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1. Fundamental Algorithms

CORRECTIONS

– p. 25, l. 7: Hilbrt → Hilbert

– Re Proposition 1.4.3: Francesco Piras has pointed out another algorithm, due to
M. Janet, to find these decompositions: J. de Math. 8 (1920), 65–151; Leçons sur
les Systèmes d’Équations aux Dérivées Partielles. Gauthier-Villars, Paris, 1929.

COMPLEMENTS
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2. Toolkit

CORRECTIONS

– p. 25, l. 7: Hilbrt → Hilbert
– p. 31, l. 14: I :< J >= ∪n≥1(I :R f n) → I :< f >= ∪n≥1(I :R f n)

– p. 32, in Exercise 2.1.1: I must be a homogeneous ideal
– p. 54, Conjecture 2.6.1: M. Kwieciński has shown ([229]) that if A is an affine

normal domain over C and B is a finitely generated A–algebra, then B is A–flat
if and only if all tensor powers B ⊗n are torsionfree over A. A stronger assertion,
that only requires that B⊗ dim A be torsionfree over A has been proved by Galligo
and Kwieciński ([224]); it still requires that B is pure equidimensional.

– p. 57, l. 16:

hr + hr−1t + · · · + h0tr

(1 − t)d
. → hs + hs−1t + · · · + h0ts

(1 − t)d
.

COMPLEMENTS

2.1 Chevalley’s Constructibility Theorem

Let k be a field or the ring of integers Z. A universal construction over k is a
homomorphism

ϕ : A = k[x1, . . . , xn] −→ B = k[x1, . . . , xn, T1, . . . , Tm ]/I

such that the corresponding morphism

aϕ : Spec(B) −→ Spec(A)

is surjective. In other words, ϕ has the lying over property.

In a simple illustration, consider the construction of the roots of an equation
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x2 + ax + b = 0

over a field k of characteristic �= 2. It is effected by the homomorphism

ϕ : k[a, b] −→ k[a, b, u, v]/(u2 − a2 + 4b, 2v + a − u).

More typically, k is a field and one is interested in the fact that the restriction of
aϕ to the k–rational points of Spec(B) is a surjection on the corresponding set of
points of Spec(A). In this case we say that ϕ is k–rationally universal.

Two typical examples of surjective morphisms are: (i) integral, injective maps—
where the property is a consequence of the lemma of Nakayama; and (ii) faithfully
flat morphisms. A simpler one is when the ideal I of relations is contained in the
ideal (T1, . . . , Tm).

The issue often arises in modifying an object defined by parameters x 1, . . . , xn ,
which must by brought to some canonical form, in a construction involving parame-
ters T1, . . . , Tm ; the relationships that the two sets of values bear is expressed by the
ideal I—if possible.

Consider the problem of diagonalizing a symmetric n × n matrix over the field
k of real numbers. Let A = k[xi j ] be the ring of polynomials in

(n+1
2

)
variables

parametrizing such matrices and let B = k[x i j , Tk�] be the ring of polynomials in
n2 additional variables. Let now I be the ideal generated by the entries of

T · Tt − E,

and the off-diagonal entries of
T · X · Tt .

The spectral theorem is the assertion that the corresponding homomorphism ϕ is
k–rationally universal. (It will be a consequence of a result later in the note that ϕ is
not universal.)

Unlike the first example, the second illustration is a rephrasing of an existence
theorem coming to us without explicit formulas to solve for the Tk� in terms of the
xi j .

Elementary Properties

Let k be a field and

ϕ : A = k[x1, . . . , xn] −→ B = A[T1, . . . , Tm]/I

a ring homomorphism.Before we discuss some elementary properties of morphisms,
it is worth noting that the lying over property of the homomorphism ϕ is can be
phrased as

p = ϕ−1(ϕ(p)B), ∀p ∈ Spec(A).

In the case of interest here one has:
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Proposition 2.1.1. The homomorphism ϕ has lying over if and only if for every
maximal ideal m of A,

(m, I ) �= (1).

Proof. For simplicity we write the equality above as mB ∩ A = m. We must show
the equality for all prime ideals. But this follows as (see [103]) every prime ideal of
A is the intersection of the maximal ideals that contain it.

Corollary 2.1.1. Let A ⊂ B ⊂ C be affine algebras over a field k. If the embedding
A ⊂ C has lying over then A ⊂ B has lying over.

This applies in case C is a polynomial ring over A and B is a finitely generated
subalgebra.

Proposition 2.1.2. Suppose k is a field and K is one of its algebraic extensions.
Then ϕ has lying over if and only if

ϕ′ : A′ = A ⊗k K −→ B ′ = B ⊗k K

has lying over.

Proof. We consider the commutative diagram

A

��

ϕ �� B

��
A′ ϕ′

�� B ′

where the vertical maps are the natural ones; since they are both integral homomor-
phisms they have lying over. It follows that ϕ will inherit the lying over property
from ϕ ′.

For the converse we use Proposition 2.1.1. Suppose m ′ is a maximal ideal of A′
and set m = m′ ∩ A. We have the corresponding diagram

A/m

��

�� B/mB

��
A′/mA′ �� B ′/mB ′

where by assumption the top horizontal mapping is an embedding and therefore so
will be the bottom mapping since it was obtained by a flat base change. This means
that we also have an embedding

C = (A′/mA′)m′ ↪→ D = (B ′/mB ′)m′ ,

where C is an Artinian local ring whose maximal ideal is m ′C . This will imply that
we cannot have D = m′D, as m′C is nilpotent.
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Remark 2.1.1. Suppose B is a hypersurface ring, with I generated by the polynomial

f =
∑
α �=0

aαTα + b, aα, b ∈ A.

From (2.1.1) and the Nullstellensatz it follows that one has lying over if and only if

b ∈ √
(aα ).

This example illustrates the difficulty one will encounter in verifying condition
(2.1.1) in almost any other situation, such as when I is a complete intersection of
codimension at least two.

Chevalley Theorem

For most geometric purposes in studying the image of a morphism it suffices to work
with its closure. The set theoretic image is harder to describe explicitly. It is the
assertion (see [125]):

Theorem 2.1.1. Let A be a ring with Noetherian spectrum and let B be a finitely
generated A–algebra

ϕ : A −→ B.

Then aϕ(Spec(B)) is a constructive subset of Spec(A), that is,

aϕ(Spec(B)) =
⋃

1≤i≤r

(Di ∩ Vi ),

where the Di and the Vi are, respectively, open and closed subsets of Spec(A).

Proof. We give a proof to seek elements that are helpful to decide when the morphism
is surjective.

Let p1, . . . , pr be the minimal primes of A. The image of aϕ is the union of the
morphisms obtained by reduction mod p i for each minimal prime, so that we may
assume that A is an integral domain. If B = A[T1, . . . , Tm ]/I , pick a term order >

for the Ti and let
in>(I ) = (aαTα, aα ∈ A),

be a generating set of initial ideal. (We point out that even when A is a ring of
polynomials the elements aα are not necessarily monomials as the orderings of A
are mostly ignored for the purpose here.)

If we change base rings by tensoring with the field of fractions K of A, the same
elements aαTα will generate an initial ideal of I K ⊂ C = K [T1, . . . , Tm ]. Pick
finitely many aα j T

α j of the aαTα that generate in>(I K ) and set

b =
∏

1≤ j≤s

aα j .
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Note that Bb is a free Ab–module (see Section 2.6 for more details). It follows that

aϕ(Spec(B)) = D(b) ∪ aϕ(Spec(B/bB)).

The assertion of the theorem now uses that the corresponding sequence (b 1 =
b, . . . , bk) of ideals of A will stabilize at the unit ideal.

Corollary 2.1.2. Let A be an integral domain and let b ∈ A be such that B b is Ab–
free. The homomorphism ϕ : A → B has lying over if and only if ϕ : A/(b) → B/bB
has lying over and bB ∩ A ⊂ √

(b).

The second condition assures that Bb does not vanishes. It is also useful in some
special cases such as when A = k[x].

The difficulty in using this criterion through Gröbner bases computation is the
following. In the first iteration of the generic flatness condition, when A is a ring of
polynomials, the coefficients aα can be found by grouping together the coefficients
of Tα in a Gröbner basis of I with respect to a term order involving all variables.
Beyond this point, the minimal primes p i must be found (if dim A > 1) and the
computation is done in the rings A/p i .

Remark 2.1.2. One approach to involve only computation over rings of polynomials
over the same ground field k, that of Noether normalizations, only works partially.
Let ϕ : A → B be a homomorphism of affine rings over a field k, and let C be a
Noether normalization of A. If ϕ has lying over, its restriction to C will have lying
over. The converse however does not hold. Consider the mappings

Q[x] −→ Q[x,
√

x] = Q[√x] −→ Q[√x]1+√
x .

The only point of concern is the maximal ideal (1 − x) ⊂ Q[x] which extends to

(1 − x)Q[√x] = (1 − √
x)(1 + √

x)Q[√x],
and will not blow up in the localization; thus the composite has lying over but not
the second mapping.

Case Studies

Symmetric Matrices. Consider the morphism associated to the spectral theorem for
real symmetric matrices. First observe that it is not a universal constrction. Indeed
the complex matrix [

2 i
i 0

]
has (t − 1)2 for minimal polynomial, so will not be diagonalizable even using simi-
larity by non-orthogonal matrices.

This argues against the possibility of ‘automatic’ algebraic diagonalization of
real symmetric matrices as such a process might not distinguish complex data.

In addition, despite the neat set of defining equations, a calculation will show
that despite the likelihood, the ring B, for n = 2, is not Cohen–Macaulay.
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Product of Two Skew–Symmetric Matrices. The following was brought to our
attention by Jon Sjogren, who provided all the references as well. Let A and B be
n×n (n even) be skew-symmetric matrices. One is interested on the invariant factors
of C = A · B. When A is non–singular one may assume that

A =
[

0 −I
I 0

]
.

This means that

C =
[

α β

γ αt

]
,

where β and γ are skew–symmetric and α t is the transpose of α.
It is a result of [219] and [?] that such matrices (even when both A and B are

singular) are similar to matrices made up of two blocks of a same matrix

D =
[

φ 0
0 φ

]
,

but the argument is not constructive. A constructive but partial ‘diagonalization’,
using orthogonal matrices, given in [219] brings C to the form[

α 0
γ αt

]
.

We could at this point set up a morphism precisely in the fashion used for the case
of symmetric matrices and inquire about its universality. A more significant issue
was raised by Sjogren: the extent to which the final ‘diagonalization’ can be realized
by symbolic computation. As starters, one should consider the case n = 4:

C =
⎡
⎣ α 0[

0 z
−z 0

]
αt

⎤
⎦

and solve for a matrix X such that det(X) = 1 and

X · C · adjoint(X) = D.

We believe if the corresponding morphism is not universal then it will not be possible
to benefit from Gröbner basis theory to obtain the desirable automatic diagonaliza-
tion.

2.2 Extra Tools

The torsion submodule of a module. Let R = k[x1, . . . , xn] be a ring of polyno-
mials over the field k and E a finitely generated module defined over the integral
domain A = R/p. We assume that E is given with a presentation over the ring R,
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Rm ϕ−→ Rn −→ E → 0,

and set ourselves the task of determining the torsion submodule of E as a module
over A.

We use the Fitting ideals of E as an R–module. Let Fi (E) = In−i (ϕ), i ≥ 0,
be these ideals. First, the rank of E as an A–module is r , if r is the smallest integer
such that Fr (E) is not contained in p. Pick f ∈ Fr (E) \ p, and let Z be the image of
ϕ in Rn . Set

L = Z :Rn f ∞ =
⋃
s≥1

(Z :Rn f s).

Then T = L/Z is the torsion submodule of E . This is clear since T/Z is just the
kernel of the localization mapping

Rn/Z = E −→ E f ,

and E f is a projective module over A f , and therefore it is a torsionfree module over
A.

We note that the operations are standard computation commands in several of
the computer algebra systems; their outputs are usually in the form of a presentation
of T/Z .
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3. Principles of Primary Decomposition

CORRECTIONS

– p. 75, proof of (b) should be
First observe that the support of a module Extr

R(M, R) has codimension at least r ,
since R is a Gorenstein ring and therefore for each prime ideal p with height p <

r , the injective dimension of Rp < r . We claim that Jr is the intersection of
the primary components of codimension r of the annihilator of Ext r

R(R/I, R).
On the other hand, if the support of Extr

R(R/I, R) has codimension > r then
Jr = R, because for the same reasons as above, the double Ext will vanish. More
precisely, let E0 be the subset of all elements of E = R/I whose support has
codimension > r ; E0 is a submodule of E and Ass(F = E/E0) consists of
primes of codimension ≤ r . Consider the long exact sequence of the functor Ext:

Extr−1
R (E0, R) −→ ExtrR(F, R) −→ ExtrR(E, R) −→ ExtrR(E0, R).

Since Extr−1
R (E0, R) = ExtrR(E0, R) = 0, ExtrR(F, R) � ExtrR(R/I, R). We

already observed that Extr
R(F, R) has no associated primes of codimension < r ,

let us show that it does not have associated primes of codimension > r . Let f be
an element of R regular on F :

0 → F
f−→ F −→ F/ f F → 0.

In the cohomology sequence

ExtrR(F/ f F, R) −→ ExtrR(F, R)
f−→ ExtrR(F, R) −→ Extr+1

R (F/ f F, R),

ExtrR(F/ f F, R) = 0 since f is regular on F and therefore the support of F/ f F
has codimension r + 1. This implies that f is regular on Extr (F, R), which from
the fact that F has no associated prime of codimension> r proves that Ext r

R(F, R)

is equidimensional (and similarly for the double Ext).
– p. 76, l. -5: b ases → bases
– p. 95: formula (3.17) should read

P(n) = Pn : f ∞.
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COMPLEMENTS



4. Computing in Artin Algebras

CORRECTIONS

COMPLEMENTS
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5. Nullstellensätze

CORRECTIONS

COMPLEMENTS
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6. Integral Closure

CORRECTIONS

– p. 169, lines 6–10 should be replaced by

This means that v = u

�
+ α, where α belongs to the convex hull of v1, . . . , vm .

The vector v can be written as (set w = u
�

)

v = �w� + (w − �w�) + α,

and it is clear that the integral vector

v0 = (w − �w�) + α

also has the property that xv0 ∈ I .

A first bound results directly from this description of the integral closure:

Proposition 6.0.1. Let I be a monomial ideal of k[x 1, . . . , xn], generated by mono-
mials of degree at most d. Then I is generated by monomials of degree at most
d + n − 1.

COMPLEMENTS

6.1 Chain Conditions and the Integral Closure

Several constructions in algebra consist of iterations of a basic procedure that mod-
ifies the object–an ideal or an algebra–to achieve improvement of one of its aspects.
This is typical of smoothing operations such as the construction of the radical of
ideals, of the integral closure of affine algebras or even of resolution of singulari-
ties. Usually different rounds of the application of the procedure represent different
computational difficulties, as the degrees of the generators of the ideals or even the
underlying ring of polynomials has changed. It is therefore extremely difficult to give
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bit count estimates for the algorithms. One might try to achieve other complexity
counts by simply estimating the number of cycles the basic procedure will be em-
ployed, in other words to define a unit of basic operations, UBO for short, or more
simply, given the difficulty each such unit represents, an astronomical unit (AU).

In this section we employ this perspective to give an analysis of the construction
of the integral closure of algebras. Given the nature of the procedures employed–
smoothing operations–as expected the counting will be expressed in terms of the
multiplicity of the algebra. In fact, one of the motivations for Chapter 9 is the devel-
opment of families of ‘multiplicities’ that might be used in the counting.

We describe here the approach to the analysis of the construction of the integral
closure A of an affine ring A presented in [238]. It has the the following general
properties:

• All calculations are carried out in the same ring of polynomials. If the ring A is
not Gorenstein, it will require one Noether normalization.

• It uses the Jacobian ideal of A, or of an appropriate hypersurface subring, only
theoretically to control the length of the chains of the extensions.

• There is an explicit quadratic bound on the multiplicity for the number of passes
the basic operation has to be carried out. In particular, and surprisingly, the bound
is independent of the dimension.

• It can make use of known properties of the ring A.

It will thus differ from the algorithms that uses iterated Jacobian ideals. At the
same time we use a different counting of complexity, which with tongue-in-cheek, we
called AUs (astronomical units). The primitive operation itself is based on elementary
facts of the theory of Rees algebras. To enable the calculation we will introduce the
notion of a proper construction and discuss instances of it.

Key to our discussion here is the elementary, but somehow surprising, observation
that the set S2(A) of extensions with the condition S2 of Serre (see the next section)
between an equidimensional, reduced affine algebra A and its integral closure A
satisfy the ascending chain condition inherited from the finiteness of A over A, but
the descending condition as well. Actually this is a phenomenon typical of other
algebras as well.

The explanation requires the presence of a Gorenstein subalgebra S ⊂ A, over
which A is birational and integral. If A is not Gorenstein, S is obtained from a
Noether normalization of A and the theorem of the primitive element. One shows
(Theorem 6.1.1) that there is a inclusion reversing one–one correspondence between
S2(A) and a subset of the set Div(c) of divisorial ideals of S that contain the conductor
c of A relative to S. Since c is not accessible one uses the Jacobian ideal as an
approximation in order to determine the maximal length of chains of elements of
S2(A). In Corollary 6.1.3, it is shown that if A is a standard graded algebra over a
field of characteristic zero, and of multiplicity e, then any chain in S 2(A) has at most
(e − 1)2 elements (correspondingly, e(e − 1)2, in the non-homogeneous case).

In the next section we describe a process to create chains in S2(A). Actually
the focus is on processes that produce shorter chains in S2(A) and its elements are
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amenable to computation. A standard construction in the cohomology of blowups

provides chains of length at most
⌈

(e−1)2

2

⌉
(correspondingly, e(e−1)2

2 , in the non-

homogeneous case). The possible computations are discussed in the last section.
They take place in the ring S and deals entirely with ideals of S.

Divisorial Extensions of Gorenstein Rings

Let A = k[x1, . . . , xn]/I be a reduced equidimensional affine algebra over a field k
of characteristic zero, let R = k[x1, . . . , xd ] ⊂ A be a Noether normalization and let
S = k[x1, . . . , xd , xd+1]/( f ) be a hypersurface ring such that the extension S ⊂ A
is birational. Denote by J the Jacobian ideal of S, that is the image in S of the ideal
generated by the partial derivatives of the polynomial f .

From S ⊂ A ⊂ S = A and [232] we have that J is contained in the conductor
of S. To fix the terminology, we denote the annihilator of the S–module A/S by
c(A/S). Note the identification c(A/S) = HomS(A, S).

We want to benefit from the fact that S is a Gorenstein ring, in particular that
its divisorial ideals have a rich structure. Let us recall some of those. Denote by K
the total ring of fractions of S. A finitely generated submodule L of K is said to be
divisorial if it is faithful and the canonical mapping

L �→ HomS(HomS(L, S), S)

is an isomorphism. Since S is Gorenstein, for a proper ideal L ⊂ S this simply means
that all the primary components of L have codimension 1. We sum up some of these
properties in (see [25] for general properties of Gorenstein rings and Section 6.3 for
specific details on the S2 condition of Serre):

Proposition 6.1.1. Let S be a hypersurface ring as above (or more generally a
Gorenstein ring). Then

(a)A finitely generated faithful submodule of K is divisorial if and only if it satisfies
the S2 condition of Serre.

(b)Let A ⊂ B be finite birational extension of S such that A and B have the condition
S2 of Serre. Then A = B if and only if c(A/S) = c(B/S).

(c)If A is an algebra such that S ⊂ A ⊂ S, then

HomS(HomS(A, S), S) = HomS(c(A/S), S)

is the S2–closure of A.

Remark 6.1.1. We will also denote A−1 = HomS(A, S), and the S2–closure of
an algebra A by C(A) = (A−1)−1. Note that one has the equality of conductors
c(A/S) = c(C(A)/S). Actually these same properties of the duality theory over
Gorenstein rings hold if S is S2 and is Gorenstein in codimension at most one.

We now define our two notions and begin exploring their relationship.
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Definition 6.1.1. Let I be an ideal containing regular elements of a Noetherian ring
S. The degree of I is the integer

deg(I ) =
∑

height p=1

�((S/I )p).

Definition 6.1.2. A proper operation for the purpose of computing the integral clo-
sure of S is a method such that whenever S ⊂ A � S are strict inclusions, the
operation produces a divisorial extension B such that A � B ⊂ S.

Theorem 6.1.1. Let A be a Gorenstein ring with a finite integral closure A. Let
S2(A) be the set of extensions A ⊂ B ⊂ A that satisfy the S2 condition of Serre
and denote by c the conductor of A over A. There is an inclusion reversing one–one
correspondence between that elements of S2(A) and a subset of divisorial ideals of
S containing c. In particular S2(A) satisfies the descending chain condition.

Proof. Any ascending chain of divisorial extensions

A � A1 � A2 � · · · � An ⊂ A

gives rise to a descending chain of divisorial ideals

c(A1/A) ⊃ c(A2/A) ⊃ · · · ⊃ c(An/A)

of the same length by Proposition 6.1.1(b). But each of these divisorial ideals contain
c, which gives the assertion.

We sum up these properties in the following diagram. Let p 1, . . . , pn be the
associated primes of c and let U = ⋃n

i=1 pi . There is an embedding of partially
ordered sets

S2(A)′ ↪→ Ideals(SU /cU ),

where S2(A)′ is S2(A) with the order reversed. Note that SU /cU is an Artinian ring.

Of course the conductor ideal c is usually not known in advance, or the ring A is
not always Gorenstein. In case A is a reduced equidimensional affine algebra over
a field of large characteristic we may replace it by a hypersurface subring S with
integral closure A. On the other hand, by [232] (see more general results in [113],
[121]), the Jacobian ideal J of S is contained in the conductor of S. We get the less
tight but more explicit rephrasing of Theorem 6.1.1:

Theorem 6.1.2. Let S be a reduced hypersurface ring

S = k[x1, . . . , xd+1]/( f )

over a field of characteristic zero and let J be its Jacobian ideal. Then the integral
closure of S can be obtained by carried out in at most deg(J ) proper operations on
S.

In characteristic zero, the relationship between the Jacobian ideal J of S and the
conductor c of S is difficult to express in detail. In any event the two ideals have the
same associated primes of codimension one, a condition we can write as the equality
of radical ideals

√
c = √

(J−1)−1).
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Main results

Theorem 6.1.3. Let k be a field of characteristic zero and consider the reduced
hypersurface ring

S = k[x1, . . . , xd , xd+1]/( f ), deg f = e.

Then

�(Quot(S/γ (S))) ≤
{

(e − 1)2 f is homogeneous
e(e − 1)2 otherwise

Let us highlight the boundedness of chains of divisorial subalgebras.

Corollary 6.1.1. Let A be a reduced equidimensional standard graded algebra over
a field of characteristic zero, and set e = deg(A). Then any sequence

A = A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ A

of finite extensions of A with the property S2 of Serre has length at most (e − 1)2

(e(e − 1)2 in the non-homogeneous case).

A Rees Algebra Approach

In this section we introduce and analyze in detail one proper operation which does
not use the Jacobian ideals. The reason for this move lies with the estimates of [192]
which predict non–elementary embedding dimensions for the integral closure of A.

Proposition 6.1.2. There are proper operations whose iteration leads to the integral
closure of S.

Proof. We assume that we have S � A ⊂ S and now we introduce a construction
of a divisorial algebra B that enlarges A whenever A �= S. Denote I = c(A/S).
More strictly we shall first find a finite, proper extension and then take its divisorial
closure.

A natural choice is:
B =

⋃
n≥1

HomS(I n, I n).

In other words, if R[I t] is the Rees algebra of the ideal I , X = Proj(R[I t]), then
B = H 0(X, OX ). To show that B is properly larger than A it suffices that exhibit this
at one of the associated prime ideals of I . Let p be a minimal prime of I for which
Sp �= Ap. If Ip is principal we have that Ip = t Sp and therefore Sp = Ap, which is
a contradiction. This means that the ideal Ip has a minimal reduction of reduction
number at least one, that is, I r+1

p = uI r
p for some r ≥ 1. This equation shows that

I r
pu−r ⊂ Bp,

which gives the desired contradiction since I r
pu−r contains Ap properly as Ip is not

principal.
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We observe that a bound for the integer r can be found as well: Let g ∈ J be
a form of degree e − 1 which together with f form a regular sequence of R =
k[x1, . . . , xd+1]. According to Corollary 9.5.3, the reduction number of the ideal I p

is bounded by the Hilbert–Samuel multiplicity e(Ip) of Ip minus one. In a manner
similar as we have argued earlier,

e(Ip) ≤ e((gp)) ≤ e(e − 1).

By taking divisorial closures, we have

C(B) = C(HomS(I r , I r ))

for r < e(e − 1), as desired.

Another choice is the variation obtained by considering the quotient
⋃

m≥1 I m+n :S
I m for choices of m up to e(e − 1).

The proper operations above lead to a ‘fast’ approach (i.e. beats the theoretical
limit by a factor of at least 2) to the integral closure according to the following
observation:

Proposition 6.1.3. Let S ⊂ A be a divisorial extension and let I = c(A/S). If B is
the divisorial closure of

⋃
n≥1 HomS(I n, I n), then

deg(c(A/S)) ≥ deg(c(B/S)) + 2.

In particular, for any standard graded algebra of multiplicity e, the number of terms

in any chain of algebras obtained in this manner will have at most
⌈

(e−1)2

2

⌉
divisorial

extensions.

Proof. Suppose that the degrees of the conductors of A and B differ by 1. This means
that the two algebras agree at all localizations of S at height 1 primes, except at
R = Sp, and that �((B/A)p) = 1. We are going to show that for the given choice of
how B is built that is a contradiction.

We localize S, A, B, I at p but keep a simpler notation S = Sp, etc. Let (u) be a
minimal reduction of I , I r+1 = uI r . We know that r ≥ 1 since I is not a principal
ideal, as A �= B. We note that A ⊂ Iu−1 ⊂ B. Since B/A is a simple S–module, we
have that either A = Iu−1 or B = Iu−1. We can readily rule out the first possibility.
The other leads to the equality

Iu−1 · Iu−1 = Iu−1,

since B is an algebra. But this implies that

Iu−1 · I ⊂ I ⊂ S,

in other words, that Iu−1 ⊂ HomS(I, S) = A.

Remark 6.1.2. In case A is a non–homogeneous algebra, its cubic estimate must be
considered.
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Computational Notes

• To begin, what is a nice way to carry out the calculation of c(A/S),

S = k[x1, . . . , xd , xd+1]/( f ) ↪→ k[x1, . . . , xn]/I = A?

One approach is the following. Let g be a nonzero element in the Jacobian ideal
of S and set L = g A ⊂ S. Note that

c(A/S) = g · HomS(g A, S) = Sg :S L .

For this we need g A expressed as an ideal of S. This is an elimination question,
for example g A is the image in S of the ideal

g, I )
⋂

k[x1, . . . , xd+1].
If we want to track closely the computation, pick an elimination term order for
the xi such that xi > xi+1 (such ordering as might have been required earlier to
achieve the Noether normalization). Let G>(I ) be a Gröbner basis of I and let
N F(·) be the corresponding normal form function. Then g A ⊂ S is generated by
all

N F(gxα), xα = xαd+2
d+2 · · · xαn

n , where αi < e.

• From the point we have the ideal L, the computations are always with ideals of S,
until we reach the integral closure. That is, given an extension S ⊂ A, we assume
that A is represented as a fractionary ideal, A = Lx −1, where L ⊂ S and x is a
regular element of S. The closure of A is

C(A) = (L−1)−1x−1

while its conductor is
c = Sx :S L .

Note that the conductors of A and of C(A) are the same. This means that the closure
operation is being used to control the chain of extension but it is only required at
the last step of the computation.

• The hard part is the calculation of B = H 0(X, OX ), as indicated above. We don’t
know an elegant way of doing it.

• Note that the test of termination is given by the equality A = B. If reached, say
S = Lx−1 = (a1, . . . , an)x−1, a set up for a presentation of S can go as follows.
Consider the homomorphism

k[x1, . . . , xd+1, T1, . . . , Tn] ϕ−→ Lx−1 ⊂ Sx−1 ⊂ S[x−1],
where Ti is mapped to ai x−1, i = 1, . . . , n. If we use the presentation

S[x−1] = k[x1, . . . , xd , xd+1, u]/( f, ux̃ − 1),

where u is a new indeterminate and x̃ is a lift of x , the defining ideal of S is then

ker(ϕ) = ( f, ux̃ − 1, Ti − ãiu, i = 1 . . . n)
⋂

k[x1, . . . , xd+1, T1, . . . , Tn].
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Broadly speaking, an algorithm to compute the integral closure of the algebra
A consists iterations of an operation P on the extensions A ⊂ B ⊂ A with the
properties:

(a) B ⊂ P(B) ⊂ A;
(b) If B �= A then P(B) �= B.

For point of reference, the operations used in [199] and [?] are

(i) P(B) = HomB(HomB(J, B), HomB(J, B))

(ii) P(B) = HomB(
√

J ,
√

J ),

respectively, where J is the Jacobian ideal of the algebra B. Both processes are
guaranteed to produce proper extensions of B if B �= A.

Unlike the operation defined earlier, each application of P takes place in a dif-
ferent ring, as the new Jacobian ideal has to be assembled from a presentation of the
algebra P(B).

Remark 6.1.3. It is worth noting that the first of these Jacobian basic operations has
the property that if A has the S2–condition of Serre, then all P i (A) also have S2.
This will put the same limits on the order of P that were developed in this section.
What it is not clear is if the general quadratic (or cubic) bounds are still required, or
whether a much lower one can be obtained.

In the case of (ii) it would be interesting to find bounds for the ‘order’ of the basic
operation. There a minor modification of (ii) that makes it amenable to the bounds
discussed. Let us assume that the algebra A satisfies the condition S2 and let J be
its Jacobian ideal (assume that the characteristic is either zero or does not place any
obstruction). The radical of J is made up (possibly) of

√
J = K ∩ L,

where K has codimension one and L has codimension at least two (if
√

J = L, A is
normal by the Jacobian criterion). Observe that

HomA(K ∩ L, K ∩ L) ⊂ HomA(K , K ).

Indeed, for any element f ∈ Hom A(K ∩ L, K ∩ L), we have

L · f · K = f · (K L) ⊂ f (K ∩ L) ⊂ K ∩ L ⊂ K .

Since K is a divisorial ideal and L has grade at least two, f · K ⊂ K , as desired (we
have used that A has the condition S2 of Serre, which it passes to all its divisorial
ideals).

There is a payoff: the computation of
√

J often requires the computation of K
as a preliminary step. The observation above states that Hom A(K , K ) is a possibly
larger ring than Hom A(

√
J ,

√
J ), and requires fewer steps.

Let us indicate the calculation of K in the case of a hypersurface. Suppose
A = k[x1, . . . , xd+1]/( f ), and assume that the characteristic is greater than deg f
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(we are assuming that f is a square-free polynomial). Let g be a partial derivative
of f for which gcd( f, g) = 1. Let

J = ( f,
∂ f

∂x1
, . . . ,

∂ f

∂xd+1
),

and let J0 be the Jacobian ideal of ( f, g). Then K is given (see Theorem 5.4.3) by
the image in A of the ideal of k[x1, . . . , xd+1]

(( f, g) : J0) : ((( f, g) : J0) : J ).

Example 6.1.1. Let us illustrate with one example how the two methods differ
markedly in the presence of the condition R1 of Serre. Let A be an affine domain over
a field of characteristic zero, and let J be its Jacobian ideal. Suppose heightJ ≥ 2
(the R1 condition). As we have discussed,

A = J−1 ⊂ HomA(J−1, J−1).

Consider now the following example. Let n be a positive integer, and set

A = R[x, y] + (x, y)nC[x, y],
whose integral closure is the ring of polynomials C[x, y]. Note that A x = C[x, y]x

and Ay = C[x, y]y. This means that
√

J is the maximal ideal

M = (x, y)R[x, y] + (x, y)nC[x, y].
It is clear that

HomA(M, M) = R[x, y] + (x, y)n−1C[x, y].
It will take precisely n passes of the operation to produce the integral closure. In
particular, neither the dimension (d = 2), nor the multiplicity (e = 1) play any role.

6.2 NORMALIZ

by Winfried Bruns and Robert Koch

The main purpose of NORMALIZ ([220]) is the computation of the integral closure
of an affine subsemigroup S in a lattice L. This means that S is a finitely generated
subsemigroup S of L, and the integral closure of S in L is

S̄L = {x ∈ L | mx ∈ S for some m ∈ Z, m > 0}.
This terminology is consistent with its use in commutative algebra where S is usually
the semigroup of exponent vectors of the monomials in a monomial subalgebra of a
Laurent polynomial ring K [X ±1

1 , . . . , X±1
n ].
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The input of NORMALIZ is a file containing a set E of generators of S embedded
into Zn , and in the present implementation one has the choices L = Zn or L = gp(S),
the subgroup of Zn generated by S. In the latter case, S̄L is just the normalization
of S. NORMALIZ requires that S is positive, i. e. contains no vector x �= 0 such that
−x ∈ S.

NORMALIZ has input options for the following related tasks:

1. the computation of the normalization of the Rees algebra of a monomial ideal
I ⊂ K [X1, . . . , Xn] and the integral closure of I ,

2. the computation of the Ehrhart ring of a lattice polytope.

The output written to a file (or several files) consists of

1. the uniquely determined minimal set of generators of S̄L embedded into Zn ,
2. the linear forms defining the support hyperplanes of the cone C(S) generated

by S in Rn , provided rank(S) = n,
3. (optionally) the h-vector, Hilbert polynomial, and multiplicity of S̄L if E is

homogeneous with respect to L (see below),
4. (optionally) extra output files holding the output data separately,
5. additional data if the above mentioned input options are used.

We say that E is homogeneous (with respect to L) if there exists an integral linear
form φ on L with φ(x) = 1 for all x ∈ E .

In future versions it will be possible to define a semigroup by relations or (a
necessarily integrally closed semigroup) as the intersection of a lattice and a cone.

Algorithms

NORMALIZ uses simplicial methods. It first embeds S into the smallest direct sum-
mand of L containing S. Replacing L by it, we may assume that L = Z r where
r = rankgp(S). Then S̄L = C(S) ∩ Zr where C(S) = R+S is the polyhedral
subcone of Rr generated by S. It has an apex in the origin since S is positive.

The second step is the computation of the supüport hyperplanes of C(S), com-
bined with the computation of a triangulation of C(S) into simplicial subcones Σ i ,
each of which is generated by a linearly independent subset of r elements of E .

In order to determine a system of generators of S̄L , it is enough to find a system
of generators for each of the subsemigroups Ti = Σi ∩ L, and to take their union.
Each generator found is tested for reducibility against the ones already known and
vice versa, so that the final result is the set of irreducible elements of S̄L , as desired.

The triangulation therefore reduces the problem to the simplicial case, in which
S is generated by r linearly independent vectors e1, . . . , er . A system of generators
of S̄L is then given by the union of E = {e1, . . . , er } and the set Q consisting of
all vectors q1e1 + . . . + qr er with qi ∈ Q, 0 ≤ qi < 1. Note that Q is in 1–1–
correspondence with the elements of L/gp(S). Roughly speaking, one can therefore
find Q by the elementary divisor algorithm and division with remainder.

For the Hilbert function one has to consider the decomposition of C(S) into the
disjoint union of the relative interiors of all faces of C(S) (and not just the maximal
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ones). Therefore the computation of the Hilbert function takes more time than the
computation of S̄L itself.

The documentation file normaliz.tex contains a detailed description of the
algorithms.

Distribution

NORMALIZ is available by anonymous ftp from

ftp.mathematik.Uni-Osnabrueck.DE/pub/osm/kommalg/software/

as a zip file. It contains the documentation normaliz.tex, examples, the source
code, and executables for DOS/Windows and SUN Sparc.

There are two versions: normaliz using 32 bit integer arithmetic and enormalz
with infinite precision. The source is a C++ program written for g++.
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7. Ideal Transforms and Rings of Invariants

CORRECTIONS

– p. 183: both lines 13 and 14 should be replaced simply by

height(ann(Exti
B(A, B))) ≥ r + i, i > g.

– p. 199, l. -8: for all λ
( j)
nu �= 0 → for all λ

( j)
ν �= 0

– p. 200, l. 13: in(R[I t]) → in(R[I T ])
– p. 200, l. 14: x1, . . . , xn, f1T, . . . , fk T → x1, . . . , xn, f1T, . . . , fm T
– p. 201, l. 10: rings of invariants → ring of invariants
– Add to p. 203, l. -6: In fact, according to [227], a(R G) ≤ − dim RG = −d. In

particular,

e j ≤
∑

1≤i≤d

di − d, ∀ j,

– p. 208: Bernd Sturmfels has solved affirmatively Conjecture 7.4.1 for abelian
matrix rings (see [236]).

COMPLEMENTS
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8. Computation of Cohomology

CORRECTIONS

COMPLEMENTS
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9. Degrees of Complexity of a Graded Module

CORRECTIONS

– p. 231, l. 11: let M be a graded algebra → let M be a graded module
– p. 262: Conjecture 9.4.3 has been affirmed independently by A. Conca [221] and

N. V. Trung [237].
– p. 262, l. 4: case instance it holds → instance

COMPLEMENTS
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A. A Primer on Commutative Algebra

CORRECTIONS

– p. 286, l. 11: there exists h ∈ R satisfying → there exists h ∈ A satisfying
– p. 286, l. -9: 0 : (0 : h A) = R → 0 : (0 : h A) = A
– p. 287, l. 2: hear → here
– p. 301, l. -11: should be

proj dimR[x] M ≤ 1 + proj dimR[x] (R[x] ⊗R M) ≤ 1 + proj dimR M,

– p. 326 In Corollary A.4.8 should be
With R as above, let M be a finitely generated reflexive R–module. Then M is
Cohen–Macaulay if and only if for each prime ideal p of codimension ≥ 2

depth Mp + depth HomR(M, R)p ≥ dim Rp + 2.

COMPLEMENTS
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B. Hilbert Functions

CORRECTIONS

– p. 339 l. 10: (i) S/t → (i) S/(t)

COMPLEMENTS
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C. Using Macaulay 2

CORRECTIONS

COMPLEMENTS
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