Conditional variance

Math 478

February 18, 2019

1 Overview

Let X, Y be RVs. Then

$$
\begin{aligned}
\operatorname{Var}(X \mid Y) & =E\left([X-E(X \mid Y)]^{2} \mid Y\right) \\
& =\sum_{x} x P_{X \mid Y}(X=x \mid Y) \text { (discrete) } \\
& =\int x f_{X \mid Y}(x \mid Y) d x \text { (continuous) }
\end{aligned}
$$

By linearity of conditional expectation:

$$
\begin{aligned}
\operatorname{Var}(X \mid Y) & =E\left([X-E(X \mid Y)]^{2} \mid Y\right) \\
& =E\left(X^{2}-2 X E(X \mid Y)+E^{2}(X \mid Y) \mid Y\right) \\
& =E\left(X^{2} \mid Y\right)-2 E(X \mid Y) E(X \mid Y)+E^{2}(X \mid Y) \\
& =E\left(X^{2} \mid Y\right)-E^{2}(X \mid Y)
\end{aligned}
$$

similar to the non-conditional variance formula. The interpretation of $\operatorname{Var}(X \mid Y)$ is that
a) It is a RV, specifically also a function of Y
b) It is the best mean square estimate of the spread of X with respect to $E(X \mid Y)$, its conditional estimate based on Y.
c) If X, Y are independent then $\operatorname{Var}(X \mid Y)=\operatorname{Var}(X)$.
d) $\operatorname{Var}(f(X) \mid X)=0$ for any function f.
e) One can develop the notion of conditional covariance $\operatorname{Cov}(X, Y \mid Z)$ in a similar manner and thus have a formula for $\operatorname{Var}(X+Y \mid Z)$.
f) In general, the relation $\operatorname{Var}(X+Y \mid Z)=\operatorname{Var}(X \mid Z)+\operatorname{Var}(Y \mid Z)$ requires the notion of independence of X, Y conditioned on Z, which is different from independence of X, Y only. See below for an example.

Finally we have

$$
\operatorname{Var}(X)=E(\operatorname{Var}(X \mid Y))+\operatorname{Var}(E(X \mid Y))
$$

This can be proven by observing that

$$
\begin{aligned}
E(\operatorname{Var}(X \mid Y))+\operatorname{Var}(E(X \mid Y)) & =E\left(E\left(X^{2} \mid Y\right)-E^{2}(X \mid Y)\right)+E\left(E^{2}(X \mid Y)\right)-E^{2}(E(X \mid Y)) \\
& =E\left(X^{2}\right)-E^{2}(X)=\operatorname{Var}(X)
\end{aligned}
$$

2 Examples

2.1 Variance of a Geometric (p)

Let N be a $\operatorname{Geometric}(p) \mathrm{RV}$ and X_{1} be the result of the first trial. We want to calculate $\operatorname{Var}(N)$ using the formula

$$
\operatorname{Var}(N)=E\left(\operatorname{Var}\left(N \mid X_{1}\right)\right)+\operatorname{Var}\left(E\left(N \mid X_{1}\right)\right) .
$$

First

$$
\operatorname{Var}\left(N \mid X_{1}\right)=E\left(N^{2} \mid X_{1}\right)-E^{2}\left(N \mid X_{1}\right) .
$$

We showed that

$$
E\left(N \mid X_{1}\right)=\mathbf{1}_{X_{1}=1}+E(N+1) \mathbf{1}_{X_{1}=0}
$$

It follows that

$$
E^{2}\left(N \mid X_{1}\right)=\mathbf{1}_{X_{1}=1}+E^{2}(N+1) \mathbf{1}_{X_{1}=0}
$$

A similar argument shows that

$$
E\left(N^{2} \mid X_{1}\right)=\mathbf{1}_{X_{1}=1}+E\left[(N+1)^{2}\right] \mathbf{1}_{X_{1}=0}
$$

Thus

$$
\operatorname{Var}\left(N \mid X_{1}\right)=\operatorname{Var}(N) \mathbf{1}_{X_{1}=0} .
$$

Note that the above equation can be derived more simply from the observation that

$$
N \mid X_{1} \stackrel{d}{=} \mathbf{1}_{X_{1}=1}+(1+N) \mathbf{1}_{X_{1}=0} .
$$

When conditioned on $X_{1}, \mathbf{1}_{X_{1}=1}, \mathbf{1}_{X_{1}=0}$ are deterministic. Thus

$$
\operatorname{Var}\left(N \mid X_{1}\right)=\operatorname{Var}(N) \mathbf{1}_{X_{1}=0} .
$$

Finally

$$
E\left(\operatorname{Var}\left(N \mid X_{1}\right)\right)=\operatorname{Var}(N)(1-p) .
$$

On the other hand,

$$
\begin{aligned}
E\left(N \mid X_{1}\right) & =\mathbf{1}_{X_{1}=1}+E(N+1) \mathbf{1}_{X_{1}=0} \\
& =E(N) \mathbf{1}_{X_{1}=0}
\end{aligned}
$$

and thus

$$
\operatorname{Var}\left(E\left(N \mid X_{1}\right)\right)=E^{2}(N) p(1-p)=\frac{1-p}{p}
$$

We have

$$
\begin{aligned}
\operatorname{Var}(N) & =E\left(\operatorname{Var}\left(N \mid X_{1}\right)\right)+\operatorname{Var}\left(E\left(N \mid X_{1}\right)\right) \\
& =\operatorname{Var}(N)(1-p)+\frac{1-p}{p} .
\end{aligned}
$$

Thus $\operatorname{Var}(N)=\frac{1-p}{p^{2}}$.

2.2 Variance of a compound RV

Let X_{i} be iid and N independent of X_{i}. Recall that $S=\sum_{i=1}^{N} X_{i}$ is a compound RV. We compute $\operatorname{Var}(S)$ using the formula

$$
\operatorname{Var}(S)=E(\operatorname{Var}(S \mid N))+\operatorname{Var}(E(S \mid N))
$$

Now

$$
\begin{aligned}
\operatorname{Var}(S \mid N) & =\operatorname{Var}\left(\sum_{i=1}^{N} X_{i} \mid N\right)=\sum_{i=1}^{N} \operatorname{Var}\left(X_{i} \mid N\right) \\
& =N \operatorname{Var}\left(X_{1}\right) .
\end{aligned}
$$

Remark 2.1. The above argument is a bit delicate and it's more than just interchanging the variance and summation. In fact the following is not true, even if X, Y are independent:

$$
\operatorname{Var}(X+Y \mid Z)=\operatorname{Var}(X \mid Z)+\operatorname{Var}(Y \mid Z) .
$$

The reason is the relation also depends on the relations between X, Y and Z. For example take X, Y to be indendent Poissons then

$$
\operatorname{Var}(X+Y \mid X+Y)=0 \neq \operatorname{Var}(X \mid X+Y)+\operatorname{Var}(Y \mid X+Y)
$$

In the formula for $\operatorname{Var}(S \mid N)$ we also have the independence of X_{i} and N which gives us the result.

Thus

$$
E(\operatorname{Var}(S \mid N))=E(N) \operatorname{Var}\left(X_{1}\right)
$$

On the other hand,

$$
\operatorname{Var}(E(S \mid N))=\operatorname{Var}\left(N E\left(X_{1}\right)\right)=E^{2}\left(X_{1}\right) \operatorname{Var}(N) .
$$

Therefore,

$$
\operatorname{Var}(S)=E(N) \operatorname{Var}\left(X_{1}\right)+E^{2}\left(X_{1}\right) \operatorname{Var}(N) .
$$

