(E), E) ' TorR

n (Extn(M,R),M).

In particular, TorR
1 (D(E), E) is independent of which module of syzygies was taken.

Furthermore, the calculation shows that TorR
2 (D(E), E) = 0.

Placing these elements together, we have the exact sequence

0 → E∗ ⊗ E −→ HomR(E,E) −→ TorR
n (Extn

R(M,R),M) → 0.

Note that E∗ ⊗ E is a torsionfree R-module.
Finally, it follows from Proposition 2.14 that TorR

n (Extn
R(M,R),M) can be

identified to HomR(M,M).

Let us sum up these observations in the following:

Theorem 4.2. Let R be a Gorenstein local ring and let M be a perfect module
with a minimal resolution K. For the module E of k-syzygies of M , there exists an
exact sequence

0 → E∗ ⊗ E −→ HomR(E,E) −→ HomR(M,M) → 0.

This gives the bound

ν(HomR(E,E)) ≤ βk(M)βk−1(M) + ν(HomR(M,M)).

If M is cyclic, or dim M = 2, the estimation is easy. The formula also shows up
the case of MCM modules to be a corner case for the general HomAB problem.

We are going to relax the conditions on M : Assume that it has finite projective
dimension, has codimension n and is Cohen-Macaulay on the punctured spectrum.
Consider its minimal free resolution:

K : 0 → Km → · · · → Kn → Kn−1 → Kn−2 → · · · → K2 → K1 → K0 → M → 0.

The conditions on M imply that Exti
R(M,R) = 0 for i < n, and Exti

R(M,R) has
finite support for i > n. The latter means that the syzygies M of order n, or higher,
are vector bundles on the punctured spectrum.
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Let E be the module of k-cycles of K:

0 → Km → · · · → Kk+1
ϕ→ Kk → E → 0,

0 → E → Kk−1 → · · · → K1 → K0 → M → 0.

If k ≥ n, E being a vector bundle of finite projective dimension, the module
HomR(E,E) was dealt with in [3]. For this reason we will focus on the case k < n.
Denote the dual of K by L. We will set Li = K∗

m−i. We have the complexes

0 → K∗
0 → K∗

1 → · · · → K∗
k−1 → E∗ → 0,

0 → E∗ → K∗
k

ϕt

→ K∗
k+1 → · · · → K∗

m → 0.

The Auslander dual D(E) is expressed in the two exact sequences

0 → E∗ → K∗
k

ϕt

→ K∗
k+1 → D(E) → 0,

0 → Extk
R(M,R) → D(E) → Zm−k−2(L) → Extk+2

R (M,R) → 0,

which we will make use of to calculate TorR
1 (D(E), E).

Let us examine the different cases. If k+2 < n, Extk
R(M,R) = Extk+2

R (M,R) =
0, and from the exact complex

0 → Zm−k−2 → Lm−k−2 → · · · → Lm−n → Bm−n → 0

we get

TorR
1 (D(E), E) = TorR

1 (Zm−k−2, E) = TorR
n−k(B,E) = TorR

n (B,M),

the last isomorphism since E is the module of k-cycles of the resolution of M .

If M is Cohen-Macaulay, B = Extn
R(M,R), and we would get the formula of

Theorem 4.2. In the general case, we have a series of short exact sequences derived
from the boundaries Bi and cycles Zi of the complex L: For i ≥ 1

0 → Extn
R(M,R) → B → Bm−n−1 → 0,

0 → Bi → Zi → Extn+i
R (M,R) → 0,

0 → Zi+1 → Li+1 → Bi → 0.

From these, we would get the exact complexes whose significant parts we high-
light:

TorR
n (Extn

R(M, R), M) = TorR
n−k(Extn

R(M, R), E)→ Torn−k(B, E)→ TorR
n−k(Bm−n−1, E),

TorR
n−k(Extn+i

R (M, R), E)→ TorR
n−k(BiE)→ TorR

n−k(Zi, E)→ TorR
n−k−1(Extn+i

R (M, R), E),

TorR
n−k(Bi, E) = TorR

n−k−1(Zi+1, E).

All the terms that involve Extn+i
R (M,R) have finite length that can be assembled

in a way bounded by a quadratic polynomial on Deg(E).
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5. Ideal modules

Let (R,m) be a Cohen-Macaulay local ring of dimension d and let E be a
finitely generated torsionfree R-module. E is said be an ideal module if E∗ is a
free R-module (see [9]). Such modules are basically the syzygies of modules of
codimension at least 2. This property endows E with a natural embedding into a
free R-module

0 → E −→ (E∗)∗ −→ C → 0.(13)

Another property of these modules that is relevant in the HomAB problem is that
the Auslander dual D(E) has projective dimension at most two: Dualizing (8) gives

0 → E∗ −→ F ∗
0

ϕt

−→ F ∗
1 −→ D(E) → 0.

Proposition 5.1. Let E be an ideal module of rank ` as above. There exists
an exact sequence

0 → R` ⊗R E −→ HomR(E,E) −→ HomR(C,C) → 0.

Proof. Apply HomR(·, E) to the exact sequence (13) (note (E∗)∗ ' R`) to get the
exact sequence

0 → HomR(R`, E) −→ HomR(E,E) −→ Ext1R(C,E) −→ Ext1R(R`, E) = 0.

Since E is free in codimension 1, the annihilator I of C has codimension at
least 2. Let f be a regular element in I; reducing (13) modulo f , we get the exact
complex

0 → C −→ E/fE −→ R`/fR` −→ C → 0,

that identifies C to the submodule of E/fE supported in dimension at most d− 2.
If we take this fact into the isomorphism Ext1R(C,E) ' HomR(C,E/fE), we obtain
Ext1R(C,E) = HomR(C,C), as desired. 2

We can relate Deg(C) to Deg(E), at least in the case when Deg = hdeg.
Considering that a bound for ν(HomR(C,C)) is established in [3] for all modules
of dimension at most 2, we can apply it to ideal modules that are free in dimension
at most 3. The formula obtained is similar to the one we are going to derive now
by treating directly the support TorR

1 (D(E), E).

Proposition 5.2. Let (R,m) be a Cohen-Macaulay local ring of dimension d
and let E be a torsionfree ideal module that is free in dimension 2. Then

hdeg(TorR
1 (D(E), E)) ≤ rank(E) · (hdeg(E)− deg(E)).

Proof. We begin by pointing out that the support of TorR
1 (D(E), E) has dimension

at most 1 since E is free in codimension d− 2. By the same token, in the natural
embedding

0 → E −→ E∗∗ −→ C → 0
the module C has dimension at most 1. Since E∗∗ is free, one has hdeg(C) ≤
hdeg(E)− deg(E). We also have that TorR

2 (D(E), C) = TorR
1 (D(E), E). The first

of these modules is the homology of the mapping of modules of dimension at most
1,

0 → TorR
2 (D(E), C) −→ E∗ ⊗ C −→ F ∗

0 ⊗ C,

and therefore

hdeg(TorR
2 (D(E), C)) ≤ rank(E) · hdeg(C) = rank(E) · (hdeg(E)− deg(E)).
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Corollary 5.3. Let (R,m) be a Cohen-Macaulay local ring of dimension d
and let E be a torsionfree ideal module that is free in dimension 2. Then

ν(HomR(E,E)) ≤ rank(E) · (hdeg(E) + ν(E)− deg(E)).

One should attempt to cut down the free locus to codimension d− 3. It would
be of interest if we could still have dim TorR

1 (D(E), E) ≤ 1, for even though C
could have dimension 2 its component C1 of dimension at most 1 would satisfy
hdeg(C1) ≤ hdeg(E)− deg(E) (a fact not difficult to verify).

Let us go through the calculations in the case of free locus in codimension d−3.
Now the module C in

0 → E −→ E∗∗ −→ C → 0
has dimension at most 2. Let z be a generic element for the following purposes:
hdeg(R) ≥ hdeg(R/(z)), hdeg(E) ≥ hdeg(E/zE), dim(C/zC) ≤ 1,

dim TorR
1 (D(E), E)/zTorR

1 (D(E), E) ≤ 1,

and the kernels zC and L of multiplication by z on C and D(E) ⊗ E have finite
length. In addition, since we may assume dim R ≥ 4 and D(E) has projective
dimension at most 2, z can be assumed to be regular on D(E).

Let us see how reduction modulo (z) affects the degrees data. Tensoring

0 → E
·z−→ E −→ E → 0

by D(E), we have the exact sequence

0 → TorR
1 (D(E), E)/zTorR

1 (D(E), E) −→ TorR
1 (D(E), E) −→ L → 0.

This shows that TorR
1 (D(E), E) has dimension at most one, and by Nakayama

Lemma

ν(TorR
1 (D(E), E)) ≤ hdeg(TorR

1 (D(E), E)).(14)

To get hold of the last degree, we tensor the defining sequence of C by R/(z)
to get

0 → zC −→ E −→ E∗∗ −→ C → 0.

It shows that zC is the submodule of finite support of E and therefore the image
E′ of E satisfies hdeg(E′) ≤ hdeg(E) ≤ hdeg(E), and from the exact sequence

0 → E′ −→ E∗∗ −→ C → 0

we have
hdeg(C) ≤ hdeg(E′)− deg(E′) ≤ hdeg(E)− deg(E).

Now we get hold of hdeg(TorR
1 (D(E), E)). From the exact sequence

0 → zC −→ E −→ E′ → 0

we have the exact sequence

TorR
1 (D(E), zC) −→ TorR

1 (D(E), E) −→ TorR
1 (D(E), E′).

It shows that

hdeg(TorR
1 (D(E)), E) ≤ hdeg(TorR

1 (D(E), E′)) + hdeg(TorR
1 (D(E)), zC)

≤ hdeg(TorR
1 (D(E), E′)) + rank(F0) · λ(zC)

≤ hdeg(TorR
1 (D(E), E′)) + rank(F0) · (hdeg(E)− deg(E)).(15)
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The last equation arises because hdeg(E) = hdeg(zC) + hdeg(E′) and therefore

hdeg(zC) ≤ hdeg(E)− hdeg(E′) ≤ hdeg(E)− deg(E).

We must now deal with hdeg(TorR
1 (D(E), E′)) in the manner of the earlier

case. Starting from
0 → E′ −→ E∗∗ −→ C → 0,

we have the exact sequence

TorR
2 (D(E), E∗∗) −→ TorR

2 (D(E), C) −→ TorR
1 (D(E), E′) −→ TorR

1 (D(E), E∗∗).

Since E∗∗ is R-free and z is regular on D(E), the two modules at the ends vanish
and we have TorR

1 (D(E), E′) = TorR
2 (D(E), C). As C has dimension at most 1 and

we have bounds for hdeg(C), we make use of the free presentation of D(E) and
finally obtain

hdeg(TorR
1 (D(E), E′)) = hdeg(TorR

2 (D(E), C)) ≤ rank(E) · hdeg(C)
≤ rank(E) · (hdeg(E)− deg(E)).(16)

We collect the calculation into:

Proposition 5.4. Let (R,m) be a Gorenstein local ring of dimension d and let
E be a torsionfree ideal module that is free in dimension 3. Then

ν(TorR
1 (D(E), E)) ≤ (rank(E) + ν(E))(hdeg(E)− deg(E)).

Proof. We have from (14)

ν(TorR
1 (D(E), E)) ≤ hdeg(TorR

1 (D(E), E)),

while from (15) we have

hdeg(TorR
1 (D(E), E)) ≤ hdeg(TorR

1 (D(E), E′)) + rank(F0) · hdeg(E).

Finally, from (16) we obtain

hdeg(TorR
1 (D(E), E)) ≤ (rank(E) + ν(E))(hdeg(E)− deg(E)).

Corollary 5.5. Let (R,m) be a Gorenstein local ring of dimension d and let
E be a torsionfree ideal module free in codimension d− 3. Then

ν(HomR(E,E)) ≤ (rank(E) + ν(E))(hdeg(E)− deg(E)) + rank(E) · ν(E).

Primary decomposition. Primary decomposition of ideals in a Noetherian
ring R, and several other operations as well, involve the computation of ideal quo-
tients: I : J = {r ∈ R | rI ⊂ J}. It may be relevant to have an estimation for the
number of generators of I : J given I and J .

The typical ring for us will be a polynomial ring over a field, but given the
well-established technique ([10]) to convert local bounds for number of generators
into global ones, we focus on Gorenstein local rings and on ideals of codimension
at least two.

We may consider I : J = HomR(I, J) directly or the variant HomR(E,E) for
E = J ⊕ (I, J). Then, since by assumption codim J ≥ 2,

HomR(E,E) = (J : J)⊕ J : (I, J)⊕ (I, J) : (I, J)⊕ (I, J) : J) = R3 ⊕ I : J,

since (I, J) : J = I : J . Note that E is an ideal module of rank 2.

As a direct consequence of Corollary 5.5, we obtain:
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Theorem 5.6. Let (R,m) be a Gorenstein local ring of dimension d and let J
be an ideal of codimension at least d− 2. Then for any ideal I,

ν(I : J) ≤ (2+ν(J)+ν(I, J))(hdeg(J)+hdeg(I, J)−2 deg(R))+2·(ν(J)+ν(I, J))−3.

Remark 5.7. We have to calculate hdeg(Exti
R(R/I,R)) for i = d− 2, d− 1, d.

If codim J = d−2, hdeg(Extd−2
R (R/J,R)) = deg(R/J), and hdeg(Extd

R(R/J,R)) =
λ(H0

m(R/J)).

Let us consider some cases in detail. If J is m-primary, HomR(R/I,R/J) = I :
J/J is a module whose length is at most λ(R/J), and thus ν(I : J) ≤ λ(R/J)+ν(J).
Meanwhile, given that hdeg(J) = deg(R) + λ(R/J), the bound from the formula is

ν(I : J) ≤ (2 + ν(J) + ν(I, J))(2 + λ(R/J) + λ(R/(I, J))− 7,

which is poorer.

The advantage comes in case dim R/I = 1, or 2. Let us assume that I and
J are Cohen-Macaulay ideals of dimension 2. To make the computation of hdeg
simpler, if we take the ideal module: E = J ⊕ I.

Theorem 5.8. Let (R,m) be a Gorenstein local ring of dimension d and let J
and I be Cohen-Macaulay ideals of codimension d− 2. Then

ν(I : J)+ν(J : I) ≤ (2+ν(J)+ν(I))(deg(R/J)+deg(R/I))+2 · (ν(J)+ν(I))−2.

6. Open questions

We will now mention some questions and open problems. We have already
mentioned unsolved problems in context. The questions here represent boundary
cases.

Test problems. Let R be a Cohen-Macaulay local ring, with a canonical
module ω. Let a1, . . . , an be a minimal set of generators of ω. Consider the complex

0 → R
ϕ−→ ω⊕n −→ E = coker (ϕ) → 0, ϕ(1) = (a1, . . . , an).(17)

Proposition 6.1. E is a Cohen-Macaulay module.

Proof. Let z = z1, . . . , zd be a maximal regular sequence of R. It suffices to note
that TorR

1 (E,R/(z)) = 0 since ω/zω is the canonical module of R/(z) and therefore
it is a faithful module. 2

Problem 6.2. Find a bound for ν(HomR(E,E)). The problem shows the
difficulty of dealing with non-Gorenstein rings.

Problem 6.3. A different challenge arises if E is a self-dual module, that is if
E ' E∗. (Examples are rank two reflexive modules over factorial domains.) For
these modules hdeg(D(E)) is completely determined by hdeg(E).

Problem 6.4. Let E be a Cohen-Macaulay module of dimension 3. It would
be helpful to understand this corner case.

Problem 6.5. If R is a regular local of dimension 2(!), what is the relationship
between bdeg and hdeg?
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Vector bundles. Let (R,m) be a Noetherian local ring and set X = Spec R.
A case of HomAB question is that of a module E that is locally free on a subset
Y ⊂ X. When Y is the punctured spectrum Spec R \ {m} of R, it was treated
in [3], and a solution given for all modules of finite projective dimension that are
locally free in codimension ≤ dim R− 2. To remove the finite projective dimension
requirement reFquires a good understanding of the MCM R-modules.

Here we will consider this issue but also the case of the complement of hyper-
planes Y = Spec R \ V (z), where R/(z) is a regular local ring.

The emphasis on Auslander duals puts a great burden on the algebra

TorR
1 (D(E), E) = HomR(Ext1R(E, ·),Ext1R(E, ·)),

to determine effective bounds for its number of generators. The cases considered
in the previous sections all had a great control over the support of TorR

1 (D(E), E).
It might be worthwhile to consider the following general question.

Conjecture 6.6. Let E be a torsionfree module. If dim TorR
1 (D(E), E) ≤ 1,

ν(HomR(E,E)) ≤ rank(E) · (hdegE + ν(E)− deg E).

If dim TorR
1 (D(E), E) ≤ 0, E is a vector bundle on the punctured spectrum

of R. In [3], this is dealt even more generally if E is free in codimension d − 2,
provided proj dim E < ∞, while in Theorem 3.6, the case of isolated singularity is
dealt with.
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