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Cohen–Macaulayness versus the vanishing of the first Hilbert
coefficient of parameter ideals

L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T. T. Phuong and W. V. Vasconcelos

Abstract

The conjecture of Wolmer Vasconcelos on the vanishing of the first Hilbert coefficient e1(Q) is
solved affirmatively, where Q is a parameter ideal in a Noetherian local ring. Basic properties of
the rings for which e1(Q) vanishes are derived. The invariance of e1(Q) for parameter ideals Q
and its relationship to Buchsbaum rings are studied.

1. Introduction

Let A be a Noetherian local ring with a maximal ideal m and d = dim A > 0. Let �A(M) denote,
for an A-module M , the length of M . Then, for each m-primary ideal I in A, we have integers
{ei(I)}0�i�d such that the equality

�A(A/In+1) = e0(I)
(

n + d

d

)
− e1(I)

(
n + d − 1

d − 1

)
+ . . . + (−1)ded(I)

holds for all integers n � 0. We call {ei(I)}0�i�d the Hilbert coefficients of A with respect to
I. These integers carry a great deal of information about the ideal I. We argue that e1(Q), for
parameter ideals Q, codes structural information about the ring A itself. Noteworthy properties
of A associated to values of e1(Q) are the Cohen–Macaulay, the generalized Cohen–Macaulay
and the Buchsbaum conditions.

We say that A is unmixed if dim Â/p = d for every p ∈ Ass(Â), where Â denotes the m-adic
completion of A. With this notation Vasconcelos, exploring the vanishing of e1(Q) for parameter
ideals Q, posed the following conjecture in his lecture at the conference in Yokohama in March
2008.

Conjecture 1.1 [18]. Assume that A is unmixed. Then A is a Cohen–Macaulay local
ring, once e1(Q) = 0 for some parameter ideal Q of A.

In Section 2 of the present paper we shall settle Conjecture 1.1 affirmatively (Theorem 2.1).
Here we should note that Conjecture 1.1 is already solved partially by [5, 12]. In fact, Ghezzi,
Hong and Vasconcelos [5, Theorem 3.3] proved that the conjecture holds if A is an integral
domain which is a homomorphic image of a Cohen–Macaulay ring. Mandal, Singh and Verma
[12] proved that e1(Q) � 0 for every parameter ideal Q in an arbitrary Noetherian local ring
A and showed that e1(Q) < 0, if depthA = d − 1.
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Theorem (Theorem 2.1). Let A be a Noetherian local ring with d = dimA > 0 and let Q
be a parameter ideal in A. Then the following are equivalent:

(a) A is Cohen–Macaulay;
(b) A is unmixed and e1(Q) = 0;
(c) A is unmixed and e1(Q) � 0.

Let Assh(A) = {p ∈ Ass(A) | dim A/p = d} and let (0) =
⋂

p∈Ass(A) I(p) be a primary
decomposition of (0) in A with p-primary ideals I(p) in A. We consider

UA(0) =
⋂

p∈Assh(A)

I(p)

and call it the unmixed component of (0) in A.
Let us call those local rings A with e1(Q) = 0 for some parameter ideal Q of A Vasconcelos†

rings. In Section 3 we shall explore basic properties of Vasconcelos rings. Certain sequentially
Cohen–Macaulay rings are good examples of Vasconcelos rings. A basic characterization of
some of these rings is the following theorem.

Theorem (Theorem 2.6). Let A be a Noetherian local ring of dimension d � 2. Let U =
UA(0) and let Q be a parameter ideal of A. Suppose that A is a homomorphic image of a
Cohen–Macaulay ring. Then the following are equivalent:

(a) e1(Q) = 0;
(b) A/U is Cohen–Macaulay and dim U � d − 2.

Note that unless A is a homomorphic image of a Cohen–Macaulay ring, the implication (a)
⇒ (b) is not true in general (Remark 2).

In Section 4 we study the problem of when e1(Q) is independent of the choice of the parameter
ideal Q in A. We shall show that A is a quasi-Buchsbaum ring, if A is unmixed and e1(Q)
is constant (Corollary 4.3). The authors conjecture that A is furthermore a Buchsbaum ring,
if A is unmixed and e1(Q) is independent of the choice of parameter ideals Q of A. We will
show that this is the case, at least when e1(Q) = −1 or −2 (by Theorem 4.8 or Theorem 4.10,
respectively). Goto and Ozeki [9] recently solved the conjecture affirmatively.

Another important issue is that of the variability of e1(Q), sometimes for Q in a same integral
closure class, and its role in the structure of the ring. This will be pursued in a sequel paper.

In what follows, unless otherwise specified, let (A,m) denote a Noetherian local ring with a
maximal ideal m and d = dimA. Let {Hi

m(∗)}i∈Z be the local cohomology functors of A with
respect to the maximal ideal m.

2. The vanishing conjecture

The purpose of this section is to prove the following, which settles Conjecture 1.1 affirmatively.
Throughout let A = (A,m) be a Noetherian local ring with a maximal ideal m and d = dimA.

Theorem 2.1. Let A be a Noetherian local ring with d = dim A > 0 and let Q be a
parameter ideal in A. Then the following are equivalent:

(a) A is Cohen–Macaulay;
(b) A is unmixed and e1(Q) = 0;
(c) A is unmixed and e1(Q) � 0.

†The terminology is due to the first five authors.
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In our proof of Theorem 2.1 the following facts are the key. See [7, Section 3] for the proof.

Proposition 2.2 [7]. Let (A,m) be a Noetherian local ring with d = dimA � 2, possessing
the canonical module KA. Assume that dim A/p = d for every p ∈ Ass(A) \ {m}. Then the
following assertions hold.

(a) The local cohomology module H1
m(A) is finitely generated.

(b) The set F = {p ∈ Spec A | dim Ap > depth(Ap) = 1} is finite.
(c) Suppose that the residue class field k = A/m of A is infinite and let I be an m-primary

ideal in A. Then one can choose an element a ∈ I so that a is superficial for I and dim A/p =
d − 1 for every p ∈ AssA(A/aA) \ {m}.

Remark 1. Let (A,m) be a Noetherian local ring with dimA = d > 0. Recall that the
unmixed component of (0) in A is UA(0) =

⋂
p∈Assh(A) I(p). Since H0

m(A) =
⋂

p∈Ass(A)\{m} I(p),
we have that H0

m(A) ⊆ UA(0). If Ass(A) \ {m} = Assh(A), then H0
m(A) = UA(0).

Proof of Theorem 2.1. (a) ⇒ (b) ⇒ (c) are clear. In order to show that (c) ⇒ (a), we
may assume that A is a complete unmixed local ring with d � 2 and infinite residue field. Let
Q = (a1, . . . , ad). We use induction on d.

Let d = 2. Then Q = (a1, a2), where we may assume that a = a1 is a superficial element. Let
S = A/aA and let q = QS. Then dimS = 1 and by [8, Lemma 2.2] we have

−�A(H0
m(S)) = e1(q) = e1(Q) − �A(0 :A a) = e1(Q) � 0.

Hence H0
m(S) = (0). Therefore S is Cohen–Macaulay and so is A.

Suppose that d � 3. Then there exists a ∈ Q such that Ass(A/aA) ⊆ Assh(A/aA) ∪ {m}
(Proposition 2.2(c)). Let S = A/aA and q = QS. Note that S is not necessarily unmixed.
Let U = US(0), S = S/U and q = qS. Then S is unmixed of dimension d − 1. Since e1(q) =
e1(q) = e1(Q) � 0, by the induction hypothesis S is Cohen–Macaulay, that is, Hi

m(S) = (0) for
all 0 � i � d − 2.

From the exact sequence 0 → U → S → S → 0, we get a long exact sequence

0 −→ H0
m(U) −→ H0

m(S) −→ H0
m(S) −→ H1

m(U) −→ H1
m(S) −→ H1

m(S) −→ · · ·
−→ Hd−2

m (U) −→ Hd−2
m (S) −→ Hd−2

m (S).

Since H0
m(S) = U (Remark 1), we have Hi

m(U) = (0) for all i � 1. Therefore

Hi
m(S) = (0) for all 1 � i � d − 2.

From the exact sequence 0 → A
·a−→ A → S → 0, we get

0 −→ H0
m(A) −→ H0

m(A) −→ H0
m(S) −→ H1

m(A) ·a−→ H1
m(A) −→ 0 −→ · · ·

−→ 0 −→ Hi
m(A) ·a−→ Hi

m(A) −→ 0 −→ · · · −→ Hd−2
m (S) = 0 −→ Hd−1

m (A) ·a−→ Hd−1
m (A).

Since A has a non-zero divisor, it follows that H0
m(A) = (0). The epimorphism H1

m(A) →
H1

m(A) → 0 implies that H1
m(A) = aH1

m(A). Since H1
m(A) is finitely generated (Proposi-

tion 2.2(a)), it follows that H1
m(A) = (0). For 2 � i � d − 1 we obtain Hi

m(A) = (0) because,
for every x ∈ Hi

m(A), some power of a annihilates x.

Let us discuss some consequences of Theorem 2.1.
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Lemma 2.3. Let A be a Noetherian local ring of dimension d > 0. Let Q be a parameter
ideal of A. Suppose that U = UA(0) 	= (0). Let C = A/U . Then the following assertions hold:

(a) dimU < dim A;
(b) we have

e1(Q) =

{
e1(QC) if dim U � d − 2
e1(QC) − s0 if dim U = d − 1,

where s0 � 1 is the multiplicity of
⊕

n U/(Qn+1 ∩ U);
(c) e1(Q) � e1(QC) with equality if and only if dim U � d − 2.

Proof. (b) We write

�A(U/(Qn+1 ∩ U)) = s0

(
n + t

t

)
− s1

(
n + t − 1

t − 1

)
+ . . . + (−1)tst

for n � 0 with integers {si}0�i�t, where t = dimU . Then the claim follows from the exact
sequence 0 → U → A → C → 0 of A–modules, which gives

�A(A/Qn+1) = �A(C/Qn+1C) + �A(U/(Qn+1 ∩ U))

for all n � 0.
(c) follows from (b) and the fact that s0 � 1.

The following results are due to [12]. We include an independent proof.

Corollary 2.4 [12]. Let A be a Noetherian local ring of dimension d > 0. Let Q be a
parameter ideal of A. Then the following assertions hold:

(a) e1(Q) � 0;
(b) if depth(A) = d − 1, then e1(Q) < 0.

Proof. (a) We may assume that A is complete. Let U = UA(0) and C = A/U . Then, by
Lemma 2.3, we have e1(Q) � e1(QC). Thus we may also assume that A is unmixed. Hence the
claim follows from Theorem 2.1.

(b) We may assume that the residue field A/m is infinite. If d = 1, by [8, Lemma 2.4(1)],
we have e1(Q) = −�A(H0

m(A)) < 0, where the last inequality follows from the fact that
depth(A) = 0. Suppose that d � 2. Let a1, . . . , ad−1 ∈ Q be a superficial sequence and let A =
A/(a1, . . . , ad−1) and Q = Q/(a1, . . . , ad−1). Since depth(A) = d − 1, we have that e1(Q) =
e1(Q) = −�A(H0

m(A)) < 0.

Proposition 2.5. Let A be a Noetherian local ring of dimension d � 2. Let U = UA(0).
Suppose that A/U is Cohen–Macaulay and dim U � d − 2. Then e1(Q) = 0 for every parameter
ideal Q of A.

Proof. Let C = A/U . Since dim U � d − 2, we get e1(Q) = e1(QC) (Lemma 2.3). Since C
is Cohen–Macaulay, we have e1(QC) = 0 (Theorem 2.1), which completes the claim.

Theorem 2.6. Let A be a Noetherian local ring of dimension d � 2. Suppose that A is a
homomorphic image of a Cohen–Macaulay ring. Let U = UA(0) and let Q be a parameter ideal
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of A. Then the following are equivalent:
(a) e1(Q) = 0;
(b) A/U is Cohen–Macaulay and dim U � d − 2.

Proof. It is enough to prove that (a) ⇒ (b). Let C = A/U . Then C is an unmixed local
ring because C is a homomorphic image of a Cohen–Macaulay ring and dimC/P = d for all
P ∈ Ass(C). If U = (0), then A is unmixed. Therefore A is Cohen–Macaulay by Theorem 2.1.
Suppose that U 	= (0). We show that dimU � d − 2; suppose not, that is, dimU = d − 1. By
Lemma 2.3, we get

e1(Q) = e1(QC) − s0,

where s0 � 1. On the other hand, e1(QC) � 0 by Corollary 2.4(a). Hence e1(Q) < 0, which is
a contradiction. Therefore dimU � d − 2. Now Lemma 2.3 implies that e1(QC) = e1(Q) = 0.
By Theorem 2.1, we see that C is a Cohen–Macaulay ring.

The following corollary gives a characterization of Cohen–Macaulayness.

Corollary 2.7. Let A be a Noetherian local ring of dimension d > 0. Let Q be a parameter
ideal in A. Suppose that ei(Q) = 0 for all 1 � i � d. Then A is a Cohen–Macaulay ring.

Proof. We may assume that A is complete. Let U = UA(0). By Theorem 2.1 it is enough
to show that U = (0). Suppose that U 	= (0) and let C = A/U . Since e1(Q) = 0, we have that
C is Cohen–Macaulay and dimU � d − 2 (Theorem 2.6). From the exact sequence 0 → U →
A → C → 0 of A-modules, we get

�A(A/Qn+1) = �A(C/Qn+1C) + �A(U/(Qn+1 ∩ U))

for all n � 0. By assumption, for n � 0 we have

�A(A/Qn+1) = e0(Q)
(

n + d

d

)
.

Also, since C is Cohen–Macaulay, for n � 0 we have

�A(C/Qn+1C) = e0(QC)
(

n + d

d

)
.

Since e0(Q) = e0(QC), for n � 0 we obtain

�A(U/(Qn+1 ∩ U)) = 0,

that is, U ⊆ Qn+1 for n � 0. Thus U = (0), which is a contradiction.

The implication (a) ⇒ (b) in Theorem 2.6 is not true in general without the assumption
that A is a homomorphic image of a Cohen–Macaulay ring.

Remark 2. Let R be a Noetherian equicharacteristic complete local ring and assume that
depth(R) > 0. Then one can construct a Noetherian local integral domain (A,m) such that
R = Â, where Â denotes the m-adic completion of A (see [11]). For example, let k[[X,Y,Z,W ]]
be the formal power series ring over a field k and consider the local ring

R = k[[X,Y,Z,W ]]/(X) ∩ (Y,Z,W ).
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We can choose a Noetherian local integral domain (A,m) so that R = Â. Then e1(Q) = 0
for every parameter ideal Q in A, since e1(Q) = e1(QR) = 0; but A is not Cohen–Macaulay
because R = Â is not Cohen–Macaulay.

3. Vasconcelos rings

Throughout this section let A = (A,m) be a Noetherian local ring with a maximal ideal m
and d = dimA. Our purpose is to develop a theory of Vasconcelos rings. Let us begin with the
definition.

Definition 3.1. A Noetherian local ring A is a Vasconcelos ring if either dimA = 0, or
dim A > 0 and e1(Q) = 0 for some parameter ideal Q in A.

A Cohen–Macaulay local ring is a Vasconcelos ring.

Proposition 3.2. Let (A,m) be a Noetherian local ring with dim A = d. Then we have
the following.

(a) A 1-dimensional Vasconcelos ring is Cohen–Macaulay.
(b) An unmixed Vasconcelos ring is Cohen–Macaulay.
(c) Suppose that d � 2. Then A is a Vasconcelos ring if and only if A/H0

m(A) is a Vasconcelos
ring.

Proof. (a) There exists a parameter ideal Q of A such that e1(Q) = 0. By [8, 2.4 (1)], we
have 0 = e1(Q) = −�A(H0

m(A)), which shows that A is Cohen–Macaulay.
(b) This follows from Theorem 2.1.
(c) Let B = A/H0

m(A). Then e1(QB) = e1(Q) for every parameter ideal Q in A. Hence A is
a Vasconcelos ring if and only if B is a Vasconcelos ring.

Let A be a Noetherian local ring of dimension d � 1 and let M be a finite A–module. We
define

Assh(M) = {p ∈ Ass(M) | dim A/p = dimM}.
Let (0M ) =

⋂
p∈Ass(M) M(p) be a primary decomposition, where M(p) is p-primary. The

unmixed component UM (0) of (0) in M is given by

UM (0) =
⋂

p∈Assh(M)

M(p).

Note that, for any p ∈ Assh(M), we have UM (0)p = (0).

Lemma 3.3. Let A be a Noetherian local ring of dimension d � 1. Let M be a finite
A-module and let L be a submodule of M . Suppose that dim L � dim M − 1 and Ass(M/L) ⊆
Assh(M). Then L = UM (0).

Proof. Let dim M = g and U = UM (0). Since dimL � g − 1, we have Lp = (0) for every
p ∈ Assh(M). Note that, for each p ∈ Assh(M), there exists s ∈ A \ p such that sL = (0).
Then L ⊆ M(p) for every p ∈ Assh(M) because s is a non-zero divisor on M/M(p) and M(p)
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is p-primary. This means that

L ⊆
⋂

p∈Assh(M)

M(p) = U.

Now suppose that L � U . Then exists q ∈ Ass(U/L). By assumption q ∈ Assh(M). Hence
Lq = (0) = Uq, so that (U/L)q = (0), which is a contradiction.

Here is a basic characterization of Vasconcelos rings.

Theorem 3.4. Let (A,m) be a Noetherian local ring of dimension d � 2. Let Â be the
m-adic completion of A. The following are equivalent:

(a) A is a Vasconcelos ring;
(b) e1(Q) = 0 for every parameter ideal Q in A;
(c) Â/UÂ(0) is a Cohen–Macaulay ring and dimÂ UÂ(0) � d − 2;
(d) there exists a proper ideal I of Â such that Â/I is a Cohen–Macaulay ring of dimension

d and dimÂ I � d − 2.

When this is the case, Â is a Vasconcelos ring, Hd−1
m (A) = (0), and the canonical module KÂ

of Â is a Cohen–Macaulay Â-module.

Proof. (c) ⇒ (b) follows from Proposition 2.5, and (a) ⇒ (c) follows from Theorem 2.6. The
implications (b) ⇒ (a) and (c) ⇒ (d) are trivial. Finally (d) ⇒ (c) follows from Lemma 3.3.

To see the last assertions, let U = UÂ(0) and let m̂ = mÂ be the maximal ideal of Â.
Then Â/U is a Cohen–Macaulay ring and dimÂ U � d − 2. In particular, Hd−1

m̂ (Â/U) = (0) =
Hd−1

m̂ (U). Hence Hd−1
m̂ (Â) = (0). Moreover, we have Hd

m̂(Â) ∼= Hd
m̂(Â/U), which means that

KÂ
∼= KÂ/U . Since KÂ/U is Cohen–Macaulay, so is KÂ.

Corollary 3.5. Let A be a Vasconcelos ring of dimension d � 1. If x is a non-zero divisor
in A, then A/xA is a Vasconcelos ring.

Proof. We may assume that A is complete and that d � 2. Let U = UA(0) and C = A/U .
By Theorem 3.4, we see that C is a d-dimensional Cohen–Macaulay ring and dimU � d − 2.
Then dimU/xU � d − 3. Since x is C-regular, it follow that C/xC is Cohen–Macaulay. By
Theorem 3.4, we see that A/xA is a Vasconcelos ring.

Example 3.6. Let (R, n) be a Cohen–Macaulay local ring of dimension d � 3. Let x be a
non-zero divisor of R and let a be an R-ideal such that ht(a) � 3 and x 	∈ a. Let A = R/(xR ∩
a). Then A is a non-Cohen–Macaulay Vasconcelos ring of dimension d − 1 � 2.

Proof. Consider the exact sequence 0 → R/(a : x) → A → R/xR → 0. Then A/xA is
Cohen–Macaulay. Also we have

dimA(xA) = dimR/(a : x) � dim R/a � d − 3 = dimA − 2.

By Theorem 3.4, we see that A is a non-Cohen–Macaulay Vasconcelos ring with dimA =
d − 1 � 2.

Example 3.7. Let (R, n) be a Cohen–Macaulay local ring with dim R = d � 2. Let M be
a finitely generated R-module with dimR M � d − 2. Then the idealization A = R � M is a
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Vasconcelos ring with dim A = d. Also we have Assh(A) = Min(A). Moreover, if R = k[[x, y]]
and M = R/(x, y)2, then A = R � M is not quasi-Buchsbaum.

Proof. Let N = (0) × M . Consider the exact sequence 0 → N → A
ε−→ R → 0, where

ε(x) = r for each x = (r,m) ∈ A. Then A/N � R is Cohen–Macaulay. Also dimA N =
dimR M � d − 2. By Theorem 3.4, we see that A is a Vasconcelos ring with dim A = d.
Moreover, we have

Assh(A) = {p × M | p ∈ Assh(R)} = Min(A).

We are now interested in the question of how Vasconcelos rings are preserved under flat base
changes.

Theorem 3.8. Let (A,m) and (B, n) be Noetherian local rings and let ϕ : A → B be a flat
local homomorphism. Then the following assertions hold true.

(a) Suppose that A is a Vasconcelos ring and B/mB is a Cohen–Macaulay ring. Then B is
a Vasconcelos ring.

(b) Suppose that B is a homomorphic image of a Cohen–Macaulay ring. If B is a Vasconcelos
ring and AssB(B/pB) = AsshB(B/pB) for every p ∈ Assh(A), then A is a Vasconcelos ring and
B/mB is a Cohen–Macaulay ring.

Proof. Let U = UA(0). Note that (A/U) ⊗A B is Cohen–Macaulay if and only if both A/U
and B/mB are Cohen–Macaulay.

(a) We may assume that A is complete and dim A = d > 0. Since A is a Vasconcelos ring, by
Theorem 3.4, we see that A/U is Cohen–Macaulay and dimA U � d − 2. Since B/mB is also
Cohen–Macaulay by assumption, it follows that B/UB � (A/U) ⊗A B is Cohen–Macaulay.
Moreover, we have

dimB(UB) = dimB(U ⊗A B) = dimA U + dimB(B/mB)
� d − 2 + dimB(B/mB) = dimB − 2.

Hence, by Proposition 2.5, we have that B is a Vasconcelos ring.
(b) Suppose that A is Cohen–Macaulay. It is enough to show that B is Cohen–Macaulay.

Let P ∈ Ass(B) and p = P ∩ A. Then p ∈ Ass(A) = Assh(A). We have P ∈ Ass(B/pB) =
Assh(B/pB) by assumption. This means that

dim B/P = dim B/pB = dimA(A/p) + dimB(B/mB) = d + dimB(B/mB) = dim B.

Therefore Ass(B) = Assh(B), which shows that B is an unmixed Vasconcelos ring. By
Proposition 3.2(b), we see that B is Cohen–Macaulay.

Now suppose that A is not Cohen–Macaulay. We claim that UB = UB(0), the unmixed
component of (0) in B. Let P ∈ Ass(B/UB). Then P ∈ Ass(B/pB) for some p ∈ Ass(A/U) =
Assh(A). By assumption we have P ∈ Assh(B/pB). This means that dim B/P = dim B/pB =
dim B. Hence Ass(B/UB) = Assh(B), which proves the claim. Now since B is a Vasconcelos
ring, by Theorem 2.6 we have that B/UB is Cohen–Macaulay and dimB UB � dim B − 2.
Therefore both A/U and B/mB are Cohen–Macaulay because (A/U) ⊗A B � B/UB is Cohen–
Macaulay. Also dimB UB � dim B − 2 implies that dimU � d − 2. In particular, A is a
Vasconcelos ring by Proposition 2.5.

Corollary 3.9. Let (A,m) be a Vasconcelos ring and let R = A[X1,X2, . . . , Xn] be the
polynomial ring. Then RP is a Vasconcelos ring for every P ∈ V(mR).
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Corollary 3.10. Let (A,m) and (B, n) be Noetherian local rings that are homomorphic
images of Cohen–Macaulay rings. Let ϕ : A → B be a flat local homomorphism. Then the
following two conditions are equivalent:

(a) A is a Vasconcelos ring and B/mB is a Cohen–Macaulay ring;
(b) B is a Vasconcelos ring and AssB(B/pB) = AsshB(B/pB) for every p ∈ Assh(A).

Proof. (a) ⇒ (b) Let p ∈ Assh(A). Then, since p ∈ Ass(A/U), we have that AssB(B/pB) ⊆
AssB(B ⊗A A/U). Hence dim B/P = dim B for every P ∈ AssB(B/pB), since B ⊗A A/U is a
Cohen–Macaulay ring with dim(B ⊗A A/U) = dim B.

Next we show that quasi-unmixed Vasconcelos rings behave well under localization.

Proposition 3.11. Let A be a Noetherian local ring of dimension d. Suppose that A is a
homomorphic image of a Cohen–Macaulay ring and Assh(A) = Min(A). If A is a Vasconcelos
ring, then Ap is a Vasconcelos ring for every p ∈ Spec A.

Proof. We may assume that A is not a Cohen–Macaulay ring. Let U = UA(0). Then U 	= (0)
by Theorem 2.6. Let p ∈ Spec A. Note that U ⊆ p. Since (A/U)p is a Cohen–Macaulay ring,
we may assume that Up 	= (0). Let a = (0) : U . Then a 	= A and htAa � 2, since dim U � d − 2
and A is catenary and equidimensional. Hence htApaAp � 2 and dimAp/aAp � dim Ap − 2.
Therefore Ap is a Vasconcelos ring by Theorem 2.6.

Corollary 3.12. Suppose that A is a Vasconcelos ring and Assh(Â) = Min(Â). Then Âp

is a Vasconcelos ring for every p ∈ Spec Â.

Suppose that d > 0 and let Q be a parameter ideal in A. We denote by R = R(Q) = A[Qt]
and G = G(Q) the Rees algebra and the associated graded ring of Q, respectively. Let M =
mR + R+ be the graded maximal ideal in R.

Theorem 3.13. Let A be a Noetherian local ring with dimension d > 0. With the above
notation we have the following:

(a) A is a Vasconcelos ring if and only if GM is a Vasconcelos ring.
(b) Suppose that A is a homomorphic image of a Cohen–Macaulay ring. If A is a Vasconcelos

ring, then RM is a Vasconcelos ring.

Proof. (a) Let Q = (a1, a2, . . . , ad) be a parameter ideal in A and let fi = ait for each
1 � i � d. Then G+ = (f1, f2, . . . , fd)G and f1, f2, . . . , fd forms a linear system of parameters
in the graded ring G. Furthermore, we have

�G(G/[(f1, f2, . . . , fd)G]n+1) = �A(A/Qn+1)

for all n � 0. Hence e1(Q) = e1((f1, f2, . . . , fd)GM) and the conclusion follows from
Theorem 3.4.

(b) We may assume that A is not a Cohen–Macaulay ring. Let U = UA(0) and B = A/U .
Then, by Theorem 2.6, we see that B is a Cohen–Macaulay ring and dimU � d − 2. Consider
the canonical epimorphism ϕ : R → R(QB) and let K = Ker ϕ. Then K ⊆ UA[t]. Let a =
(0) : U . Let P ∈ AssR(K) and let p = P ∩ A. Then a ⊆ p, since aK = (0). Note that P is
the kernel of the canonical epimorphism φ : R → R([Q + p]/p). If Q ⊆ p, then p = m and
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dim R/P = dimR([Q + p]/p) = 0. If Q � p, then we have dim R/P = dimA/p + 1 �
dim A/a + 1 � d − 1. Therefore dim R/P � d − 1 for every P ∈ AssR(K), which shows that
dimR K � d − 1 = (d + 1) − 2. Since R(QB) is a Cohen–Macaulay ring, we have that RM is a
Vasconcelos ring by Theorem 2.6.

We close this section with an application to sequentially Cohen–Macaulay rings. We refer
the reader to [6] for the definition and details. See also [2, 14, 15]. We use the following
characterization.

Proposition 3.14 [14]. Let A be a Noetherian local ring. Then M is a sequentially Cohen–
Macaulay A-module if and only if M admits a Cohen–Macaulay filtration, that is, a family
M = {Mi}0�i�t (t > 0) of A-submodules of M with

M0 = (0) � M1 � M2 � . . . � Mt = M,

such that we have the following:
(i) dimA Mi−1 < dimA Mi;
(ii) Mi/Mi−1 is a Cohen–Macaulay A-module for all 1 � i � t.

The result below follows from Proposition 2.5.

Corollary 3.15. Let A be a Noetherian local ring with dimension d > 0. Suppose that
A is a sequentially Cohen–Macaulay ring. If dim A/p 	= d − 1 for every p ∈ Ass(A), then A is
a Vasconcelos ring.

Proof. We may assume that A is not a Cohen–Macaulay ring. Let U = UA(0). In the
notation of Proposition 3.14, we have that t � 2 and Mt−1 = U (see [6, Theorem 2.3]).
Therefore dim U � d − 2, since dim A/p 	= d − 1 for all p ∈ Ass(A). Thus A is a Vasconcelos
ring by Proposition 2.5, because the ring A/U is Cohen–Macaulay.

Lastly we show that the converse of Corollary 3.15 holds, when dim A = 3 and A is a
homomorphic image of a Cohen–Macaulay ring.

Proposition 3.16. Let A be a Noetherian local ring of dimension 3, which is a
homomorphic image of a Cohen–Macaulay ring. If A is a Vasconcelos ring, then A is a
sequentially Cohen–Macaulay ring with dim A/p 	= 2 for every p ∈ Ass(A).

Proof. Let U = UA(0). We may assume that U 	= (0). Then A/U is a Cohen–Macaulay ring
and dim U � 1 by Theorem 2.6. Hence dim A/p 	= 2 for all p ∈ Ass(A). Let W = H0

m(A). Then
W ⊆ U and W = H0

m(U) because depth(A/U) > 0. Therefore, if dimU = 1 and depth(A) =
1, then (0) � U � A is a Cohen–Macaulay filtration of A. If dimU = 1 but depth(A) = 0,
then (0) � W � U � A is a Cohen–Macaulay filtration of A. If dim U = 0, then (0) � U �
A is a Cohen–Macaulay filtration of A. Thus A is a sequentially Cohen–Macaulay ring by
Proposition 3.14.

Corollary 3.17. Suppose that A is a Vasconcelos ring of dimension 3. Then the
completion Â of A is a sequentially Cohen–Macaulay ring.
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4. Rings with e1(Q) constant

In this section we study the problem of when e1(Q) is independent of the choice of parameter
ideals Q in A. Part of the motivation comes from the fact that Buchsbaum rings have this
property. We establish here that when e1(Q) = −1 or e1(Q) = −2 and A is unmixed, then A
is indeed Buchsbaum. (The question of the variability of e1(Q) will be considered in another
paper.)

Let (A,m) be a Noetherian local ring with maximal ideal m and let d = dimA > 0. Assume
that A is a homomorphic image of a Gorenstein ring. Then A contains a system of parameters
x1, x2, . . . , xd that forms a strong d-sequence in A, that is, the sequence xn1

1 , xn2
2 , . . . , xnd

d is a
d-sequence in A for all integers n1, n2, . . . , nd � 1 (see [3, Theorem 2.6] or [10, Theorem 4.2]
for the existence of such systems of parameters). For each integer q � 1 let Λq(A) be the set
of values e1(Q), where Q runs over the parameter ideals of A such that Q ⊆ mq and Q =
(a1, a2, . . . , ad) with a1, a2, . . . , ad a d-sequence. We then have Λq(A) 	= ∅, Λq+1(A) ⊆ Λq(A)
for all q � 1 and α � 0 for every α ∈ Λq(A) (Corollary 2.4(a)).

Lemma 4.1. Let (A,m) be a Noetherian local ring of dimension d � 2, which is a
homomorphic image of a Gorenstein ring. Assume that Λq(A) is a finite set for some integer
q � 1 and let � = −min Λq(A). Suppose that Ass(A) = Assh(A). Then m�Hi

m(A) = (0) for all
i 	= d, whence all the local cohomology modules {Hi

m(A)}0�i<d of A are finitely generated.

Proof. Let C = H1
m(A). Then C is a finitely generated A-module (Proposition 2.2(a)).

Suppose that d = 2 and let �′ = �A(C). Let a, b be a system of parameters of A and assume
that a, b is a d-sequence in A. Then the element a is superficial for the ideal Q = (a, b), so
that e1(Q) = e1(Q/(a)) = −�A((0) :C a). Therefore, choosing a, b ∈ mq with aC = (0), we get
−�′ = e1(Q) ∈ Λq(A), whence �′ � �. Thus m�C = (0), because m�′C = (0).

Suppose now that d � 3 and that our assertion holds true for d − 1. Let

F ′ = {p ∈ Spec A | p 	= m,dim Ap > depth(Ap) = 1}.
Then F ′ is a finite set (Proposition 2.2(b)). We choose x ∈ m so that

x 	∈
⋃

p∈Ass(A)

p ∪
⋃

p∈F ′
p.

Let n � q be an integer such that xnH1
m(A) = (0) and consider y = xn. Let B = A/yA.

Then dim B = d − 1 and AssA(B) \ {m} = AsshA(B). It follows that UB(0) = H0
m(B) (see

Remark 1). Let B̃ = B/H0
m(B).

Let q′ � q be an integer such that nq′ ∩ H0
m(B) = (0), where n denotes the maximal ideal

of B. Let y2, y3, . . . , yd ∈ mq′
be a system of parameters for the A-module B̃ and assume

that y2, y3, . . . , yd is a d-sequence in B̃. Since (y2, y3, . . . , yd)B ∩ H0
m(B) = (0), we have that

y2, y3, . . . , yd forms a d-sequence in B also. Then, since y is A-regular, the sequence y1 =
y, y2, . . . , yd forms a d-sequence in A, whence y1 is superficial for the parameter ideal Q =
(y1, y2, . . . , yd) of A. Consequently

e1((y2, y3, . . . , yd)B̃) = e1((y2, y3, . . . , yd)B) = e1(Q) ∈ Λq(A),

so that Λq′(B̃) ⊆ Λq(A). Therefore Λq′(B̃) is a finite set, whence the hypothesis of induction on
d yields that m�′′Hi

m(B̃) = (0) for all i 	= d − 1, where �′′ = −min Λq′(B̃). Hence m�Hi
m(B̃) =

(0) for all i 	= d − 1, because �′′ � �.
Now consider the exact sequence

· · · −→ H1
m(A) xn

−−→ H1
m(A) −→ H1

m(B) −→ · · · −→ Hi
m(B) −→ Hi+1

m (A) xn

−−→ Hi+1
m (A) −→ · · ·
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of local cohomology modules. We then have

m�[(0) :Hi+1
m (A) xn] = (0)

for all integers 1 � i � d − 2 and n � q, because m�Hi
m(B) = (0) for all 1 � i � d − 2. Hence

m�Hi+1
m (A) = (0), because

Hi+1
m (A) =

⋃
n�1

[(0) :Hi+1
m (A) mn].

On the other hand we have the embedding H1
m(A) ⊆ H1

m(B), since xnH1
m(A) = (0). Thus

m�H1
m(A) = (0), which completes the proof of the lemma.

Now let A be a Noetherian local ring with maximal ideal m and d = dimA > 0. Let
Λ(A) = {e1(Q) | Q is a parameter ideal in A}. Passing to the completion Â of A and applying
Lemma 4.1, we obtain the following.

Proposition 4.2. Let (A,m) be an unmixed Noetherian local ring of dimension d � 2.
Assume that Λ(A) is a finite set and consider � = −min Λ(A). Then m�Hi

m(A) = (0) for every
i 	= d, whence Hi

m(A) is a finitely generated A-module for every i 	= d.

A system of parameters a1, a2, . . . , ad of A is said to be standard if it forms a d+-sequence,
that is, a1, a2, . . . , ad forms a strong d-sequence in any order. We have that A possesses a
standard system of parameters if and only if A is a generalized Cohen–Macaulay ring, that is,
all the local cohomology modules {Hi

m(A)}0�i<d are finitely generated (see [17]).
We say that a parameter ideal Q of A is standard, if it is generated by a standard system of

parameters. We have that Q is standard if and only if the equality

�A(A/Q) − e0(Q) =
d−1∑
i=0

(
d − 1

i

)
hi(A) := I(A)

holds, where hi(A) = �A(Hi
m(A)) for each i ∈ Z (cf. [17, Theorem 2.1]). See [4, 17] for details,

where the notion of generalized Cohen–Macaulay module is also given and various basic
properties of generalized Cohen–Macaulay rings and modules are explored.

Assume that A is a generalized Cohen–Macaulay ring with d � 2 and let

s =
d−1∑
i=1

(
d − 2
i − 1

)
hi(A).

If Q is a parameter ideal of A, then by [8, Lemma 2.4] we have that

e1(Q) � −s,

where the equality holds, if Q is standard [13, Korollar 3.2].
Therefore, if A is unmixed, d � 2 and Λ(A) is a finite set, by Proposition 4.2 we have that

msHi
m(A) = (0)

for all i 	= d. This exponent is, however, never the best possible, as we show in the following.

Corollary 4.3. Let (A,m) be an unmixed Noetherian local ring of dimension d � 2. If
#Λ(A) = 1, then A is a quasi-Buchsbaum ring, that is, mHi

m(A) = (0) for all i 	= d.

To prove Corollary 4.3 we need the lemmas below.
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Lemma 4.4. Suppose that (A,m) is a Noetherian local ring of dimension d = 2 and
depth(A) = 1. Assume that H1

m(A) is finitely generated. Let Q be a parameter ideal of A.
Then the following three conditions are equivalent:

(a) e1(Q) = −�A(H1
m(A));

(b) QH1
m(A) = (0);

(c) Q is standard.

Proof. (c) ⇒ (a) See [8, Lemma 2.4(2)].
(b) ⇔ (c) See [17, Corollary 3.7].
(a) ⇒ (b) We may assume that the field A/m is infinite. Let Q = (a, b) be such that each

one of a, b is a superficial element of Q. Then

−�A(H1
m(A)) = e1(Q) = e1(Q/(a)) = −�A(H0

m(A/(a)))

by [8, Lemma 2.1(1)]. Hence �A(H1
m(A)) = �A((0) :H1

m(A) a), and so aH1
m(A) = (0). Similarly

we get bH1
m(A) = (0), whence QH1

m(A) = (0).

Lemma 4.5. Suppose that (A,m) is a generalized Cohen–Macaulay local ring of dimen-
sion d � 2 and depth(A) > 0. Let Q be a parameter ideal of A such that e1(Q) =
−∑d−1

i=1

(
d−2
i−1

)
hi(A). Then QHi

m(A) = (0) for all i 	= d.

Proof. If d = 2, then the conclusion follows from Lemma 4.4. Assume that d � 3. Let Q =
(a1, a2, . . . , ad), where each ai is superficial for the ideal Q, and let a = ai. Let B = A/aA. We
have that e1(QB) = e1(Q).

Consider the exact sequence of local cohomology modules

. . . −→ Hi
m(A) a−→ Hi

m(A) −→ Hi
m(B) −→ Hi+1

m (A) a−→ Hi+1
m (A) −→ Hi+1

m (B) a−→ · · · .

We then have

hi(B) = �A(Hi
m(A)/aHi

m(A)) + �A((0) :Hi+1
m (A) a) � hi(A) + hi+1(A)

for all 0 � i � d − 2. Hence

e1(QB) � −
d−2∑
i=1

(
d − 3
i − 1

)
hi(B) � −

d−2∑
i=1

(
d − 3
i − 1

)
[hi(A) + hi+1(A)]

= −
d−1∑
i=1

(
d − 2
i − 1

)
hi(A)

= e1(QB).

It follows that hi(B) = hi(A) + hi+1(A) for every 1 � i � d − 2, whence aHi
m(A) = (0) for all

1 � i � d − 1. Thus QHi
m(A) = (0), if i 	= d.

Proof of Corollary 4.3. By Proposition 4.3 we see that A is a generalized Cohen–Macaulay
ring. Hence we have Λ(A) = {−∑d−1

i=1

(
d−2
i−1

)
hi(A)} by [13, Korollar 3.2]. Let a ∈ m be such

that dim A/aA = d − 1. It is enough to show that aHi
m(A) = (0) for all i 	= d. This follows

from Lemma 4.5.

Since every quasi-Buchsbaum ring A is Buchsbaum when depth A � d − 1 (see [16,
Corollary 1.1]), we readily get the following.
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Corollary 4.6. Suppose that A is an unmixed Noetherian local ring of dimension d � 2
and depthA � d − 1. Then #Λ(A) = 1 if and only if A is a Buchsbaum ring.

The authors expect that A is a Buchsbaum ring if A is unmixed and e1(Q) is independent
of the choice of parameter ideals Q of A. We will show that this is the case when e1(Q) = −1
and when e1(Q) = −2.

Proposition 4.7. Let A be a Noetherian local ring of dimension d � 2 and suppose that,
for all parameter ideals Q of A, we have e1(Q) = −t for some t � 0. Let U = UA(0). Then
dim U � d − 2, and for all parameter ideals q of A/U we have that e1(q) = −t.

Proof. Let B = A/U . Assume that dim U = d − 1. Choose a system of parameters
a1, a2, . . . , ad of A so that (ad) ∩ U = (0) (cf. [2]). Let � > t be an integer and let Q =
(a�

1, a2, . . . , ad). For all n � 0 we have the exact sequence of A-modules

0 −→ U/(Qn+1 ∩ U) −→ A/Qn+1 −→ B/Qn+1B −→ 0.

Let k � 0 be an integer such that

Qn ∩ U = Qn−k(Qk ∩ U)

for all n � k. We consider U ′ = Qk ∩ U and q = (a�
1, a2, . . . , ad−1). Then Qn−kU ′ = qn−kU ′,

because adU = (0). Therefore, for all n � k we have

�A(A/Qn+1) = �A(B/Qn+1B) + �A(U ′/qn−k+1U ′) + �A(U/U ′),

which implies that

−t = e1(Q) = e1(QB) − e0(qU ′).

Consequently, since e1(QB) � 0, we have

� � �e0((a1, a2, . . . , ad−1)U ′) = e0(qU ′) = e1(QB) + t � t,

which is impossible. Thus dimU � d − 2.
To see the second assertion, let q be a parameter ideal of B. Then, choosing a parameter

ideal Q of A so that QB = q, we get e1(q) = e1(Q) = −t, since dim U � d − 2.

Theorem 4.8. Let (A,m) be a Noetherian local ring of dimension d � 2. Then the following
two conditions are equivalent.

(a) We have e1(Q) = −1 for every parameter ideal Q of A,
(b) Let U = UÂ(0) be the unmixed component of (0) in the m-adic completion Â of A. Then

dimÂ U � d − 2 and Â/U is a Buchsbaum ring such that we have one of the following:
(i) Hi

m̂(Â/U) = (0) for all i 	= 1, d and �Â(H1
m̂(Â/U)) = 1;

(ii) Hi
m̂(Â/U) = (0) for all i 	= d − 1, d and �Â(Hd−1

m̂ (Â/U)) = 1;
where m̂ denotes the maximal ideal of Â.

Proof. We may assume that A is complete.
(b) ⇒ (a) Let Q be a parameter ideal of A and let B = A/U . Then e1(Q) = e1(QB), since

dimA U � d − 2. Consequently e1(Q) = −1, because e1(QB) = −∑d−1
i=1

(
d−2
i−1

)
hi(B) = −1 by

[13, Korollar 3.2] and condition (i) or (ii).
(a) ⇒ (b) By Proposition 4.7 we may assume that A is unmixed. Then A is

a quasi-Buchsbaum ring by Corollary 4.3. We have condition (i) or (ii), because
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e1(Q) = −∑d−1
i=1

(
d−2
i−1

)
hi(A). Hence A is a Buchsbaum ring, because A is a quasi-Buchsbaum

ring with Hi
m(A) = (0) for all i 	= depthA,dim A (see [16, Corollary 1.1]).

To treat the case where e1(Q) = −2 we need the following lemma.

Lemma 4.9. Suppose that (A,m) is a generalized Cohen–Macaulay local ring of dimension
d � 2 and depth(A) > 0. Assume that h1(A) = 1 and hi(A) = 0 for all 2 � i � d − 2. Let Q be
a parameter ideal in A such that e1(Q) = −∑d−1

i=1

(
d−2
i−1

)
hi(A). Then Q is standard.

Proof. We may assume that the field A/m is infinite. If d = 2, the conclusion follows from
Lemma 4.4. Let d � 3 and let Q = (a1, a2, . . . , ad), where each ai is superficial for the ideal Q.
Let a = ai and U(a) = (a) : m, and consider B = A/aA and B̃ = B/H0

m(B). Then

e1(Q) = e1(QB) = e1(QB̃).

Consider the exact sequence of local cohomology modules

· · · −→ Hi
m(A) a−→ Hi

m(A) −→ Hi
m(B) −→ Hi+1

m (A) a−→ Hi+1
m (A) −→ Hi+1

m (B) −→ · · · .

Since h1(A) = 1, we have h0(B) = 1, whence H0
m(B) = U(a)/(a) and B̃ = A/U(a).

By Lemma 4.5 we have that aHd−1
m (A) = (0). Therefore, if d = 3, then we get an exact

sequence

0 −→ H1
m(A) −→ H1

m(B) −→ H2
m(A) −→ 0,

whence h1(B̃) = h1(B) = 1 + h2(A).
If d � 4, then we get H1

m(B) ∼= H1
m(A), Hi

m(B) = (0) if 2 � i � d − 3 and Hd−2
m (B) ∼=

Hd−1
m (A).
Consequently, if d � 3, then we have that e1(QB̃) = −∑d−2

i=1

(
d−3
i−1

)
hi(B̃), and so by induction

on d the parameter ideal QB̃ is standard. Therefore

�B̃(B̃/QB̃) − e0(QB̃) = I(B̃) = (d − 2) + hd−1(A).

Now assume by contradiction that Q is not a standard parameter ideal in A. Then

(d − 2) + hd−1(A) = �B̃(B̃/QB̃) − e0(QB̃)
= �A(A/(U(a) + Q)) − e0(A)
= [�A(A/Q) − e0(A)] − �A((Q + U(a))/Q)
< I(A) − �A((Q + U(a))/Q)

= [(d − 1) + hd−1(A)] − �A((Q + U(a))/Q).

Consequently, �A((Q + U(a))/Q) = 0, whence U(a) ⊆ Q. Therefore
d∑

i=1

U(ai) = Q

by the symmetry among the elements ai. Let Ã denote the (S2)-fication of A and look at the
canonical exact sequence

0 −→ A −→ Ã −→ H1
m(A) −→ 0

(see [1, Theorem 1.6]). Then dim Ã = d, depth Ã � d − 1 and Hd−1
m (Ã) ∼= Hd−1

m (A). Hence
Q is a standard parameter ideal for the generalized Cohen–Macaulay A-module Ã by
[17, Corollary 3.7], because QHd−1

m (Ã) = (0). Therefore, since depthA Ã � 2, any two of
a1, a2, . . . , ad form an Ã-regular sequence, whence U(ai) ⊆ aiÃ for all 1 � i � d. Consequently
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U(ai) = aiÃ, because aiA � U(ai) ⊆ aiÃ and �A(aiÃ/aiA) = �A(Ã/A) = 1. Thus Q = QÃ, so
that we have Qn+1 = Qn+1Ã for all n � 0. Since

�A(A/Qn+1) = �A(Ã/Qn+1Ã) − 1,

we get
e1(Q) = e1(QÃ) = −hd−1(Ã) = −hd−1(A)

by [13, Korollar 3.2], which is a contradiction. Thus the parameter ideal Q is standard in A.

Theorem 4.10. Let (A,m) be a Noetherian local ring of dimension d � 2. Then the
following two conditions are equivalent.

(a) We have e1(Q) = −2 for every parameter ideal Q of A.
(b) Let U = UÂ(0) be the unmixed component of (0) in the m-adic completion Â of A. Then

dimÂ U � d − 2 and Â/U is a Buchsbaum ring with

d−1∑
i=1

(
d − 2
i − 1

)
hi(Â/U) = 2.

Proof. (b) ⇒ (a) The assertion follows from [13, Korollar 3.2].
(a) ⇒ (b) By Proposition 4.7, we may assume that A is an unmixed complete local ring. Hence

A is a quasi-Buchsbaum ring by Corollary 4.3 and
∑d−1

i=1

(
d−2
i−1

)
hi(A) = 2 by [13, Korollar 3.2].

By [16, Corollary 1.1] we may assume that d � 3, h1(A) = hd−1(A) = 1 and hi(A) = 0 if 2 �
i � d − 2. Then by Lemma 4.9 every parameter ideal Q of A is standard, so that A is a
Buchsbaum ring.
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