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1 Classification of states

A state j is accessible from state i if P n
ij > 0 for some n ≥ 0. Conversely, if j is

NOT accessible from i (that is P n
ij = 0,∀n) then the chain will never enter j starting

from i:

P (Xk = j, some k ≥ 1|X0 = i) = P (∪∞k=1{Xk = i}|X0 = i)

≤
∞∑
i=1

P (Xk = j|X0 = i) = 0.

Finally, if state j is accessible from state i it does NOT guarantee that the chain will

enter state j at some point. That is we can have

P (Xk = j, some k ≥ 1|X0 = i) < 1

even if state j is accessible from state i. Exercise : give an example of such a case.

Two states i, j are said to communicate if i is accessible from j and vice versa.

In this case, we denote it as i ↔ j. It is clear that ↔ forms an equivalence relation,

that is:

a) i ↔ i (this comes from the fact that we allow n to be 0 in the accessible

definition).

b) i↔ j implies j ↔ i.

c) i↔ j, j ↔ k implies i↔ k.

The state space is partitioned into equivalence classes under this equivalence re-

lation. A Markov chain is irreducible if it only has one such class.

A state i is recurrent if it is guaranteed that the process will return to state i

starting from i

fi
4
= P (Xk = i, some k ≥ 1|X0 = i) = 1.
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A state i is transient otherwise. Given a state i, let Ni be the number of visits to

the state starting at time 0, given that X0 = i. That is

Ni =
∞∑
k=0

Ik,

where Ik = 1 if Xk = i|X0 = i and 0 otherwise. Starting at state i, the process either

never re-enters i with probability 1 − fi or it will re-enter with probability fi. If it

re-enters state i we can repeat the process again. So if we look at NOT returning

to state i as a “success” then this can be viewed as a Geometric distribution with

“success” probability 1− fi. The expected number of visits in this case is

E(Ni) =
1

1− fi
<∞

Note that fi < 1 for this case to make sense. This also implies that the chain will visit

i only finitely many times if and only if it is transient. On the other hand, letting

fi ↑ 1 shows that E(Ni) =∞ if the state is recurrent. That is the chain will re-visit

state i infinitely many times if and only if it is recurrent. An important consequence

here is that in a finite state space Markov chain, not all states can be transient (since

the chain has to visit some state(s) infinitely many times in the infinite time horizon).

We also have

E(Ni) =
∞∑
k=0

E(Ik) =
∞∑
k=0

E(Ik)

=
∞∑
k=0

P k
ii .

We thus have the following proposition.

Proposition 1.1. A state i is

recurrent if
∞∑
k=1

P k
ii = ∞

transient if
∞∑
k=1

P k
ii < ∞.

Note that the sum in the above starts at k = 1 instead of 0 but it doesn’t change

anything because P 0
ii = 1.
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Now let state i be recurrent and suppose it also communicates with state j. This

means Pm
ij > 0 and P n

ji > 0 for some m,n. Then∑
k

P k
jj >

∑
k

P n
jiP

k
iiP

m
ij =∞.

Thus j is also recurrent. Note that intuitively this is not obvious because we stated

that if i↔ j it is NOT guaranteed that starting from i the chain will ever visit j and

vice versa (again construct an example here.) The fact that i is recurrent changes

this result. On the one hand, since starting from i we have a positive chance of visit

j after some time step, and we are guaranteed to return to i, we are guaranteed to

visit j starting from i (because if we “failed” to visit j starting from i at some turn

we can just revisit i and try again, like a Geometric distribution). That is

P (Xk = j, some k ≥ 1|X0 = i) = 1.

Now starting from j, why must we reach i ? Suppose this is not the case, then first

staring from i we are guaranteed to visit j. But if we are not guaranteed to visit i

from j then we cannot guaranteed a return to i starting from i. That is i is transient,

a contradiction.

The above result also implies that recurrence and transience is a class property.

That is given a Markov chain, we can partition the state space into recurrent and

transient classes. Finally, an irreducible Markov chain with finite state must be

recurrent.

Example 1.2. Transience / recurrence property of 1 dimensional random walk -

Analytical proof

Let Xi be iid with P (Xi = 1) = p and P (Xi = −1) = 1 − p. Let Sk =
∑k

i=1Xi.

Then Sk is a Markov chain with state space being the integers Z. It is easy to check

that i ↔ j for any i, j ∈ Z and so Sk is irreducible. It remains to determine if Sk is

transient or recurrent. For that we only need to focus on one state i = 0. We need to

compute

∞∑
k=1

P k
00 =

∞∑
k=1

P 2k
00 ,

since we cannot return to 0 after an odd number of steps. Now given a k we have

P 2k
00 =

(
2k

k

)
pk(1− p)k,
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since we need to choose the times for the k steps to the right (and the remaining for

the left step). Thus

∞∑
k=1

P k
00 =

∞∑
k=1

(
2k

k

)
pk(1− p)k.

The convergence of this series clearly only depends on the behavior of the terms when

k is large. In this case we can use the Stirling’s approximation for k large:

k! ≈ kk+
1
2 e−k
√

2π.

Then (
2k

k

)
≈ c

(2k)2k+
1
2 e−2k

k2k+1e−2k

= c22k+ 1
2k−

1
2

= c4kk−
1
2

and (
2k

k

)
pk(1− p)k ≈ c (4p(1− p))k k−

1
2

Thus the series is approximately a geometric series and it converges if and only if the

ratio is less than 1 :

4p(1− p) < 1.

This happens if and only if p 6= 1/2 since 4p(1 − p) ≤ [p + (1 − p)]2 = 1 with

equality when p = 1 − p. Our conclusion is a one dimensional symmetric random

walk (p = 1/2) is recurrent and is transient otherwise. One can also show, using a

similar proof as above, that a two dimensional symmetric random walk is recurrent.

Remarkably, symmetric random walk of dimension ≥ 3 are all transient.

2 Limiting distribution

Let i be a recurrent state of a Markov chain Xk. Then we know∑
n

P n
ii =∞.
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Recall that if for a non-negative series an,
∑

n an < ∞ implies limn→∞ an = 0. We

want to ask a similar question here for limn→∞ P
n
ii ( It turns out that this question is a

particular case of the more general question about limn→∞ P
n
ij for a recurrent state j,

see below ). Note that the fact
∑

n P
n
ii =∞ alone does not give any information about

this limit, even whether or not it exists. On the other hand, if state i is recurrent

then the chain visits it infinitely many times. So it seems like limn→∞ P
n
ii represents

the proportion of times the chain visits state i compared with other recurrent states.

This is the right intuition, but we need to make it more precise with some further

concepts.

For any given state i, define

τi := min{k > 0, Xk = i|X0 = i},

to be the first return time to state i, starting from i. A (recurrent) state i is positive

recurrent if the expectation of its return time E(τi) is finite and is null recurrent if

E(τi) is infinite.

Example 2.1. Recurrence type of one dimensional random walk

We have discussed that in a symmetric 1-d random walk, 0 is a recurrent state.

To check whether 0 is null or positive recurrent, we may look at E(τ0), where τ0 is

the first time the chain returns to 0. Now P (τ0 = 2k) is NOT P 2k
00 =

(
2k
k

)
1

22k
as the

example above. The reason is P 2k
00 includes many instances of the chain revisiting 0

BEFORE the time 2k (see also the remark below). We may use the law of inclusion

/ exclusion to calculate P (τ0 = 2k) (by subtracting all the possbilities of the chain

returning to 0 before time 2k from
(
2k
k

)
). On the other hand, this leads to complicated

calculation that reveals little intuition. We present an easier way to do so with the

limiting probability below (which also demonstrates a practical use of the concept).

Note that for a Markov chain, P n
ii is not necessarily the first time the chain revisits

state i after n steps. Otherwise, from the fact that
∑

n P
n
ii = ∞ we must conclude

that
∑

n nP
n
ii =∞ and thus every recurrent state is null recurrent, which is evidently

not true with an easy counter example. In fact, in a finite state Markov chain, every

recurrent state is positive recurrent. Moreover, positive recurrence is a class property.

For a given state i, we say it is periodic with period d if P n
ii = 0 for n mod d 6= 0.

That is state i has period d if starting from i we can return to i only after a multiple

of d steps. In the 1-d random walk, it is clear that all states have period 2. If d = 0

we say i is aperiodic. Periodicity is also a class property.
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Finally, a class of states is ergodic if it is positive recurrent and aperiodic. We

have the following important theorem:

Theorem 2.2. Convergence of ergodic chain transition probabilities

Let Xk be an irreducible ergodic Markov chain (with possibily countably many

states). Then for any i, j

lim
n→∞

P n
ij exists and equals πj.

Moreover, πj is the unique solution to the system

πj =
∑
i

πiPij∑
j

πj = 1.

That is π is the left eigenvector of the transition matrix P with eigenvalue 1. π is

also referred to as the stationary probability of the Markov chain Xk. The reason

is if we start out with initial distribution π, that is P (X0 = i) = π, all subsequent

distribution will also be π : P (Xk = i) = πi,∀k.

We have the following remarks.

• The most important result in the above theorem is the convergence of P n
ij. The

other facts follow easily from this convergence. In fact, from the Kolgomorov

equation

P n+1
ij =

∑
k

P n
ikPkj,

taking limit as n→∞ on both sides we obtain πj =
∑

i πiPij.

• If we write the Kolmogorov equation the other way

P n+1
ij =

∑
k

PikP
n
kj,

then we actually get πj =
∑

k Pikπj, which is just a reflection of the fact that

the row sum of a transition probability matrix is 1. Thus it is emphasized that

the limiting probability is a left and not a right eigenvector of the transition

matrix.
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• From the fact that
∑

j P
n
ij = 1 and limn→∞ P

n
ij = πj independent of i we derive∑

j πj = 1. (Here it actually requires an interchange of summation and limit,

which always holds when the sum if finite in the case of finite Markov chain.

This connects to the fact that a finite state ergodic Markov chain is always

positive recurrent).

• The above discussion also explains why limn→∞ P
n
ij only depends on j and not

on i. First we can see it from an intuitive point of view. We explained the

meaning of the limit as the proportion of the time the chain spends in j in the

long run and thus it should be only a function of j. Second, this reflects the

Markov property of the chain. Markov property can be informally described as

”finite memory” property of the chain. If the limiting probability still depends

on i then the chain has ”infinite memory” which is a contradiction to the finite

memory property.

• In terms of mathematics, we first can dismiss the idea that the limit limn→∞ P
n
ij

is a function of both i, j. If that is the case then from the Kolmogorov equation

we’ll have P̄ = P̄P = PP̄ where P̄ is the limit of the transition probability

matrix P. This can only be true P is an identity matrix. On the other hand, if

the limit is a function of i then there are two consequences. First, the limiting

distribution π is a right eigenvector of P (which again explains why in the true

scenario we must emphasize π as the left eigenvector of P ) from taking the limit

of the Kolmogorov equation

P n+1
ij =

∑
k

PikP
n
kj.

Second, taking the limit in the “other” Kolmogorov equation

P n+1
ij =

∑
k

P n
ikPkj,

gives πi =
∑

k πiPkj, which cannot be true since the column sum of P is not 1.

• The requirement that the state is aperiodic is intuitively clear. If state i has

period d then we can only discuss P n
ii where n is a multiple of d. Thus the limit

limn→∞ P
n
ii must be taken along the subsequence of n that is a multiple of d.

The general limit limn→∞ P
n
ij for any i, j may not exist in the rigorous sense of

limit definition (e.g. it converges to one limit when n is even and another when

n is odd).
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• The requirement that the state is positive recurrent is also clear. If a state i is

null recurrent then even though the chain is guaranteed to revisit i and it will

visit i infinitely often, the average time it takes to do so for the first time is

infinite ! Thus the long run proportion of time the chain spends on state i is 0

or πi = 0.

• The statement that an irreducible recurrent finite state Markov chain is positive

recurrent can be proven by showing that the transition probability matrix P

has a positive left eigenvector with eigenvalue 1. This can be viewed as a linear

algebra exercise (albeit a nontrivial one). The irreducible property of the chain

can be captured by stating that P cannot be permuted into a block-diagonal

matrix.

• The previous statement can be generalized to any Markov chain. That is a

Markov chain is irreducible positive recurrent if and only if it has a positive left

eigenvector with eigenvalue 1. The irreducibility is captured by the fact that all

entries of the eigenvector is non-zero. As a particular example, one can show

that the 1-d random walk is null recurrent by showing that the left eigenvector

with eigenvalue 1 is the zero vector.

Example 2.3. Null recurrence type of one dimensional random walk

We now can demonstrate the null recurrence property of one dimensional random

walk by showing that the left eigenvector π of its transition matrix is the 0 vector.

From the symmetry of the situation, we conclude that if there is such a vector π, it

must happen that πi = πj,∀i 6= j. A formal argument may be as followed : consider

another Markov chain Yk where the state space of Y is the state space of X plus a

given integer, say N. Y and X has exactly the same transition probability matrix and

thus must have the same stationary distribution. But this means πXi+N = πXi , ∀N. It

then follows easily that πXi = 0,∀i.

Example 2.4. Stationary distribution of the hotel family problem

In the hotel problem, it is not a good idea to find the stationary distribution of

the number of families staying in the hotel in any one day by solving the equation

πP = π, if only for the reason that the transition probabilities obtained for P are not

simple expressions. On the other hand, we know how the number of families changes

from one day to the next. Using the idea that the stationary distribution is unique,

we can just try to guess the distribution that would make our process stationary. It
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is not unreasonable to guess that the stationary distribution is a Poisson (θ) for some

value of θ. This comes from the fact that the number of families arrive each day is a

Poisson and the sum of independent Poissons is Poisson. If our guess is correct, we

just need to find θ so that if X0 ∼ Poisson (θ) then X1 ∼ Poission(θ).

Again the idea is to avoid using the transition probability so we don’t want to

compute P (X1 = j|X0 = i). On the other hand, we know the number of families

arriving the next day Y1 is Poisson (λ) independent of X0. Thus we know X0 +Y1 has

a Poisson (λ + θ) distribution. If the number of families leaving Z1 is also a Poisson

(λ) distribution then we’re done (since Z1 is independent of X0, Y1. We know that

Z1|X0 has a Binomial(X0, p) distribution. Thus the unconditional distribution of Z1

is a Poisson pθ (from the discussion of the Yoga studio problem, Ross example 3.23).

Thus we need pθ = λ or the stationary distribution is Poisson (λ
p
).

3 Average time spent in a certain state

The stationary distribution π represents the percentage time the chain spends at

state i in the long run. In this section we make this idea precise. First we have the

following proposition.

Proposition 3.1. Let Xk be a irreducible positive recurrent Markov chain and π its

stationar distribution. Then with probability 1

lim
n→∞

∑n
i=1 f(Xi)

n
=
∑
i

πif(i),

for any bounded function f.

The above result is referred to as an “ergodic” type of result. It basically states

that under a certain condition, (long run) time average can be replaced by spatial

average. The law of large number can be viewed as one particular case of this state-

ment (even though the sense of convergence may be different, and stronger in the law

of large number). In fact, let Xi be an iid sequence of discrete RVs with distribu-

tion represented by a RV X. Then Xi is a Markov chain with transition probability

Pij = P (X = j) ! The stationary distribution πi is the distribution of X itself. And

thus applying the above proposition with f(i) = i we see that the long run average

converges to E(X).
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The proof of the proposition goes as followed. Let ai(n) be the time Xk spends

at state i for the time duration 0, 1, · · · , n. Then

n∑
i=1

f(Xi) =
∞∑
i=1

f(i)ai(n).

Note that the LHS is a sum over time while the RHS is a sum over state space.

Dividing both sides by n and note that limn→∞
ai(n)
n

= πi we have the result.

Example 3.2. Transition rate, average time spent in a certain state

LetXk be an ergodic finite state Markov chain with two types of states : acceptable

A and unacceptable Ac.Xk can be thought of as a production process where time spent

in A represents the “up” time and the time spent in Ac represents the down time.

a. Find the rate at which the production process goes from up to down ( that is,

the rate of break down)

b.The average length of time the process remains down when it goes down

c. The average length of time the process remains up when it goes up

Ans: The main challenge of this problem is to translate the language of the

Markov chain to the language used in the problem. First we know that there exists

a stationary probability, which represents the proportion of time the process spends

in a certain state in the long run. For that matter, we also know the proportion of

time the process spends in the acceptable class A and the unacceptable class Ac in

the long run. But at least for now we do not have information on the length of time

the process spends in these states.

a. First a breakdown is a transition from good to bad state. Second, the unit of

breakdown rate should be the number of breakdown per unit of time. A unit of time

in the discrete context is just one step of the Markov chain. In this sense, it seems

that the answer is just
∑

i∈A,j∈Ac Pij. To give an easy example, suppose the chain

only has two states, 0 for unacceptable and 1 for acceptable. Then it seems that the

answer is P10 because in a unit of time, there is P10 “breakdowns” happening.

On second thought this answer does not make sense. Pij is a conditional proba-

bility. The above sum reads as
∑

i∈A,j∈Ac Pij =
∑

i∈A,j∈Ac P (Xk+1 = j|Xk = i). This

sum is not a quantity we can make sense of because we sum over all possible starting

states. Going back to our simple example, we see that P10 only gives the probability

of breakdown IF we are in the acceptable state. It does not give us the probability

of breakdown in general (because in general we may also be in an unacceptable state
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and in that state “break down” does not apply). In other words, we need the un-

conditional probability of being in an unacceptable state starting from an acceptable

state. Thus the answer is
∑

i∈A,j∈Ac πiPij.

To see why this answer makes intuitive sense, we see that πi represents the pro-

portion of time the chain spends in the acceptable state. Another way to see it is in

the long run, the chain will settle in the stationary distribution of π. From there, the

breakdown rate is just

P ( move from an acceptable state to an unacceptable state in 1 unit of time )

= P (Xk+1 unacceptable , Xk acceptable )

which is the answer we gave. Finally note that the breakdown rate refers to a sta-

tionary quantity (not depending on k or distribution of Xk). Thus the use of the

stationary distribution for its computation also makes sense.

An alternative approach to solving this problem in a similar spirit to the ergodic

theorem presented above is as followed. The average breakdown rate should be

lim
n→∞

∑n
i=1 f(Xi, Xi+1)

n
,

where we define f(i, j) = 1 if i ∈ A, j ∈ Ac and 0 otherwise. To use the ergodic

theorem, we rewrite

n∑
i=1

f(Xi, Xi+1) =
n∑
i=1

f(Yi)

where Yi := (Xi, Xi+1) is a Markov process (verify that indeed Yi is Markov). The

transition probability of Yi is

P Y
(i,j),(j,k) = P (Yi+1 = (j, k)|Yi = (i, j)) = Pjk.

Because Xi is ergodic, Yi is also ergodic and its stationary distribution is

πYij = πiPij.

Indeed
∑

i,j π
Y
ij =

∑
i,j πiPij = 1 and∑

i

πYijPjk =
∑
i

πiPijPjk = πYjk.

Here we note that the above sum is only over i and not i, j because to end up at a

particular state (j, k), Y must start at a (i, j) where the freedom is only on the i and

not on the j. For further clarification, see e.g. Ross example 4.4.
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Now applying the ergodic theorem we see that

lim
n→∞

∑n
i=1 f(Xi, Xi+1)

n
= lim

n→∞

∑n
i=1 f(Yi)

n
=
∑
i,j

f(i, j)πYi

=
∑
i,j

f(i, j)πiPij

=
∑

i∈A,j∈Ac

πiPij.

b. This question is clearly related to part c. It is also clear that the answer is in terms

of some unit of time ( or time step in the case of the Markov chain ). What we have

now with our Markov chain is proportion and breakdown rate. So it’s intuitive that

we should relate the times in question with some rate or proportion. If we call D the

answer for part b and U the answer for part c then it is clear there is on average 1

breakdown per time interval of length D+U. Thus our breakdown rate found in part

a is exactly 1
D+U

: ∑
i∈A,j∈Ac

πiPij =
1

D + U
.

Now we need one more equation relating D,U . It’s not hard to see that we want to

relate the proportion of time the chain spends in up or down states to U and D. For

example, the proportion of time the process spends in the up states would be

U

D + U
=
∑
i∈A

πi.

Combining the two equations, we have easily

U =

∑
i∈A πi∑

i∈A,j∈Ac πiPij

D =

∑
i∈Ac πi∑

i∈A,j∈Ac πiPij
.

4 Gambler’s ruin in general

Consider a Markov chain Xk with the following transition probability:

P (Xk+1 = i+ 1|Xk = i) = p

P (Xk+1 = i− 1|Xk = i) = 1− p, i ∈ Z.
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Thus Xk is a one dimensional random walk with probability p of going one unit to

the right and 1 − p of going one unit to the left in one time step. Suppose X0 = 0.

We want to ask the probability

P (Xk = n1 before Xk = −n2 for some k|X0 = 0) =?

This is the ruin probability of a gambler whose initial fortune is n2 playing a game of

flipping a coin with probability of H equalling p against another player whose initial

fortune is n1. It is clear that we can cast this problem into another Markov chain with

N states, where states 1, N are absorbing with transition probabilities

P (Xk+1 = i+ 1|Xk = i) = p

P (Xk+1 = i− 1|Xk = i) = 1− p, 1 < i < N.

The connection of this problem to limiting distribution is as followed. We observe

that states 2, · · · , N−1 are transient so the chain will eventually settle in either state

1 or N. The chain is not ergodic so the previous theory of limiting distribution does

not apply. On the other hand, we can believe that if we take the limit P n as n→∞
where P is the transition matrix of the chain it will converge to a limit whose columns

are zeros except the first and last ones. Those represent the absorbing probabilities

to state 1 and N respectively. It is our goal in this section to derive these absorbing

probabilities in another way.

Denote πi as the absorbing probability to state N starting from state i. Then

πi = P (Xk = N before Xk = 1 for some k|X0 = i)

= pP (Xk = N before Xk = 1 for some k|X1 = i+ 1) +

(1− p)P (Xk = N before Xk = 1 for some k|X1 = i− 1)

= pπi+1 + (1− p)πi−1

with π1 = 0 and πN = 1. Since π1 = 0 we have

π3 = pπ2

π3 = pπ4 + (1− p)π2 = pπ4 +
(1− p)
p

π3

from which we conclude

π4 =
p− q
p2

π3 =
p− q
p

π2.
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We can try one more step to see the pattern, but we can be more efficient looking at

the abstract formula:

πi = pπi+1 + (1− p)πi−1
(1− p)(πi − πi−1) = p(πi+1 − πi).

That is

πi+1 − πi =
q

p
(πi − πi−1) = · · · =

(
q

p

)i−1
(π2 − π1)

=

(
q

p

)i−1
π2.

The LHS obviously suggests a telescoping sum, which is

N−1∑
i=1

(πi+1 − πi) = π2

N−1∑
i=1

(
q

p

)i−1
=

1−
(
q
p

)N−1
1− q

p

, p 6= q

= N − 1, p = q.

Since the LHS is 1,

π2 =
1− q

p

1−
(
q
p

)N−1 , p 6= q

=
1

N − 1
, p = q.

Note how this is consistent with the glamber’s ruin problem in the symmetric random

walk we have derived before. The same computation can be applied to compute πi :

πi =
i−1∑
k=1

(πk+1 − πk) = π2

i−1∑
k=1

(
q

p

)k−1
=

1−
(
q
p

)i−1
1−

(
q
p

)N−1 , p 6= q

=
i− 1

N − 1
, p = q.

If p > 1/2 then q
p
< 1 and thus

lim
N→∞

πi = 1−
(
q

p

)i−1
.

This is the probability that a gambler can “not lose” against an infinitely rich oppo-

nent. Here not losing means he does get arbitrarily rich. Note that this probability
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is an increasing function of his initial fortune i. Also he must have an advantage in

winning each game (p > 1/2) before he has a hope to do so.

On the other hand, p < 1/2 then q
p
> 1 and thus

lim
N→∞

πi = 0.

In fact, if p = 1/2, limN→∞ πi = 0 as well. Thus if in a unfavored or fair game, the

finite fortune player is guaranteed to go bankrupt against and infinitely rich player.
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