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1 Compute the expectation of Geometric(p)

Let N be a Geometric(p) RV. Let X1 = 1 if the first trial is a success and 0 otherwise.

Then

E(N) = E(E(N |X1)) = E(N |X1 = 0)P (X1 = 0) + E(N |X1 = 1)P (X1 = 1)

= E(N + 1)(1− p) + p.

Here we remark that E(N |X1 = 1) = E(N + 1) can be viewed from the fact that

N
∣∣∣(X1 = 0)

d
= N + 1.

For example

P (N = 2|X1 = 0) = P (X2 = 1|X1 = 0) = P (X2 = 1) = p

P (N + 1 = 2) = P (N = 1) = P (X1 = 1) = p

and

P (N = 3|X1 = 0) = P (X3 = 1, X2 = 0|X1 = 0) = P (X3 = 1, X2 = 0) = p(1− p)

P (N + 1 = 3) = P (N = 2) = P (X2 = 1, X1 = 0) = p(1− p).

This in turn relies on the fact that the sequence of Xi is i.i.d which is not always the

case. See next section for a case when this technique does not apply.

2 Compute the expectation of the first record time

Let Xi be i.i.d. continuous RVs and let Ri = 1 if a record happens at time i (that

is Xi = max(X1, X2, · · · , Xi)) and 0 otherwise. One can show that the Ri’s are
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independent but they are not identically distributed. In fact, P (Ri = 1) = 1/i.

Define

N = min{i ≥ 2, Ri = 1}

as the first time a record happens after time 1. Then we know (from Ross problem

2.74) that E(N) = ∞. On the other hand, since the Ri’s are not iid, imitating the

previous example’s technique in calculating E(N) conditioning on R2 may not work.

That is

E(N) = E(E(N |R2)) = E(N |R2 = 0)P (R2 = 0) + E(N |R2 = 1)P (R2 = 1)

= E(N |R2 = 0)1/2 + 2× 1/2.

One may think that E(N |R2 = 0) = E(N + 1), again motivated by what happened

in the previous example. But this is wrong. In fact, the relation

N
∣∣∣(R2 = 0)

d
= N + 1

does not follow. In fact

P (N = 3|R2 = 0) =
P (X3 > X2 > X1)

P (R2 = 0)
=

1

3
,

or alternatively

P (N = 3|R2 = 0) = P (R3 = 1|R2 = 0) = P (R3 = 1) =
1

3

while

P (N + 1 = 3) = P (N = 2) = P (R2 = 1) =
1

2
.

Note what fails here is exactly P (R3 = 1) 6= P (R2 = 1).

3 Compute the expectation of a compound ran-

dom variable

Let Xi be iid and N be independent of Xi’s. Let

S =
N∑
i=1

Xi.
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Then S is referred to as a compound RV. S can be thought of as the value of a random

walk with step sizes Xi that is evaluated at the random time N. To compute E(S)

we condition it on N :

E(S) = E(E(S|N)) = E(E(
N∑
i=1

Xi|N)).

Now

E(
N∑
i=1

Xi|N) =
N∑
i=1

E(Xi|N) =
N∑
i=1

E(Xi) = NE(X1).

Finally

E(S) = E(E(S|N)) = E(N)E(X1).

Remark 3.1. Note how in the above computation E(
∑N

i=1Xi|N) is a function of N .

Also note how E(Xi|N) is reduced to E(Xi) by independence. This is crucical. For

example, suppose Xi are iid Bernoulli and we let

N = min{n ≥ 1 :
n∑

i=1

Xi = 10}.

Then
∑N

i=1Xi = 10 deterministically and thus

E(
N∑
i=1

Xi|N) = 10 6= NE(X1).

Finally note how the above result does not change if we weaken the assumption to Xi’s

being independent with the same mean and not necessarily identically distributed.

4 Compute the expectation of the number of rounds

in the hat problem

Suppose in the hat problem the men who picked the right hat leave and the ones

who picked the wrong hat throw theirs together again and repeat the process until

everyone gets their right hat. Let Rn be the number of rounds it takes in this process

for n people. If we denote Xi to be the number of correct hats in round ith then

Rn∑
i=1

Xi = n.
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Recall that the expected number of correct hats is 1, irrespective of the total number

of hats in the pile. Thus E(Xi) = 1,∀i and one is tempted to conclude

E(
Rn∑
i=1

Xi) = E(Rn)E(X1) = n

and thus E(Rn) = 1. This is wrong, not because the X ′is are not iid (see the remark

in the previous section) but because Rn is NOT independent of the Xi. In fact,

Rn = 1 means X1 = n and Rn > 1 means X1 < n so they cannot be independent.

Nevertheless, it is still reasonable to guess that E(Rn) = n.

To derive the result rigorously, we proceed by conditioning on X1 and using in-

duction on n. That is we note R1 = 1 trivially. Suppose that E(Ri) = i, i < n.

Now

E(Rn) = E(E(Rn|X1)) =
n−1∑
i=1

E(Rn|X1 = i)P (X1 = i) + E(Rn|X1 = 0)P (X1 = 0)

= E(1 + Rn−i)P (X1 = i) + E(1 + Rn)P (X1 = 0).

In the above, we made the assertion that

Rn

∣∣∣X1
d
= 1 + Rn−X1 ,

but this is true by definition. Using the induction hypothesis that Rn−i = n − i for

i ≥ 1 we have

E(Rn) =
n−1∑
i=1

(1 + n− i)P (X1 = i) + (1 + E(Rn))P (X1 = 0)

= (1 + n)(1− P (X1 = 0))− E(X1) + (1 + E(Rn))P (X1 = 0)

= n(1− P (X1 = 0)) + E(Rn)P (X1 = 0)

where we have used the fact that
∑n−1

i=1 iP (X1 = i) = E(X1) = 1. It now follows that

E(Rn) = n.

5 Compute the expectation for the first time to k

consecutive successes

Consider independent Bernoulli Xi with success probability p. Let Nk be the first

time that we observe k consecutive successes. Clearly Nk ≥ k. On the other hand, to
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compute E(Nk) we must think about the right RV to condition on. While it is true

that

E(Nk) = E(E(Nk|X1)),

it is not clear what E(Nk|X1 = 1) is. In fact, we see that the right RV to condition

on is Nk−1. The conditional relation is

Nk

∣∣∣Nk−1 = Nk−1 + 1 with probability p

= Nk−1 + 1 + Ñk with probability 1− p,

where Ñk is a RV with the same distribution with Nk. This comes from considering

the result of the trial at the time Nk−1 + 1. Thus

E(Nk|Nk−1) = p(Nk−1 + 1) + (1− p)(Nk−1 + 1 + E(Nk))

= 1 + Nk−1 + (1− p)E(Nk).

Again note how E(Nk|Nk−1) is a function of Nk−1. Now we have

E(Nk) = 1 + E(Nk−1) + (1− p)E(Nk)

or

E(Nk) =
1 + E(Nk−1)

p
.

Continue the recurrence with E(N1) = 1
p

gives

E(Nk) =
k∑

i=1

1

pi
.
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