Let X and Y be two random variables both normally distributed with mean zero, variance one and
correlation coefficient p.

1. Find the density and the distribution function of the random variable Z £ i,—< Hint: Use the
first question in the previous problem.

2. Compute the probability P(X < 0,Y > 0).

Solution
1: We can represent

X =7

Y = pZi+1—p?Zs,

where 71, Z, are independent standard Normals. This is the Cholesky decomposition.
Then (since the distribution of Y/ X and X/Y are the same by symmetry)
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By inspecting the joint distribution of Z, Z; in terms of polar coordinate, we can see that g—f has

a distribution that corresponds to tan(U|0, 2x]) . This also determines the distribution of X.
2: By symmetry,
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Consider the following graph of y = tanxz on [0, 27] (since g—f has a distribution that corresponds
to tan(U|[0, 27]) )

We observe two things:

a) The region z : tan(x) < m depends on whether m > 0 or m < 0

b) The region x : tan(x) < m does not correspond directly to z < tan™!(m) since tan~!(m) maps
to the interval [—7/2,7/2].

Thusif p<0:
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Some reality check : If p = —1 then P(X < 0,Y > 0) = P(Y > 0) = 1/2. This is also the result

we obtain by plugging p = —1 into the above expression. If p = 0 then P(X < 0,Y > 0) = 1/4, again
agreeing with what we obtain when we plug in the formula.

Ifp>0:
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which is the same answer as we obtained before. Thus in either case,

PY >0,X <0) Zi—%tanl%.
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