Let X and Y be two random variables both normally distributed with mean zero, variance one and correlation coefficient ρ.

1. Find the density and the distribution function of the random variable $Z \triangleq \frac{X}{Y}$. Hint: Use the first question in the previous problem.
2. Compute the probability $\mathbb{P}(X<0, Y>0)$.

Solution

1: We can represent

$$
\begin{aligned}
X & =Z_{1} \\
Y & =\rho Z_{1}+\sqrt{1-\rho^{2}} Z_{2}
\end{aligned}
$$

where Z_{1}, Z_{2} are independent standard Normals. This is the Cholesky decomposition.
Then (since the distribution of Y / X and X / Y are the same by symmetry)

$$
\frac{Y}{X}=\rho+\sqrt{1-\rho^{2}} \frac{Z_{2}}{Z_{1}}
$$

By inspecting the joint distribution of Z_{1}, Z_{2} in terms of polar coordinate, we can see that $\frac{Z_{2}}{Z_{1}}$ has a distribution that corresponds to $\tan (U[0,2 \pi])$. This also determines the distribution of $\frac{Y}{X}$. 2: By symmetry,

$$
\begin{aligned}
P(Y>0, X<0) & =\frac{1}{2} P\left(\frac{Y}{X}<0\right) \\
& =\frac{1}{2} P\left(\rho+\sqrt{1-\rho^{2}} \frac{Z_{2}}{Z_{1}}<0\right) \\
& =\frac{1}{2} P\left(\frac{Z_{2}}{Z_{1}}<-\frac{\rho}{\sqrt{1-\rho^{2}}}\right) .
\end{aligned}
$$

Consider the following graph of $y=\tan x$ on $[0,2 \pi]$ (since $\frac{Z_{2}}{Z_{1}}$ has a distribution that corresponds to $\tan (U[0,2 \pi]))$

We observe two things:
a) The region $x: \tan (x)<m$ depends on whether $m>0$ or $m<0$
b) The region $x: \tan (x)<m$ does not correspond directly to $x<\tan ^{-1}(m)$ since $\tan ^{-1}(m)$ maps to the interval $[-\pi / 2, \pi / 2]$.

Thus if $\rho \leq 0$:

$$
\begin{aligned}
\frac{1}{2} P\left(\frac{Z_{2}}{Z_{1}}<-\frac{\rho}{\sqrt{1-\rho^{2}}}\right)= & \frac{1}{2} P\left(U[0,2 \pi] \in\left[0,-\tan ^{-1} \frac{\rho}{\sqrt{1-\rho^{2}}}\right]\right. \\
& \left.\cup\left(\pi / 2,-\tan ^{-1} \frac{\rho}{\sqrt{1-\rho^{2}}}+\pi\right) \cup(3 \pi / 2,2 \pi)\right) \\
= & \frac{1}{4 \pi}\left(\pi-2 \tan ^{-1} \frac{\rho}{\sqrt{1-\rho^{2}}}\right) \\
= & \frac{1}{4}-\frac{1}{2 \pi} \tan ^{-1} \frac{\rho}{\sqrt{1-\rho^{2}}} .
\end{aligned}
$$

Some reality check : If $\rho=-1$ then $P(X<0, Y>0)=P(Y>0)=1 / 2$. This is also the result we obtain by plugging $\rho=-1$ into the above expression. If $\rho=0$ then $P(X<0, Y>0)=1 / 4$, again agreeing with what we obtain when we plug in the formula.

If $\rho>0$:

$$
\begin{aligned}
\frac{1}{2} P\left(\frac{Z_{2}}{Z_{1}}<-\frac{\rho}{\sqrt{1-\rho^{2}}}\right)= & \frac{1}{2} P\left(U[0,2 \pi] \in\left[\pi / 2, \pi-\tan ^{-1} \frac{\rho}{\sqrt{1-\rho^{2}}}\right]\right. \\
& \left.\cup\left(3 \pi / 2,-\tan ^{-1} \frac{\rho}{\sqrt{1-\rho^{2}}}+2 \pi\right)\right) \\
= & \frac{1}{4 \pi}\left(\pi-2 \tan ^{-1} \frac{\rho}{\sqrt{1-\rho^{2}}}\right) \\
= & \frac{1}{4}-\frac{1}{2 \pi} \tan ^{-1} \frac{\rho}{\sqrt{1-\rho^{2}}}
\end{aligned}
$$

which is the same answer as we obtained before. Thus in either case,

$$
P(Y>0, X<0)=\frac{1}{4}-\frac{1}{2 \pi} \tan ^{-1} \frac{\rho}{\sqrt{1-\rho^{2}}}
$$

