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1 General characterization

A stochastic process Wt, t ≥ 0 is a Brownian motion if

• W0 = 0.

• Wt has independent stationary increments.

• Wt −Ws ∼ N(0, t− s) for t ≥ s.

We also say a stochastic process Xt, t ≥ 0 is a Brownian motion with variance

parameter σ2 (this definition seems to be found only in Ross and not elsewhere) if

• X0 = 0.

• Xt has independent stationary increments.

• Xt −Xs ∼ N(0, σ2(t− s)) for t ≥ s.

Observe how this definition is very similar to the one of Poisson process. The

difference is in the distribution of the increments : it is Normal with mean 0 and

variance equaling the time duration t−s here versus being Poisson with mean λ(t−s)
for the Poisson process.

An important consequence of the definition is that the state space of Brownian

motion is R : it is a continuous state space process, the first we’ve ssen so far in

this course. Some other facts connected to this include Brownian motion having

continuous but nowhere differentiable path. That is, with probability 1, the path

Ws, 0 ≤ s ≤ t is continuous but nowhere differentiable ! The proper context to give

a proof for this fact is in a stochastic analysis course.
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Also observe that the dynamical description is not given for Brownian motion,

unlike the Poisson process case. Recall that the dynamical description for the Poisson

process is closely connected to the Poisson approximation for the Binomial. Intuitively

for the Brownian motion case if such a description is given it should be related to

the Normal approximation for the Binomial. On the other hand, this approximation

does not lend it self well to the the dynamical approach presentation. We’ll see this

more clearly in the section below.

1.1 Brownian motion as the limit of symmetric random walk

Recall that the symmetric random walk Sk is given as

• S0 = 0

• Sk has iid increments

• P (Sk+1 − Sk = 1) = P (Sk+1 − Sk = −1) = 1
2
.

We present Sk this way to draw the obvious connection to Brownian motion. Now

Sk is only defined for integral time points k. We can use Sk to define the value of a

process Xt at a general time point t as followed : for a given dt

Xt = ∆x

b t
dt
c∑

k=1

∆Sk,

where ∆Sk := Sk+1 − Sk and ∆x is some scaling constant depending on dt.

The idea is to divide [0, t] into subintervals with length dt and run the usual

symmetric random walk along the grid points until t with step size ∆x. Note that

without the scaling constant ∆x the value of Xt can get very large if dt is small. In

fact, we want to choose ∆x so that E(Xt) and V ar(Xt) = t is independent of dt.

By construction E(Xt) = 0 and V ar(Xt) = (∆x)2 t
4dt

so the choice of ∆X = 2
√
dt

accomplishes this goal.

We can obviously repeat this idea for the increments Xt −Xs instead of just Xt:

Xt −Xs = ∆x

b t−s
dt
c∑

k=1

∆Sk.

Again with the choice of ∆X = 2
√
dt we have E(Xt −Xs) = 0 and V ar(Xt −Xs) =

t− s. The increments can be viewed as a way of defining Xt once Xs is given.
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Now for any fixed t, by the Central Limit Theorem the distribution of Xt converges

to N(0, t) as dt→ 0. Similarly, the distribution of Xt−Xs converges to N(0, t−s) and

by the independence of random walk increments we also get the independence of the

increments of Xt. But notice how this is a finite dimensional description. That is for

any finite collection of t1, t2, · · · , tn we know the joint distribution of Xt1 , Xt2 , · · · , Xtn

as dt → 0. On the other hand, it is not clear what we can immediately say about

the distribution of the path Xu, s ≤ u ≤ t as dt → 0 (e.g. what is the probability

that a path continuous ? ) This remains true no matter how close we push t to s,

because we still have uncountably many time points between s and t. That is we do

not directly have a dynamical description of Xt −Xs from the limit of a symmetric

random walk.

1.2 Finite dimensional distribution of Brownian motion

The independent increment property of Brownian motion leads to the fact that

[W (t1),W (t2), · · · ,W (tn)] has a multivariate Normal distribution (recall Ross prob-

lem 3.16 for the case when n = 2). The multivariate Normal distribution is completely

determined by its mean and covariance matrix. Indeed X1, X2, · · · , Xn has multivari-

ate normal distribution with mean µ and (invertible) covariance matrix Σ if their

joint density has the form :

fX(x) =
1√

(2π)ndet(Σ)
e−

1
2

(x−µ)TΣ−1(x−µ).

Here x := [x1, x2, · · · , xn]T ,µ = [µ1, µ2, · · · , µn]T .

It is clear that for [W (t1),W (t2), · · · ,W (tn]),µ = 0. How about Σ? Here we just

need to decide the covariance between W (ti),W (tj) for any ti, tj. We have

Σii = V ar(W (ti)) = ti

Σij = Cov(W (ti),W (tj)) = min(ti, tj).

The last equality comes from the fact that if s < t

Cov(Ws,Wt) = Cov(Ws,Ws + (Wt −Ws)) = Cov(Ws,Ws) = s,

by independence of Ws and Wt −Ws.

Example 1.1. In a bicycle race between two competitors, let Y (t) denote the amount

of time (in seconds) by which the racer that started in the inside position is ahead
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when 100t percent of the race has been completed, 0 ≤ t ≤ 1. (So t here does not

quite have the meaning of time as we usually think it. Also if Y (t) is negative this

means the inside racer is behind). Y (t, 0 ≤ t ≤ 1) can be effectively modeled as a

Brownian motion with variance parameter σ2.

a) If the inside racer is leading by σ seconds at the midpoint of the race, what is

the probability that she is the winner?

b) If the inside racer wins the race by a margin of σ seconds, what is the probability

that she was ahead at the midpoint?

Ans:

a) Mid point of the race means t = 1/2. The probability is

P (Y (1) > 0
∣∣∣Y (1/2) = σ) = P (Y (1)− Y (1/2) > −σ

∣∣∣Y (1/2) = σ)

= P (Y (1)− Y (1/2) > −σ) = P (N(0,
σ2

2
) > −σ)

= P (Z > −
√

2

σ
),

where Z denotes the standard Normal. Observe how the independent increment is

utilized to solve this question.

b) Notice in this question, because we’re conditioning on Y (1), independent in-

crement cannot be used directly:

P (Y (1/2) > 0
∣∣∣Y (1) = σ) = ?

We need to use the conditional density of Y (1/2)|Y (1) to compute this probability.

To ease notation, let X = Y (1/2), Y = Y (1). We can quote the result of Ross problem

3.16 part b for the case of bivariate Normal distribution as followed : the conditional

density of X given Y = σ is normal with mean µx + (ρσx/σy)(σ − µy) and variance

σ2
x(1− ρ2). Here µx = µy = 0, σx = σ√

2
, σy = σ, ρ =

√
2

2
. Hence

X|Y = σ ∼ N(
σ

2
,
σ2

4
).

We can then compute the probability using the density of this Normal distribution.

2 Processes related to Brownian motion

A Brownian motion is like a building block which one can use to build other processes.

(To be precise, it is the white noise “process” dWt, the differential of the Brownian
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motion which is the building block. We won’t cover the white noise process here,

because once again it belongs to a stochastic calculus treatment). If Wt is a Brownian

motion, we can have Brownian motion with drift

Xt = µt+ σWt,

Geometric Brownian motion:

Xt = eµt+σWt ,

the Ornstein-Uhlenbeck process:

Xt = e−αt/2Weαt

and Brownian bridge:

Xt = Wt|WT = x, t ≤ T,

to name a few. The Brownian motion with drift is easy to understand. Geometric

Brownian motion can be viewed as the exponential of Brownian motion with drift,

but it is deeper than that. Geometric Brownian motion is the model for exponential

growth under influence of white noise:

dXt = (µ+
1

2
σ2)Xtdt+ σXtdWt

X0 = 1.

It is used in financial model for asset price such as the Black-Scholes model. Indeed

the Black-Scholes formula is just about giving the explicit formula for the computation

E(e−rT max(XT −K, 0)),

where K is a positive constant and Xt = e(r− 1
2
σ2)t+σWt is a Geometric Brownian

motion. Brownian bridge is Brownian motion conditional on its terminal value WT .

It can also be viewed as a “clamped” Brownian motion (since we also have W0 = 0)

and hence the term bridge. Finally Ornstein Uhlenbeck process is at heart a time-

changed Brownian motion. Ornstein-Uhlenbeck process is also the continuous version

of the AR(1) model (autoregressive of order 1) :

dXt = 2αXtdt+
√
αdWt

X0 = 0.

We will discuss more about Brownian bridge and Ornstein-Uhlenbeck process below.
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3 Hitting times and the maximum of Brownian

motion

As mentioned earlier in the Poisson process chapter, one of the most interesting ques-

tions one can ask about a stochastic process is about its time dimension. Brownian

motion is (very) different from Poisson process because it has nowhere differentiable

paths (while Poison paths are piecewise constant and increasing). Thus given a level

a > 0, (a < 0 has a similar result due to the symmetry of Brownian motion) asking

for the distribution of Ta := inf{t ≥ 0 : Wt = a} is an interesting question (also

with practical applications). Closely related to this question is the question about

the distribution of the running max of a Brownian motion: Xt = max0≤u≤tWt.

First a remark before we compute the distribution of Ta. It’s also an interesting

(or amazing) feature of Brownian motion that Ta := inf{t ≥ 0 : Wt > a}. The first

time the Brownian motion hits a (from below) is also the first time it crosses over a

(thus the scenario where it hits a and “bounces” down has probability 0).

The main idea for the computation of P (Ta ≤ t) is the reflection principle: for

every path of W that crosses a before time t and reaches above a at time t, there is

a reflected path ( obtained by reflecting the part of the previous path on the interval

[Ta, t] over the line y = a ) that crosses a at the same time but reaches below a at

time t. In terms of probability, this reflection principle is

P (Ta ≤ t,Wt > a) = P (Ta ≤ t,Wt < a) = P (Ta ≤ t,Wt ≤ a).

We have

P (Ta ≤ t) = P (Ta ≤ t|Wt > a)P (Wt > a) + P (Ta ≤ t|Wt ≤ a)P (Wt ≤ a)

= P (Ta ≤ t|Wt > a)P (Wt > a) + P (Ta ≤ t,Wt ≤ a)

= P (Ta ≤ t|Wt > a)P (Wt > a) + P (Ta ≤ t,Wt ≥ a)

= P (Ta ≤ t|Wt > a)P (Wt > a) + P (Ta ≤ t|Wt ≥ a)P (Wt > a)

= 2P (Wt > a),

where the last equality comes from the fact that P (Ta ≤ t|Wt ≥ a) = 1 which in turn

follows from the continuity of Wt in t. Lastly we can compute P (Wt > a) from the

density of Wt and differentiate that with respect to t to obtain the density of Ta.

Now let Xt = max0≤s≤tWs. Then

P (Xt ≥ x) = P (Ws ≥ x, some s, 0 ≤ s ≤ t) = P (Tx ≤ t),
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which we obtained above.

Finally, the distribution of T−b for some b > 0 is the same as the distribution of

Tb by the symmetry of Brownian motion. We have

P (T−b < Ta) =
a

a+ b
.

This follows from the (symmetric) gambler’s ruin problem and the fact that Brownian

motion can be approximated as the limit of a symmetric random walk.

4 Gaussian processes

Brownian motion enjoys many nice properties. In this and the next section, we

discuss some generalizations of Brownian motion. That is, we consider only a class

of processes that retain one of these properties and investigate particular examples

of such processes.

As discussed above, Brownian motion has multivariate Normal distribution as its

finite dimensional distribution. We define any process with such finite dimensional

distribution as a Guassian process. There are several things to keep in mind about

multivariate Normal distribution in regards to Guassian process:

a. A multivariate Normal distribution is completely specified by its mean and

covariance matrix. Therefore, a Gaussian process Xt is completely specified by the

mean function µ(t) = E(Xt), t ≥ 0 and covariance function σ(s, t) = Cov(Xs, Xt), 0 ≤
s ≤ t.

b. If X ∈ Rn has a multivariate Normal distribution with mean µ and covariance

matrix Σ then Y = AX ∈ Rm also has a multivariate distribution with mean Aµ and

covariance matrix AΣAT .

c. If X has a multivariate Normal distribution and Σ = In is the covariance matrix

of X then the elements of X are also independent. That is zero-covariance implies

independence under multivariate Normal distribution assumption (which is of course

not true in general).

d. If X = [X1,X2]T has a multivariate Normal distribution then X1

∣∣X2 also has

a multivariate Normal distribution with mean with mean µ1 + Σ12Σ−1
22 (X2−µ2) and

covariance matrix Σ11 − Σ12Σ−1
22 Σ21.

Thus Brownian motion is a Gaussian process with mean function µ(t) = 0 and

covariance function σ(s, t) = min(s, t). This can be viewed as an alternative definition
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of Brownian motion in the following way. Note that this implies for r < s < t :

Cov(Xt −Xs, Xs −Xr) = Cov(Xt, Xs) + Cov(Xs, Xr)

− Cov(Xs, Xs)− Cov(Xt, Xr)

= s+ r − s− r = 0.

Thus we can deduce the fact that Brownian motion has independent increments from

its Gaussian process characterization.

There are of course many other Gaussian processes besides Brownian motion (as

many as one can envision a reasonable structure of the mean vector µ and the covari-

ance matrix Σ ! ). Our first example is the Brownian bridge, which has applications

in other areas, e.g. Monte Carlo simulation and financial modelling.

Xt, 0 ≤ t ≤ T is a Brownian bridge if Xt = Wt

∣∣WT = x, 0 ≤ t ≤ T, for some value

of x. Thus a Brownian bridge is a Brownian motion conditional on its terminal value

being specified. From property d of the multivariate Normal distribution above, a

Brownian bridge is a Gaussian process. We can use the formula provided in property

d to compute its finite dimensional mean vectors and covariance matrices.

E(Xt) = E(Wt|WT = x) = 0 + tT−1(x− 0) =
t

T
x,

where µ1 = 0,Σ12 = t,Σ22 = T,X2 = x,µ2 = 0. On the other hand, for s < t < T

and X = (Ws,Wt,WT )T

Σ =

 s s s

s t t

s t T

 .
Thus

Σ11 =

[
s s

s t

]
,Σ12 =

[
s

t

]
,Σ21 =

[
s t

]
,Σ22 = T.

We thus have

Σ11 − Σ12Σ−1
22 Σ21 =

[
s s

s t

]
− 1

T

[
s

t

] [
s t

]
=

[
s− s2

T
s− st

T

s− st
T

t− t2

T

]
=

[
s
T

(T − s) s
T

(T − t)
s
T

(T − t) t
T

(T − t)

]
.
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We thus also have that Brownian bridge Xt, conditional on WT = x is a Gaussian

process with mean function µ(t) = t
T
x and covariance function σ(s, t) = s

T
(T − t).

Notice that this implies X(T ) = x since V ar(X(T )) = σ(T, T ) = 0 and E(X(T )) =

µ(T ) = x.

The mean function structure of the Brownian bridge suggests the following:

Proposition 4.1. X(t) = Wt − t
T
WT , 0 ≤ t ≤ T is a Brownian bridge with terminal

value X(T ) = 0. It is also independent of WT .

Remark: Note that in this formulation, WT is treated as a random variable. Also

the conditioning on WT is implied since without knowing WT we cannot know the

value of X(t). Also note the interesting fact on how two terms of a Brownian bridge

are always positively correlated.

First, it is clear that X(t) is a Gaussian process, since it is a linear combination

of the Wt process. It is also clear that X(T ) = 0. We actually just need to verify the

mean and covariance structure of X(t) :

µ(t) = E(Xt) = E(Wt −
t

T
WT ) = 0

σ(s, t) = Cov(Xs, Xt) = Cov(Ws −
s

T
WT ,Wt −

t

T
WT )

= Cov(Ws,Wt)−
s

T
Cov(WT ,Wt)−

t

T
Cov(Ws,WT ) +

st

T 2
Cov(WT ,WT )

= s− st

T
− st

T
+
st

T

=
s

T
(T − t).

Finall, the independence with WT again can be verified with the covariance structure:

Cov(Xt,WT ) = Cov(Wt −
t

T
WT ,WT ) = t− t

T
T = 0.

To recover the general terminal value condition of Brownian bridge we just need

to add x to the original formula:

Proposition 4.2. X(t) = Wt − t
T

(WT − x), 0 ≤ t ≤ T is a Brownian bridge with

terminal value X(T ) = x. It is also independent of WT .

Lastly, we can also specify a general initial value:

Proposition 4.3. X(t) = (Wt+a)+ t
T

[(b−a)−WT ], 0 ≤ t ≤ T is a Brownian bridge

with initial value X(0) = a and terminal value X(T ) = b. It is also independent of

WT .

We leave both straightforward verications to the reader.
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5 Stationary and weakly stationary processes

A process is stationary if its finite dimensional distribution does not change under a

time translation. Specifically, Xt is stationary if for any ti, i = 1, · · · , n and s > 0

(Xt1 , Xt2 , · · · , Xtn)
d
= (Xt1+s, Xt2+s, · · · , Xtn+s).

We have seen the stationary concept before, in the increments of Poisson process

and Brownian motion. Thus for some fixed L,X(t) := N(t + L) − N(t), t ≥ 0

and X(T ) := W (t + L) − W (t) are two examples of stationary processes. If we

consider discrete times, then any ergodic Markov chain whose initial distribution

is its stationary distribution is also stationarsy. Another trivial example is an iid

sequence of RV is a (discrete time) stationary process.

On the other hand, note in particular that Brownian motion and Poisson process

are NOT stationary. Similarly, a symmetric random walk is not stationary. Sta-

tionarity is an important concept in time series modeling. On the other hand, this

definition is too strict and many process of interest does not satisfy the property. We

thus define a weaker concept, not surprisingly, referred to as weak stationarity : a

process is weakly stationary if its mean function µ(t) is constant and its covariance

function σ(s, t) is only a function of t− s. It is easy to check that strong stationarity

implies weak stationarity but not vice versa. On the other hand, a Gaussian process

is uniquely defined by its mean and covariance function. Thus if a process is weakly

stationary AND it is Gaussian then it is also strongly stationary. An example of this

is the Ornstein-Uhlenbeck process.

Let Wt be a Brownian motion. Then Xt = e−αt/2Weαt is an Ornstein-Uhlenbeck

(OU) process. We have

E(Xt) = 0;

Cov(Xs, Xt) = e−α(t+s)/2Cov(Weαs ,Weαt)

= e−α(t+s)/2e−α/2[(t+s)−|t−s|] = e−α|t−s|/2,

where we used the fact that min(a, b) = a+ b−|a− b|. This shows that the Ornstein-

Uhlenbeck is weakly stationary. Since Wt has multivariate Normal distribution, Weαt

also has multivariate Normal distribution. Thus the Ornstein-Uhlenbeck process is a

Gaussian process and it is strongly stationary.

As mentioned above, the OU process is the continuous version of AR(1) model.

In discrete time, the AR(1) model is as followed:

Xn+1 = λXn + Zn+1, |λ| < 1,
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where Zi, i ≥ 0 are uncorrelated with mean 0. We also specify that the variance of

Zi, i ≥ 1 to be σ2 and variance of Z0 to be σ2

1−λ2 , for reasons that we will see soon.

We have

Xn =
n∑
i=0

λn−iZi,

and thus E(Xn) = 0. For m < n

Cov(Xm, Xn) = Cov(
m∑
i=0

λm−iZi,

n∑
i=1

λn−iZi)

= Cov(
m∑
i=0

λm−iZi,
m∑
i=0

λn−iZi)

= σ2λm+n(
m∑
i=1

λ−2i +
1

1− λ2
)

= σ2λm+n(
−1∑

i=−m

λ2i +
1

1− λ2
)

= σ2λm+n(
λ−2m − 1

1− λ2
+

1

1− λ2
)

= σ2 λ
n−m

1− λ2
.

Thus the AR(1) model is weakly stationary. It is clear that it is not strongly station-

ary.

Remark: If we do not want to start Z0 with a particular variance (which can be

viewed as a initial distribution to jump start the process into stationarity right away),

we can view Xn as

Xn =
n∑

i=−∞

λn−iZi.

Following the same procedure as above, we can show that E(Xn) = 0,

Cov(Xm, Xn) = σ2 λ
n−m

1− λ2
,m < n.

Our last example is of stationarity is a moving average process. Let Z1, Z2, · · · be

uncorrelated with mean 0 and variance σ2. Then

Xn =
1

k + 1

n∑
i=n−k

Zi, n ≥ k
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is called a moving average process. We have E(Xn) = 0 and for m < n

Cov(Xm, Xn) = Cov(
1

k + 1

m∑
i=m−k

Zi,
1

k + 1

n∑
i=n−k

Zi)

= 0 if m ≤ n− k

=
(m− n+ k + 1)σ2

(k + 1)2
if m > n− k.

Thus Cov(Xm, Xn) is only a function of n − m and the moving average process is

weakly stationary.
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