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Chapter 1

Calculus review

1.1 Techniques of integration

1.1.1 Theory
Integration by parts: ∫

udv = uv −
∫
vdu.

Integration by substitution:∫
f ′(g(x))g′(x)dx = f(g(x)) + c.

Switching the order of integration and differentiation : under certain conditions of the
function f(x) we have

d

dx

∫
f(u, x)du =

∫
∂

∂x
f(u, x)du.

1.1.2 Problems
1. a )

∫
xexdx

b)
∫∞

0
e−2
√
xdx

c)
∫

log(x)dx
d)
∫
ex sinxdx

e)
∫

tan−1 xdx

f)
∫∞

0
xe−x

2
dx

g)
∫∞
−∞ e

−x2dx

2.
∫
R e

tx 1√
2πσ2

e−
(x−µ)2

2σ2 dx. This is the moment generating function of a Normal distri-
bution.
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3*.
∫
R e

itx 1√
2πσ2

e−
(x−µ)2

2σ2 dx. This is the characteristic function of a Normal distribution.

4.
∫∞

0
x 1
λ
e−

1
λ
xdx and

∫∞
0
x2 1

λ
e−

1
λ
xdx. Derive the expectation and variance of an expo-

nential (λ) distribution.
5. Let T , K, and σ be positive constants, let r be a nonnegative constant, and let x > 0

and t ∈ [0, T ) be given. Define τ = T − t, which is positive. Let Y be a standard normal
random variable. Compute

c(t, x) = E

[
e−rτ

(
x exp

{
σ
√
τ Y +

(
r − 1

2
σ2

)
τ

}
−K

)+
]
.

In other words, let

ϕ(y) =
1√
2π
e−y

2/2

be the standard normal density. Compute

c(t, x) =

∫ ∞
−∞

e−rτ
(
x exp

{
σ
√
τ y +

(
r − 1

2
σ2

)
τ

}
−K

)+

ϕ(y) dy.

You should obtain the Black-Scholes formula

c(t, x) = xN
(
d+(τ, x)

)
−Ke−rτN

(
d−(τ, x)

)
,

where

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r ± 1

2
σ2

)
τ

]
and N(d) is the cumulative standard normal distribution N(d) =

∫ y
−∞ ϕ(y) dy.

6. Evaluate the integral

F (α) =

∫ 1

0

xα − 1

log x
dx (α ≥ 0)

by first finding F ′(α).
7. Evaluate the integral

F (α) =

∫ ∞
0

e−x
sinαx

x
dx

by first finding F ′(α).
8*. Show that

F (α) =

∫ ∞
0

e−x
2

cos(αx)dx =

√
π

2
e−

α2

4

by first finding a first order ODE that F (α) satisfies.
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1.2 Fundamental theorem of Calculus

1.2.1 Theory

1.
∫ b
a
f ′(x)dx = f(b)− f(a).

2. d
dx

∫ x
a
f(u)du = f(x).

3. Leibniz integral formula:

d

dx

∫ x

a

f(u, x)du = f(x, x) +

∫ x

a

∂

∂x
f(u, x)du.

1.2.2 Problems
1. Generalize the FTC to

d

dx

∫ g(x)

f(x)

F (u)du.

2. Generalize the Leibniz integral formula to

d

dx

∫ g(x)

f(x)

F (u, x)du.

3. Find F ′(x) for the function F : R→ R defined by
a)

F (x) ,
∫ ex

2

x3
sin(t2)dt, x ∈ R.

b*)

F (x) ,
∫ 2

x

1
x

sin(xt)

t
dt.

4. Define the function

f(x) ,
∫ e2x

−∞
e−

(
y−sin(x)

)2
2 dy

Compute f ’s derivative at the point x = 0. There can be no integrals in your answer.
5*. Write down the formula for F (x) :=

∫ x
−∞ f(u)du if

f(x) = 0, x < 0

= x, 0 ≤ x ≤ 1

= 2− x, 1 < x ≤ 2

= 0, x > 2.

Where is f differentiable / not differentiable?
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6. The function N(x) =
∫ x
−∞

1√
2π
e−

u2

2 du is well defined ( it is the cdf of the Normal
distribution ).

a) Verify that N(x) is differentiable and increasing everywhere.
b) Analyze the concavity of N(x).

c) Compute −
∫ 0

−∞N(x)dx+
∫∞

0
[1−N(x)]dx

d) Generalize the result in part c to the cdf of other distributions.

1.3 Taylor formula and series

1.3.1 Theory
Let f(x) be an infinitely differentiable fucction. The nth order Taylor series expansion for
a function f(x) with remainder around x = x0 is:

f(x) =
n∑
k=0

f (k)(x0)
(x− x0)k

k!
+ f (n+1)(x̄)

(x− x0)n+1

(n+ 1)!
,

for some x0 < x̄ < x. The term Rn := f (n+1)(x̄) (x−x0)n+1

(n+1)!
is the remainder of the nth order

expansion. If there is L > 0 such that Rn → 0 as n → ∞ for x ∈ (x0 − L, x0 + L) then
we say f(x) is analytic at x0 (or simply f(x) has a Taylor series expansion around x0 ) and
we write

f(x) =
∞∑
k=0

f (k)(x0)
(x− x0)k

k!
.

One should keep in mind that not all functions have a Taylor series expansion around a
point x0 (even if f(x) is infinitely differentiable at x0 ). A standard example is the function

f(x) = e−1/x2 , x > 0

= 0, x ≤ 0.

It can be verified that f (n)(0) = 0, n ≥ 0 and thus the Taylor series expansion of f around
0 is identically 0. On the other hand, f(x) is not identically 0 and thus f(x) is not analytic
at x = 0.

On the other hand, the nth order Taylor series expansion of f(x) is always valid, as long
as f has n+1 continuous derivatives.The point to consider when using the nth order Taylor
expansion then is how large the remainder Rn is (how close the finite series is to the actual
function).

Taylor series and integration / differentiation: If the function f(x) is analytic around x0

:

f(x) =
∑
n

an(x− x0)n

7



then for any x within the radius of convergence

f ′(x) =
∑
n

nan(x− x0)n−1

and ∫ x

x0

f(s)ds =
∑
n

an(x− x0)n+1

n+ 1
.

1.3.2 Problems
1. Write the Taylor series expansion around x = 0 for cos(x), sin(x), ex, log(1+x),

√
1 + x.

Use Taylor series to find

lim
x→0

sinx

x

lim
x→0

1− cosx

x2

lim
x→∞

ex

xn

lim
x→0

x− log(1 + x)

x2

lim
x→0

x− log(1 + x)

x2

lim
x→0

√
1 + x− 1− 1

2
x

x2
.

2. Prove the Euler’s formula: eix = cosx+ i sinx.
3. The distribution function of a Poisson(λ) random variable is

P (X = k) = e−λ
λk

k!
, k = 0, 1, · · ·

Show that this is a true distribution i.e.
∑

k P (X = k) = 1.

4. Compute
∑

k ke
−λ λk

k!
. This is the expectation of a Poisson random variable.

∑
k k

2e−λ λ
k

k!
.

Derive the variance of a Poisson RV.
5. Compute

∑
k≥1 k(1 − p)k−1p. This is the expectation of a geometric RV. Compute∑

k≥1 k
2(1− p)k−1p. Derive the variance of a geometric RV*.

6. Show that (1 + x)n ≥ 1 + nx for all x > −1 and n ≥ 2.
7. Use Taylor series to show that the solution the ODE

y′ = y, y(0) = 1

is y = ex.
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8*. Use Taylor series to show that the solution the ODE

y′′ = −y, y(0) = 0, y′(0) = 1

is y = sinx.
9. Let p > 0 be given and consider the function a : (0,∞)→ R defined by

a(t) ,
∞∑
n=1

e−n
pt, t > 0.

You may take it for granted that there exist constants C and α (possibly depending on p)
such that

lim
t↓0

a(t)

Ctα
= 1.

a) Prove that C and α are unique.
b) Determine α and C. Hint: Compare the sum with and integral from 0 to ∞ and

change the variables in the integral.
c) For which values of p does the integral

∫ 1

0
a(t)dt converge?

10*. Define the function

f(x) ,
1√
2π

∫ x

−∞
sin(xy)e−

y2

2 dy

Provide the first order Taylor expansion of f(x) around the point x = 0. There can be no
integrals in your answer.

11. Let
N(x) =

1√
2π

∫ x

−∞
e−

y2

2 dy

be the cumulative standard normal distribution. Work out the first four terms in the Taylor
expansion of N(x) around the point x = 0.

1.4 Partial derivatives

1.4.1 Theory
See a standard calculus text.

1.4.2 Problems
1. For a European call expiring at time T with strike price K, the Black-Scholes price at
time t ∈ [0, T ), if the time-t stock price is x, is (see also the problem in the integration
section)

c(t, x) = xN
(
d+(T − t, x)

)
−Ke−r(T−t)N

(
d−(T − t, x)

)
,

9



where

d±(τ, x) =
1

σ
√
τ

[
log

x

K
+

(
r ± 1

2
σ2

)
τ

]
and N(y) is the cumulative standard normal distribution

N(d) =
1√
2π

∫ d

−∞
e−y

2/2dy.

Here T , K and σ are positive constants and r is a nonnegative constant. The purpose of this
problem is to show that the function c(t, x) satisfies the Black-Scholes partial differential
equation

ct(t, x) + rxcx(t, x) +
1

2
σ2x2cxx(t, x) = rc(t, x), 0 ≤ t < T, x > 0, (1.1)

the terminal condition

lim
t↑T

c(t, x) = (x−K)+, x > 0, x 6= K, (1.2)

and the boundary conditions

lim
x↓0

c(t, x) = 0, lim
x→∞

[
c(t, x)−

(
x− e−r(T−t)K

)]
= 0, 0 ≤ t < T. (1.3)

Equations (1.2) and the first part of (1.3) are usually written more simply but less precisely
as

c(T, x) = (x−K)+, x ≥ 0

and
c(t, 0) = 0, 0 ≤ t ≤ T.

For this exercise, we abbreviate c(t, x) as simply c and d±(x, T − t) as simply d±.
Verify first the equation

Ke−r(T−t)N ′(d−) = xN ′(d+). (1.4)

a. Show that cx = N(d+). This is the delta of the option. (Be careful! Remember that
d+ is a function of x.)

b. Show that
ct = −rKe−r(T−t)N(d−)− σx

2
√
T − t

N ′(d+).

This is the theta of the option.
c. Use the above formulas to show that c satisfies (1.1).
d. Show that for x > K, limt↑T d± = ∞, but for 0 < x < K, limt↑T d± = −∞. Use

these equalities to derive the terminal condition (1.2).
e. Show that for 0 ≤ t < T , limx↓0 d± = −∞. Use this fact to verify the first part of

boundary condition (1.3) as x ↓ 0.
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f. Show that for 0 ≤ t < T , limx→∞ d± =∞. Use this fact to verify the second part of
boundary condition (1.3) as x→∞. In this verification, you will need to show that

lim
x→∞

x
(
N(d+)− 1

)
= 0.

2. Itô’s formula: Suppose that

dSt = rStdt+ σStdWt

(a formal expression) and it holds that

df(t, St) = ftdt+ fxdSt +
1

2
fxxσ

2S2
t dt.

Find d(St)
2, d(tSt), d(logSt), de

St .

1.5 Multiple integrals

1.5.1 Theory
Change of variable formula: The following is the chain rule in multi-dimensinal setting.
Let F be a mapping from Rn to Rn. For example, when n = 2,F(r, θ) = (r cos θ, r sin θ)
is the change from polar coordinates to rectangular coordinates. Let u = F(x). We have

du = F′(x)dx.

Here du,dx are 2 vectors of n differentials in Rn and F′(x) is a n × n matrix of partial
derivatives, also known as the Jacobian. F′(x) (for a fixed x) can be thought of as a linear
mapping from Rn to Rn. It is a well known result in linear algebra that if A is a linear
mapping from Rn to Rn and Vx is the volume of a parallelpiped generated by x then

VAx = |det(A)|Vx.

Thus in terms of the “volume" generated by the the differentials du,dx we have

du1du2 · · · dun = |det(F′(x))|dx1dx2 · · · dxn.

Let f be a mapping from Rn to R. The change of variable formula is∫∫
S1

f(F(x))|det(F′(x))|dx1dx2 · · · dxn =

∫∫
S2

f(u)du1du2 · · · dun,

where S1, S2 are regions of Rn and S2 := {F(x), x ∈ S1} and we require that det(F′(x)) 6=
0 over S1 (or equivalently F′(x) is invertible over S1).
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Remark: The change of variable formula is usually used in the reverse direction where
we start from ∫∫

S2

f(u)du1du2 · · · dun

and want to convert to a nicer region of integration S1 via a change of variable u = F(x).
For example, the integral ∫∫

x2+y2≤1

dxdy = 1

over the unit disc (S2) in the x, y coordinates is converted to the “rectangular region" 0 ≤
r ≤ 1, 0 ≤ θ ≤ 2π in the r, θ coordinates.

1.5.2 Problems
1. a) Find c such that ∫∫

x2+y2≤1

cdxdy = 1.

b) Compute ∫∫
x2+y2≤1

xydxdy∫∫
x2+y2≤1

xdxdy∫∫
x2+y2≤1

ydxdy.

Remark: This computes the covariance of X, Y which has uniform distribution on the
unit circle. We shall see that the covariance is zero but X, Y are not independent.

2. Compute ∫ z

0

∫ z−y

0

µλe−λx−µydxdy.

Remark : This computes the cdf of the random variable Z = X + Y where X, Y have
independent exponential distributions with parameters λ, µ.

3. Use Leibniz integral formula to compute

∂

∂z

[ ∫ z

0

∫ z−y

0

µλe−λx−µydxdy
]
.

This is the density of the variable Z described in part 2. Compare the result with the one
obtained by differentiating the answer in part 2.
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4. Use the given transformation to evalute the integrals:
a) ∫∫

R

(x− 3y)dxdy, x = 2u+ v, y = u+ 2v,

R is the triangular region with vertices (0, 0), (2, 1), (1, 2).
b) ∫∫

R

(4x+ 8y)dxdy, x =
1

4
(u+ v), y =

1

4
(v − 3u)

R is the parallelogram with vertices (−1, 3), (1,−3), (3,−1), (1, 5).
c) ∫∫

R

x2dxdy, x = 2u, y = 3v,

R is the region bounded by the ellipse 9x2 + 4y2 = 36.
d) ∫∫

R

x2 − xy + y2dxdy, x =
√

2u−
√

2

3
v, y =

√
2u+

√
2

3
v.

R is the region bounded by the ellipse x2 − xy + y2 = 2.

1.6 Numerical differentiation

1.6.1 Theory
Finite difference : First derivative approximation:

f ′(x) ≈ f(x+ h)− f(x)

h
, h > 0

≈ f(x)− f(x− h)

h
, h > 0

≈ f(x+ h)− f(x− h)

2h
, h > 0.

Second derivative approximation (Central difference formula) :

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
, h > 0.
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Partial derivative approximation: First order partial derivatives

∂

∂x
f(x, y) ≈ f(x+ h, y)− f(x, y)

h
, h > 0

≈ f(x, y)− f(x− h, y)

h
, h > 0

≈ f(x+ h, y)− f(x− h, y)

2h
, h > 0.

Second order partial derivatives:

∂2

∂x2
f(x, y) ≈ f(x+ h, y)− 2f(x, y) + f(x− h, y)

h2
, h > 0

∂2

∂x∂y
f(x, y) ≈ 1

4hk

[
f(x+ h, y + k)− f(x+ h, y − k)

− f(x− h, y + k) + f(x− h, y − k)
]
, h, k > 0

1.6.2 Problems
1. Explain the reasoning for the finite difference formulas for f ′(x). What is the difference
in the three formulas? What are the order of the error terms ?

2. Use the finite difference formula to approximate f ′(1) where f(x) =
√
x using

h = 0.1, 0.01, 0.001. Calculate the errors in each approximation.
3. Explain the reasoning for the central difference formula. What is the order of the

error term in the central difference formula? (h
2

12
by Taylor’s series).

4. Use the central difference formula to approximate f ′′(1) where f(x) =
√
x using

h = 0.1, 0.01, 0.001. Calculate the errors in each approximation.
5*. Develop an approximation for f ′′(x) using f(x), f(x + 3h), f(x − h). (Expand

f(x+ 3h), f(x− h) around x and eliminate the f ′(x) terms).
6. Explain the reasoning for the mixed partial derivatives formula. What is the order of

the error term?
7. Use numerical differentiation to find first and second order partial derivatives for√
x+ y at x = y = 1, with h, k = 0.1, 0.01, 0.001.

14



1.7 Numerical Integration

1.7.1 Theory
Rectangular rule (Riemann sum approximation) :∫ b

a

f(x)dx ≈
∑
i

f(xi)(xi+1 − xi)

≈
∑
i

f(xi+1)(xi+1 − xi)

≈
∑
i

f(
xi + xi+1

2
)(xi+1 − xi).

These are referred to as the right point, left point and mid point approximation respectively.
Error term bound (midpoint rule) : (b−a)(∆x)2

24
f (2)(ξ), ξ ∈ [a, b].

Trapezoidal rule:∫ b

a

f(x)dx ≈
∑
i

1

2

[
f(xi) + f(xi+1

]
(xi+1 − xi).

Error term bound: (b−a)(∆x)2

12
f (2)(ξ), ξ ∈ [a, b].

Simpson’s rule :∫ b

a

f(x)dx ≈
[
f(a) + 4f(

a+ b

2
) + f(b)

](b− a)

6

=
[
f(a) + 4f(

a+ b

2
) + f(b)

]∆x
3
,∆x =

b− a
2

.

Simpson’s composite rule (equal spacing) : for a = x0 < x1 < · · · < xn = b where n
is even∫ b

a

f(x)dx ≈
∑
i

∆x

3

[
f(x2i−2) + 4f(x2i−1) + f(x2i)

]
=

∆x

3

[
f(a) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 4f(xn−1) + f(b)

]
.

Error term bound: (b−a)(∆x)4

180
f (4)(ξ), ξ ∈ [a, b].

Simpson’s 3-8 rule :∫ b

a

f(x)dx ≈
[
f(a) + 3f(

2a+ b

3
) + 3f(

a+ 2b

3
) + f(b)

](b− a)

8

=
[
f(a) + 3f(

2a+ b

3
) + 3f(

a+ 2b

3
) + f(b)

]3∆x

8
,∆x =

b− a
3

.
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Simpson’s 3-8 composite rule (equal spacing): for a = x0 < x1 < · · · < xn = b where
n os a multiple of 3∫ b

a

f(x)dx ≈ 3∆x

8

[
f(a) + 3f(x1) + 3f(x2) + 2f(x3) + · · ·

+3f(x4) + 3f(x5) + 2f(x2) + · · ·+ 3f(xn−2) + 3f(xn−1) + f(b)
]
.

Error term bound: (b−a)(∆x)4

80
f (4)(ξ), ξ ∈ [a, b].

1.7.2 Problems
1. Compute the following limits

a)

lim
n→∞

n∑
k=1

1

n

√
5 +

2k

n
.

b)

lim
n→∞

n∑
i=1

i4

n5
+

i

n2
.

c)*

lim
n→∞

n∑
i=1

√
i

n
√
n
.

2. Use all methods of integration described above to find up to 6 digit precision a)∫ 0.4

0

√
1 + x4dx.

b) ∫ 2

0

ex

1 + x2
dx.

c) ∫ π
2

0

3
√
t1 + cos xdx.

d) ∫ 4

0

x3 sinxdx.
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e) ∫ 1

0

x2

1 + x4
dx.

3. Use Taylor’s series expansion to find up to 6 digit precision∫ 0.4

0

√
1 + x4dx.

Compare this approach to the above.
4. Find examples of functions for whose integrals the rectangular rule, trapezoidal rule,

Simpson’s rule and Simpson’s 5-8 rule are exact. Explain the reason why they are exact in
these cases.

5. Compare the errors in all the methods.
6. Relate the midpoint rule with the rectangular left and right hand rule.
7. We refer to Trapezoidal rule (Midpoint rule, Simpson’s rule) with n step approxima-

tion as Tn ( Mn, Sn respectively ).
a) If f is a positive function and f ′′(x) < 0 on [a, b] show that

Tn <

∫ b

a

f(x)dx < Mn

b) If f is a polynomial of degree 3 or lower then Simpson’s rule is exact.
c*) Show that 1

2
(Tn +Mn) = T2n.

d*) Show that 1
3
Tn + 2

3
Mn = S2n.

1.8 Numerical solution to nonlinear equation

1.8.1 Theory
Bisection method: Consider the equation f(x) = 0. We start out with a0, b0 such that
f(a0) < 0 and f(b0) > 0. Denote mi+1 = ai+bi

2
, i = 0, 1, · · · . The algorithm continues

with ai+1 = mi+1, bi+1 = bi if f(mi+1) < 0 and ai+1 = ai, bi+1 = mi+1 if f(mi+1) > 0.
The underlying idea is by the intermediate value theorem, the value x0 such that f(x0) = 0
is always within (ai, bi) for any i. Since bi − ai decreases by half after each iteration, they
converge to x0 with a linear rate of convergence.

Newton’s method: Consider the equation f(x) = 0. We choose an initial value x0. The
algorithm continues with

xn+1 = xn −
f(xn)

f ′(xn)
.

Newton’s method is not guaranteed to converge. It relies on the first guess x0 to be suf-
ficiently close to the root. It also requires f(x) to be differentiable around the root. If
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Newton’s method converges it convereges quadratically. Newton’s method comes from the
Taylor approximation around the root x = a:

f(x) ≈ f(a) + f ′(a)(x− a) = f ′(a)(x− a).

Thus

a ≈ x− f(x)

f ′(a)
≈ x− f(x)

f ′(x)
.

1.8.2 Problems
1. Find

√
2 using Bisection method and Newton’s method. Write a code to implement the

algorithm to 6 digit precision. Compare the rate of convergence of the two methods.
2. Find the root of the equation tan−1(x) = x − 1 to 6 digit precision using Newton’s

method. Use x0 = 2 as the initial guess.
3. Consider the equation x5−x3 + 2x2− 1 = 0. Use Newton’s method to find the roots

of the equation to 6 digit precision. Try different initial points and remark on the results.
For the first initial point, try x0 = 1.

4*. Apply Newton’s method to the equation x2− a = 0 to derive the following square-
root algorithm :

xn+1 =
1

2
(xn +

a

xn
).

(This algorithm was known to the ancient Babylonians).
5. Apply Newton’s method to the equation 1

x
−a = 0 to derive the following reciprocal

algorithm :

xn+1 = 2xn − ax2
n.

This algorithm enables a computer to find reciprocals without actually dividing. Apply this
to compute 1

1.15
correct to six decimal places.

6.
a) Explain why Newton’s method doesn’t work for finding the root of

x3 − 3x+ 6 = 0

if the initial approximation is x0 = 1.
b) Explain why Newton’s method doesn’t work for finding the root of

3
√
x = 0

for initial approximation x0 6= 0.
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8. Recall that the Black-Scholes formula for a European call option with parameters
S0, r, T,K, σ is

cBS(S0, r, T,K, σ) = S0N(d+)−Ke−rTN(d−)

N(d±) =
r ± 1

2
σ2T − log K

S0

σ
√
T

.

The impplied volatility σimplied of a particular call option is defined such that for this
option market’s price cmarket,

cmarket = cBS(S0, r, T,K, σ
implied).

In other words, σimplied is the solution to the equation

cBS(S0, r, T,K, σ) = cmarket.

For S0 = 60, r = 0.05, T = 1, K = 50, cmarket = 12.54 use the bisection method to find
σimplied, starting with σL = 0.05 and σR = 0.15 (This would be an inefficient way to solve
for the implied volatility. It is simply to demonstrate an application of numerical solution
method in math finance.)
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Chapter 2

Linear algebra review

2.1 Gaussian elimination, linear independence

2.1.1 Theory
See a standard linear algebra text.

2.1.2 Problems
1. Solve the linear system

x1 − x2 − 2x3 = 2

2x1 + 4x2 + 5x3 = 1

6x1 − 3x3 = 3.

2. Let

S =


 1

1
1

 ;

 2
1
1

 ;

 1
1
2


Is span(S) = R3 ? Explain.

3.

S =


 1

2
1

 ;

 2
2
1

 ;

 1
−2
−1


Is S linearly independent ? Explain.

4. Let

A =

 1 3 −5
1 4 −8
−3 −7 9

 ; b =

 4
7
−6
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a) Does Ax = b have a unique solution?
b) If possible, write the solution to Ax = b in parametric vector form. If not possible,

just stay not possible.
5*. Let

S =


 2

1
−2

 ;

 −3
1
4


and y =

 h
2
1

. For what value of h is y in span(S)?

2.2 Eigenvalues and eigenvectors

2.2.1 Theory
Let A be a n × n matrix. λ ∈ R is called an eigenvalue and v 6= 0 ∈ Rn is called an
eigenvector (corresponding to λ) if

Av = λv.

The eigenvalues of A are the roots of the equation det(A − λI) = 0. The eigenvectors
corresponding to a specific eigenvalue λ can be found by plugging in the particular value
of λ and solve for the nonzero solutions of the linear system (A − λI)v = 0. In other
words, they are the basis vectors of the Null space of A− λI ).

General properties of eigenvalues and eigenvectors: A n×nmatrix has exactly n eigen-
values (possibly complex) counting repetitions. There is at least one and at most mλ eigen-
vectors corresponding to the eigenvalue λ where mλ is the multiplicity of λ. Eigenvectors
corresponding to distinct eigenvalues are linearly independent.

Diagonalization of a square matrix: A matrix A has a diagonal form if there exists a
diagonal matrix D and invertible matrix P such that A = PDP−1. We say that A is the
diagonal matrix D. In this case the diagonal of D consists of the eigenvalues of A and the
columns of P consist of the eigenvectors of A. A matrix A has a diagonal form if and only
if it has n independent eigenvectors.

Jordan form: Suppose that A does not have a full set of eigenvectors. This means that
A is not similar to a diagonal matrix. In this case, A is still similar to a near diagonal
matrix, the so-called Jordan form of A. This is a matrix that has the eigenvalues of A
on the diagonal and ones in certain positions on the diagonal above the main diagonal
and zero elsewhere. In particular, let λ be an eigenvalue with multiplicity m ≥ 2 and
suppose the number of eigenvectors corresponding to λ is k < m. Let v1,v2, · · · ,vk
be k eigenvectors corresponding to the eigenvalue λ. It is a fact that the null space of
(A − λI)m has dimension m. That is there are m linearly independent vectors satisfying
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(A − λI)mv = 0. We already know k of them: v1,v2, · · · ,vk. This means that there are
k − m other independent vectors satisfying (A − λI)m = 0. These are referred to as the
generalized eigenvectors corresponding to λ. We need another concept : v is a generalized
eigenvector of rank d ≥ 1 corresponding to λ if

(A− λI)dv = 0

(A− λI)d−1v 6= 0.

Now if v is a generalized eigenvector of rank d then (A−λI)v is a generalized eigenvector
of rank d − 1 and (A − λI)2v a generalized eigenvector of rank d − 2 etc. These form
the so called generalized eigenvector chain. In the above scenario, we only need to find
a generalized eigenvector of rank m − k + 1 and generate the chain from there to obtain
k −m generalized eigenvectors. Thus we see that a n × n matrix has n indpendent gen-
eralized eigenvectors. Let P = [v1 v2 · · ·vn] be the matrix formed by these chains of
generalized eigenvectors. We see that

AP = PJ

where J is the Jordan form described above. In particular, if vi,vi+1 are consecutive mem-
bers of the generalized eigenvector chain we have

(A− λI)vi = vi+1.

That is Avi = λvi + 1vi+1. This is why the Jordan form has 1 above the main diagonal.
These correspond to the positions of the generalized eigenvectors. Note that the last gen-
eralized eigenvector in a chain must be an actual eigenvector. This is also reflected in the
fact that the last column of vn of P must be an actual eigenvector since it must satisfy
Avn = λnvn. The Jordan decomposition of A is A = PJP−1.

Conditions for invertibility of a matrix: from the definition of eigenvalues, it is easy
to see that a matrix is invertible if and only if all of its eigenvalues are non-zero. On the
other hand, computation of eigenvalues (and eigenvectors) can be time consuming (it is
an important topic in numerical linear algebra). The following is a more easily verified
(although rather strong) condition of invertibility : A matrix A is strictly diagonally row
(column) dominant if the absolute value of its diagonal entries are strictly greater than the
sum of the absolute values of the corresponding row (column) :

|Aii| >
∑
j 6=i

|Aij| (strict row dominant)

|Aii| >
∑
j 6=i

|Aji| (strict column dominant) .

Row ( column) strict dominance implies that the eigenvalues of A are nonzero via the so
called Gershgorin’s theorem.
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Tridiagonal symmetric matrices: These matrices arise in discretization of partial dif-
ferential equations (PDEs). In particular, let A be an n × n matrix such that A(i, i) =
a,A(i, i+ 1) = A(i, i− 1) = −b,∀i, A(i, j) = 0 otherwise then the eigenvalues of A are

λi = a− 2b cos

(
πi

n+ 1

)
, i = 1, · · · , n.

The corresponding eigenvectors vi has the entries

vi(j) = sin

(
πij

n+ 1

)
, j = 1, · · · , n.

2.2.2 Problems
1. Let v1,v2 be two eigenvectors corresponding to distinct eigenvalues λ1, λ2. Show that
v1 6= cv2 for some constant c. Generalize this to the case of v1,v2, · · · ,vn be eigen-
vectors corresponding to distinct eigenvalues λ1, λ2, · · · , λn. Show that v1,v2, · · · ,vn are
independent.

2. Verify that if A is strictly row dominant then AT is strictly column dominant and
vice versa.

3. Check invertibility of the following matrices. Explain your reasoning.
a) 

4 −2 −1 0
2 −5 1 1
−2 1 5 1
1 1 0 3


b) 

6 −3 2 1
2 4 1 −3
1 0.5 5 2
−2 0 −1 7


c)* 

−4 3 −1 1
0 0 1 −2
0 0 2 2
0 0 0 5


4. Find the eigenvalues and eigenvectors of the following matrices:
a) [

2 −1
1 4

]
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b)  2 0 0
1 −3 0
−1 2 1


c)*  −2 −1 3

0 1 2
0 0 3


5. Let A be a matrix with a given set of eigenpairs.
a) Compare the eigenpairs of A with the eigenpairs of A+ εI for some ε > 0.
b) Show that if A is singular (non-invertible) we can find an ε > 0 as small as desired

such that A+ εI is nonsingular (invertible) (this method of perturbing the diagonal is very
useful in practical situations).

6*. LetA,B be two square matrices. Show thatAB andBA have the same eigenvalues
by :

a) Assuming that eitherA orB is non-singular and show that det(AB−λI) = det(BA−
λI).

b) Remove the assumption in part a by using question 5.
7. The strictly dominant assumption for invertibility is necessary. A weaker version of

the concept is : A matrix A is weakly diagonally row (column) dominant if the absolute
value of its diagonal entries are greater than or equal to the sum of the absolute values of
the corresponding row (column) :

|Aii| ≥
∑
j 6=i

|Aij| (weak row dominance)

|Aii| ≥
∑
j 6=i

|Aji| (weak column dominance) .

a) Show that

A =

 4 2 −1.5
0 2 −2
0 −1.5 1.5


is a weakly diagonally dominant singular matrix.

b) Verify that we can perturb the diagonal to make A strictly dominant, hence nonsin-
gular.

8. Let A be a 4× 4 tridiagonal matrix such that A(i, i) = 2, A(i, i+ 1) = A(i, i− 1) =
−1. Investigate the norm and the orthogonality of the eigenvectors of A.

9. Let J be a n × n matrix such that J(i, i) = a, J(i, i + 1) = b, J(i, j) = 0 otherwise
(J is NOT tridiagonal). J is called a Jordan block if b = 1. Find the eigenvalues and
eigenvectors of J .
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10. The forward Euler finite difference scheme for the heat PDE corresponds to the
tridiagonal matrix A(i, i) = 1 − 2h,A(i, i + 1) = A(i, i − 1) = h, h > 0. The scheme is
convergent if and only if

‖A‖2 := max |λi| < 1.

Show that this condition is satisfied if and only if 0 < h ≤ 1
2
.

11. The backward Euler finite difference scheme for the heat PDE corresponds to the
tridiagonal matrix A(i, i) = 1 + 2h,A(i, i+ 1) = A(i, i− 1) = −h, h > 0. The scheme is
convergent if and only if

‖A−1‖2 := max |λi| < 1,

where A−1 is the inverse of A.
a) Show that the discretization matrix A is indeed invertible.
b) Show that the convergence condition is satisfied for any h > 0.
12. Find the Jordan form of A and express A = PJP−1 where A is
a)  0 4 2

−3 8 3
4 −8 −2


b) 

5 1 −2 4
0 5 2 2
0 0 5 3
0 0 0 4


2.3 Symmetric matrices, symmetric positive definite ma-

trices and Covariance matrices

2.3.1 Theory
A matrix A is symmetric if AT = A. A symmetric positive definite (spd) matrix (or simply
positive definite) is a symmetric matrix with the additional condition that

vTAv > 0,∀v.

(Some authors include nonsymmetric matrix in the definition of positive definite, but most
often positive definite matrix implies symmetry). If we replace > with ≥ in the above
equation then A is positive semi-definite. Similarly one can define negative definite and

25



negative semidefinite matrices. Positive definite matrices arise as covariance matrices of a
multivariate distribution or in the context of least square regression.

The following are some conditions for checking positive-definiteness (positive semi-
definiteness):

a) All eigenvalues of A are > 0 ( ≥ 0)
b) Sylvester’s criterion: all leading principal minors of A are > 0 (≥ 0) (Principle

minors are the determinant of the square matrices obtained by going down the diagonal of
A)

c) A has a Cholesky decomposition (see next section).
Of all these conditions, the Cholesky decomposition is the most practical computa-

tionally (via the Cholesky decomposition algorithm with cost n3 + O(n2)). Eigenvalues
computation is more expensive and can be imprecise (for matrix with small eigenvalues).
Sylvester criterion is more of a theoretical result to apply for matrix of small dimension
without using computational methods.

Some properties of symmetric and positive-definite (semi-definite) matrix:
a) The eigenvalues of symmetric matrices are real.
b) Eigenvectors corresponding to distinct eigenvalues of a symmetric matrix are orthog-

onal.
c) A symmetric matrix A has a diagonal form : A = QDQT where Q is an orthogonal

matrix (composed of eigenvectors of A),
d) If A is a m × n matrix (not necessarily square) then ATA is a positive semidefinite

matrix. ATA is positive definite if the columns of A are linearly independent (the matrix
ATA arises in least square solution of Ax = b).

e) A positive definite matrix is invertible. Its inverse is also positive definite.
f) A strictly (weakly) diagonally dominant symmetric matrix with positive diagonal

entries is positive definite (semi-definite).
g) Let A be a tri-diagonal symmetric matrix A(i, i) = d,A(i, i + 1) = A(i, i − 1) =

−a,∀i, A(i, j) = 0. A is positive definite if and only if

d > 2|a| cos

(
π

n+ 1

)
.

Least square solutions

The least square solution to Ax = b is x̂ such that ‖Ax̂− b‖ ≤ ‖Ax− b‖ for any x ∈ Rn,
where

‖x‖2 = xTx, x ∈ Rn.

One can see that Ax̂ is the orthogonal projection of b onto the column space of A (draw a
picture where A is one single column). That is b − Ax̂ is orthogonal to ci, i = 1, · · · , n
where ci is the ith column of A. That is

cTi (b− Ax̂) = 0, i = 1, · · · , n.
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The above equations are equivalent to AT (b − Ax̂) = 0 or x̂ is the solution to the normal
equation

ATAx = AT b.

Here we see again the symmetric matrix ATA discussed above. The point of the least
square solution is that while there may not exist a solution to Ax = b, there exists a point b̂
in the column space of A that is closest to b (again b̂ is the orthogonal projection of b onto
the column space of A). Thus the normal equation is always consistent : there exists at
least one x̂ such that Ax̂ = b̂. The issue may be whether this x̂ is unique. If the columns of
A are linearly independent then ATA is nonsingular and x̂ is unique.

Example: Least square linear regression. Given a set of points (x1, y1), (x2, y2), · · · , (xn, yn)
we want to find a line y = ax+ b that minimizes∑

n

(axi + b− yi)2.

This can easily be seen as a least square problem with A = [x 1] and b = y.

Covariance and correlation matrices

Let X := (X1, · · · , Xn) be n given random variables. A is the covariance matrix of X if
Aij = cov(Xi, Xj) for any (i,j) and B is the correlation matrix of X if Bij = corr(Xi, Xj)
for any (i,j). Since cov(Xi, Xj) = cov(Xj, Xi) and corr(Xi, Xj) = corr(Xj, Xi) it is clear
that covariance and correlation matrices are symmetric. Moreover, since corr(Xi, Xj) =

cov(Xi,Xj)√
V ar(Xi)V ar(Xj)

a correlation matrix is a covariance matrix whose diagonal entries are 1’s.

A covariance matrix must be positive semi-definite since for any constant vector c ∈ Rn

V ar(cTX) = cT cov(X)c ≥ 0.

Conversely a positive semi-definite matrix can be viewed as a covariance matrix of some
random vector. A positive semi-definite matrix with diagonal entries being 1’s can be
viewed as a correlation matrix.

Application: Principal component analysis in portfolio risk management

Given a covariance matrix Σ of a multivariate distribution X we see that Σ = QDQT

where Q is an orthogonal matrix. We make the additional assumption that D is arranged
from the highest eigenvalues to the lowest. If we let v1 be the first column of Q then

Cov(v1
TX) = v1

TΣv = λ1.

Thus v1 is the direction that captures λ1∑
i λi

percentage in variation of X. If λ1 is big
compared to other λ’s this is a high percentage. Usually one only need to use the first
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few eigenvectors (referred to as factors) to capture the most variations of X. Moreover, if
λ1 6= λ2 v1 is orthogonal to v2. Then

Cov(vT1 X,vT2 X) = vT1 Σv2 = 0.

Thus vTi X,vTj X are uncorrelated (and independent if the underlying multivariate distribu-
tion is normal) if vi,vj corresponds to different eigenvalues. Thus the direction vT1 + vT2
captures λ1+λ2∑

i λi
percentage in variation of X. The eigenvectors are referred to as the factors

and their entries the factor loadings.
An alternative way to look at the explanation power of the factors is to write X as a

linear combination of the factors. Since Q is invertible, a particular realization x of X can
be written as

x = Qf .

f is referred to as the vector of factor scores (for a particular instance of x). We have
f = QTx and thus fi = vTi x as discussed above. Thus the variance of the ith factor score
is just λi. Here we say that

x̂ =
k∑
i=1

fivi

for a small k approximates x well in terms of explaining the variation of the original x.
Observe also the fact that the factor scores are uncorrelated.

In the financial context, suppose we have a portfolio of the stocks in an index( e.g. S&P
500). We can calculate the change of the portfolio value with respect to the movement of
a particular stock, but this is not a good way to capture the portfolio’s exposure. Using
PCA, we estimate Σ, the covariance matrix of the log returns of the stocks in the index.
Decompose Σ = QDQT where the entries of D is arranged from the highest to lowest.
The columns of Q are the factors discussed above. The portfolio exposure can be captured
in a more efficient manner by looking at its exposure to the first few factors. In particular,
let ∆Π be the vector of the deltas of the portfolio with respect to individual names (more
specifically with respect to the log returns of the individual names). Let R be the (random)
vector of the log returns of the individual names. The total portfolio change is

∆ΠTR.

On the other hand, we can decompose R using the factors and factor scores. That is

R =
n∑
i=1

fivi.

Then the portfolio change can be approximated by

k∑
i=1

fi∆ΠTvi,
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where k is a small number. We refer to this quantity as the exposure of the portfolio to the
first k factors. One quantity that captures the risk is the variance (or standard deviation)
of the exposure to the k factors. Since the factors are uncorrelated, the variance of the
exposure to the first k factors are

k∑
i=1

(∆ΠTvi)
2λi.

Note that PCA is not about efficiency of computation since one can easily calculate

V ar(∆ΠTR) = ∆ΠTΣ∆Π.

PCA gives the portfolio manager the information about the direction that the portfolio
is “most exposed" to. The manager can use this information for hedging purpose, for
example, to immunize the portfolio against the possible shocks in the short run.

2.3.2 Problems
1. Prove (or find out about the proofs) of the statements in the theory section above.

2. Diagonalize:
a)

A =

[
1 2
2 4

]
.

b)*

A =

[
1 0
6 −1

]
.

c)

A =

 4 2 2
2 4 2
2 2 4

 .
3. Find the least square solution to Ax = b where
a)

A =

 −1 2
2 −3
−1 3


b =

 4
1
2
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b)*

A =

 2 1
−2 0
2 3


b =

 −5
8
1


c)

A =

 1 3
1 −1
1 1


b =

 5
1
0


4.
a) Let A be a symmetric positive definite matrix. Use the diagonal form of A to find a

matrice B such that B2 = A (B can be thought of as the “square-root" of A).
b) Show that a matrix A is symmetric positive semidefinite if and only if there exists a

symmetric matrix B such that B2 = A.
c) Let A be a positive semi-definite matrix and B such that B2 = A as in part b). Show

that

(Ax, y) = (Bx,By), x, y ∈ Rn

(Thus B really acts like a square root of A when it comes to inner product).
d) Show that

(Ax, y)2 ≤ (Ax, x)(Ay, y), x, y ∈ Rn.

5. Show that for any constant vector c ∈ Rn and a random vector X ∈ Rn

V ar(cTX) = cT cov(X)c ≥ 0.

6. Let

A =

 4 2 1
2 2 1.1
1 1.1 1

 .
Is A a covraince matrix? If yes, what is the correlation matrix corresponding to A?
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7. Let

A =

 1 0.5 0.2
0.5 1 ρ
0.2 ρ 1

 .
Find the range of ρ such that A is a correlation matrix.

8. Computational errors can cause the result in the computation of a covariance matrice
to be not positive semi-definite. Give an example of an “almost" positive semi-definite
matrix. Suggest a (reasonable) modification so that if A is an “almost" positive semi-
definite matrix then the modification of A is positive semi-definite.

2.4 LU decomposition, QR decomposition, Cholesky de-
composition

A big area of numerical linear algebra is finding numerical solution to Ax = b efficiently.
The majority of the techniques rely on iterative methods, which is beyond the scope of this
review. On the other hand, these iterative techniques involve the idea of decomposing A
into “simpler" components such as triangular or diagonal matrices via a sum structures.
This section covers fundamental decompositions of the form A = B1B2 where B1, B2

have nice structure. While these types of decomposition may or may not be applicable in a
numerical procedure, their ideas are fundamental and can be useful in both theoretical and
pratical contexts.

We first mention some basic facts in solving a linear system: The systems Lx = b or
Ux = b where L is lower triangular and U is upper triangular are solved by backward
or forward substitution. They take O(n2) operations. The system Dx = b where D is
diagonal is trivial. It takes exactly n operations to solve. The system Qx = b where Q is
an orthogonal matrix has solution x = QT b as Q−1 = QT . In general, one avoids finding
the inverse of a matrix directly when solving a system.

2.4.1 LU decomposition
The LU decomposition of a square matrix A has the form PA = LU where P is a per-
mutation matrix, L is lower triangular and U is upper triangular. This is referred to as LU
decomposition with partial pivoting. A permutation matrix is a matrix obtained by permut-
ing the rows of the identity matrix. The idea of LU decomposition is that if we want to
solve Ax = b this is equivalent to solving LUx = Pb. We first solve for Ly = Pb and then
Ux = y each of which takes O(n2) operation. One can also consider LU decomposition
without pivoting. That is the decomposition of the form A = LU . This decomposition may
not always be possible. For example, consider A invertible where A11 = 0. If A = LU
thenA11 = L11U11. This means either L11 = 0 or U11 = 0. That is either L is not invertible
or U is not invertible. But that contradicts the assumption that A is invertible.
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The idea behind LU decomposition is Gaussian elimination. The row echelon form of
a Gaussian elimination is an upper triangular matrix. At step i in Gaussian elimination
the goal is to zero out all the entries below A

(i)
ii , where A(i) denotes the resulting matrix

at the ith step. If A(i)
ii 6= 0 this can be accomplished by left multiplying A(i) with a lower

triangular matrix Li. If Aii = 0 we can swap row i with another row j, j > i. This is why
the general form of LU decomposition is PA = LU . In the case of no pivoting required,
the Gaussian elimination steps can be described as

LnLn−1 · · ·L2L1A = U.

Since the product of lower triangular matrices is lower triangular, this can be written as
L̃A = U . Thus A = LU where L = (L̃)−1.

The LU factorization is the cheapest factorization algorithm. Its operations count can
be verified to be O(2

3
n3). In general, one would need to do partial pivoting to make sure

LU factorization is stable.
Uniqeness of LU factorization: It is easy to see that LU factorization is not unique.

The additional assumption that the diagonal entries of L are 1 is conventionally applied to
have uniqueness of LU decomposition.

Algorithms for the factorization of an n× n matrix A :
LU Factorization without pivoting by hand
1. Reduce A to echelon form U without row permutation, if possible.
2. Place entries in L such that the same sequence of row operations reduces L to I.
Step 1 and 2 are done in tandem. That is we reduce the first column of A and place

entries in the first column of L and move to the second columns ofA and L. For example, if

the first column ofA is


2
−4
2
−6

 then the first column of L is


1
−2
1
3

 .After this reduction,

if the second column of A becomes


4
3
−9
12

 (which should not be the original second

column of A) then the second column of L is


0
1
−3
4

 .

Pseudo-code Algorithm (LU Factorization)
Initialize U = A, L = I

for k = 1 : n - 1
for j = k + 1 : n
L(j, k) = U(j, k)/U(k, k)

32



U(j, k : n) = U(j, k : n) - L(j, k)U(k, k : n)
end

end

Pseudo-code Algorithm (LU Factorization with Partial Pivoting)
Initialize U = A, L = I, P = I
for k = 1 : n - 1

find i ≥ k to maximize |U(i, k)|
Swap U(k, k : n) with U(i, k : n)
Swap L(k, 1 : k − 1) with L(i, 1 : k − 1)
Swap P (k, :) with P (i, :)
for j = k + 1 : n

L(j, k) = U(j, k)/U(k, k)
U(j, k : n) = U(j, k : n) - L(j, k)U(k, k : n)

end
end
The operations count for this algorithm is also O( 2

3
n2). In practice one would usually

not physically swap rows. Instead one would use pointers to the swapped rows and store
the permutation operations instead.

2.4.2 QR decomposition
Given a matrix Am×n, the QR decomposition of A is A = QR where Qm×n satisfies
QTQ = I (Q is orthogonal if A is square) and Rn×n is upper triangular (this is referred
to as the reduced QR decomposition). Any matrix A has a QR decomposition. If A has
independent columns then R is invertible. QR decomposition is often used to solve the
linear least squares problem and is the basis for a particular eigenvalue algorithm, the QR
algorithm.

QR decomposition is connected with the Gram-Schmidt procedure of transforming a
set of vectors into an orthonormal set of vectors with the same span. Indeed, given An×n
and suppose that A is full rank we can find an orthonormal set of of n vectors whose span
is the same as the span of the columns of A. These vectors form the columns of Q. From
the Gram-Schmidt procedure, something stronger is true: the span of the first k columns
of A is equal to the span of the first k columns of Q. Thus if we solve the matrix equation
A = QR, we see that R must be upper triangular. Note that the size of the orthonormal set
in Gramm-Schmidt procedure may be less than n if A is not invertible. In fact, if A has k
linearly independent columns, then the first k columns of Q form an orthonormal basis for
the column space of A. More generally, the first k columns of Q form an orthonormal basis
for the span of the first k columns of A for any 1 ≤ k ≤ n.The fact that any column k of A
only depends on the first k columns of Q is responsible for the triangular form of R.
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QR algorithm to find eigenvalue: Let A be a square matrix with real entries which we
want to compute the eigenvalues of, and let A0 := A. At the k-th step (starting with k = 0),
we compute the QR decomposition Ak = QkRk. We then form Ak+1 = RkQk. Note that

Ak+1 = RkQk = Q−1
k QkRkQk = Q−1

k AkQk = QT
kAkQk.

so all the Ak are similar and hence they have the same eigenvalues. Under certain condi-
tions, the matricesAk converge to a triangular matrix, the Schur form of A. The eigenvalues
of a triangular matrix are listed on the diagonal, and the eigenvalue problem is solved.

Pseudo inverse in the least squared problem: Recall that the solution to the least squared
problem Ax = b is x̂ that satisfies

ATAx̂ = AT b.

If the columns ofA are linearly independent, ATA is invertible and x̂ = (ATA)−1AT b. The
matrix A† := (ATA)−1AT is referred to as the pseudo inverse of A. The psedo-inverse can
be expressed as

A† = ((QR)T (QR))−1(QR)T

= (RTQTQR)−1RTQT

= (RTR)−1RTQT (QTQ = I)

= R−1(RT )−1RTQT (R is nonsingular )

= R−1QT .

Thus x̂ = R−1QT b is the solution to the least square problem Ax = b. One can easily
verify that if A is invertible then A−1 = A†.

QR decomposition algorithm: The stable numerical procedure for QR decomposition
is the Householder algorithm, which utilizes the Householder reflection matrix. Here we
present the algorithm based on Gram-Schmidt decomposition (which is more intuitive but
not stable in certain cases)and under the assumption that A has independent columns. In
the following, ai denotes the ith column of A.

Define the projection:

projua =
〈u, a〉
〈u,u〉

u

then:
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u1 = a1, e1 =
u1

‖u1‖
u2 = a2 − proju1

a2, e2 =
u2

‖u2‖
u3 = a3 − proju1

a3 − proju2
a3, e3 =

u3

‖u3‖
...

...

uk = ak −
k−1∑
j=1

projuj ak, ek =
uk
‖uk‖

We can now express the ais over our newly computed orthonormal basis:

a1 = 〈e1, a1〉e1

a2 = 〈e1, a2〉e1 + 〈e2, a2〉e2

a3 = 〈e1, a3〉e1 + 〈e2, a3〉e2 + 〈e3, a3〉e3

...

ak =
k∑
j=1

〈ej, ak〉ej

where

〈ei, ai〉 = ‖ui‖.

This can be written in matrix form:

A = QR

where:

Q = [e1, · · · , en]

and

R =


〈e1, a1〉 〈e1, a2〉 〈e1, a3〉 . . .

0 〈e2, a2〉 〈e2, a3〉 . . .
0 0 〈e3, a3〉 . . .
...

...
... . . .

 .
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2.4.3 Cholesky decomposition
The Cholesky decomposition of a symmetric positive definite matrix A is A = LLT where
L is a lower triangular matrix with positive diagonal entries (which implies that L is non-
singular). Some author defines the Cholesky decomposition asA = UTU where U is upper
triangular. The two definitions are obviously equivalent.

First note that simply because we can writeA = LLT , Amust be symmetric. Moreover,
for any vector x

xTAx = xTLLTx = ‖LTx‖2 > 0,

unless x = 0 or L is singular. Thus A must be positive definite. Thus A has a Cholesky
decomposition if and only ifA is symmetric positive definite. The Cholesky decomposition
can be seen as a stronger version of the LU decomposition (with stronger conditions on
A). Cholesky decomposition typically has half the cost of LU decomposition (due to the
symmetry). The Cholesky decomposition is unique as a consequence of the requirement
that L has positive diagonal entries (otherwise if A = LLT then it also follows that A =
(−L)(−L)T ) .

The Cholesky decomposition obviously has applications where LU decomposition is
appropriate, especially when the matrix involved is positive definte. For example again the
least square solution to Ax = b is ATAx̂ = AT b. If A has linearly independent column
then ATA is symmetric positive definite, so Cholesky decomposition is appropriate here.

Another application of the Cholesky decomposition is in generating multivariate Nor-
mal distribution with a desired covariance matrix Σ. It can be shown that if X is a vector
of random variables with covariance matrix Σ then for any constant matrix A, the covari-
ance matrix of Ax is AΣAT . Monte Carlo simulation begins with generating a vector X of
independent standard Normal distributions (thus the covariance matrix of X is the identity
matrix). If our target covariance matrix is Σ then we need to find a matrix A such that
AAT = Σ. Thus A can be chosen to be L where L is from the Cholesky decomposition of
Σ. The random vector Y = LX has the desired distribution since the Normal distribution
is closed under affine transformation. For example, since[

1 0

ρ
√

1− ρ2

] [
1 ρ

0
√

1− ρ2

]
=

[
1 ρ
ρ 1

]
,

to generate two Normal random variables with correlation ρ and unit variances we can
generate two independent random Normal variables X1, X2 and let Y1 = X1, Y2 = ρX1 +√

1− ρ2X2. (Y1, Y2) has unit variances and correlation ρ as desired.
Algorithm for Cholesky Decomposition
Input: an n× n SPD matrix A
Output: the Cholesky factor, a lower triangular matrix L such that A = LLT

Theorem:(proof omitted) For a symmetric matrix A, the Cholesky algorithm will suc-
ceed with non-zero diagonal entries in L if and only if A is SPD. If A is not SPD then the
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algorithm will either have a zero entry in the diagonal of some Lk (making Lk singular) or
will require complex numbers in step 0 or step 1.2.

Notation: Lk−1: the k − 1× k − 1 upper left corner of L
ak: the first k − 1 entries in column k of A
lk: the first k − 1 entries in column k of LT (or equivalently lTk is the first k − 1 entries

in row k of L)
akk and lkk: the kk entries of A and L, respectively.
0) Initialize L1 =

√
a11.

1) For k = 2; · · · ;n
1.1) Solve Lk−1lk = ak for lk (Lk−1 is k−1×k−1 : for k = 2 this is a scalar equation)
1.2) lkk =

√
akk − (lk)T lk.

1.3)

Lk =

[
Lk−1 0
lTk lkk

]
Example : For

A =


16 4 4 −4
4 10 4 2
4 4 6 −2
−4 2 −2 4


construct a Cholesky decompostion of A.

Solution:
k = 1 : L1 =

√
16 = 4

k = 2 : L1 = 4; a2 = 4; a22 = 10. Solve the 1 × 1 system L1l2 = a2 or 4l2 = 4 so
l2 = 1.l22 =

√
10− 1 = 3. Therefore

L2 =

[
4 0
1 3

]

k = 3 : L2 =

[
4 0
1 3

]
, a3 =

[
4
4

]
; a33 = 6. Solve the 2 × 2 system L2l3 = a3 so

l3 =

[
1
1

]
. l33 =

√
6− [1 1]

[
1
1

]
= 2. Therefore

L33 =

 4 0 0
1 3 0
1 1 2

 .
k = 4: L3 =

 4 0 0
1 3 0
1 1 2

 , a4 =

 −4
2
−2

 ; a44 = 4. Solve the 3× 3 system L3l4 = a4
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so l4 =

 −1
1
−1

 . l44 =

√√√√√4− [−1 1 − 1]

 −1
1
−1

 = 1. Therefore

L = L44 =


4 0 0 0
1 3 0 0
1 1 2 0
−1 1 −1 1

 .
2.4.4 Problems
1. Find the LU factorization of a)

A =

 3 −7 −2
−3 5 1
6 −4 0

 .
b)

A =

 4 3 −5
−4 −5 7
8 6 −8

 .
c)*

A =

 2 −1 2
−6 0 −2
8 −1 5

 .
2. When A is invertible, Matlab find A−1 by factoring A = LU and then compute

U−1L−1. Use this method to compute A−1 of the previous problem (where applicable).
3.
a) Find the QR factorization of

A =


−1 −1 1
1 3 3
−1 −1 5
1 3 7

 .
b) Find the pseddo inverse of A.

c) Find the least square solution to the problem Ax = b where b =


1
1
1
1

 .
4. Find the eigenvalues of A using the QR algorithm where

38



a)

A =

[
7 4
−3 −1

]
.

b)

A =

 4 0 1
−2 1 0
−2 0 1

 .
5. Let

A =


9 −3 6 −3
−3 5 −4 7
6 −4 21 3
−3 7 3 15

 .
Find the Cholesky decomposition of A.
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Chapter 3

Differential equations review

3.1 First order ODE

3.1.1 Theory
Linear equations

Consider the equation

y′ + g(t)y = f(t)

y(0) = y0.

Under certain conditions, this equation has a unique solution. The solution also has an
explicit formula, derived as followed:

e
∫
g(t)dt)y′ + e

∫
g(t)dt)g(t)y = e

∫
g(t)dt)f(t).

That is

d

dt

(
e
∫
g(t)dt)y

)
= e

∫
g(t)dt)f(t).

Hence

y(t) = y0 + e−
∫ t
0 g(u)du

∫ t

0

e
∫ u
0 g(s)dsf(u)du.

Remark: If the iinital condition is y(t0) = y0 for some t0 6= 0 the above approach can
easily be adapted to fit the new initial condition.

Separable equations

Consider the equation

M(x) +N(y)
dy

dx
= 0.
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It can be rewriten as

M(x)dx = −N(y)dy.

Integrating both sides lead to an equation connecting y and x. Note that this does not
directly give y as a function of x.

General form of first order equation

First order ODE generally has the form

dy

dt
= f(t, y).

There is no general method for finding explicit solution for general first order ODE (a
simple example is the equation y′ = e−x

2
). In these cases, we use numerical methods to

find approximation for the solution.

3.1.2 Problems
1. Solve a ) y′ − y = 2te2t, y(0) = 1.

b) y′ + 2y = 2te−2t, y(1) = 0.
c) ty′ + 2y = t2 − t+ 1, y(1) = 1

2
, t > 0.

d)* y′ − 2y = e2t, y(0) = 2.
2. Solve
a) y′ + y2 sinx = 0
b) xy′ =

√
1− y2.

c) y′ = x−e−x
y+ey

.

d)* y′ = x2

1+y2
.

3.2 Second order ODE

3.2.1 Theory
Here we only consider second order ODE with constant coefficients. Consider the IVP:

ay′′ + by′ + cy = f(t)

y(0) = c1, y
′(0) = c2

where a, b, c, c1, c2 are constants. We first focus on finding the general solution y(t) to

ay′′ + by′ + cy = f(t). (3.1)
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The solution to the IVP is found by plugging the initial conditions into y(t). The general
solution y(t) has the form

y(t) = yh(t) + yp(t)

where yh(t) satisfies the homogenous equation

ay′′ + by′ + cy = 0

(yh(t) has two undetermined coefficients) and yp(t) is a particular solution to (3.1). yh(t)
has the form

yh(t) = C1e
λ1t + C2e

λ2t

where λ1, λ2 are roots of the quadratic equation

ax2 + bx+ c = 0.

Note that λ1, λ2 can be complex numbers and thus yh(t) involves the natural exponential,
cosine and sine in its form.

The standard approach to finding yp(t) when f(t) has the form of Pn(t)ect (where c
can be a complex number and Pn(t) is a polynomial of degree n ) is to guess yp(t) =
tsQn(t)ec(t) where Qn(t) is a polynomial of degree n with undetermined coefficients and
s is the smallest integer such that yp(t) does not correpsond to a homogeneous solution.
Not surprisingly, this method is referred to as the method of undertermined coefficients.

In general, consider the linear ODE

y′′ + p(t)y′ + q(t)y = f(t). (3.2)

A particular solution for this ODE is

yp(t) = −y1(t)

∫ t

t0

y2(s)f(s)

W (y1, y2)(s)
ds+ y2(t)

∫ t

t0

y1(s)f(s)

W (y1, y2)(s)
ds,

where t0 y1, y2 are two fundamental homogenous solutions and

W (y1, y2)(t) = y1y
′
2(t)− y2y

′
1(t)

is the Wronskian of y1, y2. This formula is valid in any open interval I over which p, q, f
are continuous. Note that the coefficient of y′′ in (3.2) is 1 which is slightly different from
the form

ay′′ + by′ + c = f(t)

that we were considering so far.
The formula comes from the guess of

yp(y) = u1(t)y1(t) + u2(t)y2(t)
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and after plugging in to obtain

u′1(t) = − y2(t)f(t)

W (y1, y2)(t)

u′2(t) =
y1(t)f(t)

W (y1, y2)(t)
.

This method is due to Lagrange and referred to as variation of parameters.

3.2.2 Problems
1. Solve using undetermined coefficients

a) y′′ − 2y′ − 3y = −3te−t

b) y′′ + 4y = 3 sin(2t)
c)* y′′ + 2y′ + 5y = 4e−t cos(2t), y(0) = 1, y′(0) = 0.
2. Solve using variation of parameters
a) y′′ + 4y′ + 4y = t−2e−2t, t > 0.
b) 4y′′ + y = 2 sec( t

2
),−π < t < π.

c) y′′ − 2y′ + y = et

1+t2
, t > 0.

3. Show that

yp(t) = −y1(t)

∫ t

t0

y2(s)f(s)

W (y1, y2)(s)
ds+ y2(t)

∫ t

t0

y1(s)f(s)

W (y1, y2)(s)
ds,

is a particular solution to

y′′ + p(t)y′ + q(t)y = g(t).

4. The Euler equation is of the form:

x2y′′ + αxy′ + βy = 0.

This is a particular instance of the general form

P (x)y′′ +Q(x)y′ +R(x)y = 0,

where P (x0) = 0 and we seek the solution around a neighborhood of x0.
a) Consider the ansatz x(t) = tr and derive a quadratic equation F (r) = 0 that r has to

satisfy.
b) In the case that the equation F (r) = 0 has two real roots, write down the general

solutions to the Euler equation.
c) In the case that the equation F (r) = 0 has one repeated (real) root r1, F (r) has the

form F (r) = (r − r1)2. Let L be the differential operator in the Euler equation, we have

L(xr) = xrF (r) = xr(r − r1)2.
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r1 is the repeated root of the quadratic F (r) = 0 if and only if F (r1) = F ′(r1) = 0. We
can use this as a suggestion to differentiate the RHS of L(xr) with respect to r and set it
equal to 0. This action can be captured as

∂

∂r
L(xr) =

∂

∂r
[xr(r − r1)2] = 0

On the other hand

∂

∂r
L(xr) = L(

∂

∂r
[xr]) = L(xr lnx).

Thus if r2 is the solution to ∂
∂r

[xr(r − r1)2] = 0 then xr2 lnx is the other solution to the
Euler equation. Find out what this value r2 is.

d) When F (r) = 0 has two complex roots we can use the relation xr = er lnx to write
down the solution using real coefficients. Suppose r = λ ± iµ. Write down the general
solution to the Euler equation.

e) Solve the following Euler equations:

x2y′′ + 4xy′ + 2y = 0

x2y′′ − 3xy′ + 4y = 0

x2y′′ − xy′ + y = 0 ∗ .

5. Method of convolution:
a)* Consider the IVP

y′′ + y = f(t), y(0) = y′(0) = 0.

Show that the solution is y(t) =
∫ t

0
sin(t− s)f(s)ds.

b) Consider the general second order IVP with constant coefficients:

L[y] = (D2 + bD + c)y = f(t), y(0) = 0, y′(0) = 0.

Here D := ∂
∂t

is the first order differential operator and L represents the differential opera-
tor associated with the second order ODE. Assume the solution has the form

y(t) =

∫ t

0

K(t− s)f(s)ds.

Find the equation that K has to satisfy. Conclude that K can be constructed from the
solutions to the homogeneous ODE L[y] = 0. What initial conditions does K have to
satisfy?
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3.3 Linear system of first order ODEs

3.3.1 Theory
We consider the first order system

x′ = Ax + ϕ(t),

where x(t) := (x1(t), x2(t), · · · , cn(t)) and similarly for ϕ(t) are two vectors in Rn.A is a
n × n matrix of constant entries. We note that any n-th order linear ODEs with constant
coefficients where y(t) is the unknown can be converted to a first order system by the
change of variables xi(t) = y(i−1)(t), i = 1, · · · , n.

We first address the homogeneous system

x′ = Ax,

and then return to the solution of the non-homogenous system x′ = Ax + ϕ(t) later.

Homogeneous system

Consider the homogeneous sytem

x′ = Ax

x(0) = c.

The solution for this system can be written generally as

x(t) = eAtc

eAt =
∞∑
n=0

(At)n

n!
.

It is possible to show that eAt is well defined for any square matrix A. One possible draw-
back of this solution is eAt may not be easily computable (via the definition). One special
case is when A is diagonalizable (recall that this is equivalent to A having n independent
eigenvectors). In this case if A = PDP−1

eAt = PeDtP−1,

where eDt is the matrix with entries eDiit on the diagonal. Furthermore, x′ = Ax is

PDeDtP−1c = APeDtP−1c.

Thus if we call c0 = P−1c we see that y = PeDtc0 also satisfies

y′(t) = Ay(t)
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(but with initial condition y(0) = Pc0). This is how the solution to the homogenous system
is usually presented : as veλt where λ is an eigenvalue of A and v the corresponding
eigenvector.

In the case that A is not diagonalizable, we discussed that A = PJP−1 where J is the
Jordan form of A and P is the matrix formed by the chains of generalized eigenvectors of
A. If we denote y = P−1x then y satisfies

y′ = Jy.

Since J is almost diagonal this system is much easier to solve than the original system. In
particular, the individual equations are

y′i(t) = λiyi(t) + εiyi+1(t)

where λi is an eigenvalue and εi is either 0 or 1. On the other hand, it always holds that

y′n(t) = λnyn(t).

Thus we can solve for yn(t) = eλnt and back solve for the other values of yi(t). The solution
then can be obtained from x = Py.

3.3.2 Nonhomogenous system
First consider the system

x′ = Ax + ϕ(t).

From our discussion in the previous section, the matrix A can be decomposed as PDP−1

or PJP−1. Either way, letting y = P−1x and multiplying both sides of the above system
by P−1 we have

y′ = Dy + P−1ϕ(t) or
y′ = Jy + P−1ϕ(t).

These systems are either diagonal so the equations are separated; or almost diagonal in
the Jordan form so the last equation can be solved and then back-substitute to the previous
ones.

Next we consider the general case where the coefficients of A can depend on t:

x′ = A(t)x + ϕ(t).

We introduce the notion of a fundamental matrix Ψ(t), which is a matrix whose columns
consist of the independent solutions to the homogenous equation

x′ = A(t)x.
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That is

Ψ′(t) = A(t)Ψ(t).

From the general theory of ODE (and partially from our previous discussion), it can be
seen that Ψ(t) is an n× n invertible matrix. We now guess that the solution to the original
non-homogenous system has the form

x(t) = Ψ(t)u(t),

and find the equation that u(t) has to satisfied. This is indeed the method of variation of
parameters discussed in the 2nd order ODE section. Plugging in we have

Ψ′(t)u(t) + Ψ(t)u′(t) = A(t)Ψ(t)u(t) + ϕ(t)

Ψ′(t)u(t) + Ψ(t)u′(t) = Ψ′(t)u(t) + ϕ(t).

Thus

Ψ(t)u′(t) = ϕ(t) or
u′(t) = Ψ−1(t)ϕ(t).

Thus u(t) =
∫

Ψ−1(t)ϕ(t)dt and we have

x(t) = Ψ(t)Ψ−1(0)x0 + Ψ(t)

∫ t

0

Ψ−1(s)ϕ(s)ds

as the solution to the IVP

x′ = A(t)x + ϕ(t)

x(0) = x0.

Note how this form is the generalization of the solution to the first order linear ODE (when
n = 1 this is the form we found in that section).

Finally we have the solution form as a convolution:

x(t) = eAtx0 +

∫ t

0

eA(t−s)ϕ(s)ds.

3.3.3 Problems
1. Find the solution to x′ = Ax where

a)

A =

 1 1 1
2 1 −1
−8 −5 −3
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b)*

A =

 1 0 0
2 1 −2
3 2 1


c)

A =

 1 1 1
2 1 −1
−3 2 4

 .
( Here A has an eigenvalue λ = 2 with multiplicity 3 )

2. Find the solution to x′ = Ax + ϕ(t) where
a)

A =

[
2 −1
3 −2

]
; ϕ(t) =

[
et

t

]
.

b)

A =

[
2 −5
1 −2

]
; ϕ(t) =

[
− cos t
sin t

]
.

3. Euler equation : The system tx′ = Ax is the analogy of the second order Euler
equation discussed in the previous section.

a) Convert the Euler equation to the system tx′ = Ax by identifying the matrix A.
b) Assume that the form of the solution is x = vtr, show that (A− rI)v = 0.
4. Solve the system
a)

tx′ =

[
2 −1
3 −2

]
x.

b)

tx′ =

[
3 −2
2 −2

]
x

5. Verify that the given vector is the general solution to the corresponding homogeneous
sytem and solve the non-homogeneous system :

a)

tx′ =

[
2 −1
3 −2

]
x +

[
1− t2

2t

]
x = c1

[
1
1

]
t+ c2

[
1
3

]
t−1.
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b)

tx′ =

[
3 −2
2 −2

]
x +

[
−2t
t4 − 1

]
x = c1

[
1
2

]
t−1 + c2

[
2
1

]
t2.

3.4 Basic numerical techniques for ODEs

3.4.1 Theory
Consider the 1 dimensional IVP

y′(t) = f(t, y)

y(0) = y0.

We want to find approximate values of y(t) on an interval [0, T ]. A class of numerical
techniques, called the finite difference methods, employ the idea of partitioning the interval
[0, T ] into 0 = t0 < t1 < t2 < · · · < tn = T and give the approximate values of
y(ti), i = 0, · · · , n. Note that the partition does not have to be equi-distance, even though
the more basic algorithms assume equal step size. When this is the case the step size is
denoted by h. By the fundamental theorem of calculus:

y(ti+1) = yti +

∫ ti+1

ti

f(s, ys)ds.

The basic idea of numerical techniques is to proceed from i = 0 where y(0) is known and
approximate

∫ ti+1

ti
f(s, ys)ds to obtain an approximation of y(t1) and then repeat the pro-

cedure. Note that aside from time t = 0 at any other time we start from an approximation
of the previous point y(ti) as well as approximate the change y(ti+1) − y(ti) via the inte-
gral. In this way the error accumulates as we progress in time. Thus there are two kinds
of approximating errors one can talk about : local truncation error for approximating the
integral at any local time ti and global truncation error as the total accumulated error once
we arrive at tn = T . Different ways to approximate

∫ ti+1

ti
f(s, ys)ds and different ways

to decide the partition on [0, T ] give rise to different numerical techniques with different
precisions.

Forward Euler method: The simplest approach is to approximate∫ ti+1

ti

f(s, ys)ds ≈ f(ti, y(ti))(ti+1 − ti).

This simply

y(ti+1) = y(ti) + f(ti, y(ti))(ti+1 − ti).
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Backward Euler method: Euler forward method approximates the integral with the left
point. We can also approximate it with the right point leading to

y(ti+1) = y(ti) + f(ti+1, y(ti+1))(ti+1 − ti).

It is important do recognize that in this formula, y(ti) is known and y(ti+1) is unknown and
to be solved for. Unlike the forward method, here y(ti+1) involves solving an equation (
non-linear if f is non-linear in y ). For this reason, the forward Euler method is also referred
to as the explicit method while the backward Euler method is called the implicit method.
This naming convention applies in general to any method where the next grid point needs
to be solved for rather than given explicitly. Even though this adds to the complexity of the
algorithm in the implicit method, it is a rule of thumb that implicit methods are more stable
than explicit methods (and for this reason should be paid attention to).

Improved Euler method: The improved Euler method uses both left and right points to
approximate the integral. That is

y(ti+1) = y(ti) +
1

2

[
f(ti, y(ti)) + f(ti+1, y(ti+1))

]
(ti+1 − ti).

Since y(ti+1) appears on both sides of the equation (and thus needs to be solved for) this is
also an implicit method.

Runge-Kutta method: The Runge-Kutta method uses a weighted average to approxi-
mate the integral

∫ ti+1

ti
f(s, ys)ds. Here for ease of notation we denote h = ti+1 − ti. The

integral is approximated as∫ ti+1

ti

f(s, ys)ds ≈
h

6

(
ki1 + 2ki2 + 2ki3 + ki4

)
,

ki1 = f(ti, y(ti))

ki2 = f(ti +
h

2
, y(ti) +

h

2
ki1)

ki3 = f(ti +
h

2
, y(ti) +

h

2
ki2)

ki4 = f(ti + h, y(ti) + hki3).

The various values of kij, j = 1, · · · 4 can be seen as the approximation of the slope y′(t) at
either the left, mid or right point of the interval [ti, ti+1]. For example, ki1 is the slope at the
left point, ki2 is an approximation of the slope at the mid point using ki1 to approximate the
change y(ti +

h
2
)− y(ti). ki3 is also an approximation of the slope at the mid point but now

using ki2 to approximate the change y(ti+
h
2
)−y(ti). Finally ki4 is an approximation of the

slope at the right point using ki3 to approximate the change y(ti+1)− y(ti). Runge-Kutta is
an explicit method.

A remark on the step size: The methods presented above make no assumption on the
step size ti+1 − ti. The (optimal) choice of step size is a topic in numerical analysis by
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itself. Here we only remark that in general to reduce the error, one would want to choose
small step size if the slope is large and one can afford to choose bigger step size if the slope
is small. As the slope is represented by the absolute value of f(t, y) we can adapt the step
size according to whether f(t, y) is large or small in absolute value. This idea in general is
referred to as adaptive step method.

Multi-step method: The previous methods only use the information of the previous step
(y(ti)) to calculate the value for the next step. The multi-step method uses the values of
more than one previous step to calculate the value of the next one. Recall again that from
the FTC:

y(ti+1) = yti +

∫ ti+1

ti

y′(s)ds.

This time we do not replace y′(s) directly with f(s, y(s)) in the integral. The idea is once
we have the values of y(tj), j ≤ i we also have the values of y′(tj) given by y′(tj) =
f(tj, y(tj)). Thus we can approximate y′(s), ti−k ≤ s ≤ ti by a interpolating polynomial
P i
k of degree k over the most recent k steps. We can then obtain

y(ti+1) = yti +

∫ ti+1

ti

P i
k(s)ds.

Note that the interpolating polynomial depends on i. That is at each step i we need to update
it to reflect the newest information that have been obtained on y(ti). These collection of
methods of approximating y′(t) using interpolating polynomials and then calculate y(ti+1)
are referred to as the Adams method. The Adams method are explicit methods.

Another class of multi-step method (which one may say employ the opposite idea of
the Adams method) is referred to as the backward differentiation method. The idea is at
step i we can approximate y(s), ti−k+1 ≤ s ≤ ti+1 (note the interval) by an interpolating
polynomial Pk of degree k so that P ′(tj+1) = f(tj+1, P (tj+1)) and P (tj) = y(tj), ti−k+1 ≤
ti. These provide a system of equations to solve for Pk. Since y(tj+1) appears implicitly in
the equation for P ′(tj+1) the backward differentiation methods are implicit methods.

Numerical solution for first order system: Consider the system of first order equations

x′ = f(t,x),x(0) = x0.

All of the one-step methods we discussed above can be extended straightforwardly to the
multi-dimensional version. For example, the Euler forward method is

x(ti+1) ≈ x(ti) + ϕ(ti,x(ti))(ti+1 − ti).

The multi-step method can also be extended, but in a less straightforward way so we will
not present them here.

Remark on error estimates: It is important in numerical scheme to know the order
of the error (in terms of the step size) we commit by different acts of approximations,
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both locally (locally at a specific time ti) and globally (from time t0 to tn = T ). The
global error estimate in general is more difficult than local error estimate. As we mentioned
before, it involves both the sum of the local errors plus the accumulated error by using the
approximated values of the previous steps into the next step. The global error estimate only
gets more complex with the adaptive step method. Here we limit ourselves to discuss the
local error estimate of the Euler forward method. Recall that the forward Euler method is

y(ti+1) ≈ y(ti) + f(ti, y(ti))(ti+1 − ti)
= y(ti) + y′(ti)(ti+1 − ti).

This is exactly the first order Taylor series expansion of y. Thus we know the error in this
approximation is y′′(ξ)(ti+1 − ti)2 for ξ ∈ [ti, ti+1]. Note that this error estimate relies on
y′′(t) which we do not have direct information on. Nevertheless, since y′(t) = f(t, y(t))
we do know that

y′′(t) = ft(t, y(t)) + fy(t, y(t))y′(t) = ft(t, y(t)) + fy(t, y(t))f(t, y(t)).

Thus assuming f has bounded partial derivatives and is bounded itself, we can have a
bound on y′′(t) based on f. This analysis shows that the Euler forward method is of the
order O(h2) where h is the step size.

3.4.2 Problems
1. Find the approximating value for y(1) in the following problems, using all the numerical
schemes discussed above. Compare the errors of different methods.

a) y′ = 3 + t− y, y(0) = 1
b) y′ = 5t− 3

√
y, y(0) = 2

c)* y′ = 2t+ e−ty, y(0) = 1
2. Convert the following problem to a first order system and use the one-step numerical

schemes to find the approximate value of x(1) :

x′′ + t2x′ + 3x = t, x(0) = 1, x′(0) = 2.

3.5 Some PDEs overview

3.5.1 Theory
A partial differetial equation (PDE) is an equation that involes the partial derivatives of
a multi-variate function. The variables can be purely spatial (x, y, z) such as the wave
equation or both temporal and spatial (t, x) such as the heat equation. There is no universal
technique to find explicit solution of a PDE (even a linear one). In fact, explicit solution is
rather the exception than the norm when one investigates a PDE. It is also beyond the scope
of this review to investigate into the techniques of explicit solutions of PDE. We present
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in this section the classification of second order PDEs and an example of using the Fourier
series technique to solve for the homogenous heat equation. The heat equation is chosen
because of its connection to financial mathematics.

Classification of second order linear PDEs : A second order linear PDE has the form

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G,

where A,B,C,D,E, F,G are constants. It is second order because the highest partial
derivative has second order. It is linear because a linear combination of solutions to such
an equation is also a solution. We have the following classifications:

a. The equation is elliptic if B2 − 4AC < 0
b. The equation is parabolic if B2 − 4AC = 0
c. The equation is hyperbolic if B2 − 4AC > 0.

Example 3.5.1. The heat equation

ut − kuxx = 0, k > 0

is parabolic. The wave equation

utt − α2uxx = 0

is hyperbolic. The Laplace equation

uxx + uyy = 0

is elliptic.

These classifications are important because the techniques to solve different types of
PDEs are very different. Also, different types of PDEs model different physical phenom-
ena. For example, the parabolic PDEs usually model the temperature of an object (thus it
is called the heat equation) while the hyperbolic PDEs usually model the displacement of
an object from its equilibrium (thus it is called the wave equation). The Black-Scholes
equation is a heat equation.

A particularly useful technique when we look for an explicit solution of a PDE is to
make an ansatz, that is a guess for the functional form of the solution. The guess should
certainly be based on the structure of the equation, for example the wave equation men-
tioned above

uxx + uyy = 0

can be re-written as

uxx = −uyy.
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So it is natural to guess that a form of u(x, y) is

u(x, y) = a(x)b(y), (3.3)

for some function a, b (since then the part of x is unaffacted by differentiation with respect
to y and vice versa). Any solution of u(x, y) in the form (3.3) is referred to as a product
solution of the PDE, and the technique of finding a product solution is called separation of
variables. Lastly the PDE is said to be separable if we can use separation of variables to
find a solution for it.

Example: Find the product solution of

uxx = 4uy.

Sol:
Let u(x, y) = a(x)b(y). Then the equation becomes

axx(x)b(y) = 4a(x)by(y).

That is

axx(x)

4a(x)
=
by(y)

b(y)
.

Since the LHS only depends on x and the RHS only on y, it means that they both equal to
a constant −c. Solving

by
b

= −c

gives b(y) = Ke−cy for some arbitrary constant K. The second order ODE

axx + 4ca = 0

has solution

‘a(x) = c1e
√

2|c|x + c2e
−
√

2|c|x.

if c < 0. If c > 0 then it has solution

a(x) = c1 cos(
√

2cx) + c2 sin(
√

2cx).

Note: For the particular choice c1 = c2 = 1
2

and c1 = −c2 = 1
2

we have sinh(
√

2cx) and
cosh(

√
2cx) as general solution. Thus it is also possible, and indeed common, to express

the general solution when c > 0 in terms of sinh and cosh. Lastly if c = 0 then it has
solution

a(x) = c1 + c2x.
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Heat Equation and Boundary Value Problems (BVPs)

Consider an insulated rod with length L whose temperature at the two ends are always kept
at 0:

u(t, 0) = u(t, L) = 0, t > 0.

Suppose that its initial temperature profile is given by a function f(x):

u(0, x) = f(x), 0 < x < L.

From our derivation of the heat equation above, the temperature u(t, x) of the rod at any
time t and position x is described by the solution to the BVP

ut = kuxx (3.4)
u(t, 0) = u(t, L) = 0, t > 0 (3.5)
u(0, x) = f(x), 0 < x < L. (3.6)

The general solution

We will now solve this BVP. First we look for the solution to the equation

ut = kuxx

without worrying about the boundary and initial conditions. This equation is separable,
that is we make the ansatz

u(t, x) = A(t)B(x).

Note that we have considered this equation in the example of the last section. Plugging in
to the equation we have

At
kA

=
Bxx

B
= −λ,

for some constant λ. Thus A,B satisfy respectively the DEs

At + kλA = 0

Bxx + λB = 0.

The solution for A(t) is

A(t) = Ce−kλt,

for some constant C to be determined. The solution for B(x) depends on the sign of λ and
it is

B(x) = C1x+ C2, λ = 0

B(x) = C1 cos(αx) + C2 sin(αx), λ = α2 > 0

B(x) = C1 cosh(αx) + C2 sinh(αx), λ = −α2 < 0.
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We now consider the boundary condition. u(t, 0) = u(t, L) = 0 implies

A(t)B(0) = A(t)B(L) = 0.

Since A(t) is not the zero function, we conclude that B(0) = B(L) = 0 and note that B(x)
solves the regular Sturm-Liouville problem

Bxx + α2B = 0

B(0) = B(L) = 0.

The condition B(0) = B(L) = 0 implies that λ = α2 > 0 and

B(x) = C1 cos(αx) + C2 sin(αx)

since the other two possibilities of λ also forcesB(x) = 0, which again implies u(t, x) = 0.
The condition B(0) = 0 implies C1 = 0. The condition B(L) = 0 implies

sin(αL) = 0.

Thus (recalling that we have the freedom to choose what λ = α2 is)

α =
nπ

L
,

for some natural number n. For each choice of α = nπ
L

, it is conceivable that we have a
different corresponding constant Cn

2 . That is we have a family of solution

Bn(x) = Cn sin(
nπ

L
x).

Since the boundary condition is homogeneous, the sum of solutions is a solution and thus
the general solution to the DE:

Bxx + α2B = 0

B(0) = B(L) = 0

is

B(x) =
∞∑
n=1

Cn sin(
nπ

L
x).

Thus the general solution to the heat equation, considering only the boundary condition is

u(t, x) =
∞∑
n=1

Cne
−k n

2π2

L2 t sin(
nπ

L
x).

(The constant C in the general solution of A(t) is absorbed into the Cn in the above repre-
sentation).
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Remark: As t → ∞, each term of the series converges to 0. Thus we may believe that
u(t, x)→ 0 as t→∞ (we need to justify exchanging the limit and the summation to make
it rigorous). This agrees with our intuitition that the temperature of the rod converges to 0
everywhere due to the fact that the two ends are kept at constant 0 degree.

The condition u(0, x) = f(x) implies

∞∑
n=1

Cn sin(
nπ

L
x) = f(x).

That is C ′ns are the Fourier coefficients in the half-range expansion of f(x) on the interval
[0, L] using the sine series. A standard result from Fourier series gives :

Cn =
2

L

∫ L

0

f(x) sin(
nπ

L
x)dx.

Thus the solution to the heat equation (3.4) is

u(t, x) =
∞∑
n=1

( 2

L

∫ L

0

f(x) sin(
nπ

L
x)dx

)
e−k

n2π2

L2 t sin(
nπ

L
x).

An example

Consider the heat equation

ut = uxx

u(t, 0) = u(t, π) = 0, t > 0

u(0, x) = 1, 0 < x < π.

The Fourier coefficient Cn is

Cn =
2

π

∫ π

0

sin(nx)dx =
2

π

−1− (−1)n

n
.

That is

u(t, x) =
2

π

∞∑
n=1

−1− (−1)n

n
e−n

2t sin(nx).

3.5.2 Problems
1. Find the product solutions of :

a) The wave equation : utt − α2uxx = 0.
b) The Laplace equation : uxx + uyy = 0.
2. Use the Fourier techniques to solve for
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a)

ut = uxx

u(t, 0) = u(t, π) = 0, t > 0

u(0, x) = x, 0 < x < π.

b)

ut = 4uxx

u(t, 0) = u(t, π) = 0, t > 0

u(0, x) = sinx, 0 < x < π.

3.6 Finite difference method for the heat equation
In this section we discuss the finite difference methods for numerical solution of a heat
equation. The idea behind finite difference methods is to replace the differential operators
in a PDE with their finite difference approximations. Finite difference methods in PDE
naturally involve matrix multiplication and / or solution of linear systems. This is where
it connects back to the linear algebra theory and numerical linear algebra that we touched
upon in the linear algebra review.

3.6.1 Theory
Forward difference method of the heat equation

Consider the heat equation

ut = α2uxx

u(t, 0) = u(t, L) = 0, t > 0

u(0, x) = f(x), 0 < x < π.

Let (∆t,∆x) be the step sizes in the (t, x) direction. At a point (ti, xj) we have

ut(ti, xj) ≈
u(ti + ∆t, xj)− u(ti, xj)

∆t

uxx(ti, xj) ≈
u(ti, xj + ∆x)− 2u(ti, xj) + u(ti, xj −∆x)

∆x2

These are the forward difference and central difference formulae we discussed before in
numerical differentiation. Plugging these approximations into the heat equation we have:

u(ti + ∆t, xj)− u(ti, xj)

∆t
= α2u(ti, xj + ∆x)− 2u(ti, xj) + u(ti, xj −∆x)

∆x2
.
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Because the initial condition u(0, x) = f(x) is given, we can start at time t0 = 0 and
use the above formula to find u(t1, xj), j = 1, · · · , N − 1 and then repeat the procedure.
Specifically :

u(ti + ∆t, xj) = u(ti, xj) +
α2∆t

∆x2

(
u(ti, xj + ∆x)− 2u(ti, xj) + u(ti, xj −∆x)

)
,

1 ≤ j ≤ N − 1.

Note that if we define x0 = 0 and xN = L then the above scheme is only applicable for
1 ≤ i ≤ N. We impose u(ti, x0) = u(ti, xN) = 0 to satisfy the boundary conditions. We
can organize the information of u(ti, xj), 1 ≤ j ≤ N − 1 into a vector ui :

ui =


u(ti, x1)
u(ti, x2)

...
u(ti, xN−2)
u(ti, xN−1)

 .

Note that the elements are u(ti, x0), u(ti, xN) are not incorporated into the vector ui be-
cause they are forced by the boundary conditions. The forward scheme becomes:

ui+1 = Aui,

where

A =


a b 0 · · · 0
b a b · · · 0

0
. . . . . . . . . 0

... · · · · · · · · · ...
0 0 · · · b a

 ,

a = 1− 2λ, b = λ, λ =
α2∆t

∆x2
.

Thus A is a tridiagonal matrix that we discussed before. Note how A incorporates the
boundary conditions with the first and last row :

u(ti + ∆t, x1) = λu(ti, x0) + (1− 2λ)u(ti, x1) + λu(ti, x2)

= (1− 2λ)u(ti, x1) + λu(ti, x2)

since u(ti, x0) = 0 and

u(ti + ∆t, xN−1) = λu(ti, xN−2) + (1− 2λ)u(ti, xN−1) + λu(ti, xN)

= λu(ti, xN−2) + (1− 2λ)u(ti, xN−1)
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since u(ti, xN) = 0.
Stability of the forward finite difference scheme: We have

un = Anu0,

and thus if An is not “well-behaved" for large n the scheme is not stable. The matrix A
is diagonalizable, and thus we see if it has an eigenvalue with absolute value larger than 1
then An possibly has some large entries that can cause issue. In particular, recall problem
10 in section 2 of the Linear Algebra review:

The forward Euler finite difference scheme for the heat PDE corresponds to the tridi-
agonal matrix A(i, i) = 1 − 2λ,A(i, i + 1) = A(i, i − 1) = λ, λ > 0. The scheme is
convergent if and only if

‖A‖2 := max |λi| < 1.

Show that this condition is satisfied if and only if 0 < λ ≤ 1
2
.

This is equivalent to

α2∆t

∆x2
≤ 1

2

or ∆t ≤ ∆x2

2α2 . Suppose we choose ∆x = 0.01 and α = 1. The stability condition implies
∆t = 0.005. This is a very small step size (and much smaller if ∆x is even smaller). Thus
it may take many iterations for the forward difference scheme to “arrive" at the desired time
for the solution.

Backward finite difference method for the heat equation

Just as in the ODE case we can approximate ut via a backward difference formula rather
than a forward one:

ut(ti, xj) ≈
u(ti, xj)− u(ti −∆t, xj)

∆t
.

The central difference formula for uxx is the same. Plugging into the heat equation :

u(ti, xj)− u(ti −∆t, xj)

∆t
= α2u(ti, xj + ∆x)− 2u(ti, xj) + u(ti, xj −∆x)

∆x2
.

That is :

u(ti −∆t, xj) = u(ti, xj) +
α2∆t

∆x2

(
− u(ti, xj + ∆x) + 2u(ti, xj)− u(ti, xj −∆x)

)
,

1 ≤ j ≤ N − 1.

Or

u(ti, xj) = u(ti + ∆t, xj) +
α2∆t

∆x2

(
− u(ti + ∆t, xj + ∆x) + 2u(ti + ∆t, xj)

− u(ti + ∆t, xj −∆x)
)
, 1 ≤ j ≤ N − 1.
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Here u(ti, xj) is known and u(ti + ∆t, xj) is to be solved for. In terms of the matrix
representation we have:

ui = Aui+1,

where

A =


a b 0 · · · 0
b a b · · · 0

0
. . . . . . . . . 0

... · · · · · · · · · ...
0 0 · · · b a

 ,

a = 1 + 2λ, b = −λ, λ =
α2∆t

∆x2
.

At each step we need to solve for ui+1 using the information of ui, starting with u0 as given
by f(x). Note also how A incorporates the boundary conditions with the first and last row :

u(ti, x1) = −λu(ti + ∆t, x0) + (1 + 2λ)u(ti + ∆t, x1)− λu(ti + ∆t, x2)

= (1 + 2λ)u(ti + ∆t, x1)− λu(ti + ∆t, x2)

since u(ti, x0) = 0 and

u(ti, xN−1) = −λu(ti + ∆t, xN−2) + (1 + 2λ)u(ti + ∆t, xN−1)− λu(ti + ∆t, xN)

= −λu(ti + ∆t, xN−2) + (1 + 2λ)u(ti + ∆t, xN−1)

since u(ti, xN) = 0.
Stability: We have

un = (A−1)nu0,

Similar to the discussion above, and recalling Problem 11 in Section 2 of the Linear algebra
review: The backward Euler finite difference scheme for the heat PDE corresponds to the
tridiagonal matrix A(i, i) = 1 + 2λ,A(i, i+ 1) = A(i, i− 1) = −λ, λ > 0. The scheme is
convergent if and only if

‖A−1‖2 := max |λi| < 1,

where A−1 is the inverse of A.
a) Show that the discretization matrix A is indeed invertible.
b) Show that the convergence condition is satisfied for any λ > 0.
We see that the backward difference scheme is always stable. Thus in this way it is

preferable to the forward scheme.
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On other boundary conditions

The above forward and backward scheme incorporates the homogeneous Dirichlet bound-
ary condition u(t, 0) = u(t, L) = 0. One can incorporate nonhomogeneous Dirichlet
boundary condition : u(t, 0) = g(t), u(t, L) = h(t), as well as Neumann boundary condi-
tion: ux(t, 0) = g(t), ux(t, L) = h(t). Here we discuss the Neumann condition implemen-
tation and leave the nonhomogeneous Dirichlet condition as an exercize.

One needs to use central difference approximation for Neumann boundary condition
instead of forward or backward difference approximation. That is

ux(ti, xi) ≈
ux(ti, xi+1)− ux(ti, xi−1)

2∆x
.

The reason is because we used the central difference formula to approximat uxx. This in-
volves a second order Taylor approximation. If we use the first order Taylor approximation
for ux at the boundaries, this will be inconsistent and leads to inaccuracies in the solution
(in fact it will lead to the wrong solution as we shall see). Put in another way, if we were to
use

ux(ti, xi) ≈
ux(ti, xi+1)− ux(ti, xi)

∆x
,

the error term is of the form 1
2
uxx(ti, ξ)∆x. But uxx is a term that appears in our equation

and thus should not appear in the error term.
The central difference approximation naturaly involves the points u(ti, x−1) and u(ti, xn+1).

We refer to these as ghost points. They are values on the imaginary grid points that help
us compute the values of u(ti+1, x0) and u(ti+1, xn) at the next time step using the same
three-point stencil scheme as elsewere in the grid. Here again we see why the central differ-
ence approximation must be used. Inspecting the scheme we see that the scaling factor is λ
which is O( 1

(∆x)2
). When λ is multiplied with a central difference approximation it leaves

an error of order ∆x. But if λ is multiplied with a forward or backward difference approx-
imation it leaves error of a constant order. Since the ghost points are used to compute the
values on the boundary in the next iteration, they are multiplied by λ and thus if the error
is not of the right order, it will “contaminate" the error involved in the uxx approximation.

We’ll leave it for the reader to verify that for the homogeneous Neumann condition
ux(t, 0) = ux(t, L) = 0, the forward method is

ui+1 = Aui,

where

A =


1− 2λ 2λ 0 · · · 0
λ 1− 2λ λ · · · 0

0
. . . . . . . . . 0

... · · · · · · · · · ...
0 0 · · · 2λ 1− 2λ

 ,
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For the homogeneous Neumann problem, the backward method is

ui = Aui+1,

where

A =


1 + 2λ −2λ 0 · · · 0
−λ 1 + 2λ −λ · · · 0

0
. . . . . . . . . 0

... · · · · · · · · · ...
0 0 · · · −2λ 1 + 2λ

 .

One can verify that the first order approximation for the homogeneous boundary con-
dition leads to

A =


1− λ λ 0 · · · 0
λ 1− 2λ λ · · · 0

0
. . . . . . . . . 0

... · · · · · · · · · ...
0 0 · · · λ 1− λ

 ,

for the forward method and

A =


1 + λ λ 0 · · · 0
λ 1− 2λ λ · · · 0

0
. . . . . . . . . 0

... · · · · · · · · · ...
0 0 · · · λ 1 + λ

 ,
for the backward method. We can verify that the first order approximation leads to the
wrong solution by checking that the numerical solution for the problem

ut = uxx

ux(t, 0) = 0, ux(t, π) = 0, t > 0

u(0, x) = sinx, 0 < x < π

converges to u(t, x) = 0 as t→∞.

3.6.2 Problems
1. Consider the heat equation

ut = uxx

u(t, 0) = u(t, 1) = 0, t > 0

u(0, x) = cos(
πx

∆x
), 0 < x < π.
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where ∆x = 0.01. (The initial condition is rather artificial because ∆x has to be given
apriori. Nevertheless it demonstrates the stability of the forward backward scheme).

a) Use the forward scheme with ∆t = 0.01 to find u(T, xj) where T = 2. What is your
observation?

b) Use the backward scheme with ∆t = 0.01 to find u(T, xj) where T = 2. What is
your observation?

c) Find an appropriate ∆t to implement the forward scheme. What is your observation?
2. Consider the heat equation

ut = uxx

u(t, 0) = u(t, π) = 0, t > 0

u(0, x) = 1, 0 < x < π.

We have given a Fourier series solution to this equation above. Use either the forward
scheme and backward scheme and compare the numerical solution you found with the
Fourier series solution.

3*. Consider the heat equation

ut = uxx

ux(t, 0) = a, ux(t, L) = b, t > 0

u(0, x) = f(x), 0 < x < L.

This equation is given with non-homogeneous Dirichlet condition. Discuss how you can
adapt the above schemes to this problem. Apply the scheme(s) to solve for the PDE nu-
merically

ut = uxx

u(t, 0) = 1, u(t, π) = 0, t > 0

u(0, x) = sinx, 0 < x < π.
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Chapter 4

Probability review

4.1 Theory

4.1.1 Probability and Events
Events and their properties

Consider an experiment where we toss a coin twice. All the possible outcomes are

{TT}, {HH}, {TH}, {HT}.

We call these (elementary) events. The events have the following properties:
a. The union of two events is an event:

{TT} ∪ {TH} = {First toss is T}.

b. The intersubsection of two events is an event:

{First toss is T} ∩ {Second toss is T} = {TT}.

c. The complement of an event is an event:

{TT}c = { At least one of the toss is H}.

Note: In everyday language, union corresponds to OR, intersubsection corresponds to
AND, complement corresponds to NOT.

Suppose we toss a coin n times. It is not difficult to see that that more generally we
have the followings:

a’. The union of finitely many events is an event: The event {First toss is T} is the
union of finitely many events where each of them has the form {T · · · }.

b’. The intersubsection of finitely many events is an event: The event {All tosses are T}
is the intersubsection of n events where each of them has the form { The nth toss is T}.

Suppose we toss a coin indefinitely. Then we have the followings:
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a”. The union of (countably) infinitely many events is an event: The event {We eventually see a T}
is the (countable) union of events of the form { The nth toss is T, n = 1, 2 · · · }.

b”. The intersubsection of (countably) infinitely many events is an event: The event
{All the even toss is T} is the (countable) intersubsection of events of the form { The nth toss is T, n =
2, 4, 6 · · · }.

Terminology: When two events have nothing in common (their intersubsection is ∅, the
empty set) we say they are mutually exclusive. For example, the two events {First toss is H}
and {First toss is T} are mutally exclusive.

Abstractly, we use capital letters at the beginning of the alphabet: A,B or E1, E2 · · ·
to denote an event. We also see that in the examples above, an outcome (or an elementary
event) is an event that has no sub-event contained in it (in other words, a smallest possible
event).

Probability

The union of all possible outcomes is an event, (the universal event, also called the sample
space), which we denote by Ω. Then all events are subsets of Ω. We assign a probability,
which is a number between 0 and 1, on each event. The probability then is nothing but a
mapping from the set of events to the interval [0, 1]. Intuitively, this mapping should satisfy
the following property:

a. The probability of the union of all outcomes is 1: P (Ω) = 1.
b. The probability of the empty set is 0: P (∅) = 0.
c. The probability of the union of two mutually exclusive events is the sum of the

individual probability of each event: If A ∩B = ∅ then P (A ∪B) = P (A) + P (B).
From c, we have the following inclusion - exclusion principle: For any eventsA,B (not

necessarily mutually exclusive)

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Exercise: Prove the inclusion - exclusion principle.
Using a,b,c one can come up with more probability identity, for example P (Ac) =

1− P (A) etc.
When assigning probability, besides a,b,c, we also use the following “commonsense"

principle: outcomes that are equally likely have the same probability. For example, if a coin
is fair, then all outcomes {TT}, {HH}, {TH}, {HT} are equally likely. Now applying a
and c, we see easily that each of them should have probability equals 1/4.

Examples

Example 4.1.1. We toss a coin twice. The probability that we get at least 1 tail is

P ({TT} ∪ {TH} ∪ {HT}) =
3

4
.
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The probability that we get no tail is

P ({HH}) =
1

4
.

Example 4.1.2. Combinatorics Suppose an urn has 2 white balls and 3 red balls. We pick
out (without replacement) 2 balls. What is the probability that the 2 balls are red?

Ans: Here we need to see what the sample space is. It is all possible ways we can pick
out 2 balls from the urn. What is the event of interest? It is all possible ways we can pick 2
red balls form the urn. Since each outcome from our pick is equally likely (by equally likely
outcome here we mean suppose we number all the balls from 1 to 5, then the possibility
we pick out balls 1,2 is the same as the possibiltiy we pick out balls 4,5), the probability of
interest is just the ratio of the size of the event with the size of the sample space.

Concretely, the number of ways we can pick 2 balls out of 5 balls is
(

5
2

)
= 10. The

number of ways we can pick 2 red balls is
(

3
2

)
= 3. So the probability is 3

10
.

4.1.2 Conditional probability and independent events
Conditional probability

Suppose we toss a coin twice. What is the probability that we get 2 tails? From the above,
it’s 1

4
. Suppose, however, that you know the additional information that the first toss is a

tail. We ask the same question: what is the probability that we get 2 tails? Clearly it’s
no longer 1

4
, because for you, the set of all possible events have changed. Namely, the

outcomes {HH}, {HT} are no longer possible.
Concretely, the set of all possible outcomes now are:

{TT}, {TH}.

Thus the probability that you get 2 tails is 1
2
. We say: the probability that we get 2 tails,

conditioned on the first toss being a tail, is 1
2
.

Definition 4.1.3. Let A,B be events. If P (A) > 0, the probability of B conditioned on A,
or B given A, denoted P (B|A), is defined as:

P (B|A) =
P (B ∩ A)

P (A)
.

The interpretation is that we have already had the knowledge that A happened. So the
probability of the event B happening, given that A has happened, should be calculated as
given in the definition.

Remark 4.1.4. If P (A) = 0 then we cannot use the above formula to define P (B|A).
There is a way around it, using the measure theoretic definition of conditional expectation,
and the notion of regular conditional probability. We’ll discuss this later on in Lecture 1b.
See also the discussion on conditional density in Lecture 1b.
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Example 4.1.5. We toss a die. What is the probability that we get a 6, given that we know
the toss is even?

Ans: Let A be the event that we get an even toss, B the event that we get a 6 (when
you get used to this, you don’t have to explicitly name out the events). Then P (A) = 1/2,
P (A ∩B) = P (B) = 1/6. Thus P (B|A) = 1/3.

Bayes’ rule

From the definition of conditional probability, we have

P (B|A)P (A) = P (B ∩ A).

It is clear that

P (A|B) =
P (B ∩ A)

P (B)
.

Therefore, we conclude

P (A|B) =
P (B|A)P (A)

P (B)
.

This formula is called the Baye’s rule. At first glance this is pure mathematical manip-
ulation. But it has an important implication: that of switching what we conditioned on. An
example would illustrate what this means.

It is well-known that medical test is not 100% reliable. That is suppose you test for
a disease, which has 1% chance of happening, then even if the test comes out negative, it
doesn’t mean you have 0% of contracting the disease. Instead, with a very small probability,
it could be a false negative. Concretely, suppose that if you indeed have the disease, then
there is 98% chance that the test comes out positive, and 2% negative. However, suppose
you don’t have the disease, there is 95% chance the test comes out negative, and 5% chance
it comes out positive. Now you go for the test, and it comes out negative. What is the
probability that you contract the disease?

Ans: Let A be the event that you contract the disease and B be the event that the test is
positive. Then we have

P (B|A) = .98, P (Bc|A) = .02, P (B|Ac) = .05, P (Bc|Ac) = .95.

The question asks for P (A|Bc). Thus you see how Bayes’ rule is appropriate for the
situation. Can you figure out what it is?

Independent Events

Definition 4.1.6. Two events A and B, are said to be independent if P (A|B) = P (A) and
P (B|A) = P (B).
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Remarks: If P (A|B) = P (A) then P (B|A) = P (B∩A)
P (A)

= P (A|B)P (B)
P (A)

= P (B). Thus
we actually need one of the two equalities given above for the definition of 2 independent
events.

Interpretation: Intuitively, two events are independent if the knowledge of one event
already happened does not influence the probability of the other happening, hence the def-
inition.

Alternatively, one can define A and B to be independent if P (A ∩ B) = P (A)P (B).
You should check that this is equivalent to the condition P (A|B) = P (A) given in the
definition. So in fact one have two possible ways to define what it means for 2 events to be
independent. The interpretation of the equality P (A ∩ B) = P (A)P (B) is not very clear
(at least to me) so I prefer to use the other equality for definition of independence.

4.1.3 Random variables
Definition

In an experiment, we have (random) outcomes. We can give them names (for example
tossing a coin twice, we can get HH,TT · · · ). Each of these have some weight attached to
them, i.e. their probability ( in the coin toss example, 1/4 for each). However, we cannot do
computations with these outcomes unless we give them some numerical values. A random
variable is a way to quantify the random outcomes in a meaningful manner. We use capital
letters at the end of the alphabet: X, Y, Z, to denote random variables.

Formally, a random variable (from now on abbreviated as RV) X is a mapping from the
set of outcomes to the real line (R) such that all sets of the form {X ∈ [a, b]} are events.
That is, we can assign probability to these sets.

Example 4.1.7. Let X be a random variable corresponding to a coin toss. That is X = 1
is the coin turns up H and X = 0 if the coin turns up T . Then we can see that P (X =
1) = P (X = 0) = 1/2.

Note: There is no reason why 1 has to be assigned to H and 0 assigned to T . One
can assign a different value to these outcomes and get a different variable, as suited one’s
purpose. For example, the RV Y such that Y = 1 if the coin is H nd Y = −1 if the coin is
T is also an example of a RV.

Example 4.1.8. LetX be a random variable that corresponds to the time one has to wait at
the Hill Center’s bus stop before one can catch a bus to College Ave. Suppose that the bus
arrives every 15 minutes, and they arrive uniformly during any time frame. The we see that
P (a < X < b) = b−a

15
, for 0 ≤ a ≤ b ≤ 15. Also one should observe that P (X = a) = 0

for any a ∈ [0, 15] (the probability that one waits exactly 7 minutes before the bus arrives
is 0).
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Discrete versus continuous RVs

In probability theory, one distinguishes between discrete and continuous RVs (note that
these are not the only types of RVs there are. One can have a mixed RV as well). Roughly
speaking, a discrete RV takes values on a discrete set (for example, the natural numbers is
a discrete set, so is {1, 2, 3, 4, 5}). Moreover, if X is a discrete RV then P (X = x) > 0,
where x is in the range of X . Examples of discrete RVs that you may have learned are: the
Binomial, the Geometric, the Hypergeometric, the Poisson.

A continuous RV, on the other hand, takes values on an interval (or several intervals).
Moreover, if X is a continuous RV then P (X = x) = 0, even if x is in the range of X .
Examples of continuous RVs that you may have learned are: the Exponential, the Normal,
the Uniform, the Gamma, the Cauchy.

Probability distribution, pdf, cdf

Discrete RV:
To characterize a discrete RV, we use the probability distribution function. It gives the

formula for the probability that the RV takes some specific value. For example, if X has
Bionimial(n,p) distribution, then P (X = k) =

(
n
k

)
pk(1− p)n−k is the distribution function

of X .
Continuous RV : To characterize a continuous RV, we use the probability density func-

tion (pdf). The pdf does not give a probability itself, but it is connected to a probability via
the following formula:

P (X ≤ x) =

∫ x

−∞
fX(u)du,

where fX above is the pdf of the RV X .
Cdf:
Both continuous and discrete RVs can also be described via the cumulative distribution

function, which gives the formula for the probability that the RV is less than or equal to
some value:

FX(x) = P (X ≤ x).

Note that if X is a continuous RV, then FX is differentiable, and its derivative is the
density function fX .

The moments

Discrete RV :
Let X be a discrete RV. Then its first moment, the Expectation, is defined as:

E(X) =
∑
n

nP (X = n),

where the sum is understood to be taken over all values in the range of X .
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It can be showed (note: not a definition) that for any function f , the expectation of the
RV f(X) is

E(f(X)) =
∑
n

f(n)P (X = n).

In particular, we have the kth moment of X is E(Xk) =
∑

n n
kP (X = n).

Continuous RV :
For a continuous RV X , we define the expectation as:

E(X) =

∫ ∞
−∞

xfX(x)dx.

More generally, for any function g, we have

E(g(X)) =

∫ ∞
−∞

g(x)fX(x)dx.

Variance, covariance, correlation :
Let X be a RV. We then define its variance as

V ar(X) = E
[
(X − E(X))2

]
= E(X2)− E2(X).

The variance measures how “spread out" the RV is from its mean.
Let X, Y be RVs. We define their covariance as

Cov(X, Y ) = E
[
(X − E(X))(Y − E(Y ))

]
= E(XY )− E(X)E(Y ).

The covariance measures how “correlated" two RVs are with respect to each other. There
is a catch, two different pair of RVs may have the same degree of correlation, but their
covariance may be very different. For example, it is clear that

Cov(X,X) = V ar(X).

Intuitively, the degree of "correlation" between X and X , versus 100X and 100X should
be the same (they are perfectly correlated in each case). However, you can easily check
that Cov(100X, 100X) = 10000Cov(X,X). Thus we need to introduce another quantity
that measures only the correlation and not affected by scaling of the RVs. That is the
correlation:

Let X, Y be RVs. We definte their correlation as

Corr(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

.
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Joint distribution, joint pdf

When we have 2 RVs X, Y , besides describing each individual distribution of X, Y , we
also need to know how they interact together. The joint distribution (in the discrete case) or
the joint pdf (in the continuous case) gives us this information. In fact, to calculate E(XY )
in the Covariance formula we would need to use the joint distribution of X, Y .

a. Discrete: Let X, Y be discrete RVs. Then the joint distribution of X, Y is P (X =
x, Y = y).

b. Continuous: Let X, Y be continuous RVs. Then their joint pdf, denoted fX,Y (x, y)
is such that

P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dudv.

Some elementary properties:
a. ∑

x,y

P (X = x, Y = y) = 1.

b. ∫ ∞
−∞

∫ ∞
−∞

fX,Y (u, v)dudv = 1.

c. Discrete:
E(XY ) =

∑
x,y

xyP (X = x, Y = y).

d. Continuous:
E(XY ) =

∫ ∞
−∞

∫ ∞
−∞

uvfX,Y (u, v)dudv.

More generally
e. Discrete:

E(g(X, Y )) =
∑
x,y

g(x, y)P (X = x, Y = y).

f. Continuous:

E(g(X, Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(u, v)fX,Y (u, v)dudv.

Independence

Two random variables X, Y are independent if all events they generated are independent.
More specifically, X, Y are independent if for all x, y:

P (X ≤ x, Y ≤ Y ) = P (X ≤ x)Y (≤ y).

An easier criterion to check is if the joint distribution “splits", i.e.

P (X = x, Y = y) = P (X = x)P (Y = y)( discrete), or
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fXY (x, y) = fX(x)fY (y) (continous) .

An important property is that if X, Y are independent then E(XY ) = E(X)E(Y ).
Note that, the reverse implication is not generally true. That is E(XY ) = E(X)E(Y )
does NOT imply that X, Y are independent. See the following example.

Example 4.1.9. LetX have the following distribution: P (X = 1) = P (X = 0) = P (X =
−1) = 1/3, and let Y = X2. Then it is clear that X, Y are NOT independent (you should
try to show this using the definition of independence). However, we can also easily check
that

E(XY ) = E(X)E(Y ) = 0.

4.1.4 Conditional expectation
Conditional distribution, conditional density

We have discussed conditional probability P (A|B), which is the probability that A hap-
pened given the knowledge that B has happened. In a similar way, for 2 RVs X, Y , we can
talk about the probability that X takes some value x given that we know Y has taken some
y. If X and Y are correlated in some way, the fact that we have seen Y taking some value
should change the probability that X taking value x. Formally, we define, for 2 discrete
RVs X, Y

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
.

For continuous RVs, we cannot talk about the probablity thatX takes some value, given
that we have observed Y taking some value. The reason is the probability that Y taking
some value is 0, since it is a continuous RV. This poses a slight problem, since in reality, we
always observe Y taking some particular value, even if it is a continuous RV (think about
the amount of time you wait for the bus to arrive, for example. You always have to wait a
particular amount of time until the bus arrives, even if the probability that the continuous
random variable representing the time you wait taking that particular value is 0). So for
continuous RVs, we talk about the conditional density instead. Formally, we define, for 2
continuous RVs X, Y

fX|Y (x|y) =
fXY (x, y)

fY (y)
.

Remark: In the two formulas above, we think of y as fixed, and x as taking any possible
values in the range of X . Thus the conditional distribution, or conditional density, is a
function of x, given a fixed value y. Moreover, for a fixed y, the conditional distribution
(or probability density), is a probability distribution (or density). That is∑

x

P (X = x|Y = y) = 1; (4.1)∫ ∞
−∞

fX|Y (x|y)dx = 1. (4.2)
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Proof. Left as an exercise.

Conditional probability and conditional expectation

Discrete : Let X, Y be discrete RVs. The conditional probability P (X = i|Y = j) was
defined naturally using the definition of conditional expectation as above. Note that we also
have

P (X ≤ k|Y = j) =
∑
i≤k

P (X = i|Y = j).

In this way, for every y, conditioned on Y = y, P (X < a|Y = y) is a proper cumulative
distribution function, even though P (Y = y) = 0. This is related to the notion of regular
conditional probability distribution, discussed below.

We define the conditional expectation of X , given Y = y as

E(X|Y = y) =
∑
x

xP (X = x|Y = y).

Continuous :
Let X, Y be continuous RVs. Note that we can NOT define P (X < a|Y = y) using

the definition of conditional expectation, because P (Y = y) = 0. However, we can define
it as followed:

P (X < a|Y = y) =

∫ a

−∞
fX|Y (x|y)dx.

We define the conditional expectation of X , given Y = y as

E(X|Y = y) =

∫ ∞
−∞

xfX|Y (x|y)dx.

Interpretation: Besides the fact that conditional expectation is the average (or mean)
value of X given Y = y, it is also the best guess of X given Y = y, in some precise sense
that we will discuss below.

Remark: Note that in these definitions, E(X|Y = y) is a real number. This will be
constrasted with E(X|Y ), which is a RV , the definition of which is given below.

Abstract definition of conditional expectation

The above definitions of E(X|Y = y), while useful, is rather restrictive. It is because
we do not have to observe the value of Y to be able to talk about the expectation of X
conditioned on Y in a meaningful way. An example will explain. It is clear that the stock
price of today depends on the stock price of yesterday (for simplicity let’s suppose that
stock price only changes discretely from day n to day n + 1). Suppose we are at day 0,
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which is today, and we want to discuss our “expectation", or our best guess, of the stock
price on day n + 1, the guess being made on day n. It is clear that on day n, we have the
knowledge of the stock price of that day, say Sn. So what we’re asking for is E(Sn+1|Sn).
Since we are still at day 0, we do not know what value Sn is, it is a RV to us. However, to
discuss our action on day n, in anticipation of day n+ 1, it is necessary that we make sense
of the notion E(Sn+1|Sn). Thus we need an abstract definition of conditional expectation,
one that doesn’t require us to plug in an observed value for the RV being conditioned on.
We will als refer to this as the measure theoretic definition of conditional expectation.

Definition 4.1.10. Let X, Y be RVs. The conditional expectation E(X|Y ) is a function of
Y , such that for any function g, we have

E
[
E(X|Y )g(Y )

]
= E

[
Xg(Y )

]
.

Remark: Note that in contrast with the above, as we already said, E(X|Y ) is a RV,
since it is a function of Y (in some trivial case it could be the constant function, but this
does not happen usually). The interpretation of the equality in the definition is that as far as
taking expectation with respect to function of Y , it does not matter if we use the conditional
expectation E(X|Y ) or X itself. Thus the conditional expectation E(X|Y ) is a guess of
X , in terms of the random variable Y , which satisfies some “indifference" property in terms
of expectation.

Perhaps a more satisfactory property ofE(X|Y ) is that not only it is a guess ofX given
Y , it is the best guess of X given Y in the following sense:

Lemma 4.1.11. Let X, Y be RVs. Then for any function g we have

E
(

[E(X|Y )−X]2
)
≤ E

(
[g(Y )−X]2

)
.

Proof. Left as an exercise.
Some elementary properties :
The definition (4.1.10) unfortunately does not, most of the time, give us an easy way to

compute whatE(X|Y ) is. So the followings are some elementary properties of conditional
expectation that will help us do that. You should try to prove these properties yourself.

a. E(E(X|Y )) = E(X).

b. E(aX + bY |Z) = a(EX|Z) + bE(Y |Z), a, b constant .

c. If X is independent of Y then

E(X|Y ) = E(X).

d. For any function g,

E(g(Y )X|Y ) = g(Y )E(X|Y ).
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e. The independence lemma: If X is independent of Y then for any function g

E
[
g(X, Y )|Y

]
= E

[
g(X, y)

]
|y=Y .

(Properties f and g are not used in this course except in the discussion of regular con-
ditional probability. You can skip these.)

f. If Xn ≥ 0, Xn ↑ X then E(Xn|G) ↑ E(X|G).

g. If X ∈ L2(Ω,F , P ) then E(X|G) is the orthogonal projection of X onto the sub-
space L2(Ω,G, P ) in the Hilbert space L2(Ω,F , P ) with inner product 〈X, Y 〉 := E(XY ).

Remark: The expression E
[
g(X, y)

]
|y=Y means that we just evaluate E

[
g(X, y)

]
as

a regular expectation (it is only a random variable in terms of X , y is understood to be a
constant (or just a dummy variable) here. Note that E

[
g(X, y)

]
is a function of y. Thus we

are free to plug in the random variable Y after we compute what E
[
g(X, y)

]
is.

Example 4.1.12. Let X be a Bernoulli(1/2) random variable and Y has Normal(0,1) dis-
tribution, X independent of Y . Compute E(Y X |Y ).

Ans: We have

E(yX) = y0 · 1

2
+ y1 · 1

2
=

1

2
(1 + y).

Thus y the independence lemma, E(Y X |Y ) = 1
2
(1 + Y ). Note how the distribution of Y is

irrelevant in this computation.

Expectation conditional on more than one random variables

In applications, a random variable X may be correlated to not just 1 random variable Y ,
but possibly to n random variables Y1, Y2, · · · , Yn (it is reasonable to build a model of stock
so that the stock price today does not just depend on its performance yesterday, but on its
performance in the past month). To discuss the behavior of X given our observations of
Y1, · · ·Yn, we need to extend our notion of conditional expectation to more than 1 random
variable. The extension actually is straightforward.

Definition 4.1.13. LetX, Y1, Y2, · · · , Yn be RVs. The conditional expectationE(X
∣∣Y1, · · · , Yn)

is a function of Y1, Y2, · · · , Yn, such that for any function g, we have

E
[
E(X

∣∣Y1, Y2, · · · , Yn)g(Y1, Y2, · · · , Yn)
]

= E
[
Xg(Y1, Y2, · · · , Yn)

]
.

Remark: Actually in subsection (4.1.4), there is no restriction on what the RV Y can
be. Thus one could select it to be a multi-dimensional RV, effectively making it a random
vector with n components

Y =


Y1

Y2

· · ·
Yn

 .
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Even more generaly, X itself can also be a multi-dimensional RV,

X =


X1

X2

· · ·
Xm

 .
Thus we see that we have covered the case of expectation conditional on more than one

random variables:

E(X1, X2, · · ·Xm|Y1, Y2, · · · , Yn)

in subsection (4.1.4), including the elementary properties. One just needs to interpret the
symbol accordingly, for example in E(aX + bY |Z), a, b has to be understood as vector,
aX and bY as vector dot products if X, Y are multi-dimensional RV.

Probability as an expectation

You may observe that in the abstract definition of conditional expectation, we did not
mention about conditional probability. Surely we would want to have a definition for
P (X ≤ x|Y ). It turns out that our definition of conditional expectation already covers
conditional probability as a special case. To be precise, we first need to introduct the
following so-called indicator function of an event E, denoted as 1E

1E(ω) = 1 if ω ∈ E
= 0 if ω 6∈ E.

Basically the indicator function is a logical indicator, it’s 1 if E happens and 0 if E
does not happen. For example 1{0<1} = 1 and 1{1+1<3} = 0. But now note that suppose
we have a random variable X , and say it has a density function fX(x) then

E(1{X≤x}) =

∫ ∞
−∞

1{y≤x}(y)fX(y)dy

=

∫ x

−∞
fX(y)dy = P (X ≤ x).

where the second equality is because 1{y≤x} = 0 for all values of y > x so we just stop
the integration limit at x. Similarly, you can check that

E(1{X≥x}) = P (X ≥ x)

E(1{X=x}) = P (X = x).

Thus probability can be expressed as an expectation. More importantly for us, this is
still true at the conditional expectation level. More precisely we have the following
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Lemma 4.1.14. Let X, Y be random variables. Let f(Y ) = E(1{X≤x}|Y ). Then f(y) =
P (X ≤ x|Y = y) where P (X ≤ x|Y = y) is understood in the sense of subsection (4.1.4).
Similarly for P (X ≥ x|Y = y), P (X = x|Y = y).

Remark: For a fixed x, the expression 1{X≤x} here is understood as function ofX . Thus
the expression E(1{X≤x}|Y ) is understood in the sense of E(g(X)|Y ) where g(X) is just
a random variable.

4.1.5 Connection between the measure theoretic and classical defini-
tion of conditional expectations

Discrete RVs

Let X, Y be two RVs. We have seen that we can define E(X|Y ) abstractly via definition
(4.1.10). Suppose X, Y are both discrete. Then we also have alternative definitions of
E(X|Y = y) via classical probability theory. How are these two connected?

Note that E(X|Y ) by definition if a function of Y . Thus we can write E(X|Y ) = g(Y )
for some function g. On the other hand, E(X|Y = y) is also clearly a function of y. So
you can expect that ∀y on the event {Y = y}

E(X|Y ) = E(X|Y = y).

That is

E(X|Y )1Y=y = E(X|Y = y)1Y=y.

Proof. We need to check that for any function g(Y )

E
[
E(X|Y = y)1Y=yg(Y )

]
= E

[
X1Y=yg(Y )

]
.

The LHS is equal to

E(X|Y = y)g(y)P (Y = y) =
∑
i

iP (X = i, Y = y)

P (Y = y)
g(y)P (Y = y)

=
∑
i

iP (X = i, Y = y)g(y)

= E
[
Xg(y)1Y=y

]
= RHS.

Continuous RVs

What about the case when both X, Y are continuous? Here we cannot use the above crite-
rion, as the event {Y = y} has probability 0. Rather we will turn it around, and observe
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that since E(X|Y = y) is a function of y, we can also write E(X|Y = y) = g(y). So now
we can plug the RV Y into the function g and we claim

E(X|Y ) = g(Y ), P a.s.,

where the a.s. notation means the equality holds outside an event of probability 0 with
respect to P .
Proof.

E(X|Y = y) =

∫ ∞
−∞

x
fXY (x, y)

fY (y)
dx.

Therefore

g(Y ) =

∫ ∞
−∞

x
fXY (x, Y )

fY (Y )
dx

We need to check that for any function h(Y )

E
(
h(Y )

∫ ∞
−∞

x
fXY (x, Y )

fY (Y )
dx
)

= E
(
Xh(Y )

)
.

But the LHS is equal to∫ ∞
−∞

h(y)
[ ∫ ∞
−∞

x
fXY (x, y)

fY (y)
dx
]
fY (y)dy

=

∫ ∞
−∞

∫ ∞
−∞

h(y)xfXY (x, y)dxdy = E(Xh(Y )) = RHS.

4.1.6 Law of large number
The theorem

Theorem 4.1.15. Let X1, X2, · · · be a sequence of independent identically distributed (ab-
breviated as i.i.d.) RVs such that E|X1| <∞. Then with probability 1,∑n

i=1Xk

n
→ E(X1).

Notation: It is usually denoted that Sn =
∑n

i=1 Xk, thus one usually sees Sn
n
→ E(X1)

in the statement of the law of large number (LLN).
Interpretation: Suppose that you play a game where your winning is random, which is

represented by a RV X . As you play this game many times, you will find that your average
earning (over time) is approximately the expected value of X .
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Application

We’ll give one application of the LLN, in pricing of a random game: Suppose there is a
game of tossing a fair coin, where if the coin turns up H then you get paid 3 dollars. If it
turns up T , then you get paid 1 dollars. Question: What is the fair price to charge for this
game?

Ans: The fair price to charge for this game is 31
2

+ 11
2

= 2 (dollars). But can you
explain why this is the fair price? The reason is the LLN. If this game is played only once
(an important point, which we’ll come back later when we discuss the fair price of financial
instrument) then it is not clear that the price is fair. However, the assumption here is that the
game will be played many times, by potentially many different players. Thus each player’s
winning is an independent, identically distributed random variable, which takes values 3
and 1 with probability 1/2 each. The total amount of money the house has to pay to these
players, after n games have been played, is

∑n
i=1 Xi. By the LLN, this is approximately

nE(X1), which is 2n, which is the total amount charged by the house. So the house comes
out even and this is a fair price for the game.

Remark: This is the main principle behind casino’s operation (and profitability). Of
course the players are not charged to play the games in the casino. But the game is set
up so that the expectation is negative (even if you bet on a roulette table, say on an even
number, your chance of winning is still less than 1/2, since there is a 0 and double 0’s).
Thus by the LLN, with a lot of customers, the casino will have a positive profit. Note that
the LLN does allow for an occasional incident where someone plays 1 single game and win
big. But if you play a lot of games at the casino, the LLN says that you will lose money
eventually.

4.1.7 Central limit theorem
The theorem

The LLN gives us an estimate of Sn
n

(it is approximately E(X1)). However, for various
reasons, we may want a more precise estimate than that. Note that the LLN says noth-
ing about how close to E(X1) Sn

n
is, or (perhaps surprisingly) what distribution we may

approximate Sn
n

with. It is surprising because we do not have any restriction on the distri-
bution of each individual Xi, but it turns out that the approximate distribution of Sn

n
is the

normal distribution. The precise statement is as followed:

Theorem 4.1.16. Let X1, X2, · · · be i.i.d. RV such that E|X1|2 <∞. We will also denote
E(X1) = µ and V ar(X1) = σ2. Then for any real number x,

P (
Sn − nµ
σ
√
n
≤ x)→ P (Z ≤ x),

where Z has standard normal (N(0, 1)) distribution.
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Application

The central limit theorem is used to estimate probability of the sum or the average of an
i.i.d. sequence of RVs. Determining which case to use requires a close reading into the
problem.

Example 4.1.17. The bus arrives at the Hill center according to a uniform [0, 12] distri-
bution. Suppose you wait at the Hill center bus stop for 30 days. What is the approximate
probability that your average wait time is more than 5 minutes?

Ans: Let X1, X2, · · · be i.i.d. U [0, 12]. Then E(X1) = 6 and V ar(X1) = 12. Thus

P (
S30

30
≥ 5) = P (

S30 − 6× 30√
12× 30

≥ 5
√

30√
12
− 6
√

30√
12

) ≈ P (Z ≥ −1.58).

Example 4.1.18. The earning per day of a casino is distributed as an Exponential(1) RV.
(1 here stands for 1 million, we omit the unit). What is the approximate probability that the
casino’s earning in 1 month is more than 35 millions?

Ans: Note that here we’re asked for the total earning. Thus let X1, X2, · · · be i.i.d.
Exp(1). Then E(X1) = 1 and V ar(X1) = 1. Thus

P (S30 ≥ 35) = P (
S30 − 30√

30
≥ 5√

30
) ≈ P (Z ≥ 5√

30
).

4.1.8 Moment generating function and characteristic function
Given a random variable X, the moment generating function of X is

MX(t) := E(etX) if it exists

and the characteristic function of X is

ΦX(t) := E(eitX).

The values of t so that E(etX) < ∞ is the domain of the moment generating function
MX(t). This domain can be empty, for example with the Cauchy distribution. On the other
hand, the characteristic function always exists because |eitX ≤ 1|.

If the domain ofMX(t) includes an open interval around 0 then moments of all order of
X exist and in particualr E(Xn) = M

(n)
X (0). Moreover, MX(t) = MY (t) for two random

variables X, Y if and only if X, Y have the same distribution.
If a characteristic function ΦX(t) has a k-th derivative at zero, then the random variable

X has all moments up to k if k is even, but only up to k âĂŞ 1 if k is odd. If a random
variable X has moments up to k-th order, then the characteristic function ΦX(t) is k times
continuously differentiable on the entire real line. In either case

Φ
(k)
X (0) = ikE[Xk].

We also have ΦX(t) = ΦY (t) for two random variables X, Y if and only if X, Y have the
same distribution.
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4.1.9 Multivariate normal distribution
The multivariate normal distribution is ubiquitous in financial mathematics and other dis-
ciplines concerned with modeling. Underlying this ubiquity is the central limit theorem
and the remarkable fact that the (finite) sum of independent normal distributions also has
normal distribution.

Definition: X1, X2, · · · , Xn has multivariate normal distribution with mean µ and (in-
vertible) covariance matrix Σ if their joint density has the form :

fX(x) =
1√

(2π)ndet(Σ)
e−

1
2

(x−µ)TΣ−1(x−µ).

Here x := [x1, x2, · · · , xn]T ,µ = [µ1, µ2, · · · , µn]T .
The following is a key result for multivariate normal distribution : Let Z := [Z1, Z2, · · · , Zn]T

be independent standard Normals. Let A be a m×n matrix with independent columns and
µ an Rm vector. Then AZ + µ has a multivariate normal distribution with mean µ and
covariance matrix Σ = AAT . This result can be verified by a standard application of mul-
tivariate change of variables technique.

Remark: If A,B are such that AAT = BBT then X1 = AZ + µ and X2 = BZ + µ
has the same multivariate normal distribution. This does NOT mean X1 = X2. A simple
example is X1 = −2Z + 1 and X2 = 2Z + 1. X1, X2 are both Normally distributed with
mean 1 and variance 4. But they obviously are two different random variables in terms of
their realization.

An important corrolary from this result is a linear transformation of a multivariate nor-
mal distribution is also a multivariate normal distribution. That is if X has multivariate
normal distribution and Y = AX + b then Y also has multivariate normal distribution
with appropriate mean and covariance matrix.

In Monte Carlo simulation, to generate a multivariate normal distribution X with a
given mean µ and covariance matrix Σ, one starts with vector Z of independent standard
normals. Let A be the Cholesky decomposition of Σ. Then X = AZ + µ has the desired
multivariate normal distribution.

4.2 Problems
1. Our friend John tells us that he has two daughters. we also know that he has three
children in total. What is the probability that his youngest child is a girl (assuming that a
boy and a girl are equally likely)?

2. The arrival time of shuttles at a bus stop from 5:00pm to 5:30pm on a weekday is
uniformly distributed. In other words, let X be the waiting time (in minutes) after 5:00 pm
until the arrival of a particular shuttle, then X has the p.d.f

fX(x) =
1

30
, 0 ≤ x ≤ 30. (4.3)
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Suppose there are 30 shuttles arriving at the bus stop from 5:00 pm to 5:30 pm, and their
distribution are i.i.d. What, then, is the approximate probability that their average arrival
time on a particular weekday is before 5:12 pm?

3*. Studying probability and statistics has a positive effect on students’ job placement.
A student who has succesfully completed these classes has a 70% probabilty of landing
a job with Goldman Sachs. A student who did not succesfully complete the program,
however, only has a 40% probability of landing such a job. our friend, Tom, just got a
position with Goldman Sach. Suppose the probability of a student succesfully completing
the Financial Math program at Rutgers is 80%. What is the probability that Tom succesfully
finished his Financial Math program at Rutgers?

4. The breakdown time of the Apple Ipad is an exponential(5) random variable. In
other words, let X be the time until break down (in years) of a particular Ipad, then X has
the p.d.f

fX(x) =
1

5
e−

1
5
x, 0 ≤ x <∞. (4.4)

Suppose an Apple store has 30 Ipads, and the distribution of their break down times are
i.i.d. What, then, is the approximate probability that the average break down time of these
Ipads is before 2 years?

5. There are 120 students in the Introduction to Probability class. Suppose that each
student has a probability of .3 of getting an A in this class, and the students’ performance
is independent of one another. What, then, is the approximate probability that the class will
have at least 20 students getting an A ?

6. In this problem we will verify that the conditional expectation E(X|Y ) is the best
guess of X given Y in the following sense

E
[
(X − E(X|Y ))2

]
≤ E

[
(X − g(Y ))2

]
, for all g(Y ). (4.5)

a. Show that

E
[
E(X|Y )X

]
= E

[
E(X|Y )2

]
.

Hint:

E
[
E(X|Y )X

]
= E

[
E
(
E(X|Y )X

∣∣∣Y )].
Proceed using properties of conditional expectation.

b. Use the result of part a to prove (4.5).
7. Let X, Y be independent random variables, Y having Normal(0,1) distribution and

X has distribution P (X = 1.5) = P (X = 0.5) = 1/2. Let Z = XY . Compute
a. E(Z|Y ).
b. E(Z2|Y ).
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8.
a. Let X have distribution Uniform[0,Y ] distribution, where Y has Exp(1) distribution.

Compute the joint distribution of X, Y and E(X).
b*. Let X have distribution Exponential(Y ) distribution where Y has Uniform[1,2]

distribution. Compute the joint distribution of X, Y and E(X).
9. Prove equations (4.1) and (4.2).
10. For α > 0 we define the function

ϕ(x) ,
1

α
x−

1+α
α , x > 1.

a. Explain why ϕ is a density function.
b. Let X be a random variable with density ϕ. Compute the expectation E[log(X)] (as

always(!) x→ log(x) denotes the natural logarithm, i.e., log(ex) = x).
11*. Let X be a random variable with density function f(x) , 1

2
e−|x|, x ∈ R. The

corresponding distribution is called the Laplace distribution.
a. Compute E[|X|n] and E[Xn] for all n ∈ N.
b. Find X’s characteristic function, t→ E[eitX ].
12.Let α > 0 and µ ∈ R be given and define the function f : R→ R by

f(x) , ce−α|x−µ|, x ∈ R.

a. Find the value of c such that f is a density function.
b. Let Y be a random variable with density f . Compute Y ’s moment generating func-

tion E[etY ] and use this function to compute the mean E[Y ] and the variance V[Y ] provided
they exist. Warning: this function is not finite for all t and you need to figure out 1) when it
is finite and 2) what value it has when it is finite.

c. Let X be a strictly positive random variable such that the density for log(X) is the
function f (with the constant c as determined in the first question). Compute the mean
E[X] and the variance V[X] provided they exist.

13. We let a be a strictly positive constant, a > 0, and we define the function

F (x) =

{
1− x−a for x ≥ 1

0 else.

Let X be a random variable with F as its distribution.
a. Compute X’s density function.
b. For which values of a does X have a finite mean?
14. Let X be a standard normally distributed random variable, X ∼ N (0, 1).
a. Find the density function of the random variable Y given by Y , X2. This distribu-

tion is called the χ2 distribution and plays a key role in term structure theory.
b. Find the density function of the random variable Y given by Y , |X|.
15. Define the function
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f(x) ,


0 for x < 0

0.5 for x ∈ [0, 1]
1
x3

for x > 1.

a. Explain why f is a density function.
Let X be a random variable with f as its density function.
b. Compute X’s mean, E[X]. Does X also have a variance?
c. Compute the probability P(X ∈ [0, 2]).
16. Let σ be a positive constant and let ϕ(y) be the standard normal density ϕ(y) =

1√
2π
e−y

2/2.
a. Use the fact that

∫∞
−∞ ϕ(y) dy = 1 to compute∫ ∞

−∞
eσyϕ(y) dy and eσ

∫∞
−∞ yϕ(y)dy.

Which of these is larger? Note that if Y is a standard normal random variable, we are
comparing EeσY and eσEY .

b. Relate the previous question to Jensen’s inequality.
17. Let X be a standard normally distributed random variable, X ∼ N (0, 1).
a. Compute the characteristic function t → E[eitX ] for t ∈ R. (Hint: derive an ODE

that completely characterizes this function).
b. Use the previous question to compute E[X] and V[X] (Hint: take derivatives).
18. LetX and Y be two independent standard normals,X ∼ N (0, 1) and Y ∼ N (0, 1).

Compute the probability P(X ≤ Y ).
19. Let (X, Y ) be uniformly distributed in the triangle T , {(x, y)|x ≥ 0, y ≥ 0, x +

y ≤ 2}
a. Find the density function for (X, Y ).
b. Find the density function of X .
c. Find the conditional density function of Y given X = x.
d. Compute the term E[Y |X = x].
19. Let X and Y be two independent random variables both uniformly distributed

between zero and one. Define the following random variables

U , XY, V ,
X

Y
.

a. Compute the marginal density functions for both U and V .
b. Find the two dimensional density function for the pair (U, V ). Are U and V inde-

pendent? Why? Why not?
20. Let X and Y be two independent random variables with the same density function

f given by

f(z) =

{
2e−2z for z > 0

0 else.
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Define the random variables

U , X + Y, V , X − Y.

a. Compute the following terms: E[U ],E[V ],V[U ],V[V ] and Cov(U, V ).
b. Find the two dimensional density function for pair of random variables (U, V ).
c. Find the marginal density functions for both U and V . Are U and V independent?
21. Let X and Y be independent random variables with the same exponential density.

Define the random variables U and V by U , X + Y and V , X/Y .
a. Compute the marginal density functions for both U and V .
b. Find the two dimensional density function for the pair (U, V ). Are U and V inde-

pendent?
22. Let X and Y be two independent random variables both normally distributed with

mean zero and variance one. Define the following random variables

U ,
√
X2 + Y 2, V ,

X

Y
if Y 6= 0 otherwise V , 0.

a. Compute the marginal density functions for both U and V .
b. Find the two dimensional density function for the pair (U, V ). Are U and V inde-

pendent?
23. Let X and Y be two random variables both normally distributed with mean zero,

variance one and correlation coefficient ρ.
a. Find the density and the distribution function of the random variable Z , X

Y
.

b. Compute the probability P(X < 0, Y > 0).
24. Let X be a random variable with density function

f(x) =

{
2(e−x − e−2x) for x > 0

0 else.

a. Explain why f is a density function and find the corresponding distribution function
for X .

b. Find the Laplace transform for X , t → E[e−tX ], as well as the moment generating
function for X , t → E[etX ] (as usual you have to be careful about whether or not the
function is finite valued).

c. Assume that U and V are two independent random variable both having density
function f . Find the Laplace transform of U + V .

25*. Let X be exponential with parameter µ > 0 and let Y and Z be two random
variables that are both exponential with parameter λ > 0. Assume that X , Y and Z are all
independent.

a. Compute the probability that X is bigger than 10.
b. Compute the probability that X is at least twice as big as both Y and Z.
26*. Let the two dimensional random variable (X, Y ) have density function
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f(x, y) =

{
1
2
e−x for − x < y < x, x > 0

0 else.

a. Find the marginal densities for X and for Y .
b. Are X and Y independent? Why? Why not?
c. Define the two random variables U , X + Y and V , X − Y and find the two

dimensional density function for the pair (U, V ).
d. Are U and V independent? Why? Why not?
27. Let (X, Y ) be a two dimensional normally distribution random variable with the

properties

E[X] = E[Y ] = 0, V[X] = V[Y ] = 1, Cov(X, Y ) = −0.5.

a. What is the joint density function for (X, Y )?
b. Define the random variables

U , X, V =
1√
3

(X + 2Y )

and find the joint density for U and V . Why are U and V independent?
27. Let X and Y be two independent random variables. X has density function

f(x) ,

{
e−x for x ≥ 0

0 else,

whereas Y has density

g(x) ,

{
xe−x for x ≥ 0

0 else,

a. Compute the following terms: V[X],V[Y ],V[X + Y ] and Cov[X,X + Y ].
b. Define the random variables

U , X, V , X + Y

and compute the joint density function for the pair (U, V ).
c. Compute the conditional density function for X given X + Y = v for all v > 0.
28. Let X and Y have joint density function

f(x, y) ,

{
c for x ∈ [0, 1], −x ≤ y ≤ x

0 else,
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where c is a constant.
a. Find c.
b. Compute X and Y ’s marginal density functions. Are X and Y independent?
c. Compute the terms: E[X],E[Y ],V[X] and Cov(X, Y ).
d. Compute the probability P(X + Y ≥ 1.5).
29. Let X, Y and Z be three independent random variables, all uniformly distributed

between zero and one. We denote by F the uniform distribution function and we then
define the two random variables

U , max(X, Y, Z), V , min(X, Y, Z).

a. Express U ’s and V ’s distribution functions FU and FV in terms of F .
b. Compute the terms: E[U ],E[V ],V[U ] and V[V ].
c. Find the joint density function for (U, V ) and use it to compute Cov(U, V )
30*. Let X and Y be two independent standard normally distributed random variables.

Compute the expectation E[max(X, Y )].
31. Let X and Y have density

f(x, y) , e−xy
2

, x > 0, y > 1.

a. Find Y ’s marginal density.
b. Compute X’s conditional density given Y = y and use this density to compute the

conditional expectation E[X|Y = y] for y > 1.
c. Compute the mean of X , E[X].
31. Let X and Y have density

f(x, y) , e−2x, x > 0, |y| < 2x.

a. Find X’s marginal density.
b. Compute the mean of X + Y , E[X + Y ].
c. Define the random variables

U , X +
1

2
Y, V , X − 1

2
Y

and compute the joint density function for the pair (U, V ).
d. Are U and V independent?
32. Let (X, Y ) be a pair of random variables with joint density function

fX,Y (x, y) =

{
2|x|+y√

2π
exp

{
− (2|x|+y)2

2

}
if y ≥ −|x|,

0 if y < −|x|.

a. Show that X and Y are each standard normal random variables. In other words,
determine the marginal densities of X and Y and show that these are standard normal.
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b. Show that X and Y are uncorrelated, i.e., show that

E[XY ] =

∫ ∞
−∞

∫ ∞
−∞

xyfX,Y (x, y) dx dy

is equal to zero. (Hint: Use the fact that fX,Y (x, y) = fX,Y (−x, y).)
c. Suppose you are told that X takes some value x. Conditioned on this information, is

Y still standard normal?
33*. Let X be standard normal, X ∼ N (0, 1), and let Z be independent of X and

satisfy
P(Z = 1) = P(Z = −1) = 0.5.

a. Show that Y , ZX is also a standard normal.
b. Show that X and Y are uncorrelated but not independent.
34. Give an example of two random variables X and Y satisfying the property that X

and Y are uncorrelated but not independent.
35. Let

ϕn(x) =
1√
2πn

e−x
2/(2n)

be the normal density with mean zero and variance n.
a.

lim
n→∞

∫ ∞
−∞

ϕn(x) dx.

(Hint: To compute
∫∞
−∞ ϕn(x) dx, you may use without proof the fact that the standard

normal density integrates to 1:
∫∞
−∞ ϕ1(y) dy = 1.)

b. ∫ ∞
−∞

lim
n→∞

ϕn(x) dx.

Did you get the same answers in a and b?
36. Let X be a random variable with cdf FX(x). Suppose that FX(x) is strictly increas-

ing so that F−1
X (x) is well defined. Show that FX(X) has a Uniform[0,1] distribution and

F−1
X (U) where U is a Uniform [0, 1] distribution has the same distribution as X. This is the

basis for Monte Carlo simulation and also for the concept of copula.
37. Bayesian formula has direct application in Bayesian estimates in statistics. In this

framework, we suppose that our data follows a distribution that depends on some parameter
θ. The goal is to have an estimate of θ based on the observation x of X . Before observing
x, we have some idea about the distribution of θ. This is called the apriori distribution.
After observing x we update this distribution and refer to it as the posterior distribution
f(θ|x). The posterior estimate of θ based on the observation of x, denoted as θ̂(x) using
the minimum mean square error (MSE) as standard, is defined as

θ̂(x) = E(θ|x) =

∫
θf(θ|x)dθ.
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Suppose that X|θ has a Normal(θ, σ2) distribution and θ has an apriori distribution that
is Normal(µ, τ 2). Our sample consists of only 1 data point x. Show that the posterior MSE
estimate is

θ̂(x) =
σ2

σ2 + τ 2
µ+

τ 2

σ2 + τ 2
x.
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