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Abstract. We describe some of the determinantal ideals attached
to symmetric, exterior and tensor powers of a matrix. The methods
employed use elements of Zariski's theory of complete ideals and
of representation theory.

Let R be a commutative ring. The determinantal ideals attached
to matrices with entries in R play ubiquitous roles in the study of the
syzygies of R{modules. In this note, we describe some of the deter-
minantal ideals attached to symmetric, exterior and tensor powers of
a matrix. The methods employed use elements of Zariski's theory of
complete ideals and of representation theory, the results being sharper
for rings containing the rationals.
Let R be an integral domain (or a �eld) and ' : Rm ! Rn anR-linear

map of rank r. It is an easy exercise to show that the d-th symmetric
power Sd(') : Sd(Rm) ! Sd(Rn) has rank

�
r+d�1

d

�
. Let It(') denote

the ideal generated by the minors (of a matrix representing '). Since

rank' = maxfr : Ir(') 6= 0g;

one can immediately determine the radicals of the ideals It(S
d(')),

namely

Rad It(S
d(')) = Rad Ir(') if

�
r + d� 1

d

�
� t <

�
r + d

d

�
:

Here we want to derive a more precise description of It(S
d(')), the

ideals of minors of the exterior powers of ', and the ideals of minors
of a tensor product.
At least for the ideals associated with rank' = n one has a very

satisfactory result. To simplify notation we set I(') = In(').
Suppose that m = n. Then the ideals I(') and I(Sd(')) are princi-

pal, generated by the determinants of square matrices, and

(1) det(Sd(')) = det(')s; s =

�
n+ d� 1

d� 1

�
;
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as follows immediately by transformation to a triangular matrix (it is
enough to consider a generic matrix over Z, which is contained in a
�eld). For non-square matrices we can replace det(') by I('):

Theorem 1. Let R be a commutative ring, and ' : Rm ! Rn and
 : Rp ! Rq be R-linear maps. Set s =

�
n+d�1
d�1

�
and e =

�
n�1
d�1

�
.

(1) Then

I('
  ) � I(')qI( )n; I(Sd(')) � I(')s; I(
Vd(')) � I(')e;

with equality up to integral closure.
(2) Suppose that R contains the �eld of rational numbers. Then

equality holds in (1).

Proof. For simplicity of notation we only treat the case of the sym-
metric powers in detail. That of the exterior powers is completely
analogous. The tensor product requires slight modi�cations, which we
will indicate below.
(1) The formation of I(X) and I(Sd(')) commutes with ring exten-

sions for trivial reasons. Thus it is enough to prove the inclusion for
R = Z[X] = Z[Xij : i = 1; : : : ; n; j = 1; : : : ; r] and the linear map
' : Rm ! Rn given by the matrix X = (Xij). It is well-known (Trung
[7]; also see Bruns and Vetter [3, (9.18)]) that the ideals I(X)k are
primary with radical I(X). It follows that I(X)k is integrally closed,
and therefore

I(X) =
\

I(X)V

where V runs through the discrete valuation rings extending R. To
sum up: we may assume that R is a discrete valuation ring.
Note that all ideals under consideration are invariant under base

change in Rn and Rm. In fact, they are Fitting invariants of ' and
Sd('). By the elementary divisor theorem we can therefore assume
that ' is given by a matrix with non-zero entries only in the diagonal
positions (i; i), I = 1; : : : ; n. Then Sd(') is also given by a diagonal
matrix, and it is an easy exercise to show that indeed I(Sd(')) = I(')s

for such matrices '.
As we have observed, equality holds for the ideals under consider-

ation if R is a discrete valuation ring. This implies equality up to
integral closure.
(2) We have to prove the inclusion opposite to that in (1), and it is

enough to prove it for R = Q [X].
Since rank' = n, the linear map Sd(') has rank

�
n+d�1

d

�
. Therefore

the ideal under consideration is non-zero, and its generators have the
same degree as those of I(')s.



MINORS OF SYMMETRIC AND EXTERIOR POWERS 3

The group G = GLm(Q ) � GLr(Q ) acts on R via the linear substi-
tution sending each entry of X to the corresponding entry of

(2) AXB�1; A 2 GLm(Q ); B 2 GLr(Q ):

It is well-known that the Q -vector space W generated by the degree rs
elements of I(X)s is the irreducible G-representation associated with
Young bitableaux of rectangular shape s�n (see De Concini, Eisenbud,
and Procesi [4] or [3, Section 11]). So the desired inclusion follows if
the ideal I(Sd(')) is G-stable.
This is not diÆcult to see. In fact let, � be the automorphism induced

by the substitution (2). We write �(') for the linear map which we
obtain from ' by replacing each entry with its image under ', i. e.
�(') = '
 � for the ring extension � : R! R. Then

�
�
I(Sd('))

�
= I
�
�(Sd('))

�
= I
�
Sd(�('))

�
= I
�
Sd(��1'�)

�
= I
�
Sd(�)�1 Æ Sd(') Æ Sd(�)

�
= I(Sd('))

where � is the automorphism of Rm induced by the matrix A, and �
the automorphism of Rn induced by B. The very last equation uses
again that Fitting ideals are invariant under base change in the free
modules.
For the tensor product the arguments above have to be modi�ed at

two places. We can of course assume that  is also given by a matrix
Y of indeterminates. The �rst critical point is whether I(X)qI(Y )n is
again integrally closed as an ideal of R = Z[X; Y ].
We can argue as follows: Z[X; Y ] is a free Z-module whose basis

is given by the products �� where � is a standard monomial in the
variables Xij and � is a standard monomial in the Ykl (see [3, Section
4]). An element f of Z[X; Y ] belongs to I(X)q if and only if � 2
I(X)q for all the factors � appearing in the representation of f as
a linear combination of standard monomials, and a similar assertion
holds with respect to I(Y )n and the factors �. It follows immediately
that I(X)qI(Y )n = I(X)q \ I(Y )n. Since both I(X)q and I(Y )n are
integrally closed, their intersection is integrally closed, too.
The other crucial question is whether the Q -vector space generated

by the degree rq elements of I(X)qI(Y )n is an irreducible G � G0-
representation where G0 = GLp(Q )�GLq(Q) acts on Q [Y ] in the same
way as G on Q [X], and the action of G � G0 on K[X; Y ] = K[X] 

K[Y ] is the induced one. The answer is positive since W 
W 0 is an
irreducible G � G0-representation if W and W 0 are irreducible for G
and G0 respectively. It is enough to test this after extending Q by C ,
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and then one can apply a classical theorem (for example, see Huppert
[5, II.10.3]). �

Remark 2. (a) One can formulate an abstract version of the theorem
as follows. Suppose that for each commutative ring R one has a functor
FR on the category of R-modules satisfying the following conditions:

(i) FR commutes with ring extensions, i. e. FR(M
S) = FS(M
R)
for R-modulesM (and similarly for R-linear maps) if R! S is
a homomorphism of rings;

(ii) FR(R
n) = R�(n) for all n;

(iii) if V is a discrete valuation ring, then I(FV (')) = I(')�(m;n) for
a V -linear map V m ! V n;

then both parts (1) and (2) Theorem 1 hold accordingly.
The Schur functors [2], which generalize symmetric and exterior pow-

ers, satisfy these conditions.
(b) Especially the case of the symmetric powers is always suspicious

to depend on characteristic, but we have not been able to �nd a coun-
terexample to Theorem 1(2) in positive characteristics.
(c) Suppose that FR(') (as in (b)) is alternating when ' (is given by

an alternating matrix). Then it makes sense to compare the PfaÆan

ideals of ' (and  ) with those of Sd('),
Vd('), and '
  .

For even n (the matrix) ' has a PfaÆan, and one can derive the for-
mula analogous to equation (1) by transformation to an anti-diagonal
matrix. For odd n, and more generally for lower order PfaÆans, one
obtains variants of Theorems 1 and 3, using arguments analogous to
those in the determinantal case. The neccessary representation theory
is contained in [1].

As we will see in the following, the situation is much more compli-
cated for lower order minors, and a description as precise as Theorem
1(2) seems to be out of reach. Nevertheless one can obtain reasonable
upper and lower bounds from specialization to diagonal matrices.
Let us recall some notation and facts from [3] or [4]. A Young diagram

(or partition) is a non-increasing �nite sequence � = (s1; : : : ; su) of
integers. We de�ne the functions j on the set of all Young diagrams
by

j(�) =
uX

i=1

max(0; si � j + 1):

The set of Young diagrams is partially ordered by

� � � () j(�) � j(�) for all j:
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Furthermore one sets

I�(') =
uY

i=1

Isi(') and I(�)(') =
X
���

I� ('):

If X is a matrix of indeterminates (over some ring of coeÆcients) we
simply write I� for I�(X) etc. If Q � R, then

(3) I(�) = I�;

see [3, (11.2)]. (This equation already holds if m! or n! is a unit in R.)
Suppose K is a �eld of characteristic 0 and X an m � n matrix of

indeterminates. Then K[X] splits into a direct sum

K[X] =
M
�

M�

of pairwise non-isomorphic irreducible G = GLm(K)�GLn(K)-repre-
sentations (� runs through all Young diagrams with at most min(m;n)
columns). As a G-module, M� is generated by the doubly initial tab-
leaux of shape �, i. e. the product of the determinants of the si � si-
submatrices of X in its upper left corner, i = 1; : : : ; u. The decompo-
sition commutes with �eld extensions.
The third (and last) ideal associated with � is I�, the ideal generated

by M�. Evidently every G-stable ideal is a sum of ideals I� (see [3,
Scetion 11]). If ' is a matrix over a ring R � Q , then we may form
I�(') by substitution.
Suppose f is a monomial in the indeterminates Y1; : : : ; Yn. Then f

has a unique decomposition f = f1 � � �fu where each fi is squarefree and
fi+1 j fi, i = 1; : : : ; u� 1. We set si = deg fi and call � = (s1; : : : ; su)
the shape of f .

Theorem 3. Let R be a ring, and ' : Rm ! Rn be an R-linear map.
Moreover, let � be the set of the minimal elements (with respect to �)
among the shapes of the monomials generating Ir(S

d(Y )) for a diagonal
matrix Y of indeterminates (over Z).

(1) Then

Ir(S
d(')) �

X
�2�

I(�)(');

with equality up to integral closure.
(2) If Q � R, thenX

�2�

I�(') � Ir(S
d(')) �

X
�2�

I�('):
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Proof. It is enough to prove the theorem for generic matrices X with
R = Z[X] for (1) and R = Q [X] for (2).
Let us �rst observe that the inclusion in (1) follows from the same

inclusion in (2), simply since J =
P

�2� I
(�)(X) has a basis of standard

monomials, and Z[X]=J is therefore Z-torsionfree.
Now we prove the inclusion Ir(S

d(X)) � J over Q [X]. Note that
Ir(S

d(')) isG-stable, as discussed in the proof of Theorem 1. Therefore
it has a representation

Ir(S
d(')) =

X
�2T

I� :

Evaluating the doubly initial tableau of shape � on an m� n diagonal
matrix yields a monomial of shape � . Thus � � � for some � 2 � and,
hence, I� � I(�), as desired.
For the �rst inclusion in (2) we have to show that � � T. Observe

that a monomial in I� (Y ) always has shape � � . Thus a monomial of
shape � 2 � can only be contained in Ir(S

d(Y )) �
P

�2T I
� (Y ) if there

exists � 2 T with � � �. But this implies � 2 T.
As in the proof of Theorem 1 it is enough to prove the assertion

about integral closure for diagonal matrices of indeterminates over Z.
But then we are comparing two monomial ideals, and may pass to Q ,
whence it is enough to show equality up to integral closure in (2). This
however follows from [4, 8.1]: I� is the integral closure of I�. �

In the theorem one can replace symmetric powers by exterior pow-
ers and, more generally, establish a functorial version as indicated in
Remark 2. A variant for tensor products can also be given.
We demonstrate by an example that both inclusions in Theorem 3(2)

can be strict simultaneously. Choose a 3� 3-matrix of indeterminates
over Q and set d = 3 and n = 3. By inspection of the monomials
that generate I3(S

3(Y )) for a diagonal matrix Y of indeterminates one
sees that, with the notation of the �gure, � = f�1; �2g is the right
choice. We have computed the ideal I3(S

3(X)) with Singular [6].
Its component in the lowest degree 9 has dimension 5610. The �gure
shows all the degree 9 Young diagrams � �1 or � �2. The dimensions
of the representations M� can be computed by the hook formula, and
it turns out that

I3(S
3(X)) = I�1 + I�2 + I�5 + I�9

since only the sum on the right hand side yields the correct dimension
in degree 9. (Instead of comparing dimensions one could test which
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doubly initial Young tableau yield elements in I3(S
3(X)).)

�1 �2 �3 �4 �5 �6 �7 �8 �9
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