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Abstract. We establish bounds for the coefficient e1(I) of the Hilbert function of the
integral closure filtration of equimultiple ideals. These values are shown to help control all
algorithmic processes of normalization that make use of extensions satisfying the condition
S2 of Serre.

1. Introduction

Let R be a Noetherian ring and let I be an R–ideal. The integral closure of I is the ideal

I consisting of all z ∈ R which are solutions of equations of the form

zn + a1z
n−1 + . . . + an = 0, ai ∈ Ii.

The authors are not aware of any direct algorithm that builds I from I, a situation that

is aggravated by the lack of numerical measures to distinguish between the two ideals. A

non direct construction of the integral closure of an ideal passes through the integral closure

R[It] in R[t] of the Rees algebra R[It]. In fact I is the degree one component of R[It],

I � R[It] = R ⊕ It ⊕ I2t2 ⊕ . . . � I.

This begs the issue since the construction of R[It] takes place in a much larger setting,

while in a direct construction I � I the steps of the algorithm would take place entirely in

R.

We refer to R[It] as the normalization of I. Its construction is a standard step in the

theory of desingularization. It is very significant that there are numerical measures to tell

the two algebras R[It] and R[It] apart for classes of ideals of interest. We are going to

identify one such measure, establish bounds for its value on R[It] by data on I, and show

how it bounds the number of iterations of any algorithm that builds R[It] by a succession

of graded extensions

R[It] → A1 → A2 → . . . → An = R[It]

satisfying the condition S2 of Serre. Recall that if one chooses A1 to be the S2–ification of

R[It], then the algorithm of [25] indeed produces such chains of S2 algebras, provided R is
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a S2 domain of dimension ≥ 2 and is essentially of finite type over a field of characteristic

zero.

We now describe the results of the paper. Let (R,m) be an analytically unramified local

Cohen–Macaulay ring of dimension d ≥ 2 and type t with infinite residue field, I an m–

primary ideal, and R[It] ⊂ A ⊂ B ⊂ R[It] inclusions of graded R–algebras. With e1(A)

denoting the first Hilbert coefficient of the ideal filtration {An} arising from A, we prove

in Theorem 2.2 that e1(A) < e1(B), provided A satisfies S2 and is properly contained in

B. The monotonicity of the function e1(−) on these algebras yields the crucial role of

e1(I) = e1(R[It]) in a numerical criterion of normality. When R has a canonical module

the S2–ification of R[It] is given by EndR[It](ωR[It]), which is relatively easy to compute.

Now Corollary 2.5 says that R[It] can be obtain as the S2–ification of R[It] if and only if

e1(I) = e1(I); in particular I is normal if and only if R[It] satisfies S2 and e1(I) = e1(I).

In general e1(I) can be used to bound the lengths of chains of graded S2 algebras lying

between R[It] and R[It], see Corollary 2.4.

Thus one is led to search for effective upper bounds on e1(I). Notice that any such

inequality also bounds the first Hilbert coefficient e1(I), an issue that has been addressed

in [12, 6, 7, 23] for instance. The bounds we are looking for should estimate e1(I) in terms

of the multiplicity e0(I) of the ideal I. The link between these two Hilbert coefficients is

provided by the Briançon–Skoda number b(I) of I, which is the smallest integer b such that

In+b ⊂ Jn for every n and every reduction J of I. Indeed, in Theorem 3.2(c) we prove that

e1(I) ≤ b(I) min { t

t + 1
e0(I), e0(I) − λ(R/I)},

where λ(−) denotes length. Furthermore, motivated by this result we estimate the Briançon–

Skoda number of I in Proposition 3.7. In a regular local ring the above inequality reads

e1(I) ≤ (d − 1) min {e0(I)
2

, e0(I) − λ(R/I)},
since in this case b(I) ≤ d − 1 by the classical Briançon–Skoda theorem. If in addition

d = 2 and I is integrally closed we obtain the equalities e1(I) = e1(I) = e0(I) − λ(R/I),

which in turn imply the well–known facts that I has reduction number one and R[It] is

Cohen–Macaulay and normal.

In Section 3 we also establish bounds for e1(I) that avoid any reference to the Briançon–

Skoda number and instead only involve the multiplicities of I and of I modulo an element

in the Jacobian of R. Our proofs are based on a general Briançon–Skoda type theorem due

to Hochster and Huneke that applies to non regular rings as well. In Theorem 3.2(a),(b)

we show that if R is an algebra essentially of finite type over a perfect field k and δ is a non

zerodivisor in Jack(R), then

e1(I) ≤ t

t + 1
[
(d − 1)e0(I) + e0(I + δR/δR)

]
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and

e1(I) ≤ (d − 1)
[
e0(I) − λ(R/I)

]
+ e0(I + δR/δR).

In Section 4 we extend these results to arbitrary equimultiple ideals.

2. Normalization of Rees algebras

The computation (and its control) of the integral closure of a standard graded algebra

over a field benefits greatly from Noether normalizations and of the structures built upon

them. If A = R[It] is the Rees algebra of an ideal I in a Noetherian ring R, it does not allow

for many such constructions. We would still like to develop some tracking of the complexity

of the task required to build A (assumed A–finite) through sequences of graded extensions

A → A1 → A2 → · · · → An = A

where Ai+1 is obtained from a specific procedure applied to Ai. As in [26], if the Ai satisfy

the condition S2 of Serre, we will call such chains divisorial. At a minimum, we would want

to bound the length of divisorial chains. In this section we show how this can be realized

for Rees algebras of ideals.

We now review some definitions and basic facts. For ideals J ⊂ I in a Noetherian ring

one says that J is a reduction of I if I = J . If in addition R is local with infinite residue

field, we define minimal reductions of I to be reductions minimal with respect to inclusion.

The minimal number of generators of every minimal reduction of I is the analytic spread of

I, which is bounded below by the height of the ideal I and above by the dimension of the

ring R. Thus if I is an m–primary ideal every minimal reduction of I is generated by dimR

elements. Finally, we say that I is equimultiple if every minimal reduction of I is generated

by ht I elements.

Let (R,m) be a Noetherian local ring of dimension d > 0 and let I be an m–primary ideal.

Let D =
⊕

n≥0 Dntn be a graded R–subalgebra of R[t] with R[It] ⊂ D ⊂ R[t] and assume

that D is a finite R[It]–module. For any such algebra we consider the Hilbert–Samuel

function λ(R/Dn). For n � 0 this function is given by the Hilbert–Samuel polynomial

e0(D)
(

n + d − 1
d

)
− e1(D)

(
n + d − 2

d − 1

)
+ lower terms .

Notice that ei(R[It]) coincide with the usual Hilbert coefficients ei(I) of I. Furthermore

e0(D) = e0(I). By R[It] we will always denote the integral closure of R[It] in R[t]. We

write ei(I) for the normalized Hilbert coefficients ei(R[It]) of I in case R[It] is a finite

R[It]–module. The coefficient e1(I) will be the main object of interest in this paper.

The condition that R[It] be a finite R[It]–module is satisfied for any ideal I in an ana-

lytically unramified local ring R, see [22, 1.5]. Under this assumption there exits an integer
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b such that

In+b ⊂ Jn for every n and every reduction J of I,

where we use the convention that Im = R for m ≤ 0. The smallest such b ≥ 0 is called the

Briançon–Skoda number b(I) of I. In a regular local ring R of positive dimension one has

b(I) ≤ dim R − 1 according to the classical Briançon–Skoda theorem ([16, Theorem 1]).

In order to relate e0(I), e1(I) and b(I) the next lemma is needed. We use the notation

deg(−) for the multiplicity of a finite module over a Noetherian local ring or of a finite

graded module over a Noetherian standard graded algebra over an Artinian local ring.

Lemma 2.1. Let (R,m) be a Noetherian local ring of dimension d > 0 and let I be an

m–primary ideal. Let A and B be graded R–subalgebras of R[t] with

R[It] ⊂ A ⊂ B ⊂ R[t]

and assume that B is a finite R[It]–module. Write C for the graded R[It]–module B/A.

(a) dimC ≤ d, and equality holds if R is Cohen–Macaulay, A satisfies the condition S2

of Serre and A 	= B.

(b) If dim C < d then e1(B) = e1(A).

(c) If dim C = d then e1(B) − e1(A) = deg(C) > 0.

Proof. Part (a) is obvious. To prove (b) and (c) notice that C is a finite graded module

over a Noetherian standard graded algebra over an Artinian ring. Hence it has a Hilbert

polynomial whose degree is dim C − 1. On the other hand the exact sequences

0 −→ Cn −→ R/An −→ R/Bn −→ 0

show that (e1(B)−e1(A))/(d−1)! is the coefficient of the term of degree d−1 in the Hilbert

polynomial of C. �

Theorem 2.2. Let (R,m) be an analytically unramified local Cohen–Macaulay ring of pos-

itive dimension with infinite residue field and let I be an m–primary ideal. Let A and B be

distinct graded R–subalgebras of R[t] with

R[It] ⊂ A � B ⊂ R[It]

and assume that A satisfies the condition S2 of Serre. Then

0 ≤ e1(I) ≤ e1(A) < e1(B) ≤ e1(I) ≤ b(I)e0(I).

Proof. Let J be a minimal reduction of I, and notice that e1(J) = 0 since R is Cohen–

Macaulay. Now Lemma 2.1 implies the asserted inequalities except for the last one. To

show that e1(I) ≤ b(I)e0(I) write d = dim R and b = b(I). We consider the R[Jt]–module

C = R[It]/R[Jt]. Since R[Jt] satisfies the condition S2 of Serre, Lemma 2.1 shows that

e1(I) = e1(I) − e1(J) = deg(C).
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In turn, by the definition of b, C is a submodule of the graded R[Jt]–module D whose n–th

components are Jn−b/Jn. The inclusions Jn−b ⊃ Jn−b+1 ⊃ . . . ⊃ Jn induce a filtration of

D. From their Hilbert functions one sees that the factors in this filtration all have dimension

d and multiplicity e0(J) = e0(I). Hence dim D = d = dimC and deg(D) = b e0(I). Now

the containment C ⊂ D gives

deg(C) ≤ deg(D) = b e0(I),

and we obtain e1(I) = deg(C) ≤ b(I)e0(I), as asserted. �

Remark 2.3. Applying Theorem 2.2 to any minimal reduction J of I one obtains the stronger

estimate e1(I) = e1(J) ≤ b(J)e0(J) = b(J)e0(I).

A measure for the complexity of R[It] is the number of steps needed to construct it. We

address this issue in the next corollary, which is a direct consequence of Theorem 2.2.

Corollary 2.4. Let (R,m) be an analytically unramified local Cohen–Macaulay ring of

positive dimension and let I be an m–primary ideal. Then e1(I) + 1 bounds the length of

any chain of graded R–subalgebras satisfying the condition S2 of Serre lying between R[It]

and R[It].

The following corollary provides a numerical criterion for when the integral closure coin-

cides with the S2–ification EndR[It](ωR[It]) of R[It]. Let (R,m) be a local Cohen–Macaulay

ring of dimension ≥ 2 with a canonical module and infinite residue field, let I be an m–

primary ideal, and J a minimal reduction of I. Writing (−)∨ = HomR[Jt](−, R[Jt]) we

consider these embeddings of graded algebras,

R[It] ⊂ EndR[It](ωR[It]) ⊂ EndR[It](R[It]∨) = R[It]∨∨ ⊂ R[It].

Corollary 2.5. Let (R,m) be an analytically unramified local Cohen–Macaulay ring of

dimension ≥ 2 with a canonical module and infinite residue field, and let I be an m–primary

ideal. Then R[It] = EndR[It](ωR[It]) if and only if e1(I) = e1(I); in this case R[It] =

R[It]∨∨. In particular, the ideal I is normal if and only if R[It] satisfies the condition S2

of Serre and e1(I) = e1(I).

Proof. Notice that by Lemma 2.1(b), EndR[It](ωR[It]) has first Hilbert coefficient e1(I).

Now apply Theorem 2.2. �
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3. Bounds on e1(I) and the Briançon–Skoda number

We discuss the role of Briançon–Skoda type theorems (see [1], [16]) in determining some

relationships between the coefficients e0(I) and e1(I). We will use a Briançon–Skoda theo-

rem that works in non–regular rings. We are going to provide a short proof along the lines

of [16] for the special case we need: m–primary ideals in a local Cohen–Macaulay ring. The

general case is treated by Hochster and Huneke in [11, 1.5.5 and 4.1.5]. Let k be a perfect

field, let R be a reduced and equidimensional k–algebra essentially of finite type, and as-

sume that R is affine with d = dimR or (R,m) is local with d = dim R+trdegkR/m. Recall

that the Jacobian ideal Jack(R) of R is defined as the d–th Fitting ideal of the module of

differentials Ωk(R) – it can be computed explicitly from a presentation of the algebra. By

varying Noether normalizations one deduces from [16, Theorem 2] that the Jacobian ideal

Jack(R) is contained in the conductor R : R of R (see also [19], [2, 3.1] and [10, 2.1]); here

R denotes the integral closure of R in its total ring of fractions.

Theorem 3.1. Let k be a perfect field, let R be a reduced local Cohen–Macaulay k–algebra

essentially of finite type, and let I be an equimultiple ideal of height g > 0. Then for every

integer n,

Jack(R) In+g−1 ⊂ In.

Proof. We may assume that k is infinite. Then, passing to a minimal reduction, we may

suppose that I is generated by a regular sequence of length g. Let S be a finitely generated

k–subalgebra of R so that R = Sp for some p ∈ Spec(S), and write S = k[x1, . . . , xe] =

k[X1, . . . ,Xe]/a with a = (h1, . . . , ht) an ideal of height c. Notice that S is reduced and

equidimensional. Let K = (f1, . . . , fg) be an S–ideal with Kp = I, and consider the

extended Rees ring B = S[Kt, t−1]. Now B is a reduced and equidimensional affine k–

algebra of dimension e − c + 1.

Let ϕ : k[X1, . . . ,Xe, T1, . . . , Tg, U ] � B be the k–epimorphism mapping Xi to xi, Ti

to fit and U to t−1. Its kernel has height c + g and contains the ideal b generated by

{hi, TjU − fj|1 ≤ i ≤ t, 1 ≤ j ≤ g}. Consider the Jacobian matrix of these generators,

Θ =

⎛
⎜⎜⎜⎜⎜⎝

∂hi

∂Xj
0

U T1

∗ . . .
...

U Tg

⎞
⎟⎟⎟⎟⎟⎠

.

Notice that Ic+g(Θ) ⊃ Ic(
(

∂hi
∂Xj

)
)Ug−1(T1, . . . , Tg). Applying ϕ we obtain Jack(B) ⊃

Ic+g(Θ)B ⊃ Jack(S)Kt−g+2. Thus Jack(S)Kt−g+2 is contained in the conductor of B.

Localizing at p we see that Jack(R)It−g+2 is in the conductor of the extended Rees ring
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R[It, t−1]. Hence for every n, Jack(R) I In+g−1 ⊂ In+1, which yields

Jack(R) In+g−1 ⊂ In+1 : I = In,

as (grI(R))+ has positive grade. �

We now use Theorem 3.1 to sharpen the bound on e1 given in Theorem 2.2.

Theorem 3.2. Let (R,m) be a reduced local Cohen–Macaulay ring of dimension d > 0 and

let I be an m–primary ideal.

(a) If in addition R is an algebra essentially of finite type over a perfect field k with

type t, and δ ∈ Jack(R) is a non zerodivisor, then

e1(I) ≤ t

t + 1
[
(d − 1)e0(I) + e0(I + δR/δR)

]
.

(b) If the assumptions of (a) hold, then

e1(I) ≤ (d − 1)
[
e0(I) − λ(R/I)

]
+ e0(I + δR/δR).

(c) If R is analytically unramified and R/m is infinite, then

e1(I) ≤ b(I) min { t

t + 1
e0(I), e0(I) − λ(R/I)}.

Proof. We may assume that R/m is infinite. Then, passing to a minimal reduction

we may suppose that I is generated by a regular sequence f1, . . . , fd. Notice this can

only decrease b(I). Let S be a local ring obtained from R by a purely transcendental

residue field extension and by factoring out d − 1 generic elements a1, . . . , ad−1 of I. To

be more precise, S = R({Xij})/(a1, . . . , ad−1) with {Xij} a set of (d − 1)d indeterminates

and ai =
∑d

j=1 Xijfj. Notice that S is also a birational extension of a localization of a

polynomial ring over R, and hence is analytically unramified according to [18, 36.8] and

[22, 1.6]. Furthermore S is a one–dimensional local ring and the S–ideal IS is generated by

a single non zerodivisor, say IS = fS. From [14, Theorem 1] one has

(1) IS = IS,

(2) InS = (IS)n for n � 0.

The last fact combined with the genericity of a1, . . . , ad−1 yields e1(I) = e1(IS). Moreover

e1(IS) = λ(S/S) as S is a one–dimensional analytically unramified local ring. Thus

(3) e1(I) = λ(S/S).

In the setting of (a) and (b) the element δ is a non zerodivisor on S. Furthermore

Theorem 3.1 shows that

(4) δId−1 ⊂ δ Id−1 ⊂ In : In for every n.
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For n � 0, by (2), (4) and since fnS is contained in the conductor S : S, we obtain

δfd−1S ⊂ fnS : fnS = fnS : fnS = S : S.

Hence

(5) δfd−1S ⊂ S : S.

We prove (a) by computing lengths along the inclusions

(6) δfd−1S ⊂ δfd−1S ⊂ S : S ⊂ S.

Also recall that

(7) λ(S/S) ≤ t λ(S/S : S)

by [9, the proof of 3.6] (see also [3, Theorem 1] and [5, 2.1]). We obtain

t + 1
t

e1(I) = λ(S/S) +
1
t

λ(S/S) by (3)

≤ λ(δfd−1S/δfd−1S) + λ(S/S : S) by (7)

≤ λ(S/δfd−1S) by (6)

= (d − 1) λ(S/fS) + λ(S/δS)

= (d − 1)e0(I) + e0(I + δR/δR) by the genericity of a1, . . . , ad−1.

Next we prove part (b). The inclusion (5) yields the filtration

S = δfd−1S + S ⊂ fd−1S + S ⊂ . . . ⊂ f2S + S ⊂ fS + S ⊂ S,

which shows

(8) e1(I) = λ(S/S) =
d−1∑
i=1

λ(f i−1S + S/f iS + S) + λ(fd−1S + S/δfd−1S + S).

Multiplication by f induces epimorphisms of S–modules

(9)
f i−1S + S

f iS + S
� f iS + S

f i+1S + S
.

Now (8) and (9) show

(10) e1(I) ≤ (d − 1) λ(S/fS + S) + λ(fd−1S + S/δfd−1S + S).

Next we claim that

(11) λ(S/fS + S) = λ(I/I).
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Indeed,

λ(S/fS + S) = λ(S/fS) − λ(fS + S/fS)

= λ(S/fS) − λ(S/S ∩ fS)

= λ(S ∩ fS/fS)

= λ(fS/fS)

= λ(I/I) by (1).

On the other hand,

λ(fd−1S + S/δfd−1S + S) ≤ λ(fd−1S/δfd−1S)

= λ(S/δS)

= λ(S/δS)

= e0(I + δR/δR) by the genericity of a1, . . . , ad−1.

Therefore

(12) λ(fd−1S + S/δfd−1S + S) ≤ e0(I + δR/δR).

Combining (10), (11) and (12) we deduce

e1(I) ≤ (d − 1) λ(I/I) + e0(I + δR/δR)

= (d − 1)
[
e0(I) − λ(R/I)

]
+ e0(I + δR/δR).

Finally we prove part (c). Write b = b(I). We first claim that

(13) f bS ⊂ S : S.

Indeed, for n � 0

fnS ⊃ In+bS

= (IS)n+b by (2)

= fn+bS

= fn+bS since n � 0.

Therefore f bS ⊂ S, proving (13). Now (13) yields the filtrations

(14) f bS ⊂ f bS ⊂ S : S ⊂ S,

(15) S = f bS + S ⊂ . . . ⊂ f2S + S ⊂ fS + S ⊂ S.
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Filtration (14) implies
t + 1

t
e1(I) = λ(S/S) +

1
t

λ(S/S) by (3)

≤ λ(f bS/f bS) + λ(S/S : S) by (7)

≤ λ(S/f bS) by (14)

= b λ(S/fS)

= b e0(I) by the genericity of a1, . . . , ad−1.

On the other hand filtration (15) yields

e1(I) = λ(S/S)

=
b∑

i=1

λ(f i−1S + S/f iS + S)

≤ b λ(S/fS + S) by (9)

= b λ(I/I) by (11)

= b (e0(I) − λ(R/I)).

�

Remark 3.3. The multiplicity e0(I + δR/δR) occurring in Theorem 3.2 can be bounded by

e0(I + δR/δR) ≤ (d − 1)! e0(I) deg(R/δR),

where deg(R/δR) is the multiplicity of the local ring R/δR. Indeed, [15, Theorem 3] gives

e0(I + δR/δR) ≤ (d − 1)! λ(R/I + δR) deg(R/δR).

Corollary 3.4. Let (R,m) be a regular local ring of dimension d > 0 and let I be an

m–primary ideal. Then

e1(I) ≤ e1(I) ≤ (d − 1) min{e0(I)
2

, e0(I) − λ(R/I)}.

Proof. We may assume that R/m is infinite. The classical Briançon–Skoda theorem gives

that b(I) ≤ d − 1, see [16, Theorem 1]. The assertions now follow from Theorems 2.2 and

3.2(c). �

We are now going to use Corollary 3.4 to bound the length of divisorial chains for classes

of Rees algebras.

Corollary 3.5. Let (R,m) be a regular local ring of dimension d > 0 and let I be an m–

primary ideal. Then (d − 1) min{e0(I)
2 , e0(I) − λ(R/I)} + 1 bounds the length of any chain

of graded R–subalgebras satisfying the condition S2 of Serre lying between R[It] and R[It].
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Proof. The assertion follows from Corollaries 2.4 and 3.4. �

Remark 3.6. (a) Let (R,m) be a regular local ring of dimension 2 and let I be an m–

primary integrally closed ideal. Then e1(I) = e1(I) = e0(I) − λ(R/I) ≤ e0(I)
2 .

This follows, for instance, from Corollary 3.4 combined with the inequality e1(I) ≥
e0(I) − λ(R/I), see [20, Theorem 1]. Furthermore by [13, 2.1] or [21, 3.3], the

equality e1(I) = e0(I)− λ(R/I) implies that I has reduction number at most one if

R/m is infinite, a fact proved in [17, 5.4]. Thus R[It] is Cohen–Macaulay according

to [24, 3.1] and [8, 3.10]. Now Corollary 2.5 yields the well–known result that I is

normal, see [27, Theorem 2
′
, p. 385].

(b) Let k be an infinite field, write R = k[X1, . . . ,Xd](X1,...,Xd), let m denote the maximal

ideal of R, and let I be an m–primary R–ideal generated by homogeneous polynomi-

als in k[X1, . . . ,Xd] of degree s. Then e1(I) = e1(ms) = d−1
2 e0(I)(1− 1

s ) ≈ d−1
2 e0(I).

This shows that the estimate of Corollary 3.4 is essentially sharp.

Proposition 3.7. Let k be a perfect field, let (R,m) be a reduced local Cohen–Macaulay

k–algebra essentially of finite type of dimension d > 0, and let δ ∈ Jack(R) be a non

zerodivisor. Then for any m–primary ideal I,

b(I) ≤ d − 1 + e0(I + δR/δR).

Proof. We may assume that R/m is infinite. Then, replacing I by a minimal reduction

with the same Briançon–Skoda number we may suppose that I is generated by a regular

sequence of length d. As in the proof of Theorem 3.2 let S be a local ring obtained from

R by a purely transcendental residue field extension and by factoring out d − 1 generic

elements a1, . . . , ad−1 of I. Write IS = fS and let b be the smallest non negative integer

with f bS ⊂ S : S.

We first claim that

(16) b(I) ≤ b.

Indeed, for any integer n ≥ 0 we have

In+bS ⊂ In+bS ⊂ fn+bS ⊂ fnS,

hence In+bS ⊂ InS. As grI(R) is a polynomial ring in d variables over R/I, the generic

choice of a1, . . . , ad−1 gives that grI(R) embeds into grIS(S). Therefore In+b ⊂ In, proving

(16).

By (16) it suffices to show that b ≤ d − 1 + e0(I + δR/δR). To this end we may assume

b ≥ d − 1. The definition of b yields the filtration
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(17) S = f bS + S ⊂ . . . ⊂ fd−1S + S.

On the other hand (5) implies

(18) S = δfd−1S + S ⊂ fd−1S + S.

If f iS +S = f i−1S+S for some b ≥ i ≥ d, then multiplication by f b−i yields S = f bS +S =

f b−1S + S, contradicting the minimality of b. Thus (17) gives

λ(fd−1S + S/S) ≥ b − d + 1.

On the other hand from (12) and (18) we deduce

λ(fd−1S + S/S) ≤ e0(I + δR/δR).

Thus b − d + 1 ≤ e0(I + δR/δR). �

Remark 3.8. In the setting of the proof of Proposition 3.7, b(I) = b(IS) = b. Indeed, (2)

implies that for n � 0,

fn+b(I)S = In+b(I)S = In+b(I)S ⊂ InS = fnS,

showing that f b(I)S ⊂ S. Hence b ≤ b(I) and then b = b(I) by (16). Clearly b(IS) ≤ b. For

n � 0, fn+b(IS)S = fn+b(IS)S ⊂ fnS and therefore f b(IS)S ⊂ S, showing that b ≤ b(IS).

4. Equimultiple ideals

In this section we extend Theorems 2.2 and 3.2 to arbitrary equimultiple ideals. The

technical change involves Hilbert functions. Let R be a Noetherian local ring with infinite

residue field and I an ideal of height g > 0. Let D =
⊕

n≥0 Dntn be a graded R–subalgebra

of R[t] with R[It] ⊂ D ⊂ R[t] and assume that D is a finite R[It]–module. Instead of the

length function as in Theorem 2.2, we consider the multiplicity deg(R/Dn) of the R–module

R/Dn. According to the associativity formula for multiplicities one has

deg(R/Dn) =
∑

p

λ(Rp/(Dn)p) deg(R/p),

where the sum is taken over the minimal primes p of I with dim R/p = dim R/I. It follows

that for n � 0 this function behaves as a polynomial of degree g, which we still call the

Hilbert–Samuel polynomial of D,

E0(D)
(

n + g − 1
g

)
− E1(D)

(
n + g − 2

g − 1

)
+ lower terms .

The coefficients Ei(D) can be expressed in terms of the local Hilbert coefficients ei(Dp),

Ei(D) =
∑

p

ei(Dp) deg(R/p).
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If g = 0 we set E0(D) =
∑

p λ(Rp) deg(R/p) = deg(R/I). We will use the notation Ei(I)

when D = R[It] and Ei(I) when D = R[It], the integral closure of R[It] in R[t].

One glaring difficulty with the above formula lies in the numbers ei(Dp) or even ei(Ip),

which are hard to get hold of. At least for equimultiple ideals on the other hand, the

qualitative behavior of the Ei(I) is that of the usual Hilbert coefficients and E0(I) can be

expressed as a multiplicity:

Proposition 4.1. Let R be a local Cohen–Macaulay ring with infinite residue field and let

I be an equimultiple ideal of positive height.

(a) E0(I) = E0(J) = deg(R/J) for every minimal reduction J of I.

(b) The ideal I is a complete intersection if and only if E0(I) = deg(R/I) if and only

if E1(I) = 0.

Proof. Notice that J is a complete intersection. Furthermore the minimal primes of I

and of J coincide, and hence all have maximal dimension. For any such prime p, e0(Ip) =

e0(Jp) = λ(Rp/Jp), proving (a). Moreover e0(Ip) ≥ λ(Rp/Ip) and e1(Ip) ≥ 0 also either

inequality is an equality if and only if Ip is a complete intersection ([20, Theorem 1]).

According to [4, Theorem], the last condition holds for every p if and only if I is a complete

intersection. This proves part (b). �

The version of Theorem 2.2 for equimultiple ideals can now be stated. In its proof we

will only discuss the points that require a new justification.

Theorem 4.2. Let R be an analytically unramified local Cohen–Macaulay ring with infinite

residue field and let I be an equimultiple ideal of positive height. Let A and B be distinct

graded R–subalgebras of R[t] with

R[It] ⊂ A � B ⊂ R[It]

and assume that A satisfies the condition S2 of Serre. Then

0 ≤ E1(I) ≤ E1(A) < E1(B) ≤ E1(I) ≤ b(I)E0(I).

Proof. Let g be the height of I and p a minimal prime of I. By Theorem 2.2, e1(Ap) ≤
e1(Bp) and e1(Ap) = e1(Bp) only when Ap = Bp. Now Ap = Bp for every minimal prime p

of I is equivalent to saying that the R–annihilator L of C = B/A is an ideal of height at

least g + 1. Since I is equimultiple of height g, we conclude that the height of the A–ideal

LA is at least 2. As LAB ⊂ A and A satisfies the condition S2, it would follow that A = B.

This proves the asserted inequalities except for the last one. To see the last inequality notice

that b(Jp) ≤ b(I) for every minimal reduction J of I and apply Remark 2.3 �
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Remark 4.3. The proof of Theorem 4.2 shows that when passing from the algebra A to B,

one of the values e1(Ap) increases. Thus, the integer
∑

p e1(Ap) would give tighter control.

Padding the summands with the deg(R/p) into an ‘Ersatzintegral’ however provides a value

that becomes ‘visible’, unlike the e1(Ap).

It is also possible to derive sharper estimates for equimultiple ideals based on the bounds

of Theorem 3.2. We will indicate some of these by making use of a very general inequality

for E0(I) that arises from Lech’s formula ([15, Theorem 3]).

Proposition 4.4. Let R be an equidimensional and catenary local Nagata ring and let I be

an ideal of height g. Then

E0(I) ≤ g! deg(R/I) deg(R).

Proof. We estimate E0(I) as given above using Lech’s inequality. Indeed, adding over all

minimal primes p of I of height g we obtain

E0(I) =
∑

e0(Ip) deg(R/p)

=
∑

e0(Ip) deg(R/p)

≤
∑

g!λ(Rp/Ip) deg(Rp) deg(R/p)

≤ g!
[∑

λ(Rp/Ip) deg(R/p)
]
deg(R)

= g! deg(R/I) deg(R),

where we have used the fact that deg(Rp) ≤ deg(R) by our assumption on R ([18, 40.1]). �

Theorem 4.5. Let R be a reduced local Cohen–Macaulay ring and let I be an equimultiple

ideal of height g > 0.

(a) If in addition R is an algebra essentially of finite type over a perfect field k with

type t, and δ ∈ Jack(R) is a non zerodivisor, then

E1(I) ≤ t

t + 1
[
(g − 1)E0(I) + E0(I + δR/δR)

]

≤ t

t + 1
[
(g − 1) g! deg(R/I) deg(R) + (g − 1)! deg(R/(I + δR)) deg(R/δR)

]
.

(b) If the assumptions of (a) hold, then

E1(I) ≤ (g − 1)
[
E0(I) − deg(R/I)

]
+ E0(I + δR/δR)

≤ (g − 1) deg(R/I)
[
g! deg(R) − 1

]
+ (g − 1)! deg(R/(I + δR)) deg(R/δR).

(c) If R is Nagata and R/m is infinite, then

E1(I) ≤ b(I) min { t

t + 1
E0(I), E0(I) − deg(R/I)}

≤ b(I)
t

t + 1
g! deg(R/I) deg(R).
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Proof. To estimate E1(I) in the equimultiple case we start from

E1(I) =
∑

p

e1(Ip) deg(R/p)

with the sum taken over the minimal primes p of I, and make use of Theorem 3.2 to bound

the e1(Ip) in terms of the e0(Ip) and e0((I + δR/δR)p). Notice that either δ 	∈ p and then

e0((I+δR/δR)p) = 0, or δ ∈ p and p/δR is also a minimal prime of I+δR/δR, in which case

I + δR/δR has height g − 1. We now process the summation as in the proof of Proposition

4.4 for the two ideals of two different rings. For example in (a) we have

E1(I) =
∑

p

e1(Ip) deg(R/p)

≤
∑

p

type(Rp)
type(Rp) + 1

[
(g − 1)e0(Ip) + e0((I + δR/δR)p)

]
deg(R/p)

≤ t

t + 1
[
(g − 1)

∑
p

e0(Ip) deg(R/p) +
∑

p

e0((I + δR/δR)p) deg(R/p)
]
.

In the last expression the first sum equals E0(I) and the second sum is either 0 or else

E0(I + δR/δR), in which case I + δR/δR has height g − 1. We now use Proposition 4.4 to

conclude the proof of part (a). �
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