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Abstract We introduce and develop new techniques to study the complexity of
normalization processes of graded algebras. The construction of a new degree
function on graded modules, with a global nature, permits a broad extension of
recent bounds for the length of the chains of subalgebras that general algorithms
must transverse to build the integral closure, particularly of blowup algebras. It
achieves this by relating the values of the new degree with invariants of the alge-
bra known ab initio. As a by-product, it reveals new inequalities among Hilbert
coefficients.
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1 Introduction

Let R be a normal, unmixed integral domain and let A be a semistandard graded
R-algebra of integral closure A. The terminology implies that locally R is analyt-
ically unramified and that A is a finite integral extension of a graded R-algebra S
generated by its component of degree 1. Estimating the number of steps that gen-
eral algorithms must take to build A can be viewed as an invariant of A. This is the
perspective of [3], [6], [10], [12] and [14], where for several classes of algebras,
noteworthy being affine graded algebras over fields and Rees algebras of ideals
and modules, multiplicity dependent bounds were derived in each of these cases.
A side effect of these calculations (in this regard, see especially [3] and [10]) is the
derivation of various bounds on Hilbert coefficients of ideals and modules, which
in no direct way involves normalization but whose intervention was required nev-
ertheless.
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Our general goal is to extend the range of these results to very general graded
algebras. It will come at a cost in some specificity but achieves two gains beyond
naturality: Successful calculations can be moved across domains and new problem
areas (to be discussed later) are opened up. Let us indicate overall targets for our
investigation:

(i) Numerical indices for A =
∑

n≥0(A)n: e.g. Find r such that

(A)n+r = (A)n · (A)r, n ≥ 0.

(ii) How many “steps” are there between A and A,

A = A0 ⊂ A1 ⊂ · · · ⊂ As−1 ⊂ As = A,

where the Ai are constructed by an effective process?
(iii) Express r and s in terms of invariants of A.
(iv) Generators of A: Number and distribution of their degrees.

One of the tools we required was a mechanism to track the normalization pro-
cess. We chose to use multiplicity theory for its various opportunities for calcu-
lation. Let R be a Noetherian ring, A be a finitely generated graded R-algebra
where A = R[A1] and let M be a graded A-module. There are several ways to
attach numerical data to M seeking to account for its behavior at its associated
primes relative to A and/or to R. These numbers seek to capture the size of M .
They usually go by the name of degrees.

Here we will assign to every finitely generated graded A-module M a new
multiplicity, namely jdeg(M). It is based on the notion of the j-multiplicity jm(M)
of M at a maximal ideal m ⊂ R of [5], which by localization extends to all prime
ideals. This integer coincides with the classical multiplicity deg(M) when R is an
Artinian local ring. The new degree is defined by

jdeg(M) =
∑

p∈Spec R

jp(M).

It captures various aspects of M besides its sheer size usually expressed in the
ordinary multiplicity deg(M). In contrast to other extensions of deg(M), such as
the arithmetic degree arith-deg(M) or the geometric degree gdeg(M), that require
that R be a local ring, jdeg(M) places no such restrictions on R, it has a truly
global character.

One of the properties jdeg addresses our main issue. Let R be a Noetherian
domain and A a semistandard graded R-algebra. Consider a sequence of integral
graded extensions

A ⊆ A0 → A1 → A2 → · · · → An = A,

where the Ai satisfy the S2 condition of Serre. Then n ≤ jdeg(A/A) (Theorem 2).
The main goal becomes to express jdeg(A/A) in terms of priori data, that is,

one wants to view this number as an invariant of A. Relating it to other, more
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accessible, invariants of A would bring considerable predictive power to the func-
tion jdeg. This is the point of view of [10] and [6], when jdeg is the Hilbert-Samuel
multiplicity or the Buchsbaum-Rim multiplicity, respectively.

There are two classes of algebras treated. In the case of Rees algebras of ideals,
we achieve just that in case R is a reduced quasi-unmixed ring and I is an ideal of
Briançon-Skoda number c(I). Then

jdeg(R[It]/R[It]) ≤ c(I) · jdeg(grI(R))

(Theorem 3), which extends the equimultiple case of [10, Theorem 4.3] to general
ideals. A very effective assertion holds in case R has isolated singularities. Thus
in Theorem 5, if (R,m) is essentially of finite type over a perfect field and its
Jacobian ideal L has finite co-length and `(I) = dim R, then

jdeg(R[It]/R[It]) ≤ (`(I) + λ(R/L)− 1) · jdeg(grI(R)).

A module theoretic version (Theorem 6) has several surprising consequences. Si-
multaneously it provides a new interpretation and an extension of Buchsbaum-Rim
multiplicities.

Another application is to graded algebras A admitting a Noether normaliza-
tion, that is algebras which are finite over a polynomial subalgebra S. This is a
restriction for arbitrary base rings R but valid for all Z-algebras. The Noether nor-
malization allows for the construction of a determinantal divisor on a pair A ⊂ B
of graded algebras, to which a degree tn(A,B) is attached by the formula

tn(A,B) = deg(detS(A) :S detS(B)).

When R is a field of arbitrary characteristic, [3] introduced a numerical tag tn(A)
associated to each graded algebra derived from Chern numbers. In this case, tn(A,B) =
tn(A) − tn(B). (When R = Z the existence of a function tn(A) is unknown.)
Whenever the algebras A and B satisfy the condition S2 of Serre, Theorem 8
gives the equality

jdeg(B/A) = tn(A,B).

This is quite interesting given that the functions jdeg(·) and tn(·, ·) have very dis-
tinctive make ups.

2 Construction of jdeg

To construct and develop our notion of degree, we will use extensively the notion
of j–multiplicity introduced and developed by Flenner, O’Carroll and Vogel ([5]).
It is employed in [9] to develop the notion of jdeg. Here we will only recall the
construction jdeg and two of its properties that are required in our examination of
normalization.

Let (R,m) be a Noetherian local ring and A be a finitely generated graded R-
algebra where A = R[A1]. For a finitely generated graded A-module M , H0

m(M)
is a graded submodule of M which is annihilated by a sufficiently large power
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of m. Therefore, H0
m(M) can be considered as a graded module over the Artinian

ring A/mkA for some k � 0. We will make use of its Hilbert polynomial to define
a new multiplicity function of M .

Definition 1. Consider an integer d such that d ≥ dim M . We set

jd(M) =
{

0 if dim H0
m(M) < d,

deg(H0
m(M)) if dim H0

m(M) = d.

Moreover, we set j(M) = jdim M (M), and call it the j-multiplicity of M .

Remark 1. If R is an Artinian local ring, then j(M) is the ordinary multiplicity
deg(M).

Let (R,m) be a Noetherian local ring and A be a finitely generated graded
R-algebra where A = R[A1]. Let M be a finitely generated graded A-module.
Recall that the analytic spread `(M) of M is the Krull dimension of M/mM as
an A/mA-module.

Lemma 1. With the above notations, `(M) = dim(M/mnM) for any n.

Proof. It is enough to show that dim M/mM = dim M/mnM for any n ≥ 1.
Suppose that mn = (a1, . . . , ar), the surjection M⊕r/mM⊕r → mnM/mn+1M
given by sending (m1, . . . ,mr) 7−→

∑r
k=1 akrk shows dim mnM/mn+1M ≤

dim M⊕r/mM⊕r = dim M/mM . Observe that the exact sequence

0 → mn−1M/mnM → M/mnM → M/mn−1M → 0

implies dim M/mnM = max{dim mn−1M/mnM,dim M/mn−1M}. The con-
clusion then follows immediately by induction. ut

Proposition 1. The equality dim H0
m(M) = dim M holds iff `(M) = dim(M).

Proof. Consider the short exact sequence

0 → H0
m(M) = H → M → C → 0.

We know that mnH = 0 for n � 0, so we have the following exact sequence:

0 → H ∩mnM → H → M/mnM = M ′ → C/mnC = C ′ → 0.

It follows from the Artin-Rees lemma that H ∩ mnM = mn−r(H ∩ mrM) = 0
for some r � 0 and n > r. The sequence above becomes

0 → H → M/mnM = M ′ → C/mnC = C ′ → 0

Note that dim M ′ = `(M) by the previous lemma and dim H ≤ dim M ′ ≤
dim M , so if dim H = dim M then `(M) = dim M .

Conversely, if `(M) = dim M then dim M ′ = `(M) = dim M ≥ dim C >
dim C ′. It then shows dim H = dim M ′. ut

This notion has several properties that contrast to deg(·), while others are sim-
ilar. First we recall that this j-multiplicity behaves well with respect to short exact
sequences (see [5, Proposition 6.1.2]).
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Proposition 2. Let (R,m) be a Noetherian local ring and A be a finitely generated
graded R-algebra where A = R[A1]. Assume that

0 → M0 → M1 → M2 → 0

is an exact sequence of finitely generated graded A-modules. Then for d ≥ dim M1

jd(M1) = jd(M0) + jd(M1).

In particular, if dim M0 = dim M1 = dim M2 then

j(M1) = j(M0) + j(M1).

Next we introduce the j-multiplicity at a given prime p of R.

Definition 2. Let R be a Noetherian ring and A be a finitely generated graded R-
algebra where A = R[A1]. For a finitely generated graded A-module M , a prime
ideal p of R, the j-multiplicity of M at p is the integer

jp(M) =
{

deg(H0
p(Mp)) if dim H0

p(Mp) = dim Mp

0 otherwise.

We are now ready to define jdeg(M).

Definition 3. Let R be a Noetherian ring and A be a finitely generated graded R-
algebra where A = R[A1]. For a finitely generated graded A-module M , the jdeg
of M is the integer

jdeg(M) :=
∑

p∈Spec R

jp(M).

Remark 2. Since the summands depend on R, the strict notation should be jdegR(M).
It is easy to see that this is a finite sum. It is also a straightforward verification to
show that jdeg(M) = 0 iff M = 0.

Associated graded rings and invariance

Let R be a Noetherian ring and let I be an ideal. We are going to examine some
properties of jdeg(·) as it applies to modules over the Rees algebra R[It] of the
ideal I . We set A = R[It].

Proposition 3. Let B =
⊕

i≥0 Bi be a finitely generated graded A-subalgebra of
A. If B satisfies the condition S2 of Serre then the filtration of B is decreasing, i.e.
gr(B) is well-defined.

Proof. This follows from [15, Proposition 4.6]. ut

An interesting property of jdeg is the following invariance.
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Theorem 1. Let R be a reduced universally catenary ring of dimension d and
let I be an ideal of R. Let B be a finitely generated graded A-subalgebra with
A = R[It] ( B ⊂ A, and assume that B satisfies the condition S2 of Serre. Then
jdeg(gr(A)) = jdeg(gr(B)).

Proposition 4. Let R be a Noetherian ring, let A be an R-module and let Φ : A →
A be a nilpotent endomorphism of A. Then dim kerΦ = dim A = dim coker Φ.

Proof. This follows from [4, Exercise 12.8]. Indeed

rad (ann (ker Φ)) = rad (ann (A)) = rad (ann (coker Φ))

so the R-modules ker Φ, A, coker Φ have the same support. Hence, they all have
the same dimension. ut

Proof of Theorem 1: Let C = B/A, consider the following diagram induced by
multiplication by t−1:

0

��
C0

��
0 // A[+1] //

t−1

��

B[+1] //

t−1

��

C[+1] //

t−1

��

0

0 // A // B // C

��

// 0

C ′

��
0

which induces the exact sequence

0 → C0 → gr(A) → gr(B) → C ′ → 0.

Note that dim(C0)p = dim C ′
p = dim Cp for every p ∈ Spec (R) because the

multiplication by t−1 is nilpotent. Also, since the j-multiplicity is additive with
respect to exact sequences of modules of the same dimension, using the vertical
exact sequence, one has jp(C0) = jp(C ′) for every p since jp(C) = jp(C[+1]).
From the other exact sequence we obtain jp(gr(A)) = jp(gr(B)) for every p ∈
Spec R. It follows that jdeg(gr(A)) = jdeg(gr(B)). ut
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3 Normalization and jdeg

In this section we make use of the jdeg of appropriate modules in order to give
estimates for the complexity of normalization processes.

Let R be a universally catenary ring and A a standard graded integral domain
over R. We examine the character of the chains of graded subalgebras between
A and its integral closure A. We will show that the lengths of certain chains are
bounded by jdeg(A/A).

To prepare the way we first make the following observation.

Proposition 5. Let A be an equidimensional Noetherian local ring of dimension
d > 0 and M a finitely generated module of dimension d. Assume that N is a
submodule of M such that dim(M/N) = d − 1. If M satisfies the condition S1

of Serre and N the condition S2, then M/N satisfies S1 and in particular it is
equidimensional.

Proof. Let p be an associated prime of M/N . It is enough to prove that p has
codimension 1. Applying HomA(A/p, ·) to the exact sequence

0 → N −→ M −→ M/N → 0,

gives the exact sequence

HomA(A/p,M) −→ HomA(A/p,M/N) −→ Ext1A(A/p, N).

If height p > 1, the modules at the ends vanish, and HomA(A/p,M/N) would be
0. ut

Proposition 6. Let A ⊂ B ⊂ B′ ⊂ A be finitely generated graded R-algebras all
satisfying the S2 condition of Serre. Then

jdeg(B′/A) = jdeg(B/A) + jdeg(B′/B).

Proof. Because B, B′ satisfy the condition S2 and have the same total ring of
fractions

dim B/A = dim B′/A = dim B′/B = dim A− 1.

Noting that the quotients are equidimensional, for every p ∈ Spec R, consider
the short exact sequence

0 → (B/A)p → (B′/A)p → (B′/B)p → 0.

By Proposition 2,
jp(B′/A) = jp(B/A) + jp(B′/B)

for every p, therefore

jdeg(B′/A) = jdeg(B/A) + jdeg(B′/B).

ut.
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Theorem 2. Let R be a Noetherian domain and A a semistandard graded R-
algebra of finite integral closure A. Consider a sequence of distinct integral graded
extensions

A ⊆ A0 → A1 → A2 → · · · → An = A,

where the Ai satisfy the S2 condition of Serre. Then n ≤ jdeg(A/A).

Proof. By Proposition 6 and Remark 2, we have

jdeg(A/A) > jdeg(An−1/A) > · · · > jdeg(A1/A0) > 0.

Therefore, n ≤ jdeg(A/A). ut

To illustrate the values of jdeg(A/A) may take we consider two classes of
applications. First, let A be a semistandard graded domain over a field k and let
A be its integral closure. If A satisfies the condition S2 and A 6= A, the graded
module A/A has dimension dim A− 1. Its Hilbert polynomial satisfies

HA/A(n) = HA(n)−HA(n).

Therefore
jdeg(A/A) = deg(A/A) = e1(A)− e1(A),

where e1(·) is the next to the leading coefficient of the Hilbert polynomial of the
graded algebra. These coefficients are positive and

e1(A)− e1(A) ≤
(

e0(A)
2

)
,

according to [3], [15, Theorem 6.90].

Let now (R,m) be an analytically unramified Cohen–Macaulay local ring of
dimension d and I an m–primary ideal. If A = R[It],

jdeg(A/A) = deg(A/A) = e1(A)− e1(A),

the switch in signs explained by the character of the Hilbert-Samuel function of A.
A focus is to bound e1(A), the main control of normalization algorithms for R[It].
Several bounds are treated in [10], in particular

e1(A) ≤ d− 1
2

e0(A),

if R is a regular local ring.

As we are going to see, these cases can be vastly generalized, to arbitrary Rees
algebras of ideals or modules, and to algebras which are finite over a polynomial
subring.

4 Rees algebras

For the wealth of its constructions, Rees algebras gives origin to several techniques
extensible to others. We treat first ideals then modules.
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Normalization of ideals

Let R be a commutative ring and let I be an R-ideal. The integral closure of I is
the ideal I consisting of all z ∈ R which are solutions of equations of the form

zn + a1z
n−1 + . . . + an = 0, ai ∈ Ii.

We refer to R[It] as the normalization of I . We are going to show how jdeg can
be used to bound the number of iterations of any algorithm that builds R[It] by a
succession of graded extensions

R[It] = A ⊆ A0 → A1 → A2 → · · · → An = A = R[It]

satisfying the condition S2 of Serre. Recall that if one chooses A0 to be the S2-
ification of R[It], then the algorithm of [14] indeed produces such chains of S2

algebras provided R is a domain essentially of finite type over a perfect field.

Let us recall the notion of the Briançon-Skoda number of an ideal. If I is an
ideal of a Noetherian ring R, the Briançon-Skoda number c(I) of I is the smallest
integer c such that In+c ⊂ Jn for every n and every reduction J of I . The moti-
vation for this definition is a result of [1] asserting that for the rings of convergent
power series over Cn (later extended to all regular local rings) c(I) < dim R. The
existence of uniform values for c(I) has been established for much broader classes
of rings (and modules) by Huneke ([7]). Examination of their proofs should yield
effective bounds. Here we will derive a related invariant.

The following extends [10, Theorems 2.2 and 4.2], which dealt with equimul-
tiple ideals.

Theorem 3. Let R be a reduced quasi-unmixed ring and let I be an ideal of
Briançon-Skoda number c(I). Then

jdeg(R[It]/R[It]) ≤ c(I) · jdeg(grI(R)).

Proof. Let J be a minimal reduction of I . We consider the R[Jt]-module C =
R[It]/R[Jt]. Then jdeg(C) ≥ jdeg(R[It]/R[It]). By definition of c = c(I), C is
a submodule of the graded R[Jt]-module

D =
⊕
n≥0

Jn−c/Jn.

The inclusions Jn−c ⊃ Jn−c+1 ⊃ · · · ⊃ Jn induce a filtration of D. Because
local cohomology commutes with direct sums, from the Hilbert functions of the
factors in this filtration it follows that

jdeg(D) = c · jdeg(grJ(R)) = c · jdeg(grI(R)).

Moreover, jdeg(C) ≤ jdeg(D), so jdeg(R[It]/R[It]) ≤ c(I) · jdeg(grI(R)). ut

There are several extensions of this result if we broaden the notion of Briançon-
Skoda number of an ideal.
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Theorem 4. Let k be a perfect field, let R be a reduced Cohen–Macaulay k-
algebra essentially of finite type. Then for any ideal I with a reduction J generated
by ` elements, and every integer n,

Jack(R)In+`(I)−1 ⊂ Dn

where D is the S2-ification of R[It]. In particular,

Jack(R)I`−1 ⊂ ann (R[It]/D).

Proof. The argument is essentially that of [10, Theorem 3.1]. The calculation of
the Jacobian ideal of the extended Rees algebra R[Jt, t−1] gives, by [8],

Jack(R)In+`(I)−1 ⊂ In+1 : I

for all n. The assertion follows from

In+1 : I ⊂ Dn+1 : I = Dn,

the last equality because the grade of gr(D)+ is at least 1. ut

Theorem 5. Let k be a perfect field, let (R,m) be a reduced Cohen–Macaulay k-
algebra essentially of finite type. Suppose that R has isolated singularities. If L is
the Jacobian ideal of R, then for any ideal I of analytic spread ` = dim R,

jdeg(R[It]/R[It]) ≤ (` + λ(R/L)− 1) · jdeg(grI(R)).

Proof. Let D be a S2-ification of R[It]. From Theorem 4, setting C = R[It] and
c = `− 1, we have LIn+c ⊂ Dn. Consider the diagram

Dn/Dn+c Cn+c/LCn+c

����
0 // (LCn+c + Dn+c)/Dn+c

//
?�

OO

Cn+c/Dn+c
// Cn+c/(LCn+c + Dn+c) // 0.

Considering that the modules in the short exact sequence have dimension dim R
and that the module on the right is supported in m alone, it follows that

jdeg(C/D) = jdeg((LC+D)/D)+jdeg(C/LC+D) = jdeg((LC+D)/D)+deg(C/LC+D).

Given the embedding on the left and the surjection on the right, we have that

jdeg((LC + D)/D) ≤ jdeg(D/D[−c]) = c · jdeg(gr(D)),

and
deg(C/LC + D) ≤ deg(C/LC) ≤ λ(R/L) deg(C/mC).

Since jdeg(gr(D)) = jdeg(grI(R)) by Proposition 1, we obtain the estimate of
multiplicities

jdeg(C/D) ≤ c · jdeg(grI(R)) + λ(R/L) · f0(C),
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where f0(C) = deg(C/mC).
Finally, we consider the exact sequence

0 → mCn/Cn+1 −→ Cn/Cn+1 −→ Cn/mCn → 0.

Taking into account that gr(C) is a ring which has the condition S1,
⊕

n mCn/Cn+1

either vanishes or has the same dimension as the ring. Arguing as above, we have

jdeg(gr(C)) = jdeg(
⊕

n

mCn/Cn+1) + f0(C).

A final application of Proposition 1, yields either

jdeg(R[It]/R[It]) ≤ (` + λ(R/L)− 1) · jdeg(grI(R))

as in the assertion of the theorem, or

jdeg(R[It]/R[It]) ≤ (` + λ(R/L)− 2) · jdeg(grI(R)),

if I 6= m. ut

Normalization of modules

Let us recall the notion of the Rees algebra of a module. Let R be a Noetherian
ring, let E be a finitely generated torsionfree R–module having a rank, and choose
an embedding ϕ : E ↪→ Rr. The Rees algebra R(E) of E is the subalgebra of
the polynomial ring R[t1, . . . , tr] generated by all linear forms a1t1 + · · ·+ artr,
where (a1, . . . , ar) is the image of an element of E in Rr under the embedding
ϕ. The Rees algebra R(E) is a standard graded algebra whose nth component is
denoted by En and is independent of the embedding ϕ since E is torsionfree and
has a rank.

The algebra R(E) is a subring of the polynomial ring S = R[t1, . . . , tr].
Following [6], we consider the ideal (E) of S generated by the forms in E. Denote
by G the associated graded ring gr(E)(S). Let us list some of its basic properties.
This portion of our exposition is highly dependent on [6].

Proposition 7. Let (R,m) be a Noetherian integral domain of dimension d and let
E be a torsionfree R–module of rank r with a fixed embedding E ↪→ Rr. Then

(a) The components of G =
⊕

n≥0 EnS/En+1 have a natural grading

Gn = En + EnS1/En+1 + EnS2/En+1S1 + · · · .

(b) There is a decomposition
G = R(E) + H,

whereR(E) is the Rees algebra of E and H is the R-torsion submodule of G.
(c) If E ⊂ mRr and λ(Rr/E) < ∞, H = H0

m(G) has dimension d + r and
multiplicity equal to the Buchsbaum-Rim multiplicity of E.
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Proof. Only Part (c) requires attention. The module H has a natural bigraded
structure as an R(E)[y1, . . . , yd]-module which we redeploy in terms of total de-
grees as follows

H =
⊕
n≥0

Hn, Hn =
n⊕

i=0

EiSn−i/Ei+1Sn−i−1.

Observe that λ(Hn) = λ(Sn/En), the Buchsbaum-Rim Hilbert function of the
module E (see [2]). For large n,

λ(Sn/En) = br(E)
(

n + d + r − 2
d + r − 1

)
+ lower terms.

(The nonzero integer br(E) is the Buchsbaum-Rim multiplicity of E (see [15,
Section 8.3] for details).) The degree of this polynomial shows that dim H =
d + r − 1. ut

We could show directly, using properties of Rees algebras, that dim H = d +
r − 1 and thereby prove the existence of the polynomial above.

Corollary 1. Let E be a module as above. Then jdeg(G) = br(E) + 1.

Proof. It suffices to note that AssR(G) = {0,m}, and use the calculation above for
jm(G) and take into account that j(0)(G) = deg(R(E)(0)) = deg(K[t1, . . . , tr]) =
1. ut

One application of these estimations is to provide a module version of Theo-
rem 3. It will have a surprising development. For that we recall the notion of the
Briançon-Skoda number of a module following [6]. If E is a submodule of rank r
of Rr, the Briançon-Skoda number c(E) of E is the smallest integer c such that
En+c ⊂ FnSc for every n and every reduction F of E. In contrast, the Briançon-
Skoda number of the ideal (E) of S is the smallest integer c = c((E)) such that
En+cS ⊂ FnS for every n and every reduction F of E. Note that c(E) ≤ c((E))
but one has equality of analytic spreads `(E) = `((E)). We shall refer to both
c(E) and c((E)) as the Briançon-Skoda numbers of E. When R is a regular local
ring, applying the Briançon-Skoda theorem to S, gives c((E)) ≤ `(E)− 1.

Combining Theorem 3 and Corollary 1 one has:

Theorem 6. Let R be a reduced quasi-unmixed ring and let E be a module of
Briançon-Skoda number c((E)) and Buchsbaum-Rim multiplicity br(E). Then

jdeg(S[(E)t]/S[(E)t]) ≤ c((E)) · (br(E) + 1).

Let us apply this result to the complexity of the normalization of the Rees
algebra of a module E ⊂ Rr, with λ(Rr/E) < ∞. Let A be the Rees algebra of
the S-ideal (E). By Theorem 2, the chain of intermediate graded algebras D,

A ⊆ D0 ⊂ D1 ⊂ · · · ⊂ Ds ⊂ A,
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satisfying the condition S2, has length bounded by jdeg(A/A). Each one of these
algebras Di contains the subalgebra D′ = D ∩ R(E), inducing the chain of sub-
algebras

R(E) ⊂ D′
1 ⊂ · · · ⊂ D′

s ⊂ R(E).

Therefore, if S[(E)t] can be built in s such steps, R(E) will also be built in s
steps, although we cannot guarantee the algebras D′

i will satisfy the condition S2.
The significance here comes when we compare the estimates for s which come

from Theorem 6,

s ≤ c((E)) · jdeg(gr(E)(S)) = c((E)) · (br(E) + 1),

with

s ≤
(

r + c(E)− 1
r

)
· br(E),

given by [6, Theorem 2.3], using chains of subalgebras of R(E) satisfying the
condition S2. Despite the inequality c(E) ≤ c((E)), one is likely to obtain in
most cases significant enhancements.

5 Algebras with Noether normalization

We now treat a very different venue of applications of Theorem 2. Let R be a
Noetherian domain and let B = R[x1, . . . , xn] be a finitely generated R–algebra.
We will assume that B is R-torsionfree. By abuse of terminology, by arithmetic
Noether normalizations we shall mean statements asserting the existence of exten-
sions

R ⊂ S = R[y1, . . . , yr] ⊂ B,

B finite over S, where r depends uniformly on the Krull dimensions of B and R,
or on some of the fibers. We shall refer to S as a Noether normalization of B.

Part of the significance of the existence of S lies with the fact that it gives
rise to a fibration Spec (B) → Spec (S), that may add to the understanding of the
geometry of B. The ‘simpler’ S would bring greater benefit. Another motivation
lies in that S may serve as a platform for certain construction on B, such as of its
integral closure.

What are expected values for r? The answers tend to come in two groups,
depending on B being a standard graded algebra or not, or whether it is an integral
domain or not. (The values for r varies by one accordingly.) For instance, if B =
R + B+, where R is an integral domain of field of fractions K, by a standard
dimension formula (see [13, Lemma 1.1.1]),

dim B = dim R + height Q = dim R + dim K ⊗R B,

dim K ⊗R B = K[x1, . . . , xn] = n is the lower bound for r.
In one of his first papers, Shimura ([11]) proves such a result when R is a ring

of algebraic integers.
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Theorem 7 ([11]). Let R be a ring of algebraic integers of field of fractions K
and let B be a homogeneous R–algebra that is a domain. Then there is a graded
subalgebra S = R[y1, . . . , yr], r = dim K ⊗R B, over which B is integral.

Note that S is actually a ring of polynomials over R, since dim K ⊗R B =
dim B−dim R. Shimura also remarked that this bound is not achieved if R = C[t].

Tracking numbers

Let R be a normal domain of field of fractions K, and let A be a semistandard
graded algebra finite over the polynomial graded subring S = R[y1, . . . , yr]. One
can define the determinant of A as an S-module

det S(A) = (∧rA)∗∗,

where r is the rank of A as an S-module.
In case R is a field, the graded module det S(A) isomorphic to a unique module

S[−n], so the integer n can be employed as a marker for A. It was used in [3] to
define the tracking number of A, tnR(A) = n. If R is not a field, the integer n is
still well-defined (as tnK(K⊗R A)), but it will not suffice to fix det S(A) entirely,
particularly when given two such S-algebras A ⊂ B we want to compare det S(A)
and det S(B).

To address this issue, we proceed as follows. To the rank 1 reflexive module
det S(A), one can attach several homogeneous divisorial ideals of S, all in the
same divisor class group. Suppose I ⊂ S is one of these, and

I = (
⋂

p
(ri)
i ) ∩ (

⋂
qj

(sj)),

is its primary decomposition, where we denote by pi the primes that are extended
from R, and qi those that are not. This means that qj ∩R = (0) and thus qjKS =
(fj)KS, deg(fj) > 0. We associate a degree to I by setting

deg(I) =
∑

i

ri +
∑

j

sj · deg(fj).

Definition 4. Let R and S as above and let A ⊂ B ⊂ A be finitely generated
R-algebras. Set detS(B) = (∧rB)∗∗ and consider the natural image of (∧rA)∗∗

in detS(B). Let

I = ann (detS(B)/detS(A)) = detS(A) :S detS(B).

The relative tracking number of A in B is the integer

tn(A,B) = deg(I).

Example 1. If A = Z[x, y, z]/(z3 + xz2 + x2y), S = Z[x, y], then A = A[z2/x].
It follows that tn(A,A) = 1.



Complexity of the Normalization of Algebras 15

It is clear that tn(A,B) is well-defined. We note that in [3], in case R is a field,
one defines an absolute tracking number simply by declaring tn(A) as the degree of
the free rank one S-module (∧rA)∗∗. It turns out that tn(A,B) = tn(A)− tn(B).

Theorem 8. Let R be a normal domain and let A be a semistandard graded R-
algebra with finite integral closure A that admits a Noether normalization S. If B
is a graded subalgebra, A ⊂ B ⊂ A and A satisfies the S2 condition of Serre,
then

jdeg(B/A) = tn(A,B).

Proof. We first clarify AssR(B/A). If p is one of these primes and p 6= (0), the
ideal P = pS has the same height as p and therefore cannot consist of zerodivisors
of B/A if height p ≥ 2 since B/A has the condition S1 of Serre (as an A–module
or as an S-module). Thus p has height 1.

We now argue the asserted equality. Let K be the field of fractions of R. If
p = (0), we note that jdeg(KB/KA) is just the difference e1(KA) − e1(KB)
of Hilbert coefficients of the graded modules KA and KB. According to [3,
Proposition 3.1], for modules such as KA and KB, these values are the track-
ing numbers tn(KA) and tn(KB), respectively. The difference tn(A) − tn(B)
clearly accounts for the second summand in the definition of deg(I), for I =
ann (detS(B)/detS(A)).

Now we must account for the j-multiplicity of B/A for a prime p of height 1.
Localizing at p, we may assume that R is a discrete valuation domain and p is its
maximal ideal. Let H be the submodule of B/A of support in p. We claim that the
multiplicity of H is the corresponding integer ri for pi = p in the expression of
deg(I). Consider the exact sequences of S-modules

0 → A −→ B −→ B/A → 0,

0 → H −→ B/A −→ C → 0,

and the prime ideal P = pS. Note that P is the only associated prime ideal of H
as an S-module and no associated prime of C is contained in it, and in particular
(B/A)P = HP . Applying the associativity formula for multiplicities to H and
noting that deg(S/P ) = 1, we have deg(H) = λ(HP ). Since SP is a discrete
valuation domain the length of the torsion module (B/A)P is given by ri.

We have therefore matched each summand that occurs in deg(I) to one in
definition of jdeg(B/A). ut

Remark 3. It is not difficult to see that for the context here, the assertion of Theo-
rem 2 could be improved by saying that the number of extensions between A and
A is bounded by ∑

i

ri +
∑

j

sj ,

rather than the whole of deg(I). (A similar observation is given in [10].)
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