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1 General characterization of a stochastic process

Recall that the most general characterization of a stochastic process is a family of

RVs Xt where t is in a time set T . The time set T can be discrete or continuous, finite

or infinite. For example, it can be Z,N, [0, 1], [0,∞) etc. A general way to understand

a stochastic process Xt is to know its finite dimensional distribution:

P (Xt1 ∈ E1, Xt2 ∈ E2, · · · , Xtn ∈ En)

for all t1, t2, · · · , tn ∈ T and all E1, E2, · · · , En subsets of the state space. On the other

hand, depending on the situation, the finite dimensional distribution characterization

may not be the best way to characterize the stochastic process. For example, for

Markov chain, we use the transitional probabilities approach, which is a variation of

the finite dimensional distribution (because the process is Markov and the time set is

discrete, specifying the transitional probabilities is the same as specifying the finite

dimensional distribution - verify this for yourself). An interesting question is how do

we extend the transitional probabilities approach to a continuous time process ? (see

the answer below)

A different point of view is to describe the dynamics of the process, i.e. how

it moves in time. Roughly speaking, we describe the change of the process rather

than the process itself. For example, in discrete time, we specify ∆Xk := Xk+1 −Xk

for all k. In continuous time, it is more delicate. Roughly here we want to specify

dXt := Xt+dt−Xt for arbitrarily small dt. The term dXt is referred to as the differential

of Xt.

Generally speaking, the transitional probabilities and dynamics approach are

equivalent. We can transform the characterization using one approach to the other
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(demonstrate this with random walk in discrete time). Pay attention to how both

approaches (finite dimensional / dynamics ) are used in describing the Poisson process

in this chapter.

2 Overview of Poisson process

A Poisson process has discrete state space N and continuous time set [0,∞). We can

characterize a Poisson process in two equivalent ways.

Definition 2.1. Nt, t ≥ 0 is a Poisson process with rate λ > 0 if

• N0 = 0.

• Nt has independent and stationary increments. That is for r < s < t Nt − Ns

is independent of Ns −Nr. Moreover, the distribution of Nt −Ns only depends

on t− s.

• Nt −Ns has Poisson(λ(t− s)) distribution.

Definition 2.2. Nt, t ≥ 0 is a Poisson process with rate λ > 0 if

• N0 = 0.

• Nt has independent and stationary increments.

• P (N(h) = 1) = λh+ o(h).

• P (N(h) ≥ 2) = o(h).

Observe that the independent increments property makes a process Markov (prove

this). The stationary increments property implies that the process dynamics or tran-

sitional probabilities is not a function of time (this is reflected in particular in the

Poisson process by λ as a constant not depending on t). Finally, We see that the first

definition has the flavor of the transitional probabilities approach while the second

definition has the flavor of the dynamics approach. Observe that the second defini-

tion gives the dynamical description of the increments of the Poisson process at any

time t and not only at time t = 0. Indeed, because of independent and stationary

increments

P (Nt+h = j|Nt = i) = P (Nt+h −Nt = j − i|Nt = i)

= P (Nt+h −Nt = j − i|Nt −N0 = i)

= P (Nt+h −Nt = j − i) = P (Nh = j − i), j − i ≥ 0,
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for the second definition.

Intuitively, a Poisson process Nt models the number of occurences of some type of

events (customters arriving at the store, earthquakes) over some time interval (s, t),

which is captured by Nt−Ns. The iid increments property simply says occurences over

non-overlapping time interals are independent and the distribution of the number of

occurences is homogeneous in time. The first definition just directly says that this

distribution is Poisson (λ(t − s)). One of the implications here is that longer time

interval has higher expected number of occurences which makes intuitive sense. The

second definition says that for small time interval of length h (so that λh < 1)

the distribution of the number of occurences is roughly a Bernoulli with success

probability λh. This implies that over a longer time interval (s, t) (whose length t− s
is multiple of h) the distribution of the number of occurences is a Binomial success

probability λh. More importantly, the expectation of this Binomial random variable

is λ(t − s), no matter how small h is. Thus as we keep s, t constant and pushes

h → 0 (so that the success rate converges to 0) by the Poisson approximation for

the Binomial we see that the distribution of the number of occurences converges to a

Poisson RV rate λ(t−s) which is exactly the first definition. Note that by the second

definition, the number of occurences of a Poisson process increases by 1 (or not at all)

over small time intervals. Thus N(t) can be viewed as a process that keeps the total

number of occurences up to time t with single increment. For this reason a Poisson

process is also referred to as a counting process. Finally in an interal of length h there

is an average of λh numbers of events. Thus in 1 unit of time there is an average of

λ events happening ( e.g. there is λ arrivals per unit of time). This explains why we

say λ is the rate of the Poisson process.

We refer the readers to the textbook for a rigorous derivation of the equivalence

of the two definitions.

3 Interarrival and waiting time of a Poisson pro-

cess

The reason why a stochastic process is more than just a family of RVs is because

of its time aspect. In other words, we can ask probabalistic questions about the

temporal aspects of a stochastic process. We have seen this in the average time spent

in recurrent states and other variations with a Markov chain. With a Poisson process,
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because it has increments by 1 and in general discrete increments, we can ask about

the time it takes for a Poisson process to increase by 1. This is referred to as the

interarrival time. We can also ask the time it takes for a Poisson process to increase

by n for a generic n. This is referred to as the waiting time.

To be more precise, let Nt be a Poisson λ process and Sn = inf{t ≥ 0 : Nt =

n}, n ≥ 1. Let Tn = Sn−Sn−1, n ≥ 1, where we take S0 := 0. The first important result

is that all the Tn’s are iid Exponential(λ) RVs. The iid part intuitively comes from

the independent and stationary increments of the Poisson process. The exponential

distribution part needs some explanation. We first comment on the rate λ of the

exponential distribution. First this means the expected interarrival time is 1
λ
, which

is the average time it takes for one event to occur after the previous one. Second,

this is consistent with the definition of a Poisson process because we know that in

an interal of length h there is an average of λh numbers of events. This means the

average time for 1 event to occur is h
λh

= 1
λ
.

Accepting the iid property of the Tn, we only need to show T1 has Exponential(λ)

distribution. But then for any t ≥ 0

{T1 > t} = {Nt = 0}.

Thus P (T1 > t) = P (Nt = 0) = e−λt or P (T1 ≤ t) = 1 − e−λt which is the cdf of an

Exponetial (λ) distribution.

Finally, since Sn =
∑n

i=1 Ti, Sn has as Gamma(n, λ) distribution. That is

fSn(t) = λe−λt
(λt)n−1

(n− 1)!
, t ≥ 0.

Example 3.1. Suppose that people immigrate into a territory at a Poisson rate λ = 1

per day.

a. What is the expected time until the tenth arrival?

b. What is the probability that the elapsed time between the 10th and 11th arrival

exceeds two days?

Ans :

a. The interarrival time is Exp(λ) with expectation 1/λ. Thus the expected time

for the nth arrival is n/λ where n = 10 and λ = 1 here.

b. We have P (X > 2) = e−2λ = e−2 where X ∼ Exp(λ).
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4 Compound Poisson process

Q(t) is called a compound Poisson process if

Q(t) =
Nt∑
i=1

Yi,

where Nt is a Poisson(λ) process and Yi are iid RVs, Nt is independent of Yi’s. We

have seen a similar idea before in a compound RV and indeed the value of a compound

Poisson process for a fixed t is a compound RV. Therefore, all results we derived for

the compound RVs apply here for a fixed t. In particular

E(Qt) = E(Y1)E(Nt) = E(Y1)λt

V ar(Qt) = V ar(Y1)E(Nt) + E2(Y1)V ar(Nt) = λtE(Y 2
1 ).

One of the interesting choice for the distribution of Y1 is where Y1 can take value

mk, k = 1, · · · , n with corresponding probabilities pk,
∑n

k=1 pk = 1. In this case, we

have the decomposition of Q(t) as followed:

Q(t) =
n∑
k=1

mkN
k
t ,

where Nk
t are independent Poisson process with rate λpk. Conversely, if Nk(t) is a

Poisson process with rates λk, k = 1, · · · , n and they are independent then Q(t) =∑n
i=1mkN

k
t has a compound Poissin distribution:

Q(t) =
Nt∑
i=1

Yi,

where Nt is a Poisson (λ) process where λ =
∑n

k=1 λk and Y1 takes on values mk, k =

1, · · · , n with probabilities pk = λk
λ
. This result is very similar to the problems of

the people arriving at a store according to a Poisson distribution where they can be

male or female with probability p and 1− p respectively. We leave the details of the

verification to the readers.

Example 4.1. Coupon collecting problem

There are m different types of coupons. A type i coupon appears with probability

pi, i = 1, · · · ,m. Suppose all coupons are independent of one another. Find E(N),

the number of coupons needed to have a complete collection.
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Ans:

If we let Xi be the number of coupons needed to obtain the first ith coupon then

X = maxiXi. On the other hand, the Xi’s are not independent (if the ith coupon

appears then the jth coupon cannot appear etc.). Therefore it is not straightforward

to calculate E(X) this way.

The key to the problem is to embed the coupon collecting process into a continuous

time dimension. Specifically, let the coupon collecting process be modelled by a

Poisson(λ) process N(t). N(t) keeps track of how many coupons we have collected so

far by time t. Let Ni(t) be the number of coupons of type i we have collected by time

t. Then Ni(t) are independent Poisson processes with rate λi = λpi, i = 1, · · · ,m. Let

τi be the first time that Ni(t) = 1. Then the time it takes to collect all coupon types

is τ = maxi τi. The distribution of τ is straightforward:

P (τ ≤ t) =
∏
i

P (τi ≤ t) =
∏
i

(1− e−λit) =
∏
i

(1− e−λpit).

The final observation is that if we let Ti be the interarrival time of the process

N(t) then

τ =
X∑
i=1

Ti.

Since X and Ti are independent, we have

E(τ) = E(X)E(Ti) =
E(X)

λ
.

Thus

E(X) = λE(τ) = λ

∫ ∞
0

[1−
∏
i

(1− e−λpit)]dt,

where we have used without proof (left to the reader) the fact that

E(τ) =

∫ ∞
0

P (τ > t)dt.

Finally by the substitution u = λt we have

E(X) =

∫ ∞
0

[1−
∏
i

(1− e−pit)]dt,

independent of λ (as it should be).
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Finally, when p1 = p2 = · · · pn = 1
n

then

E(X) =

∫ ∞
0

[1− (1− e−
t
n )n]dt

=

∫ ∞
0

n∑
i=1

(
n

i

)
(−1)i+1e−i

t
ndt

=
n∑
i=1

(
n

i

)
(−1)i+1n

i
.

This apprently is equal to
∑n

i=1

∑n
i=1

n
i

but I could not find a (quick?) proof for

it. I have verified it with Matlab for several values of n and they all hold !

Remark: One could also see that the number of coupons needed for a complete

collection is N(τ). Thus we could have tried to compute E(N(τ)) which is intuitively

λE(τ). However, this computation requires that we establish the independence be-

tween N(t) and τ , which may not be as clear as the independence between X and Ti

in our actual computation.

5 The exponential distribution

We have seen how the Poisson process is closely connected to the exponential distri-

bution. In fact, the time dimension of the Poisson process is the sum of independent

exponential RVs. The exponential distribution is a popular model for time spent do-

ing a certain activity. If we also known that the phenomenon being modelled has the

so called “memoryless property” then the exponential distribution is the unique choice

for the model. We explore this and further properties of the exponential distribution

in this section.

5.1 Memoryless property

A RV X is said to be memoryless if for all s, t ≥ 0

P (X > s+ t|X > t) = P (X > s).

Thinking of X as the “survival” time, the interpretation is that knowing the phe-

nomenon has last beyond time t, asking the probability that it would last an extra s

units of time is the same as asking this question at time 0. That is the phenomenon
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does not “remember” that it has survived the first t units of time. We can also write

the above statement as

X − t|X > t ∼ Exp(λ)

if X ∼ Exp(λ). A consequence of this property is the following : let X be an Expo-

nential RV. Then

E(X − t|X > t) = E(X)

V ar(X − t|X > t) = V ar(X).

The proof is as followed. Let Y = X − t|X > t. Then we see that Y has the

same distribution as X from the memoryless property. Thus E(Y ) = E(X) and

V ar(Y ) = V ar(X). Observe that∫ ∞
t

(X − t)fX(x)dx 6= E(X − t|X > t).

In fact, ∫ ∞
t

(X − t)fX(x)dx = E((X − t)1X>t).

Remark: The Geometric distribution also has memoryless property. Indeed, if

X ∼ Geometric(p) then P (X > n) =
∑∞

i=n+1(1−p)i−1p = (1−p)n. Therefore P (X >

n|X > m) = P (X > n − m). This does not contradict what we said above about

the Exponential distribution being the unique one with memoryless property. That

statement obviously was meant for continuous RVs. Indeed, we see that the Geometric

is the discrete analog of the Exponential(λ) in this sense where λ = − log(1−p). What

is more curious is this opens up a possibility to define an analog of the Poisson process

in descrete time : one would wait a Geometric(p) time and then jump with size 1 and

then repeat (what is the finite dimensional distribution of such a process) ? Another

curious feature is in the above coupon problem, the precise issue was because if we

view the process from the Geometric clock angle then they are not independent. On

the other hand, transforming the process to continuous time and viewing the process

from the Exponential clock angle then they are independent, allowing us to compute

the distribution of the max !

Example 5.1. Consider a post office that is run by two clerks. Suppose that when

Mr. X enters the post office he discovers that Mr. Y and Mr. Z are being served
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by the two clerks. Mr. X will be served immediately after Mr. Y or Mr. Z is

finished. Suppose that the service time for all of these gentlemen are independent

Exponential(λ). What is the probability that Mr. X will be the last one to leave the

office?

Ans : We analyze the problem the moment Mr. X begins service. At that moment

either Mr. Y or Mr. Z is still being served (the probability that both gentlemen

finishing at the same time is 0 ! ). Without loss suppose it’s Mr. Z. Noticing that the

remaining service time of Mr. Z is still an Exponential (λ) (due to the memoryless

property), the probability that Mr. X leaves before Mr. Z is 1/2.

Further question : Answer the same question with the following change :

a) The three gentlemen’s service times have different rates.

b) Changing Mr. Y or Mr. Z for Mr. X.

Example 5.2. The dollar amount of damage involved in an automobile accident is

an exponential random variable with mean 1000. Of this, the insurance company

only pays for the amount exceeding 400. Find the expectation and variance of the

amount paid per accident.

Ans: Let X be an Exponential(λ) RV. The amount the insurance company pays

is max(X − 400, 0) = (X − 400)+. Normally we would proceed with

E((X − 400)+) = E((X − 400)+|X) =

∫ ∞
400

(x− 400)e−
x

1000dx.

On the other hand, because X is an Exponential RV we can utilize the memoryless

property as followed. Let Y = 1X>400. Then

(X − 400)+ | (Y = 1) = X − 400 | Y = 1 ∼ Exp(
1

1000
)

(X − 400)+ | (Y = 0) = 0.

Thus we see that (X − 400+|Y is a RV whose distribution is an Exp(1/1000) when

Y = 1 (with probability e−
4
10 ) and is 0 when Y = 0 (with probability 1 − e−

4
10 .)

Therefore

E((X − 400)+|Y ) = 1000 1Y=1,

and

E((X − 400)+) = E(E((X − 400)+|Y ))

= 1000P (Y = 1) = 1000e−
4
10 ,
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Similarly,

V ar((X − 400)+) = E
[
V ar((X − 400)+|Y )

]
+ V ar

[
E((X − 400)+|Y )

]
.

Now

V ar((X − 400)+|Y ) = 10002 1Y=1,

since (X − 400)+ is a constant when Y = 0. Thus

V ar((X − 400)+) = 10002P (Y = 1) + 10002P (Y = 1)(1− P (Y = 1))

= 10002e
−4
10 (2− e

−4
10 ).

5.2 Hazard rate

Let X be a positive continuous RV. The hazard (failure) rate of X, denoted as r(t),

is defined as

r(t) =
f(t)

1− F (t)
.

The hazard rate has the following interpretation:

r(t)dt =
f(t)dt

1− F (t)
≈ P (X ∈ (t, t+ dt)

P (X > t)

= P (X ∈ (t, t+ dt)|X > t) = P (X < t+ dt|X > t).

Thus the quantity r(t)dt is approximately the conditional probability that the RV

survives only (fails after) an extra dt units of time given that it has survived t units

of time. Thus the higher r(t), the more likely that X breaks down after having

survived until time t. Moreover, we also have

F (t) = 1− exp(−
∫ t

0

r(u)du).

(See proof in Ross). Thus a distribution is uniquely determined by its hazard rate and

vice versa. From thie equation, it’s also clear that an exponential random variable

with mean 1
λ

as a constant hazard rate λ. It is sometimes referred to as just an expo-

nential RV with rate λ. Because the hazard rate is constant, we can also intuitively

see the reason for its memoryless propery ( it is just as likely to fail after having

survived t units of time as at the beginning ).
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Example 5.3. The failure rate of a hyper-exponential RV

A bin contains n different types of batteris, with battery of type i lasting an

exponential distributed time with rate λi, i = 1, · · · , n. Also let pi be the proportion

of batteries in the bin of type i. Let Y be the lifetime of a battery randomly chosen.

Find the failure rate of Y.

Ans: Let N be the type of the battery selected. That is N = i with probability

pi. Also let the life time of the ith type battery be Xi, i = 1 · · · , n. Obseve that N

is independent of Xi’s. We have Y = XN and we refer to Y as a hyper-exponential

distribution.

FXN
(t) = P (XN < t) =

∑
i

P (XN < x|N = i)pi

=
∑
i

P (Xi < t)pi =
∑
i

pi(1− e−λit).

Thus

fXN
(t) =

∑
i

piλie
−λit.

Finally,

rXN
(t) =

∑
i piλie

−λit∑
i pie

−λit
.

It is easy to see that

lim
t→∞

rXN
(t) = min

i
λi.

Thus the hazard rate of a randomly chosen battery converges to the hazard rate of

the “best” battery. This makes sense because the longer the battery survives, the

more likely that it is the “best” type.

5.3 Minimum of exponentials and some simple queueing mod-

els

Since Exponential RVs are the default model for waiting time, the minimum of in-

dependent exponentials serves as the model of first arrival time of a series of events.

Let X1, X2, · · · , Xn be iid Exponentials(λi), i = 1, · · · , n. We have

P (min
i
Xi ≥ x) = P (Xi ≥ x,∀i) =

∏
i

P (Xi ≥ x)

=
∏
i

e−λix = e−x
∑

i λi .
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Thus the minimum of independent exponentials is also an exponential with rate being

the sum of the components. Moreover, for any particular Xi,

P (Xi = min
j 6=i

Xj) = P (Xi ≤ Xj, ∀j 6= i)

=

∫ ∞
0

λiP (x ≤ Xj,∀j 6= i|Xi = x)e−λixdx

=

∫ ∞
0

λiP (x ≤ Xj,∀j 6= i)e−λixdx

=

∫ ∞
0

λi
∏
j 6=i

P (x ≤ Xj)e
−λixdx

=

∫ ∞
0

λi
∏
j 6=i

e−λjxe−λixdx

=

∫ ∞
0

λie
−

∑
j λjxdx

=
λi∑
j λj

.

This result makes intuitive sense because the larger the rate of the exponential (the

smaller its mean), the more likely it is the minimum of the exponential collection.

Example 5.4. A queueing example with two servers and no waiting line

Suppose you arrive at a post office having two clerks who are both busy but there

is no one else waiting in line. You will enter service when either clerk becomes free.

Let service time for clerk i be exponential with rate λi, i = 1, 2. Find E(T ), the

expected amount of time that you spend in the post office.

Ans: Let Xi be clerk i’s service time for the current customer and Yi be the clerk

i’s service time for “you,” conditional on the fact that “you” are served by clerk i.

Then

T = min
i
Xi + Y11X1≤X2 + Y21X2<X1 .

Now E(miniXi) = 1
λ1+λ2

. And

E(Y11X1<X2) = E(Y1|X1 ≤ X2)P (X1 ≤ X2)

=
1

λ1

λ1
λ1 + λ2

=
1

λ1 + λ2
.

Similarly,

E(Y21X2<X1) =
1

λ1 + λ2
.
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Thus E(T ) = 3
λ1+λ2

.

Example 5.5. A queueing example with one server and a waiting line

Suppose that customers are in line to receive service that is provided sequentially

by a server. Once a service is complete, the next service begins immediately. However,

each waiting customer will only wait an exponentially distributed time with rate θ; if

its service has not yet begun by this time then it will depart the system. The service

time for each customer is exponetial with rate µ. Suppose all times are independent.

Suppose that someone is being served and consider the nth person in line.

a. Find Pn, the probability that this customer is eventually served.

b. Find Wn, the conditional expected amount of time this person spends waiting

in line given that he / she is eventually served.

Ans :

a. Let’s analyze the question from the point of view of the nth person in the queue.

Clearly to be served, he must move up in the queue until he reaches position 0 (being

the person being served ). How does he get there? There is the first moment when

either one of the n− 1 people in the queue or the one being served leaves the system.

If the nth person survived ( did not leave before such moment ) then he will move

up one position. The process then repeats itself. If he survives n such moments then

he will be served. Incidentally, the process where people in front of the nth person

leaving the queue can be viewed as a time non-homogeneous Poisson process.

Thus we let Tn to be the first time a person leaves the system where there are

n − 1 people in the queue and 1 person in the server. Then Tn is the minimum

of n − 1 Exponentials(θ) and one Exponential(µ), all independent. Thus Tn has an

Exponential[(n−1)θ+µ] distribution. We can continue in the same fashion to define

Tn−1, the first time afer Tn when a person leaves the system where there are n − 2

people in the queue and 1 person in the server (if the person left was in the server

then one person from the queue will move up immediately to the server, leaving n−2

people in the queue). Then Tn−1 has an Exponential[(n−2)θ+µ] distribution. Finally

T1 has an Exponential(µ) distribution, being the situation where there’s 1 person in

the server and only “you” ( or the nth person ) waiting in line to be served. Observe

that the Ti’s are independent.

Let Yn be the nth person “survival time”. Then he will be served if Yn >
∑n

k=1 Ti.

On the other hand, the distribution of
∑n

i=1 Ti is not elegant to deal with (it is related

to the Gamma but not quite, since Ti’s don’t have the same rate). The technique to
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circumvent this is clearly recursion by conditioning. That is

Pn = P ( nth person served ) = P ( nth person served |Yn ≤ Tn)P (Yn ≤ Tn)

+ P ( nth person served |Yn > Tn)P (Yn > Tn)

= P ( nth person served |Yn > Tn)P (Yn > Tn)

= Pn−1
(n− 1)θ + µ

nθ + µ
.

The last equality is from the interpretation that if the person has survived until one

person in front of him left the queue, then it is the same as if he has to wait with

n− 1 people left in the queue ( the memoryless property of the Exponentials play a

crucial role here ! ). Finally the above product is a telescoping product with the last

term P1 = µ
nθ+µ

. Thus

Pn =
µ

nθ + µ
.

Remark : The above analysis suggests the way to do the following computation :

P (X >
n∑
i=1

Yi),

where X is Exp(µ) and Yi are Exp(λi), all independent. In fact, the following is the

rigorous justification of the above argument. We have

P (X >
n∑
i=1

Yi) = P (X >
n∑
i=1

Yi|X > Y1)P (X > Y1)

= P (X >
n∑
i=1

Yi|X > Y1 + Y2)P (X > Y1 + Y2|X > Y1)P (X > Y1)

= · · ·

The only thing left to justify is

P (X > Y1 + Y2|X > Y1) = P (X > Y2).

This obviously reminds us of the memoryless property and can be done by condition-

ing on Y1 = s, Y2 = t.

b. If the nth person is actually served, then the wait time is just
∑n

i=1 Ti. Thus

the (conditional) expected wait time is

n∑
i=1

E(Ti) =
n∑
i=1

1

i− 1)θ + µ
.
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