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CHAPTER 1 Jump process models

1.1 Motivations

Previously, most of the models of the stock process we have encountered are continuous,
i.e the stock price is not supposed to have jumps. Very quickly we see this assumption
is restrictive: when the stock pays dividend, the stock price has a downward jump corre-
sponding to the amount of divident payout. However, the dividend payment can be covered
within the continuous framework without introducing any new ideas, essentially because
the dividend payment times are deterministic.

Dividend payments are not the only phenomenons that cause the stock price to have
jumps, obviously. In reality, we quickly observe many instances where stock price jumps,
and the most important characteristic of these jumps is that they happen at random times.
Being able to model stock prices that incorporate jumps at random (or more precisly, stop-
ping times) and learning how to price financial products based on these models are the main
focus of this Chapter.

1.2 Overview of price modeling in continuous time

Let {F(t); t ≥ 0} be a filtration modeling the accumulation of market information avail-
able to investors as time progresses. A simple paradigm guides the construction of models
for an asset price, {S(t); t ≥ 0}, that is a continuous function of time:

dS(t)

S(t)
= α(t) dt+ dM(t), (1.1)

where α is a process adapted to {F(t); t ≥ 0},M is a martingale with respect to {F(t); t ≥
0}, and dS(t) = S(t + dt) − S(t) denotes the price increment at t for an infinitesimally
small positive increment of time, dt. This is a formal equation, because dt is not precisely
defined. Intuitively, (1.1) says that if dt is replaced by a small finite time, the left- and
right-hand sides are approximately equal and that the approximation is better the smaller
dt is.

This modeling framework is entirely natural. Because M is a martingale,

E[dM(t)
∣∣∣F(t)] = E[M(t+ dt)−M(t)

∣∣F(t)] = 0.
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Therefore

E
[dS(t)

S(t)

∣∣∣F(t)
]

= α(t) dt.

This means that α(t) dt is the expected infinitesimal return on owning a share of the asset
over the period [t, t+dt], conditional on the market history at time t. Therefore, from equa-
tion (1.1), dM(t) is the fluctuation of the return about this conditional mean. Essentially,
M is the source of the random fluctuations in the price; we say that the noise M drives the
evolution of S. Using paradigm (1.1), we can break down price modeling into the separate
problems of modeling α and M .

1.3 Models based on Brownian motion, a review

From the perspective of equation (1.1), the theory of stochastic integrals with respect to
Brownian motion is a mechanism for producing a large and flexible class of martingales to
use for M . Let us recall in broad outline, how this theory goes. We start with a continuous
process W , namely Brownian motion, which is not just a martingale, but a process with
independent and stationary increments. It is assumed that W is adapted to {F(t); t ≥ 0}
and that future incrementsW (t+h)−W (t), h ≥ 0 are independent ofF(t). We then define∫ t

0
α(s) dW (s) for processes α adapted to {F(t); t ≥ 0} and satisfying E[

∫ T
0
α2(s) ds] <

∞ for all T . The definition proceeds in two steps. First, we define the integral if α has the
form:

α(t) =
t∑
i=1

αi1(ti−1,ti](t)

where t0 < t1 < · · · < tn and αi is F(ti−1)-measurable for each i. The definition is:∫ t

0

α(s) dW (s) :=
n∑
i=1

αi[W (ti ∧ t)−W (ti−1 ∧ t)]

This is the accumumlated return, up to time t, from betting amount αi on the increment of
W over every interval [ti−1 ∧ t, ti ∧ t]. We then show this integral satisfies the Itô isometry,

E
[( ∫ t

0

α(s) dW (s)
)2]

= E
[ ∫ t

0

α2(s) ds
]
,

use this isometry to extend the definition to more general, adapted integrands, and obtain
in this way a large family of martingales of the form,

M(t) :=

∫ t

0

σ(s) dW (s),

9



where σ(t) is adapted to {F(t); t ≥ 0} and E[
∫ T

0
σ2(s) ds] <∞ for all T .

When
∫ t

0
σ(s) dW (s) is used for M in (1.1), the price model becomes:

dS(t) = α(t)S(t) dt+ S(t)σ(t)dW (t). (1.2)

Here we have expressed dM(t) as σ(t)dW (t); formally it consists of a Gaussian term
dW (t), with mean zero and variance dt, independent of the past, times a volatility factor
σ(t) that is known at time t. For this class of price equations, the job of modeling reduces
to choosing α and σ. (Pricing derivatives requires taking expectations with respect to a
risk-neutral measure, and we found that this measure does not depend on α. Therefore, for
pricing we really only need to model volatility.)

1.4 The problem of modeling jumps

As we mentioned in the Introduction, the main constraint of model (1.2) above is continu-
ity; W (t), M(t) =

∫ t
0
σ(s) dW (s), and, consequently, the price S(t) solving (1.2) are all

continuous functions of t with probability one.
Of course, in reality prices move in steps of discrete size. So long as these steps are

small, continuous models of form (1.2) should be okay, if returns over small intervals are
approximately Gaussian. But occasionally, prices take large, sudden and unexpected jumps,
such as a market shock, and returns might not be Gaussian.

Therefore, one would like to allow jumps in price models. This will not only incorpo-
rate the phenomenon of sudden large jumps, but will also offer a richer family of models
for fitting the empirically observed, statistical behavior of prices.

Price models with jumps can be obtained by introducing jumps into the noise, M , in
equation (1.1). To proceed we need to know how to define martingales with jumps and
we need a theory to interpret and solve stochastic differential equations with jump
terms.

The strategy for carrying this out parallels stochastic integration theory for Brownian
motion. One starts with independent increment processes, X(t), that are martingales and
that have jumps. The simplest example is the compensated Poisson process. Then one
defines stochastic integrals,

∫ t
0
σ(s) dX(s), and establishes conditions on σ(·) so that

these integrals are martingales. This produces a large class of martingales with jumps to
use as the driving noise in price equations. Finally, one extends Itô calculus to stochastic
integrals with jumps. This calculus can then be used to analyze derivatives based on the
new price models.

The compensated Poisson process is derived from the Poisson process. To understand
it, we start out with the Poisson process.

10



Remark 1.4.1. As mentioned in the Introduction, we can also have stock price jumps in
the case of dividend payments. In this case the stock will be modeled as followed:

dS(t) = α(t)S(t)dt+ σ(t)S(t)dW (t) + S(t−)dJ(t),

where if we let 0 < t1 < · · · < tn < T be the dividend payment days and αi, i = 1, · · · , n
be the dividend percentage (that is at time ti the dividend paid is αiS(ti−)) then

J(t) =
n∑
i=1

−αi1{t≥ti}.

(See also Shreve’s Section 5.5.3)
The point is here J(t) is NOT a martingale, nor can it be made into a martingale by

being compensated as a compensated Poisson process. Thus the dividend payment stock’s
model does not fall into the theory of jump processes discussed in this Chapter as far as the
martingale aspect is concerned. However, the mathematical tools developed here can be
used to analyze the jump part in the dividend paying stock in a similar way as we present
later in this Chapter.

1.5 The most basic model of jump processes: Poisson process

1.5.1 Heuristics about Poisson process

We think of Poisson process as followed: suppose that we have an alarm clock that will
ring after a random time τ , where τ is exponentially distributed with some mean 1

λ
. We

keep account of the value of the Poisson process at any time t by the notationN(t). At time
0, we set the alarm clock and set N(0) = 0. When the alarm rings, we increase the value
of N by 1, that is we set N(τ) = 1 and repeat the whole process (i.e. we reset the alarm
clock and increase the value of N by 1 the next time the clock rings). The resulting process
N(t) is then a Poisson process with rate λ. We observe that the larger λ is, the clock would
be likely to ring sooner and the more jumps would likely happen in a given time interval
[0,T]. It is also clear that N(t) is constant in between the “ring" times.

1.5.2 Formal mathematical definition

a. τ (as a R.V.) is said to be exponentially distributed with rate λ if it has the density

f(t) = λe−λt1(t≥0).

It follows that E(τ) = 1
λ

and V ar(τ) = 1
λ2

. An important property of exponential random
variable is the memoryless property:

P(τ > t+ s|τ > s) = P(τ > t).

11



b. Let τi, i = 1, 2, ... be a sequence of i.i.d. Exponential(λ). Let Sk :=
∑k

i=1 τi. The
Poisson process N(t) with rate λ is defined as:

N(t) =
∞∑
i=1

1(t≥Si).

τi is called the inter-arrival time. It is the wait time from the (i − 1)th jump to the ith

jump. Si is called the arrival time. It is the time of the ith jump.

1.5.3 Important basic properties

a. Distribution: N(t) is has distribution Poisson(λt), that is

P(N(t) = k) =
e−λt(λt)k

k!
.

Proof. Let Sn =
∑n

i=1 τi be the arrival time, then

P(N(t) = k) = P(Sk+1 > t, Sk ≤ t)

= P(Sk+1 > t)− P(Sk+1 > t, Sk > t) = P(Sk+1 > t)− P(Sk > t).

From Shreve’s Lemma 11.2.1, Sn has Gamma(λ, n) distribution. That is, it has the
density:

gn(s) =
(λs)n−1

(n− 1)!
λe−λs, s ≥ 0.

It is a straight forward matter of integration now to verify that

P(Sk+1 > t)− P(Sk > t) =
e−λt(λt)k

k!
.

The integration can be tedious, however. Another way to verify it is as followed: Denote
f(t) := P(Sk+1 > t)− P(Sk > t) and note that f(t) satisfies the following ODE:

f ′(t) = gk(t)− gk+1(t) =
(λt)k−1

(k − 1)!
λe−λt − (λt)k

k!
λe−λt

f(0) = 0.

It is clear that f(t) = e−λt(λt)k

k!
is the unique solution to the above ODE. The verification

is complete.
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b. N(t) has independent increment. That is if we denoteFt to be the filtration generated
by N(s), 0 ≤ s ≤ t then for all t ≤ t1 < t2, N(t2)−N(t1) is independent of Ft.

Heuristic reason: Let 0 ≤ s < t. Clearly N(t) − N(s) counts the number of jumps
starting from time s. Given all the information up to time s, what is the distribution of the
first jump time after s? That is, we want to compute P(SN(s)+1 ≥ t|Fs), where Sn is the
arrival time as defined in Shreve (11.2.4). Note that since N(s) represents the number of
jumps up to time s, SN(s)+1 is exactly the time of the first jump after time s.

But this is the same as computing P(τN(s)+1 ≥ t − SN(s)|τN(s)+1 ≥ s − SN(s)). Note
that SN(s) here represents the time of the last jump before time s, and τN(s)+1 is the wait
time between the last jump before time s and the first jump after time s. So P(τN(s)+1 ≥
t− SN(s)|τN(s)+1 ≥ s− SN(s)) asks for the probability that we have to wait until after time
t for the first jump after time s, given that we know we have waited up until time s since
the last jump before s, which has the same content as P(SN(s)+1 ≥ t|Fs).

Note also that P(τN(s)+1 ≥ t− SN(s)|τN(s)+1 ≥ s− SN(s)) = P(τN(s)+1 ≥ t− s+ s−
SN(s)|τN(s)+1 ≥ s−SN(s)). Since Fs is given, N(s) should be looked at as a constant here.
But from the memoryless property of τN(s)+1, we get

P(τN(s)+1 ≥ t− s+ s− τN(s)|τN(s)+1 ≥ s− τN(s)) = P(τN(s)+1 ≥ t− s).

That is, the first jump time after s can be looked at as an exponential clock starts at time s,
hence independent of the past information. Using the independence of interarrival times, it
is clear now that the increments of N(t) after time s is independent of the information up
to time s.

c. N(t) has stationary increment. More specifically, N(t) − N(s) has distribution
Possion(λ(t− s)).

Heuristic reason: It follows from the same arguments of part b.

1.6 Generalizations of Poisson process

1.6.1 Compound Poisson process

The Poisson process we introduced has the satisfactory property that it jumps at random
times. However, each of the jump is by definition of length 1, which is rather restrictive. It
is desirable in terms of being realistic to have random jumps in our model. To that end, we
proceed as followed.

Let N(t) be a Poisson process with rate λ and let Y0 = 0, Yi, i = 1, 2, ... be i.i.d.(and
also independent of N(t)) with E(Yi) = µ. Define

Q(t) =

N(t)∑
i=0

Yi,
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then Q(t) is called a compound Poisson process. Similar to a Poisson process, Q(t) also
has the basic properties of independent and stationary increments. We do not know the
specific distribution of Q(t)−Q(s) (it depends on the distribution of Yi’s , of course), but
we do know that E(Q(t)−Q(s)) = µλ(t− s).

1.6.2 Pure jump process

Poisson process and compound Poisson process are examples of pure jump processes.

Definition 1.6.1. A stochastic process {J(t); t ≥ 0} is called a pure jump process if its
sample paths are right-continuous and piecewise-constant. (Recall that this entails that
each sample path of J(t) admits only a finite number of jumps in any finite time interval.)
A pure jump process N is called a counting process if N(0) = 0 and it its jumps all have
magnitude 1; hence it can only increase, and is always integer-valued. If N is a counting
process, N(t) counts the number of jumps in the time interval [0, t].

Remark 1.6.2. In stochastic integration theory, the definition of a pure jump process is
more general than the one here and allows infinite numbers of jumps in finite time intervals.

Remark 1.6.3. By right continuity, a pure jump process J(t) CANNOT jump at time 0,
which is always the conventional time that we start observing the process.

1.6.3 Levy process

So far the three processes that we have encountered: Brownian motion, Poisson and com-
pound Poisson processes have these three properties in common:

• Its value at time 0 is 0 : X(0) = 0.

• It has càdlàgpath.

• It has stationary and independent increments.

A process X(t) is said to be a Levy process starting at 0 if it satisfies these three
properties (clearly if we change the first property to X(0) = x then we would get a Levy
process starting at x). Brownian motion is an example of a continuous Levy process and
Poisson process is an example of a pure jump Levy process. Indeed, Brownian motion,
compound Poisson process and pure jump process may be thought as “building blocks" of
a Levy process (See Levy-Ito decomposition on Wikipedia, for example).

A rather simple but important property of Levy process is as followed: If X1, X2, ...Xn

are independent Levy process then
∑n

i=1Xi is a Levy process. In particular, if we consider
S(t) = X(t) + Q(t), where X(t) is a Geometric Brownian motion with the drift µ and
volatility σ constant), Q(t) a compound Poisson process then S(t) is a Levy process.
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1.7 Martingale property

In Math finance, we always require the discounted underlying to be a martingale, so that no
arbitrage can happen. As mentioned, the Levy process is intimately connected to our stock
models, so it’s natural to first study the martingale property of Levy processes.

1.7.1 Levy process

LetX(t) be a Levy process andF(t) its filtration. IfE(X(1)) = µ then it can be shown that
E(X(t)) = µt. Similarly, if V ar(X(1)) = σ2 then it can be shown that V ar(X(t)) = σ2t.
Since X has independent increment, one can check that

Y (t) = X(t)− µt;
Z(t) = (X(t)− µt)2 − σ2t

are martingales with respect to F(t).

1.7.2 Brownian motion

Let W (t) be a Brownian motion and F(t) its filtration. Then W (t) and W 2(t) − t are
martingales w.r.t. F(t). More importantly, we have the following exponential martingale
associated with Brownian motion:

Z(t) = eσWt− 1
2
σ2t.

1.7.3 Poisson process

LetN(t) be a Poisson process andF(t) its filtration. ThenN(t)−λt (called a compensated
Poisson process) and (N(t) − λt)2 − λt are martingales w.r.t. F(t). We also have the
following exponential martingale associated with N(t):

Z(t) = exp
(
iuN(t)− λt(eiu − 1)

)
,∀u ∈ R.

1.7.4 Compound Poisson process

Let Q(t) be a compound Poisson process and F(t) its filtration. That is

Q(t) =
Nt∑
i=0

Yi,

where N(t) is a Possion(λ) process. Let E(Y1) = µ and V ar(Y1) = σ2. One can check
that

E(Qt) = λµt
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and
V ar(Qt) = λt(σ2 + µ2).

Then
Q(t)− µλt

(called a compensated compound Poisson process) and

(Q(t)− µλt)2 − λt(σ2 + µ2)

are both martingales w.r.t. F(t).
Let φ(u) := E(eiuY1) be the characteristic function of Yi. Then we also have the fol-

lowing exponential martingale associated with Q(t):

Z(t) = exp
(
iuQ(t)− λt(φ(u)− 1)

)
,∀u ∈ R.

1.8 Lebesgue-Stieltjes integral

1.8.1 Motivation

Now that we have introduced Poisson process, it is easy to see how to incorprate jumps
into the current Black-Scholes stock model. Specifically, letX(t) be a geometric Brownian
motion:

dXt = µXtdt+ σXtdWt,

and N(t) a Poisson process. Then defining the stock process as S(t) := X(t) + N(t)
already gives us a stock price that jumps at random times, and in between the jumps behave
as a geometric Brownian motion.

Let ∆t represent the number of shares of S(t) we hold at time t. As you might remem-
ber from the previous material, we need to know how to evaluate the integral

∫ t
0

∆sdSs,
since it is connected with the value of a portfolio that has S as a component. It is reason-
able to expect that ∫ t

0

∆sdSs =

∫ t

0

∆sdXs +

∫ t

0

∆sdNs,

and we already know how to evaluate
∫ t

0
∆sdXs from the chapter on Ito integral. It remains

to define
∫ t

0
∆sdNs.

For each event ω, the path Nt(ω) (as a function of t) belongs to a special class of func-
tions called the functions of bounded variation. For this reason,

∫ t
0

∆sdNs is defined via
the concept of Lebesgue-Stieltjes integral of classical analysis. It still has some subtleties,
however, mostly due to the facts that N(t) has jumps, so the regularity (left or right conti-
nuity) of the integrand ∆t affects the value of the integral. For this reason, we will review
some basic aspects of the Lebesgue-Stieltjes integral with respect to càdlàgintegrator in the
next section.

16



1.8.2 Mathematical preliminaries; right-continuous functions with left limits

1. Limits, continuity and jumps. Let f(t) be a function defined for t ≥ 0. The right limit of
f at t ≥ 0 is

f(t+) := lim
s↓t

f(s), assuming it exists.

The left limit of f at t > 0 is

f(t−) := lim
s↑t

f(s), assuming it exists.

As a convention, we set f(0−) = f(0). The jump of f at t is the difference of these limits
and is denoted

4f(t) = f(t+)− f(t−)

A function f is said to be right-continuous with left limits if f(t) = f(t+) for all t and
if f(t−) exists for all t. Such functions are sometimes called càdlàg functions in the
literature. It is worth knowing this term so we shall use it. It is an acronym of the French
phrase meaning ‘right-continuous with left limits’: continu à droite, limites à gauche.

If we are to allow jumps in price models, we need a convention for what the price is
at the exact time of the jump. Our convention shall be that all prices are càdlàg functions.
Hence S(t) = S(t+) is the price that the asset jumps to at time t, S(t−) is the price
immediately before the jump, and4S(t) = S(t)− S(t−) is the size of the jump.

The same convention will be imposed on the driving martingale M in our price models,
since it is the martingale M that causes the jump. Likewise, in the theory of stochastic
integration that we develop, stochastic integrals will have càdlàg paths.

Along with these conventions we need to re-interpret the intuitive meaning of dS(t).
You should think of this as the increment S(t + dt) − S(t−); Of course, this coincides
with S(t+ dt)− S(t) at times t at which S(t) is continuous; if not, it captures the jump at
time t. Note that, as usual, the identity, dS(t) = S(t + dt)− S(t−), does not have a strict
meaning, since dt does not have a strict meaning, but it is a correct guide to thinking about
the movements of S over small time intervals.

2. Important facts to know about càdlàg functions. Let f be càdlàg:

(i) The function t→ f(t−) is left-continuous.

(ii) The set of points at which f is not continuous is either finite or countably infinite.

(iii) Since f(t) and f(t−) differ only at points at which f is not continuous and there are
only countably many such points,

∫ T
0
f(t−)g(t) dt =

∫ T
0
f(t)g(t) dt, for any T > 0

and g.
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1.8.3 Lebesgue-Stieltjes integrals for increasing, right-continuous integrators

A. Let G(t), t ≥ 0, be a function that can be written in the form

G(t) = A1(t)− A2(t), where A1 and A2 are increasing and right-continuous. (1.3)

Since A1 and A2 are increasing, Ai(t−) = lims↑tAi(s) exists automatically for all t > 0,
and for each i = 1, 2. Hence A1, and A2, and, therefore, G, are all càdlàg.

It is easy to see that if G1(t) and G2(t) are both functions with the property (1.3), then
so is any linear combination αG1(t) + βG2(t).

A function G that can be written as the difference of two increasing function has the
special property of being a function of bounded variation. You will learn what this means
in a homework exercise. Conversely, any function of bounded variation may be written as
the difference of increasing functions. Therefore, we shall summarize the condition (1.2)
by saying G is a càdlàg function of bounded variation.

Examples of functions of the form (1.3).
(i) G is a right-continuous, piecewise constant functions of the form

G(t) =
n∑
0

ak1[tk,tk+1)(t)

where 0 = t0 < t1 < · · · < tn, and tn+1 =∞.
(ii) G(t) is a differentiable function, G(t) = G(0) +

∫ t
0
g(s) ds.

(iii) G(t) =
∫ t

0
g1(s) ds+G2(t), whereG2 is right-continuous and piecewise constant,

as in (i).
Explanation : (i) The function 1[a,∞)(t) is right-continuous and increasing. Therefore

1[a,b)(t) = 1[a,∞)(t)− 1[b,∞)(t) is a function of form (1.3). Because G as defined in (i) is a
linear combination of functions of the form (1.3), it also has this form.

As for (ii), observe that

G(t) = G(0) +

∫ t

0

g(s) ds = G(0) +

∫ t

0

|g(s)|1{g(s)≥0} ds−
∫ t

0

|g(s)|1{g(s)<0} ds

decomposes G into the difference of two continuous, increasing functions.
(iii) is a consequence of (i) and (ii). �

B. If G is a càdlàg function of bounded variation, there is a natural way to define
integrals, which we shall denote, ∫ t

0

H(s) dG(s),

built on the increments of G. In the mathematical literature, these are called Lebesgue-
Stieltjes integrals.
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1.8.4 Lebesgue-Stieltjes integral for left-continuous, piecewise constant integrands

A function H(t), t ≥ 0 is left-continuous and piecewise constant if it has the form:

H(s) =
n∑
i=1

ci1(ti−1,ti](s) + cn+11(tn,∞)(s) (1.4)

where 0 = t0 < t1 < · · · < tn. For convenience let tn+1 =∞. For this H , define∫
(0,t]

H(s) dG(s) :=
n+1∑
i=1

ci

[
G(ti ∧ t)−G(ti−1 ∧ t)

]
(1.5)

Usually, we will write the integral in (1.5) as
∫ t

0
H(s) dG(s).

Motivation and comments.
1. This definition should be no surprise; the idea is to multiply the value of H on each

interval (ti−1, ti] by the increment of G over that interval. If G(s) = s, then∫
(0,t]

H(s) dG(s) =
n+1∑
i=1

ci

[
ti ∧ t− ti−1 ∧ t

]
=

∫ t

0

H(s) ds,

which is the usual Riemann (or Lebesgue) integral. If instead we replacedG by a Brownian
motion W , we would get the Itô integral of H .

2. The fact that we used intervals of the form (ti−1, ti] in the definition of H in (1.5), so
that H is left-continuous, is not an accident and is tied up with the assumption that G
is right-continuous.

First, we model G as being right-continuous according to our intuition that a shock
cannot be predictable (you can observe the behavior of the stock up until the time of the
shock - the jump time - but you will not be able to tell the value of the stock after the jump
based on your observation).

Second, the result in Example 1 below also works well with our intuition: the change in
the portfolio value after the shock is the change in the stock price (∆G(τ)) multiplied with
the number of shares we hold at the time of the shock (H(τ)). Note that if we use a right
continuous integrand H(s), we will NOT get a similar result. This explains the choice of
left continuous integrand for our basic building block of Lebesgue-Stieltjes integral w.r.t.
right continuous integrator.

Example 1. Consider the simplest example, whereG is piecewise constant with a single
jump at time τ :

G(t) =

{
a0, if 0 ≤ t < τ ;
a1, if t ≥ τ , (1.6)
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where a0 6= a1. We will show that∫
(0,t]

H(s) dG(s) =

{
H(τ)4G(τ), if t ≥ τ ;
0, if t < τ . � (1.7)

Let H be given as in (1.4). Observe that

G(tk ∧ t)−G(tk−1 ∧ t) =

{
a1 − a0 = 4G(τ), if tk−1 ∧ t < τ ≤ tk ∧ t;
0, otherwise.

Also, notice that if tk−1 < τ ≤ tk, then H(τ) = ck, since H has the constant value ck
on (tk−1, tk]. Thus each term in the sum on the right-hand side of (1.5) is zero, except if
tk−1 ∧ t < τ ≤ tk ∧ t, and for this k, ck

[
G(tk ∧ t)−G(tk−1 ∧ t)

]
= H(τ)4G(τ). If t < τ ,

there is no k such that tk−1 ∧ t < τ ≤ tk ∧ t, and so the sum in (1.5) is zero. If t ≥ τ , the
sum contains one non-zero term, which we have shown equals H(τ)4G(τ). This proves
(1.7).
Example 2. Let G(t) = G(0) +

∫ t
0
g(s) ds, that is, G is differentiable and G′(t) = g(t). Let

H be as in (1.4). Then∫
(0,t]

H(s) dG(s) =
n+1∑
i=1

ci

[
G(ti ∧ t)−G(ti−1) ∧ t)

]
=

n+1∑
i=1

ci ·
∫ ti∧t

ti−1∧t
g(s) ds

=

∫ t

0

[ n+1∑
i=1

ci1(ti−1,ti](s)
]
g(s) ds

=

∫ t

0

H(s)g(s) ds, � (1.8)

1.8.5 Lebesgue-Stieltjes integral for Borel measurable integrands

The following theorem states that definition (1.5) can be extended in a unique way to a large
class of integrands. The proof requires tools of measure theory beyond the scope of this
course. It is only important for you to know what the theorem says. This will usually be
enough for you to understand what is going on if you encounter Lebesgue-Stieltjes integrals
when reading mathematical finance literature.

Theorem 1. There is a unique way to assign to each bounded, Borel measurable func-
tion H and bounded variation function G, an integral

∫ t
0
H(s) dG(s) for t > 0, with the

following properties:
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(i)
∫ t

0
H(s) dG(s) is defined by (1.5) when H has the form given in (1.4);

(ii) (linearity)
∫ t

0
[a1H1(s) + a2H2(s)] dG(s) = a1

∫ t
0
H1(s) dG(s) + a2

∫ t
0
H2(s) dG(s);

and∫ t

0

H(s) d
[
aG1(s) + bG2(s)

]
= a

∫ t

0

H(s) dG1(s) + b

∫ t

0

H(s) dG2(s);

(iii) (exchange of limit and integral) Assume H(s) = limn→∞Hn(s) for all s, where, for
some K <∞,

∣∣Hn(s)
∣∣ ≤ K for all n and s ≥ 0. Then∫ t

0

H(s) dG(s) = lim
n→∞

∫ t

0

Hn(s) dG(s).

Unfortunately, Theorem 1 only assures us that the Lebesgue-Stieltjes integral can be
defined in a meaningful way; it does not directly say how to compute one. Fortunately,
in most situations we shall encounter, the Lebesgue-Stieltjes integral can be reduced to
familiar and easy-to-handle objects.

G(t) is continuously differentiable

When G(t) = G(0) +
∫ t

0
g(s) ds, and H is any bounded, Borel function∫ t

0

H(s) dG(s) =

∫ t

0

H(s)g(s) ds. (1.9)

We saw this is true in Example 2, whenH is a left-continuous, piecewise constant function.
This shows that the right-hand side of (1.9) satisfies property (i) of Theorem 1. It also
satisfies the properties in (ii), as one can show by direct calculation, and it satisfies property
(iii) because of the properties of the Legesgue integral (full explanation omitted!). Thus∫ t

0

H(s)g(s) ds must coincide with
∫ t

0

H(s) dG(s), because, by Theorem 1, the latter

integral is uniquely determined by properties (i)—(iii).

G(t) is a pure jump function

Let G be piecewise-constant of the form

G(t) = a01[0,τ1)(t) + a11[τ1,τ2)(t) + · · ·+ an1[τn−1,τn) + · · ·

Thus G is constant except for jumps at the points τ1 < τ2 < · · · . Notice that G is defined
so as to be càdlàg.
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In this case, also for any bounded, Borel function H we have∫ t

0

H(s) dG(s) =
∑
j;τj≤t

H(τj)4G(τj). (1.10)

To emphasize, the sum is over the jump times of G that occur at time t or before. Since
4G(s) = 0 if s is not equal to any jump time, it is convenient to write this formula as∫ t

0

H(s) dG(s) =
∑

0<s≤t

H(s)4G(s). (1.11)

This result is derived from Theorem 1 by showing that the expression on the right-
hand side of (1.10) satisfies properties (i)—(iii) of the Theorem. For simplicity, consider
the case when G jumps only at a finite number of times. Properties (ii) and (iii) are easy
to verify directly. In example 1, we have verified property (i) for the case when G has
a single jump and H is a left-continuous, piecewise constant function. Thus, Theorem 1
implies that (1.10) is true if G has just one jump. If G has multiple jump times, we can
write G(s) = G1(s) +G2(s) + · · ·+Gn(t), where each Gi is a piecewise-constant, càdlàg
function jumping at only one time, and use property (ii) of Theorem (1) to deduce (1.10).

Combination of the above two cases

We will encounter the case G(t) =
∫ t

0
g1(s) ds + G2(s), where G2 is piecewise constant,

càdlàg, as in (1.8.5). Then, by property (ii) of Theorem 1,∫ t

0

H(s) dG(s) =

∫ t

0

H(s)g1(s) ds+
∑

0<s≤t

H(s)4G2(s).

However, notice that4G(s) = 4G2(s) for all s because the integral term in G is continu-
ous. Therefore we can rewrite the formula as∫ t

0

H(s) dG(s) =

∫ t

0

H(s)g1(s) ds+
∑

0<s≤t

H(s)4G(s). (1.12)

If the jumps of G occur at times 0 < τ1 < τ2 < . . . , then G′(s) = g1(s) exists at any
time s not equal to a jump time. Thus,∫ t

0

H(s) dG(s) =
∑
i

∫ τi∧t

τi−1∧t
H(s)G′(s) ds+

∑
s≤t

H(s)4G(s). (1.13)

This is the easiest form to use.
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Because of item (iii) on page 4, if G is differentiable and G′(s) = g(s), and if H is

cádlàg,
∫ t

0

H(s−) dG(s) =

∫ t

0

H(s−)g(s) ds =

∫ t

0

H(s)g(s) ds =

∫ t

0

H(s) dG(s). But

if G has jumps, the two integrals may not agree, as we shall see by example later.

Remark Let {W (t)(ω); t ≥ 0, ω ∈ Ω} be a Brownian motion. The definition of
stochastic integrals with respect to W was a fairly complicated affair. We did need such
a complex definition? Why not just define

∫ t
0
H(s) dW (s) by applying Theorem 1 to

W (·)(ω) for each ω and be done with it? Or did we use a complicated definition only
because of some clandestine conspiracy to make the lives of math finance students mis-
erable? Solemn vows of secrecy forbid me from answering the last question, but the first
two are easy to answer. We cannot apply Theorem 1 to Brownian motion because, with
probability one, the paths of Brownian motion are not functions of bounded variation. This
is due to the fact that Brownian motion has non-trivial quadratic variation. You will get to
explore this point in a homework exercise. It is absolutely essential to your understanding
of stochastic integration.

1.8.6 Stochastic Integration

Let {X(t)(ω); t ≥ 0, ω ∈ Ω} be a stochastic process defined on a probability space (Ω, IP ).
Assume that for every ω, X(t, ω) is a bounded variation function, as a function of t. Let
{α(t)(ω); t ≥ 0, ω ∈ Ω} be another stochastic process. Then,∫ t

0

α(s)(ω) dX(s)(ω)

will always represent the Lebesgue-Stieltjes integral of the process α with respect to the
processX . Usually, we suppress the explicit dependence on ω and simply write the integral
as
∫ t

0
α(s) dX(s).

1.9 Stochastic integration w.r.t. semi-martingales

1.9.1 Definition and examples

Let X(t) =
∫ t

0
γ(s)dWs + A(t), where W (t) is a Brownian motion with respect to a

filtration F(t), γ(t) ∈ F(t) be such that
∫ t

0
φ(s)dWs is defined and A(t) ∈ F(t) a process

of bounded variation. X(t) is called a semi-martingale w.r.t. F(t).
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Definition 1.9.1. Let φ(t) ∈ F(t) be so that
∫ t

0
φ(s)γ(s)dWs and

∫ t
0
φ(s)dA(s) are de-

fined. Then we define∫ t

0

φ(s)dX(s) :=

∫ t

0

φ(s)γ(s)dWs+

∫ t

0

φ(s)dA(s).

It is important to note here that
∫ t

0
φ(s)γ(s)dWs is an Ito integral, which is not defined

path-wise (since W (t) has infinite variation) and
∫ t

0
φ(s)dA(s) is a Lebesgue-Stieltjes in-

tegral, which is defined pathwise using the definition of Section (1.8).

Example 1.9.2. (i) Let X(t) be a compensated compound Poisson process, i.e. X(t) =
Q(t)− λµt where Q(t) is a compound Poisson process. Let Sk be the jump times of Q(t).
Then ∫ t

0

φ(s)dX(s) =
∑
i

φ(Si)Yi1(Si≤t) −
∫ t

0

λµφ(s)ds.

(ii) Let X(t) = W (t) + J(t), where J(t) is a pure jump procress. Then∫ t

0

φ(s)dX(s) =

∫ t

0

φ(s)dWs+
∑

0<s≤t

φ(s)∆J(s).

We understand the term
∑

0<s≤t φ(s)∆J(s) as followed: for each event ω, let 0 <
t1(ω) < t2(ω) < ... < tn(ω)(ω) ≤ t be the jump times of J(t). (The fact that there are
finitely many jumps in [0, t] and there is no jump at t = 0 come from the definition of pure
jump process). Also note that the number of jumps in [0, t], n(ω) is random. Then

∫ t

0

φ(s)dJ(s)(ω) =
∑

0<s≤t

φ(s)∆J(s) =

n(ω)∑
i=1

φ(ti)[J(ti)− J(ti−)](ω).

1.9.2 Martingale properties

Suppose we model our stock as

S(t) = σW (t) +X(t),

whereW (t), X(t) ∈ F(t) are independent,W (t) is a Brownian motion andX(t) = Q(t)−
λµt is a compensated compound Poisson process. Then S(t) is a martingale. It is important
for us then that if we denote φ(t) as the number of shares of S we hold at time t ,

∫ t
0
φ(r)dSr

is a martingale.
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From Ito integration, we know that if φ is an adapted process, then
∫ t

0
φ(s)dW (s) is a

martingale. So it remains to ask if
∫ t

0
φ(s)dX(s) is also a martingale. However, this is not

always the case. See Shreve’s examples 11.4.4 and 11.4.6.
A suffficient condition for the stochastic integral w.r.t. a jump process (that is also

a martingale) to be a martingale is that the integrand is left-continuous (and of course
adapted). This is stated in Shreve’s theorem 11.4.5. More generally, one can use a pre-
dictable integrand (a process that is the limit of a sequence of left-continuous processes)
and the stochastic integral w.r.t. a jump martingale will still be a martingale.

In Shreve’s example 11.4.6, the following process is considered:

X(t) =

∫ t

0

1[0,S1](s)d(N(s)− λs)

=

∫ t

0

1[0,S1](s)dN(s)−
∫ t

0

1[0,S1](s)λds,

where S1 is the first jump time of N(t). Note that the integrand here is left continuous.
For t < S1, the integrand 1[0,S1](s) = 1. On the other hand, dN(s) = 0 if t < S1. Thus

X(t) = −λt.
For t = S1,

∫ t
0
1[0,S1](s)dN(s) = 1∆N(S1) = 1 while

∫ t
0
1[0,S1](s)λds = λS1. Thus

X(t) = 1− λS1.
For s > S1,1[0,S1](s) = 0 thus X(t) = 1− λS1, t ≥ S1.
We conclude that

X(t) = −λt1(t<S1) + (1− λS1)1(t≥S1)

= N(t ∧ S1)− λ(t ∧ S1).

Here we can use the fact that a stopped martingale is a martingale to conclude thatX(t)
is a martingale since N(t)− λt is a martingale and the above formula showed that X(t) is
a stopped martingale.

Using a similar argument, we have

Y (t) =

∫ t

0

1[0,S1)(s)d(N(s)− λs) = −λ(t ∧ S1).

Heuristically, P(S1 > 0) = 1 therefore, for s < t,

P
(
− λ(t ∧ S1) ≤ −λ(s ∧ S1)

)
= 1;

P
(
− λ(t ∧ S1) < −λ(s ∧ S1)

)
> 0.

Therefore E(−λ(t∧S1)) < E(−λ(s∧S1)) and Y (t) is not a martingale. A rigorous proof
is provided in Shreve’s.

25



1.10 Ito’s formula for jump processes

1.10.1 Ito’s formula for one jump process

The most general jump process we will consider in this chapter has the following form:

X(t) = X(0) +

∫ t

0

α(s)ds+

∫ t

0

γ(s)dWs+ J(t),

where J(t) is a pure jump process (Discussed in Section (1.6.2)). We also denote by Xc(t)
the continuous part of X , that is

Xc(t) = X(0) +

∫ t

0

α(s)ds+

∫ t

0

γ(s)dWs.

Given a function f ∈ C2, we would like to obtain a formula for df(X(t)). We have the
following observations:

(i) If X(t) = Xc(t), i.e. if X has no jump then we have the classical Ito’s formula:

df(X(t)) = f ′(X(t))dXt+
1

2
f ′′(X(t))γ2(t)dt.

(ii) If X(t) = J(t), then f(X(t)) is also a pure jump process. Moreover,

f(X(t)) = f(X(0)) +
∑

0<s≤t

f(X(s))− f(X(s−)).

(iii) In general when X(t) = Xc(t) + J(t), intuitively we should have df(X(t)) fol-
lowing the classical Ito’s formula in between the jumps of X and ∆f(X(t)) = f(X(t))−
f(X(t−) at the jump points of X .

This leads to the following Ito’s formula (see Shreve’s theorem 11.5.1)

f(X(t)) = f(X(0)) +

∫ t

0

f ′(X(s))dXc(s) +

∫ t

0

1

2
f ′′(X(s))γ2(s)ds

+
∑

0<s≤t

f(X(s))− f(X(s−)).

Remark 1.10.1. In general, the above Ito’s formula does NOT have a differential form,
i.e. df(X(t)) = · · · . The reason is generally we cannot express ∆f(X(s)) = f(X(s)) −
f(X(s−)) in terms of some derivative of f and ∆X(s) = X(s)−X(s−). In some special
case, for example when X(t) is a pure jump process then we may have a differential form
for df(X(t)), but this is not guaranteed. See also the discussion in (1.11.2).
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1.10.2 Ito formula for multiple jump processes

Following similar argument to the one dimensional Ito formula for jump process, we can
derive the multi-dimensional Ito formula for jump processes. Here we give the version for
two processes. The formula for higher dimension follows the same pattern.

Theorem 1.10.2. Let X1, X2 be two jump processes:

X i(t) = X i(0) +

∫ t

0

αi(s)ds+

∫ t

0

γi(s)dWs+ J i(t), i = 1, 2.

Let f(t, x1, x2) be a twice differentiable in its spatial variables. Then

f(t,X1
t , X

2
t ) = f(t,X1

0 , X
2
0 ) +

∫ t

0

2∑
i=1

fxi(s,X
1
s , X

2
s )d(X i)cs

+
1

2

∫ t

0

2∑
i=1

fxixi(s,X
1
s , X

2
s )(γi)2

sds

+

∫ t

0

fx1x2(s,X
1
s , X

2
s )γ1

sγ
2
sds

+
∑

0<s≤t

f(s,X1
s , X

2
s )− f(s,X1

s−, X
2
s−).

Corollary 1.10.3. Let X1, X2 be two jump processes:

X i(t) = X i(0) +

∫ t

0

αi(s)ds+

∫ t

0

γi(s)dWs+ J i(t), i = 1, 2.

Then

X1
tX

2
t = X1

0X
2
0 +

∫ t

0

X1
sd(X2)cs +

∫ t

0

X2
sd(X1)cs

+

∫ t

0

γ1
sγ

2
sds+

∑
0<s≤t

X1
sX

2
s −X1

s−X
2
s−.

Remark 1.10.4. If each X i is driven by a different Brownian motion W i and they are
independent then the cross variation term in Theorem (1.10.2)

∫ t
0
fx1x2(s,X

1
s , X

2
s )γ1

sγ
2
sds

will disappear, as well as the cross variation term
∫ t

0
γ1
sγ

2
sds in Corollary (1.10.3).
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1.11 Models of stock price with jumps

1.11.1 Stock models

Recall that before we model the dynamics of a stock S(t) as followed:

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dWt.

Also observe that the most important property of W (t) we used in pricing financial
models with S(t) is that it is a martingale. This motivates us to replace W (t) with a
general martingale with jumps. That is, we let

M(t) =

∫ t

0

α(s)ds+

∫ t

0

γ(s)dWs+ J(t),

where J(t) is a pure jump process and J(t) +
∫ t

0
α(s)ds is a martingale. Consider the

following model for S(t):

S(t) = S(0) +

∫ t

0

µ(s)S(s−)ds+

∫ t

0

S(s−)dM(s). (1.14)

Intuitively, the reason we use S(s−) in the RHS is so that at the jump of M(t), we have

S(t)− S(t−) = S(t−)∆J(t). (1.15)

If we think of ∆J(t) as representing an external shock, then this says the jump in the stock
price is its value immediately before the shock occurs multiply with the size of the shock,
which makes sense.

Mathematically, using S(s−) in the RHS has the benefit of guaranteeing
∫ t

0
S(s−)dM(s)

to be a martingale under proper conditions (see the discussion in Section 7.2). Either way,
it should be noted that we can equivalently write (1.14) as

S(t) = S(0) +

∫ t

0

(µ(s) + α(s))S(s)ds+

∫ t

0

S(s)γ(s)dW (s) +
∑

0<s≤t

S(s−)∆J(s).(1.16)

That is, we only use S(s−) in conjuction with the jumps in J(s).
Relation (1.15) has another important implication for the jumps of J(t):

S(t) = S(t−)(1 + ∆J(t)).

Since we want to use S(t) as a stock price, S(t) ≥ 0 implies we need to restrict ∆J(t) >
−1.
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Similar to the classical Black-Scholes model, we have an explicit formula for S(t)
satisfying (1.14) or (1.16):

S(t) = S(0) exp
[ ∫ t

0

[µ(s) + α(s)− 1

2
γ2(s)]ds+

∫ t

0

γ(s)dWs
] ∏

0<s≤t

(1 + ∆J(s)).(1.17)

Example 1.11.1. Geometric Poisson process: If we let M(t) = σ(N(t)− λt) then

S(t) = S(0) +

∫ t

0

S(s−)dMs = S(0)e−σλt
∏

0<s≤t

(1 + σ∆N(s)) = S(0)e−σλt(1 + σ)N(t),

since we observe that 1+σ∆N(s) = 1+σ at all jump points of N(t) and there are exactly
N(t) jumps at time t. Also note that since σ is the jump size of the pure jump process
σN(t), we require σ > −1 as in the discussion above.

1.11.2 Some general remarks

Let W (t) be a BM and N(t) be a Poisson process. Observe that

X1(t) = 1 +

∫ t

0

σX1(s)ds

X2(t) = 1 +

∫ t

0

σX2(s)dW (s)

X3(t) = 1 +

∫ t

0

σX3(s−)dN(s)

(note the X3(s−) in the last equation) have solutions

X1(t) = eσt

X2(t) = eσW (t)− 1
2
σ2t

X3(t) = (1 + σ)N(t),

where the solution for X1 follows from classical calculus, X2 from “classical" Ito’s
formula and X3 from the calculus for jump processes (see also the discussion about Ge-
ometric Poisson process). The point to observe here is that three very similar differential
equations give three distinctly different answers depending on different integrators.

Also observe that if we apply Ito’s formula for jump processes to the f(N(t)) = (1 +
σ)N(t), we get

X3(t) = f(N(t)) =
∑
s≤t

(1 + σ)N(s) − (1 + σ)N(s−). (1.18)
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This at first glance does not look like the “differential" form

dX3(t) = σX3(t−)dN(t) (1.19)
X3(0) = 1.

However, we observe from (1.18) that ∆X3(s) = (1+σ)N(s)−(1+σ)N(s−). Moreover,
at the jump point of N

∆X3(s) = (1 + σ)N(s) − (1 + σ)N(s−) = (1 + σ)N(s) − (1 + σ)N(s)−1

= σ(1 + σ)N(s)−1 = σX3(s−)

= σX3(s−)∆N(s).

Now the agreement between (1.18) and (1.19) are clear. The point here is that it is not
immediate to derive “differential" form from the explicit formula of a jump process. Indeed
such differential form is not always possible. The fact that N(t) is a counting process
(having jump of size 1) is central to the reason why the formula X3 is nice, as well as that
we could re-derive the differential form of X3(t) from its explicit formula. Replacing N(t)
with a general jump process (having arbitrary jump size) in the differential equation for
X3, and you will see that we no longer can easily derive such nice formula anymore.
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CHAPTER 2 Change of measure for jump processes

2.1 Motivation

One of the fundamental concept in Math Finance I regarding the Black-Scholes model is
the following: Suppose S(t) satisfies

S(t) = S(0) +

∫ t

0

µ(u)S(u)du+

∫ t

0

S(u)dW (u),

under the objective probability P. Unless µ(u) = r, the interest rate, (which we sup-
posed to be a constant for simplicty) e−rtS(t) is not a martingale under P, and thus we
cannot price financial product under P. We need to find another measure Q, the risk neutral
measure, so that e−rtS(t) is a martingale udner Q. The key idea is that under Q, it must be
the case that W̃ (t) :=

∫ t
0
(µ(u)− r)du+W (t) is a Brownian motion. So that

S(t) = S(0) +

∫ t

0

rS(u)du+

∫ t

0

S(u)dW̃ (u)

has the right distribution under Q.
Intuitively, the measure Q is chosen so that we can “modify the drift" of W (t) and still

have the new process W̃ (t) being a Brownian motion; which results in modifying the drift
of S(t) to the desirable drift( in this case, r ).

Now suppose S(t) satisfies

S(t) = S(0) +

∫ t

0

µS(u)du+

∫ t

0

S(u−)dM(u),

under some objective probability measure P, where M(t) = N(t) − λt is a compensated
Poisson process with rate λ under P. Again, we would like that

S(t) = S(0) +

∫ t

0

rS(u)du+

∫ t

0

S(u−)dM̃(u),

where M̃(t) := M(t) − (r − µ)t is a martingale under a probability measure Q. Again,
since M(t) = N(t) − λt, it is clear that M̃(t) is a martingale if N(t) becomes a Poisson
process with rate λ+ (r − µ) under Q. This note discusses how to choose such a measure
Q for various choices of jump martingales M .
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2.2 Review of change of measure, Girsanov’s theorem

2.2.1 The change of measure kernel Z(t)

Let P be a probability measure on (Ω,F); F(t), 0 ≤ t ≤ T a filtration with F(T ) = F . If
we define another probability measure Q on (Ω,F(T )) via the relation

dQ = Z(T )dP,

for some random variable Z(T ), that is for all Y ∈ F(T )

EQ(Y ) := EP(Z(T )Y ),

it must be that P(Z(T ) ≥ 0) = 1 and EP(Z(T )) = 1.

2.2.2 Restriction of Q to a smaller sigma algebra F(t)

Let F(t), 0 ≤ t ≤ T be a filtration associated with a probability space (Ω,P,F(T )). If
Z(t) is a P martingale, Z(T ) satisfies the conditions in (i), then for all Y ∈ F(t)

EQ(Y ) = EP(Z(t)Y ).

(See Shreve’s Lemma 5.2.1.) Note that this is not a definition but a result that follows from
the definition in (i) and the fact that Z is a martingale.

2.2.3 Conditional expectation in change of measure

Let Y be FT measureable, we have for t ≤ T

EQ(Y |F(t)) =
EP(ZTY |Ft)
EP(ZT |Ft)

.

In particular, if Z(t) is a P-martingale then combining the results above we have for
s ≤ t and Y ∈ Ft

EQ(Y |Fs) =
EP(ZtY |Fs)

Zs
.

2.2.4 Condition for a process to be a martingale under the new measure

Theorem 2.2.1. Let X(t) be a F(t) adapted process, Z(t) a P-martingale then X(t)Z(t)
is a P martingale if and only if X(t) is a Q-martingale.

Application: Let X(t) be the “Brownian motion with drift" W̃ (t) or the process M̃(t)

in section I. Recall that we want W̃ (t) (or M̃(t)) be a martingale under Q. This statement
gives a sufficient condition for this to happen.
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2.3 Some remarks about Girsanov theorem

2.3.1 Characterization of Brownian motion

We all know the Levy’s characterization of Brownian motion: continuous martingale with
quadratic variation on [0, t] equals to t. There is an equivalent characterization:

Theorem 2.3.1. Let X(t) be a continuous process such that X(0) = 0. Then X(t) is a
Brownian motion w.r.t a filtration F(t) if and only if for all u ∈ R,

Eu(X)(t) := euXt−
1
2
u2t

is a martingale w.r.t Ft.

Proof. Let X(t) be a Brownian motion. It is routine to show that

euX(t)− 1
2
u2t

is a martingale.
The converse can be argued heuristically as followed. Suppose that euXt−

1
2
u2t is a mar-

tingale for all u ∈ R. Then by definition for s < t

E(eu(Xt−Xs)
∣∣∣Fs) = e

1
2
u2(t−s).

Since for all u ∈ R, the RHS is independent of F(s), X(t)−X(s) is independent of F(s)
(see explaination in the remark below). Hence it has independent increments.

Moreover, from the same calculation, the moment generating function of X(t)−X(s)
is that of a Normal(0, t− s). Hence it has stationary increments, and the increments has
Normal(0, t− s) distribution. Thus X(t) is a Brownian motion.

Remark 2.3.2. We clarifiy the reason why X(t)−X(s) is independent of F(s). We make
the following claim: if E(euX |F) = E(euX) for all u ∈ R then X is independent of F .

This claim is true in turn because of the following result, known as Kac’s theorem for
characteristic functions: if

E(euX+vY ) = E(euX)E(evY ), ∀u, v ∈ R,

then X, Y are independent. A reference can be found in Thereom 1.1.16 of the textbook
Levy’s processes and Stochastic Calculus by David Applebaum.

If we accept this result, then we see that or all Y ∈ F ,

E(euX+vY ) = E
(
E(euX+vY |F)

)
= E

(
evYE(euX |F)

)
= E(euX)E(evY ).

Hence X is indepedent of Y for all Y ∈ F . Hence X is independent of F .
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2.3.2 Choice of Z(t) in Girsanov Theorem

Suppose that W (t) is a P Brownian motion. We want to find Q via

dQ = Z(T )dP

so that
W̃ (t) := W (t) + αt

is a Q−Brownian motion. From the characterization of Brownian motion from the expo-
nential martingale above, we need

Eu(W̃ )(t) = euW̃t− 1
2
u2t

to be a Q martingale. Observe that

Eu(W̃ )(t) = euW̃ (t)− 1
2
u2t = euW (t)− 1

2

(
u2−2uα

)
t.

By Theorem (2.2.1), in order for Eu(W̃ )(t) to be a Q martingale, we need to choose
the change of measure kernel Z(t) so that both Z(t) and Eu(W̃ )(t)Z(t) are P-martingales.
Since

u2 − 2uα = (u− α)2 − α2,

and clearly

e(u−α)W (t)− 1
2

(u−α)2t

is a P-martingale, we may guess the choice for Z(t) is

Z(t) = e−αW (t)− 1
2
α2t,

which is clearly also a P-martingale.
This intuition also suggests that if we want W̃ (t) = W (t) +

∫ t
0
α(u)du to be a Q

Brownian motion, the choice of Z(t) is

Z(t) = e−
∫ t
0 α(u)dW (u)− 1

2

∫ t
0 α(u)2du,

even though the verification now is slightly more involved.
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2.4 Change of measure for Poisson processes

2.4.1 Poisson process characterization

Theorem 2.4.1. A càdlàgprocess N(t), N(0) = 0, is a Poisson process with rate λ w.r.t
F(t) if and only if for all u ∈ R

exp
(
uN(t)− λt(eu − 1)

)
is a martingale w.r.t F(t).

The proof for this theorem is similar to the proof for the characterization of Brownian
motion.

2.4.2 Choice of Z(t)

Suppose N(t) is a Poisson process with rate λ under P. We want to find Q via the change
of measure formula

dQ = Z(T )dP

so that N(t) has rate λ̃ under Q. By the characterization of Poisson process, we want

exp
(
uN(t)− λ̃t(eu − 1)

)
to be a Q-martingale.

Again, by Theorem (2.2.1), we need to choose Z(t) so that both

Z(t) and euN(t)−λ̃t(eu−1)Z(t)

are P-martingales.
Now the choice of such Z(t) may not be immediately obvious, even though we can

use the same reverse engineer idea as we did above with the Brownian motion. Instead, a
more natural idea here is to choose a general exponential martingale Z(t) associated with
N(t) with an undetermined coefficient. We perform the change of measure with Z(t) and
expect that N(t) will remain a Poisson process with different rate under this change of
measure. We then observe what rate N(t) will actually be under the new measure using the
exponential martingale characterization of a Poisson process. Then we can determine the
precise coefficient to achieve the desired rate of N(t) under the new measure.

More specifically, we let

Z(t) = eaN(t)−λt(ea−1),

where a is our undetermined coefficient. Then clearly Z(t) is a P-martingale.
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Suppose that N(t) remains a Poisson process under Q and its rate is λ̃. Then by Theo-
rem (2.2.1) and the exponential martingale characterization of Poisson processes we must
have

euN(t)−λ̃t(eu−1)eaN(t)−λt(ea−1) = e(u+a)N(t)−λ̃t(eu−1)−λt(ea−1)

is a P-martingale.
But since we know

e(u+a)N(t)−λt(eu+a−1)

is a P-martingale we must have

λ̃(eu − 1) + λ(ea − 1) = λ(eu+a − 1). (2.1)

Note that the above equation has to be true ∀u ∈ R. In particular if we choose u = −a
then the RHS equals 0. Thus

λ̃ = λ
1− ea

e−a − 1
= λ

ea(1− ea)
1− ea

= λea.

Plug this in we indeed verify the equation (2.1) for all u.
Thus our conclusion is that if we choose

Z(t) = eaN(t)−λt(ea−1),

then N(t) is a Poisson process with rate λea under Q. Now if we desire

λea = λ̃,

for some pre-given λ̃ then clearly a = log
(
λ̃
λ

)
and also

Z(t) = exp
[

log

(
λ̃

λ

)
N(t) + (λ− λ̃)t

]
.

We have arrived at the following theorem

Theorem 2.4.2. Let N(t) be a Poisson process with rate λ under a probabilty P and F(t)

a filtration for N(t). Let λ̃ be given. Define

Z(t) := exp
[

log

(
λ̃

λ

)
N(t) + (λ− λ̃)t

]

= e(λ−λ̃)t

(
λ̃

λ

)N(t)

, 0 ≤ t ≤ T.

Also define

dQ = Z(T )dP on F(T ).

Then Z(t) is a P martingale and under Q, N(t) is a Poisson process with rate λ̃.
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2.5 Change of measure for compound Poisson with discrete jump distribution

Let Q(t) be a compound Poisson process with rate λ. That is

Q(t) =

N(t)∑
i=1

Yi,

N(t) has rate λ under a probabilty P and F(t) a filtration for Q(t). Recall that each jump
of Q(t) has identical distribution Yi.

Here we assume that Y1 (hence all Yi’s) takes values y1, y2, ..., yM with probability

P(Y1 = ym) = pm, 1 ≤ m ≤M

that is Y1 has discrete distribution.
We want to change the intensity of Q(t) as well as the distribution of Yi (that is to

change pm) via the change of measure. For any λ̃ > 0 and p̃m ∈ (0, 1),
∑M

m=1 p̃m = 1 we
find a probabilty Q so that under Q, Q(t) is a compound Poisson process with rate λ̃ and
Yi has distribution

Q(Y1 = ym) = p̃m, 1 ≤ m ≤M.

Before we proceed, we need to mention an important result about decomposing a com-
pound Poisson process with discrete jumps into a sum of Poisson processes.

2.5.1 Summing and Decomposing Compound Poisson processes

Summing compound Poisson processes

Compound Poisson processes can be combined and decomposed in fascinating ways. Shreve
treats these in Theorem 11.3.3, page 471, and Corollary 11.3.3, page 473, for the special
case when Y1, . . . are discrete random variables. We will state more general versions of
these properties here, but without a proof: Shreve gives a proof for his special case.

Theorem 11.3.3 says in essence that one can build a compound Poisson process by
bringing in jumps of different sizes at different Poisson rates. For example let N1 and N2

be two independent, Poisson processes with respective rates λ1 and λ2. Then y1N1(t) is a
very simple compound Poisson process in which jumps of size y1 arrive in a Poisson stream
of rate λ1, and y2N1(t) is a very simple compound Poisson process in which jumps of size
y2 arrive in a Poisson stream of rate λ2.

Let
Q(t) = y1N1(t) + y2N2(t).
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This is a pure jump process whose jumps are either of size y1 or y2. The total number of
jumps by time t is clearlyN1(t)+N2(t). Let Yk denote the size of the kth jump ofQ. Then,
by definition,

Q(t) =

N1(t)+N2(t)∑
k=1

Yk.

Then Theorem 11.3.3 says

(i) N1 +N2 is a Poisson process with rate λ1 + λ2;

(ii) Y1, Y2, . . . are independent and identically distributed with

IP
(
Yi=y1

)
=

λ1

λ1 + λ2

and IP
(
Yi=y2

)
=

λ2

λ1 + λ2

.

As a consequence, Q is a compound Poisson process. Theorem 11.3.3 extends this idea
to summing Poisson streams of more than two possible jump sizes. Note that, as a conse-
quence of statement (i) above, the independent Poisson processes N1 and N2 never jump at
the same time.

Theorem 11.3.3 is actually a special case of a much more general theorem: the sum of
any finite number of compound Poisson processes is a compound Poisson process.

We give a heuristic reasoning about Theorem 11.3.3. First observe that if N(t) =
N1(t) +N2(t) then N(t) would jump at the jump time of N1 or N2, whichever arrives first.
That is N(t) jumps at the minimum of the jump times of N1 and N2. Now let τi, i = 1, 2
are independent exponential(λi) random variables and τ = min(τ1, τ2) then

P (τ ≥ t) = P (τ1 ≥ t)P (τ2 ≥ t) = e−(λ1+λ2)t.

That is τ is an exponential(λ1+λ2) random variable. This gives the intuition aboutN1+N2

being a Poisson process with rate λ1 + λ2. The rigorous proof would use the exponential
martingale characterization of Poisson processes mentioned above.

Second, N(t) would jump with size y1 if the jump time of N1 arrives before the jump
time of N2 and vice versa. We have

P (τ1 < τ2) =

∫ ∞
0

P (τ1 < τ2|τ2 = t)λ2e
−λ2tdt

=

∫ ∞
0

(1− e−λ1t)λ2e
−λ2tdt

=
λ1

λ1 + λ2

.

Similarly

P (τ1 < τ2) =
λ2

λ1 + λ2

.

This explains the distribution of Yi, the jump size of Nt.
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Decomposing compound Poisson processes

One can also go in the opposite direction and decompose a compound Poisson process
into a sum of independent Poisson processes bringing different sized jumps at different
rates. We shall state this very generally. In fact, we will start not with a compound Poisson
process, but just with some Lévy process.

Let X be a Lévy process. Let A be a subset of IR that avoids a neighborhood of 0 in
the sense that for some ε > 0, A

⋂
(−ε, ε) = ∅. Let

NA(t) :=
∑
s≤t

1{4X(s)∈A}

be the number of jumps of X with values in A that occur by time t. Let

XA(t) :=
∑
s≤t

4X(s)1{4X(s)∈A},

XA(t) will be well defined whenever NA(t) is finite. The process XA is the accumulated
sum of all the jumps of X with values in the set A. It might be that X never has a jump
with values in A (that is, NA(t) = 0 for all t ≥ 0). But if it does, let Y A

1 , Y
A

2 , . . . , be the
first, second, third, etc. jump values of {XA(t); t ≥ 0}. By definition of the terms so far,

XA(t) =

NA(t)∑
k=1

Y A
k .

Theorem 2. (a) Let X(t) be a Lévy process. Then {XA(t); t ≥ 0} is a compound Poisson
process; in other words, NA is a Poisson process and Y A

1 , Y
A

2 , . . . is a sequence of inde-
pendent, identically distributed random variables independent of NA. In addition, X(t)−
XA(t) is a Lévy process and is independent ofXA(t). Thus, X(t) = X(t)−XA(t)+XA(t)
represents X as the sum of two independent Lévy processes, the first of which has no jumps
with values in A, and the second of which only has jumps with values in A.

(b) Let ε > 0 and let A1, . . . , An be disjoint subsets of (−∞,∞) − (−ε, ε). Then
XA1(·), . . . , XAn(·) are independent compound Poisson processes that are all independent
of X(·)−

(
XA1 + · · ·+XAn(·)

)
.

The take-home message of this theorem is that the accumulated jumps of a Lévy process
into disjoint sets bounded away from 0 are independent, compound Poisson processes.
Thus, a Lévy process with jumps has a very rich structure which aggregates the influence
of many, independently occurring Poisson streams. Corollary 11.3.4 is a special case of this
theorem for compound Poisson process that admit only a finite number of possible jumps
sizes.
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Theorem 2 is at the heart of a result, due to Lèvy and Khinchine, that characterizes the
most general Lèvy process. It says that if X is a Lèvy process, there is a decomposition
of the form X(t) = µt + σW (t) + Y (t), where W is a Brownian motion independent
independent of Y , and where Y is a limit of a sequence of processes Zn(t) +mnt, with Zn
being a compound Poisson process for each n.

Lastly we give a heuristic reasoning for decomposing a compound Poisson process with
discrete jumps. Let

Q(t) =

N(t)∑
i=0

Yi,

where N(t) is a Poisson(λ) process and P (Y1 = ym) = pm,m = 1, · · · ,M .
Now if we let

Qm(t) =

N(t)∑
i=0

Yi1{Yi=ym},

then observe that Qm(t) has independent and stationary increments. That is it is a Levy
process. Moreover, one can check that

Eeu
Qm(t)
ym = eλpmt(e

u−1).

That isNm(t) := Qm(t)
ym

is a Poisson (λpm) process. Lastly, it is clear from the definition
that for n 6= m, Nm(t) and Nn(t) do not jump at the same time. From an exercise in
Homework 3, you’ll see that this implies Nm(t) and Nn(t) are independent. This gives the
decomposition of Q(t) as

Q(t) =
M∑
m=1

ymNm(t),

where Nm(t) are independent Poisson processes with rates λpm.

2.5.2 Change of measure for multiple independent Poisson processes

Lemma 2.5.1. LetNm,m = 1, · · · ,M be independent Poisson processes with rates λm,m =
1, · · · ,M . Let λ̃m,m = 1, 2, ...,M be given. Define

Zm(t) := e(λm−λ̃m)t

(
λ̃m
λm

)Nm(t)

Z(t) :=
M∏
m=1

Zm(t)
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and

dQ = Z(T )dP on F(T ).

Then Nm’s are independent Poisson processes with rate λ̃i under Q.

You will be asked to explore the proof of this Lemma in Homework 2 for the case
M = 2. The proof for general M is similar.

2.5.3 Change of measure for compound Poisson process with discrete jumps

The decomposition of a compound Poisson process into multiple independent Poisson pro-
cesses and Lemma (2.5.1) lead to the following result: (Shreve’s Lemma 11.6.4, Theorem
11.6.5)

Theorem 2.5.2. Let

Q(t) =

N(t)∑
i=1

Yi,

N(t) has rate λ under a probabilty P and Y1 takes values y1, y2, ..., yM with probability

P(Y1 = ym) = pm, 1 ≤ m ≤M

that is Y1 has discrete distribution.
Let λ̃m,m = 1, 2, ...,M be given. Define Z(t) as in Lemma (2.5.1). That is

Z(t) :=
M∏
m=1

e(λm−λ̃m)t

(
λ̃m
λm

)Nm(t)

.

Then Z(t) is a P martingale. Moreover, under Q, Q(t) is a compound Poisson process
with rate λ̃ and PQ(Yi = ym) = p̃m, where

λ̃ =
M∑
m=1

λ̃m

p̃m =
λ̃m

λ̃
.

Remark 2.5.3. We mentioned at the beginning of this section that we can choose λ̃ and p̃m,
while Theorem (2.5.2) says we can choose λ̃m. The difference is artificial. Indeed, given
λ̃m we can define λ̃ and p̃m as in Theorem (2.5.2). But conversely, we can start out with λ̃
and p̃m and define λ̃m := p̃mλ̃. It’s up to you and the problem you’re dealing with to decide
which are the given variables to work with.
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2.5.4 Compound Poisson with continuous jump distribution

Let Q(t) be a compound Poisson process with rate λ under a probabilty P and F(t) a
filtration for Q(t). Here we assume Yi has continuous distribution with density function f .

We want to change the intensity of Q(t) as well as the distribution of Yi (that is the
density f ) via the change of measure. For any density function f̃ and λ̃, we find a probabilty
Q so that under Q, Q(t) is a compound Poisson process with rate λ̃ and Yi has continuous
distribution with densitry f̃ .

2.5.5 A rewrite of Z(t) in Theorem (2.5.2)

There is yet another way to write the process Z(t) in Theorem (2.5.2). Note that

Z(t) =
M∏
m=1

e(λm−λ̃m)t

(
λ̃m
λm

)Nm(t)

= e(λ−λ̃)t

M∏
m=1

(
λ̃p̃m
λpm

)Nm(t)

= e(λ−λ̃)t λ̃
N(t)

∏M
m=1 p̃

Nm(t)
m

λN(t)
∏M

m=1 p
Nm(t)
m

.

By rearranging terms,
M∏
m=1

pNm(t)
m =

N(t)∏
i=1

p(Yi),

where we define

p(Yi) := pm if Yi = ym,m = 1, · · · ,M.

To see this equality, note that for each m, there are Nm(t) terms of pm on the LHS.
By definition, for each event ω, the Yi random variables take on values ym exactly Nm(t)
times. Thus there are also Nm(t) terms of pm on the RHS.

Similarly we have,
M∏
m=1

p̃Nm(t)
m =

N(t)∏
i=1

p̃(Yi).
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Thus

Z(t) = e(λ−λ̃)t λ̃
N(t)

∏N(t)
i=1 p̃(Yi)

λN(t)
∏N(t)

i=1 p(Yi)

= e(λ−λ̃)t

N(t)∏
i=1

λ̃p̃(Yi)

λp(Yi)
.

2.5.6 Change of measure for compound Poisson with continuous jump distribution

The above observation suggests the following choice of Z(t) when Yi has continuous dis-
tribution.

Definition 2.5.4. Fix T > 0. Let λ̃ > 0 and a density function f̃ be given. Define

Z(t) := e(λ−λ̃)t

N(t)∏
i=1

λ̃f̃(Yi)

λf(Yi)
. (2.2)

Also define

dQ = Z(T )dP on F(T ).

Remark 2.5.5. Since the density function f can be 0, to avoid dividing by 0, we assume
f̃(y) = 0 whenever f(y) = 0.

We have the important results: (Shreve’s Lemma 11.6.6, Theorem 11.6.7)

Theorem 2.5.6. Z(t) defined in (2.2) is a P martingale (w.r.t. F(t)). Under Q, Q(t) is a
compound Poisson process with rate λ̃ and Yi has continuous distribution with density f̃ .

Proof.
The proof of this Theorem relies on the following exponential martingale characteriza-

tion of a compound Poisson process:
Let φ(u) := E(euY ) be the moment generating function of a random variable Y . Then

Q(t) is a compound Poisson process with jump rate λ and i.i.d. jump size Yi with moment
generating function φ(u) if and only if

Z(t) = exp
(
uQ(t)− λt(φ(u)− 1)

)
is a martingale ∀u ∈ R.

The details are left to the readers.
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2.6 Change of measure for compound Poisson process and Brownian motion

We now consider the case when we have both a compound Poisson process Q(t) and a
Brownian motion W (t). We want to find a change of measure kernel Z(t) that would
change the rate and the jump distribution of Q(t) and the drift of W (t). First we discuss an
easier case when Q(t) is just a Poisson process.

2.6.1 Change of measure for Poisson process and Brownian motion

We first describe an exponential martingale characterization result for Poisson process and
Brownian motion.

Lemma 2.6.1. N(t) is a Poisson process with rate λ and W (t) is a Brownian motion
adapted to a filtration F(t) and they are independent if and only if

eu1Wt− 1
2
u21t+u2Nt−λt(eu2−1)

is a F(t)-martingale for all u1, u2 ∈ R.

The proof of the Lemma follows a similar idea as the proof of the exponential mar-
tingale characterization of a Brownian motion or a Poisson process described above. It is
clear that when the martingale condition holds then Wt is a Brownian Motion and N(t)
is a Poisson process since we can choose u1 = 0 or u2 = 0. The independence follows
from the Kac’s theorem for characteristic function mentioned in (2.3.2) since the martingale
condition being true also implies that

E
(
eu1Wt+u2Nt

)
= E

(
eu1Wt

)
E
(
eu2Nt

)
,∀u1, u2 ∈ R.

An interesting thing to note is that if W (t) is a Brownian motion and N(t) is a Poisson
process adapted to the same filtration F(t) then they are automatically independent. To
see this, apply Ito’s formula to eu1Wt− 1

2
u21t+u2Nt−λt(eu2−1) to conclude that it is a martingale.

Then we can invoke Kac’s theorem to show independence.
With the above characterization, the following change of measure result is automatic

upon our previous discussion on the change of measure for Brownian motion and Poisson
process.

Theorem 2.6.2. Let N(t) be a Poisson process with rate λ and W (t) is a Brownian motion
under P. Let λ̃ > 0 be given. Define

Z1(t) := exp
[
−
∫ t

0

θ(u)dW (u)− 1

2

∫ t

0

θ2(u)du
]
;

Z2(t) := e(λ−λ̃)t

(
λ̃

λ

)N(t)

;

Z(t) := Z1(t)Z2(t).
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Also define

dQ = Z(T )dP on F(T ).

Then W̃ (t) = W (t) +
∫ t

0
θ(u)du is a Brownian motion and N(t) is a Poisson process with

rate λ̃ and they are independent under Q.

2.6.2 Compound Poisson process and Brownian motion

Let Q(t) be a compound Poisson process with rate λ and W (t) a Brownian motion defined
on the same probabilty space (P,Ω,F) and F(t) a filtration for Q(t),W (t). Here we also
assume Yi has continuous distribution with density function f .

We want to change the intensity of Q(t), the distribution of Yi (that is the density f )
and the drift of W (t) via the change of measure. More speficially, given a function θ(u),
constant λ̃ > 0 and density function f̃ , we find the probabilty measure Q such that under Q,
Q(t) is compound Poisson with rate λ̃, Y (i) has density f̃ and W̃ (t) :=

∫ t
0
θ(u)du+W (t)

is a Brownian motion. Here we also assume that f̃(y) = 0 when f(y) = 0.

Remark 2.6.3. Before we proceed, we note that necessarily in this caseW (t) andQ(t) are
independent as remarked above (see also Corollary 11.4.9 and Exercise 11.6 in Shreve’s).

Definition 2.6.4. Fix T > 0. Let λ̃ > 0 and a density function f̃ be given. Define

Z1(t) := exp
[
−
∫ t

0

θ(u)dW (u)− 1

2

∫ t

0

θ2(u)du
]
;

Z2(t) := e(λ−λ̃)t

N(t)∏
i=1

(
λ̃f̃(Yi)

λf(Yi)

)
, 0 ≤ t ≤ T ;

Z(t) := Z1(t)Z2(t).

Also define

dQ = Z(T )dP on F(T ).

Remark 2.6.5. Note that Z1(t) is the usual change of measure kernel given by the Gir-
sanov’s theorem in Section 5.2. This together with the result in Section (2.5.4) and Remark
(2.6.3), it is no surprise that Z(t) has such form.

We have the important results: (Shreve’s Lemma 11.6.8, Theorem 11.6.9)

Theorem 2.6.6. Z(t) is a P martingale (w.r.t. F(t)). Under Q, Q(t) is a compound Poisson
process with rate λ̃, Yi has continuous distribution with density f̃ , W̃ (t) =

∫ t
0
θ(u)du +

W (t) is a Brownian motion. Moreover, Q(t) and W̃ (t) are independent under Q.
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Remark 2.6.7. Note that we have the parallel between the independence betweenQ(t) and
W (t) under P and the independence between Q(t) and W̃ (t) under Q. This is important
since we do not have any restriction on θ(t). Indeed θ(t) can be equal to Q(t) and the
independence structure still holds.

Remark 2.6.8. Even though the theorem in Shreve is stated for Yi having continuous dis-
tribution, it is easy to see that a similar result still holds if Yi has discrete distribution. In
this case, under Q, Yi would also have discrete distribution with a probability distribution
p̃ (see Section (2.5)). The change of measure kernel Z1(t) is the same,

Z2(t) := e(λ−λ̃)t

N(t)∏
i=1

λ̃p̃(Yi)

λp(Yi)
, 0 ≤ t ≤ T ;

and Z(t) = Z1(t)Z2(t).
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CHAPTER 3 Pricing European call option in jump diffusion models

3.1 Pricing via risk neutral expectation

3.1.1 Model with Poisson noise

Change of measure

Let Nt be a Poisson process with rate λ. Supose we model the stock price as

dSt = αStdt+ σSt−dM(t),

where M(t) = Nt − λt is a P-martingale. Note that here the only random source of St is
from the jump process Nt.

From section 9 of lecture note 1, we also have

St = S(0) exp[(α− λσ)t+ log(1 + σ)Nt].

Let r > 0 be the interest rate. We want to find Q such that e−rtSt is a Q martingale. If
that is the case, since

dSt = rStdt+ σSt−(dNt − [λ− α− r
σ

]dt)

clearly we needNt to be a Poisson process with rate λ̃ = λ− α−r
σ

. Since λ̃must be positive,
a necessary condition (which implies no arbitrage for the model of St) is

λ− α− r
σ

> 0.

We then define

dQ = Z(T )dP;

Z(t) = exp[log

(
λ̃

λ

)
Nt − (λ̃− λ)t)].

Note that under Q, we write the dynamics of St as

dSt = rStdt+ σSt−dM̃(t),

where M̃(t) = Nt − λ̃t is a Q-martingale, which is equivalent to

St = S(0) exp[(r − λ̃σ)t+ log(1 + σ)Nt].
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Pricing of European call

Let V (t) denote the risk-neutral price of a European Call paying V (T ) = (ST − K)+ at
time T . Then by the risk neutral pricing formula, we have

V (t) = EQ[e−r(T−t)(ST −K)+|F(t)
]
.

It remains to find an expression for V (t). Clearly

ST = St exp[(r − λ̃σ)(T − t) + log(1 + σ)(NT −Nt)].

So by the Independence Lemma, (Shreve’s Lemma (2.3.4)), we only need to evaluate

c(t, x) = e−r(T−t)EQ
[(
xe(r−λ̃σ)(T−t)+log(1+σ)(NT−Nt) −K

)+
]
,

then we have V (t) = c(t, St).
Since NT − Nt has distribution Poisson(λ̃(T − t)) under Q, c(t, x) has the expression

as an infinite sum, see Shreve’s formula (11.7.3). We won’t reproduce it here.

3.1.2 Model with compound Poisson noise

Change of measure

Suppose now that

dSt = αStdt+ σSt−dM(t),

where M(t) = Q(t) − mt is a compensated compound Poisson process under P. Under
the risk neutral probability Q,

dSt = rStdt+ σSt−dM̃(t)

= (r − σm̃)Stdt+ σSt−dQt.

So clearly we need
(i) Q(t) to be a compound Poisson process under Q with EQ(Q(1)) = m̃.
(ii) r − σm̃ = α− σm.
Note that (ii) gives an equation for m̃. If Q(t) =

∑Nt
i=1 Yi and under Q, Nt is a Poisson

process with rate λ̃ and E(Yi) = µ̃ then

m̃ = λ̃µ̃.

So (ii) also gives an equation for λ̃ and f̃ , the distribution of Yi under Q. From the
change of measure sections, we have seen how to choose Z(T ) such that the conditions (i)
and (ii) are satisfied. Note that this choice may not be unique, as generally equation (ii) has
more than 1 unknowns. However, there is also a restriction on the solution λ̃ > 0. So a
simple application of linear algebra result to conclude that there are infinitely many choices
of risk neutral measures is not correct.
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Pricing of European call option

Observe that

dSt = (r − σm̃)Stdt+ σSt−dQt

has the solution

St = S(0)e(r−σm̃)t
∏

0<s≤t

(1 + σ∆Q(s))

= S(0)e(r−σm̃)t

Nt∏
i=1

(1 + σYi).

Also for t < T

ST = Ste
(r−σm̃)(T−t)

NT∏
i=Nt+1

(1 + σYi).

Observe the important fact that
∏NT

i=Nt+1(1 + σYi) is independent of F(t), where F(t)
is a filtration for Q(t). We give an explanation in the next subsection.

Thus V (t), the risk-neutral price of a European Call paying V (T ) = (ST −K)+ at time
T for this model is

V (t) = EQ[e−r(T−t)(ST −K)+|F(t)
]

= c(t, St),

where

c(t, x) := e−r(T−t)EQ
[
[xe(r−σm̃)(T−t)

NT∏
i=Nt+1

(1 + σYi)−K]+
]
.

Since Yi are independent of NT − Nt, again we can condition on NT − Nt = j, j =
1, 2, ... to get

c(t, x) = e−r(T−t)
∞∑
j=0

κ(j, x)e−λ̃(T−t) [λ̃(T − t)]j

j!
,

where

κ(j, x) = EQ
[(
xe(r−σm̃)(T−t)

j∏
i=1

(1 + σYi)−K
)+
]
.
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The independence of
∏NT

i=Nt+1(1 + σYi) from F(t)

In the derivation above, we claim that
∏NT

i=Nt+1(1 + σYi) from F(t). This is not totally
obvious since the terms involve Nt, which is in F(t). However, intuitively you can see that
this is believable because there are NT − Nt terms in the product, which consists of Yi’s.
Both NT −Nt and Yi’s are independent of F(t).

Rigorously, we use the result mentioned in Lecture 2. That is if E(euX |F) = E(euX)
for all u ∈ R then X is independent of F . We verify that this is the case here. That is we
want to show

E
(
eu

∏NT
i=Nt+1(1+σYi)|Ft

)
= E

(
eu

∏NT
i=Nt+1(1+σYi)

)
,∀u ∈ R.

Observe that the above expression would be complicated to handle. But we can simplify
it by noting that we can instead show the independence of

log
( NT∏
i=Nt+1

(1 + σYi)
)

=

NT∑
i=Nt+1

log(1 + σYi)

with Ft. Moreover,

eu
∑NT
i=Nt+1 log(1+σYi) =

NT∏
i=Nt+1

eu log(1+σYi).

Thus we see that we can just prove this general claim for our purpose: let X1, X2, · · ·
be i.i.d and be independent of Nt, t > 0. Then

E
( NT∏
i=Nt+1

Xi|Ft
)

= E
( NT∏
i=Nt+1

Xi

)
= E

(NT−Nt∏
i=1

Xi

)
.

This indeed will be the statement we’ll prove for the rest of this proof. We have

E
( NT∏
i=Nt+1

Xi|F(t)
)

= E
(NT−Nt∏

i=1

Xi+Nt |F(t)
)
.

Since NT −Nt is independent of F(t), by the Independence lemma,

E
[NT−Nt∏

i=1

Xi+Nt |F(t)
]

= f(Nt),

where

f(k) = E
[NT−Nt∏

i=1

Xi+k

]
.
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We’ll be done if we can show

f(k) = f(0) = E
[NT−Nt∏

i=1

Xi

]
.

Note that

E
[NT−Nt∏

i=1

Xi+k

]
=

∑
j

E
[NT−Nt∏

i=1

Xi+k|NT −Nt = j
]
P (NT −Nt = j)

=
∑
j

E
[ j∏
i=1

Xi+k|NT −Nt = j
]
P (NT −Nt = j)

=
∑
j

E
[ j∏
i=1

Xi+k

]
P (NT −Nt = j)

=
∑
j

{
E
[
X1

]}j
P (NT −Nt = j),

where the third equality is because of the independence of Xi’s and NT −Nt and the fourth
equality is because of the identical distribution of Xi’s.

Using the same conditioning technique, we can also show

E
[NT−Nt∏

i=1

Xi

]
=
∑
j

{
E
[
X1

]}j
P (NT −Nt = j).

Thus f(k) = f(0) as required.

3.1.3 Model with Brownian motion and compound Poisson noise

Change of measure

Suppose now that

dSt = αStdt+ σSt−dW (t) + St−dM(t),

where M(t) = Q(t) − mt is a compensated compound Poisson process under P. Under
the risk neutral probability Q,

dSt = rStdt+ σSt−dW̃ (t) + St−dM̃(t)

= (r − m̃)Stdt+ σSt−dW̃ (t) + St−dQt,
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where W̃ (t) := W (t) + θt is a Q Brownian motion and Q(t) is compound Poisson with
EQ(Q(1)) = m̃.

Thus the equation that θ and m̃ have to satisfy is

r + σθ − m̃ = α−m.

Solving this equation for θ and m̃ and use the change of measure result discussed above,
we can find Q such that e−rtSt is a Q - martingale.

Pricing of European call

Observe that

dSt = (r − m̃)Stdt+ σSt−dW̃ (t) + St−dQt,

has the solution

St = S(0) exp
[
(r − m̃− 1

2
σ2)t+ σW̃ (t)

] Nt∏
i=1

(1 + Yi).

Hence for t < T ,

ST = St exp
[
(r − m̃− 1

2
σ2)(T − t) + σ(W̃ (T )− W̃ (t))

] NT∏
i=Nt+1

(1 + Yi),

where we have the independence of W̃ (T ) − W̃ (t) and
∏NT

i=Nt+1(1 + Yi) with respect to
F(t) and also with respect to each other.

Thus V (t), the risk-neutral price of a European Call paying V (T ) = (ST −K)+ at time
T for this model is

V (t) = EQ[e−r(T−t)(ST −K)+|F(t)
]

= c(t, St),

where

c(t, x) := e−r(T−t)EQ[(xe(r−m̃− 1
2
σ2)(T−t)+σ(W̃ (T )−W̃ (t))

NT∏
i=Nt+1

(1 + Yi)−K
)+]

.

To find an expression for c(t, x), we first condition on
∏NT

i=Nt+1(1 + Yi) and use the
independence lemma to define a function κ(t, x) as

κ(t, x) := e−rtEQ
[(
xe(r− 1

2
σ2)t+σ

√
tY −K

)+]
,
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where Y has standard normal distribution. Note that we have an explicit expression for
κ(t, x) from the Black-Scholes formula. Then

c(t, x) = EQ[κ(T − t, xe−m̃(T−t)
NT∏

i=Nt+1

(1 + Yi))
]
.

Now again conditioning on NT − Nt = j and using the independence between Y ′i s and
NT −Nt we have

c(t, x) =
∞∑
j=0

e−λ̃(T−t) (λ̃(T − t))j

j!
EQ[κ(T − t, xe−m̃(T−t)

j∏
i=1

(1 + Yi))
]
.

3.2 Pricing via partial differential difference equations

3.2.1 Heuristic

Suppose St satisfies

dSt = αStdt+ σStdM(t),

where M(t) = Nt − λt is a compensated Poisson process under P.
From the change of measure section, we learned that under the risk neutral measure Q,

St has the dynamic:

dSt = (r − λ̃σ)Stdt+ σSt−dNt,

where λ̃ = λ− α−r
σ

and N is a Poisson process with rate λ̃ under Q.
The call option price V (t), where V (T ) = (ST −K)+ can be written as

V (t) = EQ
[
e−r(T−t)(ST −K)+|F(t)

]
= c(t, St),

where

c(t, x) := e−r(T−t)EQ
[
(xe(r−λ̃σ)(T−t)+log(1+σ)(NT−Nt) −K)+

]
.

As in the Black-Scholes model, we want to derive an equation that c(t, x) satisfies. The
key principle here is to apply Ito’s formula to e−rtc(t, St) to achieve

de−rtc(t, St) = f(t, c(t, St))dt+ something dM(t),

where M(t) is a Q-martingale. Then the equation that we look for is

f(t, c(t, St)) = 0.

The reason is that e−rtc(t, St) is a Q-martingale by definition. Therefore, its drift has
to be 0.
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3.2.2 Model with Poisson noise

Suppose St satisfies

dSt = αStdt+ σStdM(t),

where M(t) = Nt − λt is a compensated Poisson process under P.
Apply Ito’s formula to e−rtc(t, St), recognizing there is no Brownian motion compo-

nent, we have

e−rtc(t, St) =

∫ t

0

−re−ruc(u, Su)du+ e−ru
∂

∂t
c(u, Su)du+ e−ru

∂

∂x
c(u, Su)dS

c(u)

+
∑

0<u≤t

e−ru[c(u, Su)− c(u−, Su−)]

=

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − λ̃σ)Su

]
du

+
∑

0<u≤t

e−ru[c(u, Su)− c(u, Su−)].

We need to rewrite
∑

0<u≤t e
−ru[c(u, Su) − c(u, Su−)] as it is not in differential form.

Two key observations will help us here:
(i) Su = (1 + σ∆N(u))Su− = (1 + σ)Su−.
(ii) c(u, Su) jumps at the same points as Su, which in turn jumps at the same points as

N(u). Again keep in mind that ∆N(u) = 1.
Thus ∑

0<u≤t

e−ru[c(u, Su)− c(u, Su−)] =
∑

0<u≤t

e−ru[c(u, Su−(1 + σ))− c(u, Su−)]

=

∫ t

0

e−ru[c(u, Su−(1 + σ))− c(u, Su−)]dN(u),

where the first equality uses observations (i) and second equality uses observation (ii).
Putting all these together gives

e−rtc(t, St) =

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − λ̃σ)Su

]
du

+

∫ t

0

e−ru[c(u, Su−(1 + σ))− c(u, Su−)]dN(u).

The last thing to do is to change dN(u) to dM(u) for some martingale M . This is easy:

54



we only need to subtract and add λ̃du to dN(u). So finally

e−rtc(t, St) =

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − λ̃σ)Su

+[c(u, Su−(1 + σ))− c(u, Su−)]λ̃
]
du

+

∫ t

0

e−ru[c(u, Su−(1 + σ))− c(u, Su−)]dM(u)

=

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − λ̃σ)Su

+[c(u, Su(1 + σ))− c(u, Su)]λ̃
]
du

+

∫ t

0

e−ru[c(u, Su−(1 + σ))− c(u−, Su−)]dM(u),

where in the second equality we uses the fact that we are integrating with respect to du so
using Su− or Su gives the same result.

Now apply the principle in Section (3.2.1) we get

Theorem 3.2.1. The call option price c(t, x) in the model of this section satisfies the dif-
ferential difference equation

−rc(t, x) +
∂

∂t
c(t, x) + (r − λ̃σ)x

∂

∂x
c(t, x)

+ λ̃[c(t, x(1 + σ))− c(t, x)] = 0, 0 ≤ t < T, x > 0

c(T, x) = (x−K)+, x > 0.

3.2.3 Model with compound Poisson noise

Suppose St has the dynamic:

dSt = (r − m̃σ)Stdt+ σSt−dQt,

where Q(t) is a compound Poisson process with rate EQ(Q(1)) = 1. We also assume that
Q(t) =

∑Nt
i=1 Yi where each Yi takes discrete distribution with values y1, y2, ..., ym.

Following the same procedure as the above section, apply Ito’s formula to e−rtc(t, St)

55



gives

e−rtc(t, St) =

∫ t

0

−re−ruc(u, Su)du+ e−ru
∂

∂t
c(u, Su)du+ e−ru

∂

∂x
c(u, Su)dS

c(u)

+
∑

0<u≤t

e−ru[c(u, Su)− c(u−, Su−)]

=

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃σ)Su

]
du

+
∑

0<u≤t

e−ru[c(u, Su)− c(u, Su−)].

Now by the Poisson process decomposition, we can write

Q(t) =
m∑
i=1

yiNi(t),

where each Ni(t) is a Poisson process with rate λ̃i, i = 1, ...,m under Q. An important fact
here is that since Ni’s are independent, they do not jump at the same time. So at all jump
point of Q:

1 + σ∆Q(t) = 1 + σyi∆Ni(t), for some i.

Thus we have,∑
0<u≤t

e−ru[c(u, Su)− c(u, Su−)] =
∑

0<u≤Nt

e−ru[c(u, Su−(1 + σ∆Qu))− c(u, Su−)]

=
m∑
i=1

[ ∑
0<u≤t

e−ru[c(u, Su−(1 + σyi))− c(u, Su−)]∆Ni(u)
]

=
m∑
i=1

[ ∫ t

0

e−ru[c(u, Su−(1 + σyi))− c(u, Su−)]dNi(u)
]
.

So

e−rtc(t, St) =

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃σ)Su

+
m∑
i=1

[c(u, Su(1 + σyi))− c(u, Su)]λ̃i
]
du

+

∫ t

0

e−ru[c(u, Su)− c(u, Su−)]dM(u),
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where

M(t) =
m∑
i=1

Ni(t)− λ̃it

is a Q-martingale.
Setting the dt part to be 0 gives the following:

Theorem 3.2.2. The call option price c(t, x) in the model of this section satisfies the dif-
ferential difference equation

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃σ)x

∂

∂x
c(t, x)

+
m∑
i=1

[c(t, x(1 + σyi))− c(t, x)]λ̃i = 0, 0 ≤ t < T, x > 0

c(T, x) = (x−K)+, x > 0.

3.2.4 Model with Brownian motion and compound Poisson noise

Suppose St has the dynamic:

dSt = (r − m̃)Stdt+ St−dQt + σStdW̃ (t),

where Q(t) is a compound Poisson process with rate EQ(Q(1)) = 1 and W̃ (t) is a Q
Brownian motion. We also assume that Q(t) =

∑Nt
i=1 Yi where each Yi takes discrete

distribution with values y1, y2, ..., ym.
Following the same procedure as the above section, apply Ito’s formula to e−rtc(t, St)

gives

e−rtc(t, St) =

∫ t

0

−re−ruc(u, Su)du+ e−ru
∂

∂t
c(u, Su)du+ e−ru

∂

∂x
c(u, Su)dS

c(u)

+
1

2
e−ru

∂2

∂x2
c(u, Su)σ

2S2(u)du+
∑

0<u≤t

e−ru[c(u, Su)− c(u−, Su−)]

=

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃)Su

+
1

2

∂2

∂x2
c(u, Su)σ

2S2(u)
]
du

+

∫ t

0

e−ru
∂

∂x
c(t, Su)SudW̃ (u) +

∑
0<u≤t

e−ru[c(u, Su)− c(u, Su−)].
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Follow the same exact analysis for
∑

0<u≤t e
−ru[c(u, Su) − c(u, Su−)] as in section

(3.2.3) we have

e−rtc(t, St) =

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃)Su

+
1

2

∂2

∂x2
c(u, Su)σ

2S2(u) +
m∑
i=1

[c(u, Su(1 + yi))− c(u, Su)]λ̃i
]
du

+

∫ t

0

e−ru
∂

∂x
c(t, Su)SudW̃ (u) +

∫ t

0

e−ru[c(u, Su)− c(u, Su−)]dM(u),

where

M(t) =
m∑
i=1

Ni(t)− λ̃it

is a Q-martingale.
Setting the dt part to be 0 gives the following:

Theorem 3.2.3. The call option price c(t, x) in the model of this section satisfies the dif-
ferential difference equation

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃)x

∂

∂x
c(t, x) +

1

2

∂2

∂x2
c(t, x)σ2x2

+
m∑
i=1

[c(t, x(1 + yi))− c(t, x)]λ̃i = 0, 0 ≤ t < T, x > 0;

c(T, x) = (x−K)+, x > 0.

3.2.5 A unifying approach via Levy measure

Note that all of the above derivations rely on the decomposition of a compound Poisson
process with discrete jumps into sums of individual Poisson processes. This technique
obviously does not work when we have a compound Poisson process with continuous jump
distribution. The way to handle this situation is via the concept of the Levy measure.
It will also help us write one single type of equation, called Partial Integro-Differential
Equation (PIDE), for all types of our noise, as long as they are compound Poisson process
plus a Brownian motion. For a more detailed treament of Levy process with application to
finance, see e.g. [2].
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The Levy measure

Definition 3.2.4. Let Lt be a Levy process and A ∈ B(R) be a Borel measurable subset of
the real line. Define

µLt (A) :=
∑

0<s≤t

1∆Ls∈A;

that is, µLt (A) counts the number of jumps of L, up to time t, that have size in the set A. We
call µLt (·) the Poisson random measure associated with the Levy process Lt . Note that for
a fixed A, µLt (A) is a counting process. Also define

ν(A) := E(µL1 (A)).

We say ν is the Levy measure associated with the Levy process Lt .

Remark 3.2.5. In the above definition, usually one would require that the point 0 is “far
away" from the set A, that is 0 /∈ A. This is because a Levy process Lt can have infinitely
many small jumps close to 0, which in turn may make µLt (A) to be infinite if 0 ∈ A.
However, in the cases we’re dealing with, namely upto compound Poisson process, this will
not happen. The number of jumps of compound Poisson process in any finite time interval
[0, t] will always remain finite. So we do not have to include this restriction in the set A,
for ease of introduction to the material.

Observe that for a fixed A, µLt has independent and stationary increment, which is
inherited from the Levy process Lt. Therefore, µLt (A) is a Poisson process with rate

λA = ν(A) = E(µL1 (A)).

In other words, the Levy measure ν measures the expected number of jumps of Lt of a
certain height in a time interval of length 1. The height is determined by what values of
the set A you plug in to the measure ν. We list what ν is for the processes we were familiar
with in this chapter.

1. Poisson process with rate λ:

ν(dx) = λδ1(dx).

2. Compound Poisson process with rate λ and discrete jumps y1, · · · , yM :

ν(dx) = λ

M∑
m=1

pmδym(dx).

3. Compound Poisson process with rate λ and continuous jump distribution fY (x):

ν(dx) = λfY (dx).
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Remark 3.2.6. Note that in all of the above examples,

λ =

∫
R
ν(dx) = ν(R).

This indeed will be the case for all compound Poisson processes: they have finite Levy
measure and the rate is equal to the Levy measure of the real line.

Integrating with respect to the random Poisson measure

For a Levy process Lt with Levy measure ν, adapted to a filtration Ft. We define∫ t

0

∫
A

f(s, x)µL(ds, dx) :=
∑

0<s≤t

f(s,∆Ls)1∆Ls∈A.

That is, the integral
∫ t

0

∫
A
f(s, x)µL(ds, dx) is a pure jump process that jumps at the

same time as L, with the jump size f(s,∆Ls) if the jump of L happens at time s.
What will be important for us is the following martingale result:

Theorem 3.2.7. Let f(s, x, ω) be a process with left continuous with right limit paths
adapted to the filtration Ft satisfying certain integrability conditions. Then∫ t

0

∫
A

f(s, x, ω)[µL(ds, dx)− ν(dx)ds]

is a Ft-martingale.

Proof. The proof starts by approximating f(t, x, ω) by simple processes of the form∑m
k=1 ξk(t)φk(x), where ξk(t) are Ft measurable processes and φk are deterministic func-

tions of x. We prove the martingale property for these simple processes and prove the
general result by a convergence argument. For details see [1].

Ito’s formula for jump processes, random Poisson measure version

Let Xt be a process of the form

X(t) = X0 +

∫ t

0

α(s)ds+

∫ t

0

γ(s)dWs+ J(t),
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where J(t) is a compound Poisson process. Let f be a C1,2 function. Then

f(t,X(t)) = f(0, X0) +

∫ t

0

ft(s,Xs)ds

+

∫ t

0

fx(s,Xs)dX
c(s) +

∫ t

0

1

2
fxx(s,Xs)γ

2(s)ds

+
∑

0<s≤t

f(s,Xs)− f(s,Xs−)

= f(0, X0) +

∫ t

0

ft(s,Xs)ds

+

∫ t

0

fx(s,Xs)dX
c(s) +

∫ t

0

1

2
fxx(s,Xs)γ

2(s)ds

+

∫ t

0

∫
R

[
f(s,Xs− + x)− f(s,Xs−)

]
µJ(ds, dx).

The reason for the re-writing in the random Poisson measure version is clear: we want
to use the martingale result mentioned in the previous section. The equality∑

0<s≤t

f(s,Xs)− f(s,Xs−) =

∫ t

0

∫
R

[
f(s,Xs− + x)− f(s,Xs−)

]
µJ(ds, dx)

comes from the fact that the jumps of X comes from the jumps of J , and ∆Xs = ∆Js at
all jump times s.

PIDE for Euro call option with compound Poisson process and Brownian motion noise

Now suppose St has the dynamic:

dSt = rStdt+ σStdW̃ (t) + γSt−d(Qt − µ̃t),

where we added a volatility component γ in the compound Poisson part for generality, even
though this is not strictly necessary as it can be incoporated into the jumps of Q. This is
the parameter σ in the previous sections (3.2.2), (3.2.3).

Recall that applying the Ito’s formula, we have

e−rtc(t, St) =

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃)Su

+
1

2

∂2

∂x2
c(u, Su)σ

2S2(u)
]
du

+

∫ t

0

e−ru
∂

∂x
c(t, Su)SudW̃ (u) +

∑
0<u≤t

e−ru[c(u, Su)− c(u, Su−)].
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Rewriting the term
∑

0<u≤t e
−ru[c(u, Su) − c(u, Su−) using random Poisson measure

we have∑
0<u≤t

e−ru[c(u, Su)− c(u, Su−) =
∑

0<u≤t

e−ru[c(u, Su−(1 + γ∆Qt))− c(u, Su−)]

=

∫ t

0

∫
R
e−ru[c(u, Su−(1 + γx))− c(u, Su−)]µQ(du, dx).

Thus applying the martingale result, we have

e−rtc(t, St) =

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃)Su

+
1

2

∂2

∂x2
c(u, Su)σ

2S2(u)
]
du+

∫ t

0

e−ru

∂

∂x
c(t, Su)SudW̃ (u) +

∫ t

0

∫
R
e−ru[c(u, Su−(1 + γx))− c(u, Su−)]µQ(du, dx)

=

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃)Su

+
1

2

∂2

∂x2
c(u, Su)σ

2S2(u) +

∫
R
[c(u, Su−(1 + γx))− c(u, Su−)]ν(dx)

]
du

+

∫ t

0

e−ru
∂

∂x
c(t, Su)SudW̃ (u)

+

∫ t

0

∫
R
e−ru[c(u, Su−(1 + γx))− c(u, Su−)](µQ(du, dx)− ν(dx)du).

Therefore, c(t, x) satisfies the PIDE

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃)x

∂

∂x
c(t, x) +

1

2

∂2

∂x2
c(t, x)σ2x2

+

∫
R
[c(t, x(1 + γz))− c(t, x)]ν(dz) = 0, 0 ≤ t < T, x > 0;

c(T, x) = (x−K)+, x > 0.

In particular we have:
(i) If Q is a Poisson (λ̃) process then ν(dz) = λ̃δ1(dz). Thus the PIDE becomes

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃)x

∂

∂x
c(t, x) +

1

2

∂2

∂x2
c(t, x)σ2x2

+ λ̃[c(t, x(1 + γ))− c(t, x)] = 0.
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(ii) If Q is a compound Poisson with discrete jumps then ν(dz) =
∑M

m=1 λ̃mδym(dz).
Thus the PIDE becomes

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃)x

∂

∂x
c(t, x) +

1

2

∂2

∂x2
c(t, x)σ2x2

+
M∑
m=1

λ̃m[c(t, x(1 + γym))− c(t, x)] = 0.

(iii) If Q is a compound Poisson with continuous jump then ν(dz) = λf(z)dz. Thus
the PIDE becomes

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃)x

∂

∂x
c(t, x) +

1

2

∂2

∂x2
c(t, x)σ2x2

+

∫
R
[c(t, x(1 + γz)− c(t, x)]λf(z)dz = 0.

You should verify that for cases (i) and (ii) the results are exactly as what we got before
in sections (3.2.2), (3.2.3).
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CHAPTER 4 PDE for knock out barrier option

4.1 Introduction

In Chapter 7, we consider the risk neutral price for various exotic options:
(i) Knock out Barrier option:

VT = (ST −K)+1{max[0,T ] St≤b}.

(ii) Lookback option:

VT = max
[0,T ]

St − S(T ).

(iii) Asian option:

VT =
( 1

T

∫ T

0

Stdt−K
)+

The risk-neutral price V (t) in all of these cases can be expressed as

V (t) = EQ
[
e−r(T−t)VT |F(t)

]
.

To analyze Vt further, it is tempting to write V (t) = v(t, S(t)) for some function v(t, x)
and start deriving what equation v(t, x) has to satisfy. However, this is incorrect.

Recall that the basis for us to say there exists such a function v(t, x) is because of the
Indepndence lemma, which in turns rely on the fact that we can write

ST = St × ( something independent of F(t))

and we were working with European option, which only depends on ST .
That is not the case here: all these three exotic options are path dependent, i.e. the

expression for VT involves the values of St, 0 ≤ t ≤ T , not just ST . So apriori, it is not
clear that we can find such a v(t, x). Indeed, for the Lookback and Asian option, we will
see that the correct function to deal with is v(t, x, y), not v(t, x), where we need to add
another component Y (t) to S(t) so that the joint process S(t), Y (t) have the necessary
Markov property.
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For the Knockout Barrier option, the key idea is to analyze the behavior of St upto
the first time it hits the barrier. This time, as you may have known, is a stopping time with

respect to the filtration generated by St. So we will begin by reviewing stopping time and
its properties. We will then show how we can derive the PDE for the price Vt of a Knockout
Barrier option using stopping time.

4.2 Stopping times

4.2.1 Motivation

In financial math, very often and quite naturally, we study random decisions, such as when
to exercise your right to buy an option (American call option), or when to accept an offer
for the house you are selling (imagine you’re putting your house on a market and offer
comes in for how much the buyer is willing to pay for the house, which is random). These
decisions involve a random time (the time you decide to take action). The time is random
because obviously it depends on the path of the stock’s price, or of the offers, which are
random.

However, there is a common important feature in both cases here: your decision of
when to take action cannot depend on future information. Mathematically, if we denote
F(t) as the stream of information available to you at time t, and the random time when you
take action is τ , then we require:

{τ ≤ t} ∈ F(t).

The event {τ ≤ t} means you have taken action on or before time t. The event being
∈ F(t) then means your decision of taking action on or before time t entirely depends on
the information up to time t, i.e. it does not involve future information. Such τ is called a
stopping time and it is an important concept to study.

4.2.2 Some preliminary

Discrete vs continuous time

We can model time in 2 ways. Discrete: consider time n = 0, 1, 2, ..., N where N is
our terminal time. Continuous: consider time t ∈ [0, T ], where T is our terminal time.
Stopping times are defined in both contexts. Generally speaking, discrete time is “easier"
to analyze (don’t take this statement too literally). The models we will study in Chapter 7,8
are in continuous time. Generally, most of the statements about stopping times have similar
versions in both discrete and continuous times. But when one works in continuous time,
it is good to pay attention because there will be subtleties that are not present in discrete
time.
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Filtration, sigma-algebra and the flow of information

We denote F(t), t ∈ [0, T ] to be the filtration in the time interval [0, T ], which represents
the information we have available up to time t. We require:

(i) Each F(t) is a sigma-algebra.
(ii) If s < t then F(s) ⊆ F(t).
Condition (i) is about the closure property of F(t): if Ai, i = 1, 2, ... is a countable

sequence of events (meaning the number of events can potentially be infinite) in F(t), then
Aci (not Ai), ∪∞i=1Ai (some of Ai has happened), ∩∞i=1Ai (all of Ai have happened) are also
in F(t). We also require Ω,Ω ∈ F(t).

Condition (ii) is about the flow of information, intuitively at the present time t we must
also have knowledge of the information of the past up to time s as well.

Sometimes we have F(0) = {Ω,Ω}. This means any event at time 0 is deterministic.
In terms of a random process, this means the process starts out at a deterministic point x,
instead of having a random initial distribution.

We can also consider F(n), n = 0, 1, ..., N as the discrete analog of continuous time
filtration. The requirements are the same.

Stopping time definition

Definition 4.2.1. Let τ be a random variable taking values in [0, T ] (resp. {0, 1, ..., N}).
We say τ is a stopping time with respect to F(t) (resp. F(n)) if for all t ∈ [0, T ] (resp. for
all n = 0, 1, ..., N )

{τ ≤ t} ∈ F(t)

( resp. {τ ≤ n} ∈ F(n)).

Remark 4.2.2. Note that the notion of a stopping time is tied to a filtration (similar to the
notion of a martingale). It could happen that τ is a stopping time with respect to a filtration
F(t) but not a stopping time with respect to another, smaller filtration G(t) ⊆ F(t).

First important difference between discrete and continuous time

Consider the discrete time. Since if τ is a F(n) stopping time then {τ < n} = {τ ≤
n− 1} ∈ F(n− 1) ⊆ F(n), we have

{τ ≥ n} = {τ < n}c ∈ F(n)

Hence

{τ = n} = {τ ≤ n} ∩ {τ ≥ n} ∈ F(n).
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Conversely if {τ = n} ∈ F(n) for all n then {τ ≤ n} = ∪ni=0{τ = i} ∈ F(n), for
all n as well. So we can use either conditions: {τ = n} ∈ F(n) or {τ ≤ n} ∈ F(n) as
definition for stopping time in discrete time.

Now consider the continuous time. By the property of stopping time listed below, it
is also true that {τ < t} ∈ F(t). So {τ ≥ t} = {τ < t}c ∈ F(t). Therefore, if τ is a
stopping time then

{τ = t} = {τ ≤ t} ∩ {τ ≥ t} ∈ F(t).

However, it is NOT true that if {τ = t} ∈ F(t) for all t then {τ ≤ t} ∈ F(t). The
reason is because in continuous time, we need to write

{τ ≤ t} = ∪0≤s≤t{τ = s},

and the RHS involves an uncountable union of events, which doesn’t have to be contained
in the sigma algebra. This explains the choice of using {τ ≤ t} ∈ F(t) as the definition
for continuous time.

Some properties of stopping time

Lemma 4.2.3. Let τ1, τ2 be stopping times with respect to F(t). Then
(i) {τ1 < t} ∈ F(t), ∀0 ≤ t ≤ T ;
(ii) min(τ1, τ2) and max(τ1, τ2) are stopping times with respect to F(t).

Property (i) follows from the fact that

{τ1 < t} = ∪∞n=1{τ1 ≤ t− 1

n
},

and {τ1 ≤ t− 1
n
} ∈ F(t− 1

n
) ⊆ F(t),∀n. Property ii is left as homework exercise.

4.2.3 Some important examples

Example 4.2.4. Jump time of a Poisson process
Let N(t) be a Poisson process. Then

τk := inf{t ≥ 0 : N(t) = k}

are stopping times with respect to FN(t).

Reason: {τk ≤ t} means the kth jump happened at or before t. But that is the same as
at time t, N(t) ≥ k. Thus

{τk ≤ t} = {N(t) ≥ k} ∈ F(t).
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Example 4.2.5. First hitting time to a point of Brownian motion
Let b > 0 be fixed. Define

Tb := inf{t ≥ 0 : W (t) = b}

to be the first time W (t) hits the level b. Note also the convention that inf Ω =∞, that
is if W (t) never hits b then we set Tb = ∞. Then Tb is a stopping time with respect to
FW (t).

The reasoning here is more complicated. Note that {Tb ≤ t} means W (.) has hit b at
or before time t. But we cannot infer any property of W (t) (say W (t) ≥ b based on this
information) because W is not monotone.

It is better to look at the complement: {Tb > t} which means W (.) has NOT hit b at or
before t, which since W (.) starts at 0 at time 0 is equivalent to W (s) < b, 0 < s < t, the
information of which intuitively belongs to F(t). But this is not rigorous, since again there
are uncountably many points s in [0, t].

To fix this, we note that a continuous function is uniquely determined by its values on
the rationals, which is countable. Combine these facts we can write

{Tb > t} = {W (s) < b, 0 ≤ s ≤ t} = ∪ni=1{W (s) ≤ b− 1

n
, 0 ≤ s ≤ t}

= ∪ni=1{W (s) ≤ b− 1

n
, s ∈ [0, t] ∩Q}

= ∪ni=1 ∩s∈Q {W (s) ≤ b− 1

n
},

and it follows that {Tb > t} ∈ F(t). Note the subtle fact here that we need to transition
from W (s) < b to W (s) ≤ b − 1

n
for some n. The reason is this: if W (s) < b for all s

rationals, we can only conclude that W (s) ≤ b for all s. But W (s) ≤ b for all s rational if
and only if W (s) ≤ b for all s.

We did not use any special property of Brownian motion besides the fact that it has
continuous paths. So

Example 4.2.6. First hitting time to a point of a continuous process
Let b > 0 be fixed. Let X(t) be a process starting at 0 with continuous paths. Define

Tb := inf{t ≥ 0 : X(t) = b}

to be the first time X(t) hits the level b. Then Tb is a stopping time with respect to
FX(t).

Example 4.2.7. Non example: last hitting time
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Let b > 0 be fixed. Let X(t) be a process starting at 0 with continuous paths. Define

Tb := sup{t ≥ 0 : X(t) = b}

to be the last time X(t) hits the level b. Then Tb may NOT be a stopping time with
respect to FX(t).

The reason is this: {Tb ≤ t}means the last time X(t) hits b is at or before time t. But it
is impossible to know whether X(t) will hit b again unless we observe the future paths of
X(t), which is forbidden for a stopping time definition. There is an exception: if we know
that X(t) is monotone, then once it hits b it will not hit b again. But this is probably the
only exception.

Example 4.2.8. First hitting time to an open set of a continuous process
Let b > 0 be fixed. Let X(t) be a process starting at 0 with continuous paths. Define

Sb := inf{t ≥ 0 : X(t) > b}

to be the first time X(t) hits the open set (b,∞). Then Sb may NOT be a stopping time
with respect to FX(t).

The reason is very subtle here. It is tempting to write

{Sb > t} = {Xs ≤ b, 0 ≤ s ≤ t} = {Xs ≤ b, s ∈ Q}
= ∩s∈Q{Xs ≤ b},

therefore {Sb > t} ∈ F(t) and Sb is a stopping time. What happens is the first equality is
incorrect, and it is because of the definition of infimum. It could be the case that at time t,
X(t) = b and immediately after t, X crosses over b. Then in this case Sb = t and the event
we describe is still in the RHS of the above equation. In other words,

{Sb ≥ t} = {Xs ≤ b, 0 ≤ s ≤ t}

and we don’t have the right inequality to work with here. But note the fact that S is almost
a stopping time. We call it an optional time here.

Remark 4.2.9. Another useful way to think of the above situation is to imagine 2 possible
paths of X(s): one path ω hits b at time t and crosses over. The other ω′ follows the exact
same path up to time t, hits b at time t and immediately reflects down, and let’s say never
comes back to level b. Then Sb(ω) = t and Sb(ω′) =∞. Since the two paths are the same
up to time t, it is impossible to tell the event Sb = t by observing F(t). So Sb cannot
be a stopping time. This can be used as a useful, even though non-rigorous criterion to
determine whether a random time is a stopping time.
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4.2.4 Strong Markov property of Brownian motion

It is a well-known fact of Brownian motion that it has independent and stationary incre-
ment: if t > s then W (t)−W (s) is independent of F(s) and has distribution N(0, t− s).
In particular, this implies that W (t)−W (s) is a Brownian motion independent of F(s).

What is interesting is if we replace s by a stopping time, all of these results still hold,
except for the technical issue of defining what F(τ) means. For our purpose, it is enough
to think of F(τ) as the sigma algebra containing all information before time τ and we have
the following:

Theorem 4.2.10. Strong Markov property
LetW be a Brownian motion andF(t) a filtration forW . Let τ be aF(t) stopping time.

Then W (τ + u) −W (τ), u ≥ 0 is a Brownian motion independent of all the information
in the filtration F(t) before time τ .

This theorem is called the Strong Markov property because it implies that the Markov
property of Brownian motion can be applied to a stopping time as well. Indeed, if we
accept, in addition to the strong Markov property, the fact that W (τ) ∈ F(τ) then by the
Independence Lemma:

E[f
(
W (τ + u)

)
|F(τ)] = g(W (τ)),

where

g(x) = E[f
(
x+Wu

)
].

4.2.5 An important result in the case of Brownian motion

Let Wt be a Brownian motion starting at 0. Let b > 0 and define

Tb := inf{t ≥ 0 : W (t) = b}
Sb := inf{t ≥ 0 : W (t) > b}.

Then it is clear that Tb ≤ Sb. We have also remarked above that Tb is a stopping time
with respect to the Brownian filtration while Sb is only an optional time. A very interesting
result here is that even though these times are different in nature, the probability of the
event that they differ is 0. That is

Lemma 4.2.11. Let W (t) be a Brownian motion, then

P(Tb = Sb) = 1.
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Remark 4.2.12. The above Lemma says that Sb is equal to Tb up to sets of measure 0.
Therefore, if we include sets of measure 0 in F(t), for all t, a procedure called augmenta-
tion of filtration, then Sb is a stopping time with respect to the augmented filtration.

Proof. We present the idea of the proof of this result here. For complete details, see e.g.
[?] problem 7.19.

The proof of the Lemma (4.2.11) depends on two other important results about the path
of Brownian and the Brownian filtration. They are as followed:

a. Blumenthal 0-1 law : Let Ft be a filtration generated by a Brownian motion. Let E
be an event in the sigma algebra F0+. Then P (E) = 0 or P (E) = 1.

Remark: E ∈ F0+ means that we can have the information of E by observing infinites-
imally into the future beyond the time 0, but not necessarily exactly at time 0.

b. Infinite crossing property: Let Wt be a Brownian motion starting at 0. Then for any
ε > 0,

P (Wt crosses 0 infinitely often in the time interval [0, ε]) = 1.

We will take the 0-1 law as a fact. The infinite crossing property can be explained using
the 0-1 law as followed. Define

T+
0 := inf{t ≥ 0 : Wt > 0}
T−0 := inf{t ≥ 0 : Wt < 0}.

Then arguing as we did before, we can show the events {T+
0 = 0} and {T−0 = 0} are in

F0+. Then by Blumenthal 0-1 law, P (T+
0 = 0) = 0 or P (T+

0 = 0) = 1, similarly for T−0 .
By symmetry of the distribution of Brownian motion (−Wt is a Brownian motion iff Wt is
a Brownian motion) we also have

P (T+
0 = 0) = P (T−0 = 0).

Therefore, they must both be 0 or both be 1. Now suppose that both P (T+
0 = 0) =

P (T−0 = 0) = 0. That must mean with positive probability we can find an ε > 0 so that
Wt = 0 identically on [0, ε]. But this is impossible since this implies that with positive
probability, the quadratic variation of Wt on [0, ε] is equal to 0. Thus we must conclude

P (T+
0 = 0) = P (T−0 = 0) = 1.

That is with probability 1, Wt crosses 0 infinitely often in the time interval [0, ε].
We will now show P(Tb = Sb) = 1 using these two facts and the strong Markov

property of Wt. Since Tb is a stopping time, W̃ b
t := Wt −WTb is a Brownian motion for

t ≥ Tb.
Suppose that in contrary to the conclusion of the Lemma, P (Sb > Tb) > 0. Then with

positive probability, there is a time interval (namely on [Tb, Sb]) so that W̃ b
t ≤ 0 on [Tb, Sb].

That is W̃ b does not cross 0 on the time interval [Tb, Sb]. But this contradicts fact b) we
mentioned above. This establishes the Lemma.
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4.2.6 Stopped processes

Definition 4.2.13. Given a stochastic X and a random time τ , we define the stopped pro-
cess X at time τ as

X(t ∧ τ(ω))(ω) := X(t)(ω), t ≤ τ(ω)

:= Xτ(ω)(ω), t ≥ T (ω).

When τ is a stopping time and X is a martingale then the stopped process is also a
martingale via the following theorem:

Theorem 4.2.14. Let M(t) be a martingale with respect to F(t) with càdlàgpaths. Let τ
be a stopping time with respect to F(t). Then M(t ∧ τ) is also a martingale with respect
to F(t).

This theorem has a discrete time analog:

Theorem 4.2.15. Let M(n) be a martingale with respect to F(n) and τ a F(n) stopping
time. Then X(t ∧ n) is also a martingale with respect to F(n).

In particular, in the continuous time, when M is a stochastic integral against Brownian
motion, then the stopped processed M(t ∧ τ) is also a martingale when τ is a stopping
time. But in this case, we also have an interesting representation of the stopped stochastic
integral via the following theorem.

Theorem 4.2.16. Let F(t) be a filtration and W (t) a F(t) Brownian motion. Let α be an
adapted process to F(t) such that

∫ t
0
α(s)dW (s) is well-defined. Let τ be a F(t) stopping

time. Denote M(t) :=
∫ t

0
α(s)dW (s). Then M(t ∧ τ) is a F(t) martingale. Moreover,

M(t ∧ τ) =

∫ t∧τ

0

α(s)dW (s) =

∫ t

0

1[0,τ)(s)dW (s).

The following corollary is an immediate consequence of the above theorem:

Corollary 4.2.17. Let St have the dynamics:

dSt = αtdt+ σtdWt.

Then for a stopping time τ

St∧τ = S0 +

∫ t∧τ

0

α(s)ds+

∫ t∧τ

0

σsdW (s)

= S0 +

∫ t

0

1[0,τ)(s)αsds+

∫ t

0

1[0,τ)(s)σsdW (s).
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4.2.7 Generalization of Lemma (4.2.11) to Ito processes

Lemma (4.2.11) can be generalized to general Ito process: process that can be written as
a Rieman integral plus an Ito integral. The intuition here is that the Ito integral has path
property similar to that of Brownian motion: very irregular. On the other hand, the Rieman
integral has a differentiable (“regular") path. So when the process X(t) hits b, the effect of
the stochastic integral part would win out and cause the process to enter b as in the presence
of only a Brownian motion.

Theorem 4.2.18. Let

X(t) = X(0) +

∫ t

0

α(s)ds+

∫ t

0

σ(s)dW (s),

and suppose that P(σ(t) 6= 0) = 1 for all t.
Define

Tb := inf{t : X(t) = b}
Sb := inf{t : X(t) > b}.

Then P(Tb = Sb) = 1.

4.3 Knock-out Barrier option

4.3.1 The goal

Let S(t) satisfies

dSt = rStdt+ σStdWt.

Consider the Knock-out Barrier option with barrier b and strike price K:

VT = (ST −K)+1{max[0,T ] St≤b}.

Note: Necessarily we require K < b and S(0) < b so that P(VT > 0) > 0.
The risk neutral price V (t) can be written as:

V (t) = E
[
e−r(T−t)(ST −K)+1{max[0,T ] St≤b}|F(t)

]
.

Our goal is to find a function v(t, x) so that Vt = v(t, St) and then apply Ito’s formula
to e−rtv(t, St) to find a PDE that v(t, x) satisfies. It is not immediately clear that this can
be achieved, as the expression of Vt above involves the term 1{max[0,T ] St≤b}. Indeed as we
shall see there is no such function v(t, x) so that the equality

Vt = v(t, St)

73



holds true for all 0 ≤ t ≤ T .
However, we observe that before St hits b, it is believable that the option value Vt should

be just a function of (t, St) (think about the factors that you would use to value Vt in a real
life situation before the stock hits the barrier). After St hits b, the option value Vt stays
constant, namely it takes value 0. That is, the option value Vt should be a function of (t, St)
upto the random time Tb, the first time St hits b. In other words, we are looking to find a
function v(t, x) so that

Vt = v(t ∧ Tb, St∧Tb), t ∈ [0, T ].

This is what we will establish rigorously in several steps in the following section. This
equality will also help us establish a PDE for v(t, x) since by the result of the section
(4.2.6), we can apply Ito’s formula to v(t ∧ Tb, St∧Tb). Note, however, that here we are
investigating the dynamics of v(t, St) on the time interval [0, Tb]. Thus our PDE will not
have the usual domain as the one in classical Black-Scholes PDE.

4.3.2 The steps

We proceed to establish
Vt = v(t ∧ Tb, St∧Tb),

for some function v(t, x) through several steps.
(i) Write 1{max[0,T ] St≤b} in terms of Su, 0 ≤ u ≤ t and Su, t ≤ u ≤ T .
The reason is we want to apply the Independence Lemma (or quote the Markov property

of S(t)), so heuristically we want to “separate the past and the future". We already know
how to do this with ST . So we apply the same principle to the new term 1{max[0,T ] St≤b}.

This is accomplished as followed:

1{max[0,T ] St≤b} = 1{max[0,t] Su≤b}1{max[t,T ] Su≤b}.

It is easy to see why the equality is true: the maximum of the whole path does not
exceed b if and only if its maximum on each time interval does not exceed b.

(ii) Recognizing that 1{max[0,t] Su≤b} ∈ F(t), so it can be factored out of E(.|F(t)).
(iii) Define

τb := inf{t ≥ 0 : S(t) > b} ∧ T
Tb := inf{t ≥ 0 : S(t) = b} ∧ T

Recall that P (Tb = τb) = 1. And so with probability 1:

{max
[0,t]

Su ≤ b} = {τb ≥ t} = {Tb ≥ t}.

74



The change from τb to Tb might seem unimportant and non-intuitive. But it is to apply
the optinal stopping theorem for martingale, see the section on the derivation of the PDE
below.

(iv) Combine (ii) and (iii) we get

V (t) = 1Tb≥tE
[
e−r(T−t)(ST −K)+1{max[t,T ] Su≤b}|F(t)

]
.

(v) Since

S(T ) = S(t)e(r− 1
2
σ2)(T−t)+σ(W (T )−W (t))

and

max
[t,T ]

Su = St max
[t,T ]

e(r− 1
2
σ2)(u−t)+σ(W (u)−W (t)),

note that max[t,T ] e
(r− 1

2
σ2)(u−t)+σ(W (u)−W (t)) is independent of F(t), by the Indepen-

dence Lemma, we get

E
[
e−r(T−t)(ST −K)+1{max[t,T ] Su≤b}|F(t)

]
= v(t, S(t)).

where

v(t, x) := E
[
e−r(T−t)

(
xe(r− 1

2
σ2)(T−t)+σ(W (T )−W (t)) −K

)+

×1
{xmax[t,T ] e

(r− 1
2σ

2)(u−t)+σ(W (u)−W (t))≤b}

]
.

(vi) (Crucial point)

V (t) = 1Tb≥tv(t, S(t)) = v(t, S(t ∧ Tb)).

Indeed if Tb ≥ t then LHS = v(t, S(t)) and t ∧ Tb = t so the RHS = v(t, S(t)) and the
equality is true.

If Tb < t then LHS = 0. t ∧ Tb = Tb so that S(t ∧ Tb) = b. Moreover, with probability
1:

bmax
[t,T ]

er(u−t)+σ(W (u)−W (t)) > b

Indeed, if we denote X(u) := r(u − t) + σ(W (u) −W (t)), u ∈ [t, T ] then X(t) = 0
and by property of Brownian motion,

P (X(u) ≤ 0,∀u ∈ [t, T ]) = 0.
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So there must exist u ∈ (t, T ], X(u) > 0 and at that point u, beX(u) > b. Thus

v(t, S(t ∧ Tb)) = v(t, b) =
[
e−r(T−t)

(
be(r− 1

2
σ2)(T−t)+σ(W (T )−W (t)) −K

)+

1
{bmax[t,T ] e

(r− 1
2σ

2)(u−t)+σ(W (u)−W (t))≤b}

]
= 0,

and so the RHS = 0 as well.
(vii) From the above, we see that the function v(t, x) satisfies v(t, b) = 0 for all t.

Therefore, it follows that

v(τ, b) = 0,

for all stopping time τ taking values in [0, T ]. From which we derive that

v(t ∧ Tb, St∧Tb) = v(t, St∧Tb).

Indeed, for t < Tb the equalities are clear. For t > Tb, then v(Tb, STb) = v(Tb, b) = 0 =
v(t, b) so the equalities are also true in this case.

Therefore,

Vt = v(t, S(t ∧ Tb)) = v(t ∧ Tb, S(t ∧ Tb)).

4.3.3 Derivation of the PDE

Derivation

We have

S(t ∧ Tb) = S(0) +

∫ t∧Tb

0

rS(u)du+

∫ t∧Tb

0

σS(u)dW (u)

= S(0) +

∫ t

0

1[0,Tb)rS(u)du+

∫ t

0

1[0,Tb)σS(u)dW (u).

Apply Ito’s formula to e−rtv(t, St∧Tb) (where we look at v(t, St∧Tb) as a deterministic
function of t and the stopped process St∧Tb), we have

e−rtVt = e−rtv(t, St∧Tb) = v(0, S0) +

∫ t

0

e−ru
[
− rv + vt + 1[0,Tb)(u)rSuvx

+
1

2
1[0,Tb)(u)σ2S2

uvxx
]
du+

∫ t

0

1[0,Tb)(u)e−ruσS(u)vxdWu,

where for all functions v we understood as v(t, St), similarly for vt, vx, vxx.
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Note that this is where the importance of using Tb instead of τb is. The stochastic
integral ∫ t

0

e−ru1[0,Tb)σS(u)vxdWu =

∫ t∧Tb

0

e−ruσS(u)vxdWu

is a martingale since Tb is a stopping time. If we use τb here we cannot make the same
conclusion for τb is not a stopping time.

We do not want to set the dt term equal to 0 yet, because in the dt integral above, some
terms include 1[0,Tb) (from the stopped process St) and some don’t.

But this is easy to fix, since e−rtVt being a martingale implies e−r(t∧Tb)Vt∧Tb is also a
martingale. And it’s easily seen that

e−r(t∧Tb)Vt∧Tb = v(0, S0) +

∫ t

0

1[0,Tb)(u)e−ru
[
− rv + vt + rSuvx

+
1

2
σ2S2

uvxx
]
du+

∫ t

0

1[0,Tb)e
−ruσS(u)vxdWu,

Therefore we conclude

1[0,Tb)(u)
[
− rv(u, Su) + vt(u, Su) + rSuvx(u, Su) +

1

2
σ2S2

uvxx(u, Su)
]

= 0.

Domain of the PDE

The equality

1[0,Tb)(u)
[
− rv(u, Su) + vt(u, Su) + rSuvx(u, Su) +

1

2
σ2S2

uvxx(u, Su)
]

= 0

does NOT permit us to conclude

−rv(t, x) + vt(t, x) + rSuvx(t, x) +
1

2
σ2S2

uvxx(t, x)
]

= 0,

for all t, x.
The reason is we can only cancel out the term 1[0,Tb)(u) when it is NOT zero, which is

the same as when 0 < Su ≤ b.
Thus the domain for our PDE is [0, T ] × [0, b], which is different from the domain we

used to work on for European call option: [0, T ]× [0,∞). One of the effect is that we will
have boundary conditions for our PDE at x = 0 and x = b.

Moreover, note that v(t, 0) = 0 since if S(t) ever hits 0 it will stay there. v(t, B) = 0
was explaind in step (vi). These are the boundary conditions for v. We also have the
terminal condition v(T, x) = (x−K)+ as usual.
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Thus, the PDE that v must satisfy is:

vt − rv + rxvx +
1

2
x2σ2vxx = 0, 0 ≤ t < T, 0 < x < b

v(t, 0) = v(t, b) = 0

v(T, x) = (x−K)+.
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CHAPTER 5 Pricing the Knock out Barrier option and Look back option via Ex-
pectation

5.1 Overview

In this lecture, we’ll see how we can evaluate the expression

Vt = EQ(e−r(T−t)VT

∣∣∣Ft),
where

VT = (ST −K)+1{max[0,T ] St≤B}

for knock-out barrier option, or

VT = max
[0,T ]

St − ST ,

for look-back option.
It is clear that to compute Vt in these expressions, we need to know the distribution of

max[0,T ] St. But since

St = S0e
(r− 1

2
σ2)t+σWt ,

the distribution of max[0,T ] St is closely related to the distribution of Mt, the running max
of the Brownian motion:

Mt := max
u∈[0,t]

Wu.

Instead of computing the distribution of Mt by it self, we will see that it is easier to
compute the joint distribution of Mt,Wt. The key for us to derive this joint distribution
is via the reflection principle, which says a reflected Brownian motion is also a Brownian
motion. Using this principle and a probability identity, we will derive the joint distribution
of Mt,Wt. From that, we can derive the distribution of Mt as a marginal distribution.
Finally, we’ll see how we can apply this knowledge to evaluate Vt in the two expressions
above.
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5.2 The reflection principle

5.2.1 Definition

Let Wt be a Brownian motion w.r.t a filtration F(t) and τ a F(t) stopping time. We define

Bτ := Wt, t ≤ τ

:= W (τ)− [Wt −W (τ)], t > τ.

That is Bτ is the same as Wt up to the random time τ and after time τ is obtained by
reflecting Wt around the horizontal line y = W (τ). We say Bτ is a reflected Brownian
motion at τ .

5.2.2 The reflection principle

Theorem 5.2.1. The Bτ defined above is a F(t) Brownian motion.

In words, the reflection principel says a refleted Brownian motion is a Brownian motion.
The heuristics of why the Theorem is true is
(i) The strong Markov property: Wt−W (τ) is a Brownian motion independent ofF(τ)
and
(ii) The negative of a Brownian motion is also a Brownian motion. Thus before t, Bτ is

a Brownian motion, after τ it is also a Brownian motion (although starting at W (τ) instead
of at 0). The key is how to show when we go across τ the Brownian motion property is still
preserved and we achieve that by Levy’s characterization of Brownian motion.
Proof. Define

a(t) = 1, t ≤ τ

= −1, t > τ.

That is

a(t) = 1t≤τ − 1t>τ

= 1t≤τ − (1− 1t≤τ )

= 21t≤τ − 1.

It is easy then to see a(t) ∈ F(t),∀t since τ is a stopping time. It is also bounded,
hence is in L2. Thus we can consider

∫ t
0
a(s)dWs. We have∫ t

0

a(s)dWs =

∫ t

0

21s≤τdWs −Wt

=

∫ t

0

21[0,τ)(s)dWs −Wt

= 2W (t ∧ τ)−Wt = Bτ (t).
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(Just consider what happens when τ ≤ t and τ > t.)
Thus Bτ (t) is a martingale. Moreover, its quadratic variation is:

〈Bτ 〉t =

∫ t

0

α2(s)ds = t,

since α(s) is either 1 or -1. Thus by Levy’s characterization, Bτ is a Brownian motion.

5.2.3 An important identity

Let Wt be a Brownian motion and Mt := max[0,t] Ws its running maximum. The reflec-
tion principle helps us obtain the joint density between Wt and Mt through the following
important identity: for w ≤ m,m ≥ 0{

Mt > m,Wt < w
}

=
{
Bt > 2m− w

}
,

where Bt := Bτm(t) is the Brownian motion obtained by reflecting Wt at time τm, the first
hitting time of Wt to level m:

τm := inf{t ≥ 0 : Wt = m}.

Remark 5.2.2. Our goal with the identity is to use it to derive the joint density ft(m,w)
of Mt,Wt, therefore we are only interested in considering m ≥ w and m ≥ 0 because we
always have Mt ≥ Wt and Mt ≥ W (0) = 0.
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Proof. Proof of the identity
(i) Suppose Mt > m and Wt < w. Then Mt > m implies τm < t and hence

Bt = 2W (τm)−Wt

= 2m−Wt > 2m− w.

(ii) Suppose Bt > 2m − w. Then Bt > m because w ≤ m. So it cannot be the case
that Bt = Wt since that would imply Wt > m and thus τm < t, a contradiction to Bt = Wt

only when t < τm. Thus Bt = 2m−Wt and τm < t which implies Mt > m. Moreover,

Bt = 2m−Wt > 2m− w

implies Wt < w and we are done.

5.2.4 Joint distribution of Wt and Mt

From the identiy above and the reflection principle (which implies Bt is a Brownian mo-
tion) we have

P (Mt > m,Wt < w) = P (Bt > 2m− w) =

∫ ∞
2m−w

e
−x2
2t

√
2πt

dx.

If ft(m,w) is the joint density of (Mt,Wt) then

P (Mt > m,Wt < w) =

∫ w

−∞

∫ ∞
m

ft(z, x)dzdx =

∫ ∞
2m−w

e
−x2
2t

√
2πt

dx.

Thus by the Fundamental Theorem of Calculus, we get

ft(m,w) = − ∂2

∂m∂w
P (Mt > m,Wt < w)

=
2(2m− w)

t
√

2πt
e−

(2m−w)2

2t 1m≥0,w≤m.

This has the following useful consequence: let Zt = 2Mt −Wt. Then the joint density
of (Mt, Zt) is

gt(m, z) =
2z

t
√

2πt
e−z

2/2t1{m>0,z>m} = −2
d

dz

e−z
2/2t

√
2πt

1{m>0,z>m}. (5.1)

82



5.3 A useful function in evaluation of Barrier and Lookback options

5.3.1 Introduction

When computing the price of Knockout Barrier and Lookback Options, you’ll see that
because of the structure of the stock price, we’ll usually end up computing an expression
of the form

E
[
1{Ws≥k}1{Ms>b}e

αWs+βMs

]
,

where α, β, k, b are general parameters that we can plug in depending on the option we’re
dealing with. Since this expression appears often in this context, we’ll denote it byHs(α, β, k, b),
as a function of the unspecified parameters at a time s. That is

Hs(α, β, k, b) := E
[
1{Ws≥k}1{Ms>b}e

αWs+βMs

]
.

In the following sub-sections, we’ll see how we can compute explicitly Hs(α, β, k, b) in
some special case.

5.3.2 Hs(α, 0, k, b) when 0 ≤ b ≤ k

Since Ms ≥ Ws we have if Ws ≥ k then Ms ≥ Ws ≥ k ≥ b.
Thus {

Ws ≥ k
}
∩
{
Ms ≥ b

}
=
{
Ws ≥ k

}
.

In other words,

1{Ws≥k}1{Ms>b} = 1{Ws≥k}.

So

Hs(α, 0, k, b) = E
[
1{Ws≥k}e

αWs

]
= es

α2

2 N
(sα− k√

s

)
. (5.2)

5.3.3 Hs(α, 0, k, b) when k < b

Theorem 5.3.1. If k < b,

Hs(α, 0, k, b) = es
α2

2

{
N
(sα− b√

s

)
+ e2αb

[
N
(−sα− b√

s

)
−N

(−sα− 2b+ k√
s

)]}
.
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Proof. Since k < b,

E
[
1{Ws≥k}1{Ms>b}e

αWs

]
= E

[
1{Ws≥b}1{Ms>b}e

αWs

]
+E
[
1{k≤Ws<b}1{Ms>b}e

αWs

]
.

Now

E
[
1{Ws≥b}1{Ms>b}e

αWs

]
= Hs(α, 0, b, b),

and we have found the expression for Hs(α, 0, b, b) in Section 2.1. As for the 2nd term,
observe that{

k < Ws < b,Ms > b
}

=
{
Ws < b,Ms > b

}
∩
{
k < Ws,Ms > b

}
.

We have showed that{
Ws < b,Ms > b

}
=
{
Bτb(s) > b

}
,

where Bτb is again Wt reflected at τb, the first hitting time of Wt to level b.
We claim that{

k < Ws,Ms > b
}

=
{
Ms > b,Bτb(s) < 2b− k

}
.

(This is left as part of the homework).
Thus noting that Bτb(s) > b implies Ms > b we get{

k < Ws < b,Ms > b
}

=
{
Bτb(s) > b

}
∩
{
Ms > b,Bτb(s) < 2b− k

}
=

{
b < Bτb(s) < 2b− k

}
.

We leave it as the other part of the homework to use this and (5.2) to complete the proof.

5.3.4 Hs(α, β,−∞, b)

Theorem 5.3.2.

Hs(α, β,−∞, b) =
β + α

β + 2α
2e

(α+β)2

2
sN
((α + β)s− b√

s

)
+

2α

β + 2α
e
α2

2
seb(β+2α)N

(
− αs+ b√

s

)
.
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Proof.
Let Zs = 2Ms −Ws, so that Ws = 2Ms − Zs. We will rewrite the expectation in the

definition of Hs(α, β,−∞, b) in terms of Z(s) and Ms and use the joint density for these
two random variables, which we stated above in (5.1). Thus,

Hs(α, β,−∞, b) = E

[
1{Ms≥b}e

αW (s)+βMs

]
= E

[
1{Ms≥b}e

−αZ(s)+(β+2α)Ms

]

=

∫ ∞
b

e(β+2α)m

∫ ∞
m

e−αz
[
− 2

d

dz

e−z
2/2s

√
2πs

]
dz dm. (5.3)

By integration by parts, and then application of the formula

E
[
eaX1{X≥c}

]
=

∫ ∞
c

eaxe−x
2/(2s) dx√

2πs
= e(a2/2)sN

(
as− c√

s

)
, (5.4)

where X has Normal(0, s) distribution, the inner integral is

2e−αm
e−m

2/2s

√
2πs

− 2α

∫ ∞
m

e−αz
e−z

2/2s

√
2πs

dz = 2e−αm
e−m

2/2s

√
2πs

− 2αe
α2

2
sN

(
−αs−m√

s

)
Thus,

E

[
1{Ms≥b}e

αW (s)+βMs

]
= 2

∫ ∞
b

e(β+α)m e
−m2/2s

√
2πs

dm

−2αe
α2

2
s

∫ ∞
b

e(β+2α)mN

(
−αs−m√

s

)
dm (5.5)

By applying (5.4) again, the first term is 2e
(β+2α)2

2
sN
(

(β+2α)s−b√
s

)
. By integrating by parts

and applying (5.4) yet again, the second term is

2α

β + 2α

[
e((α+β)2/2)sN

(
(α + β)s− b√

s

)
− e(α2/2)seb(2α+β)N

(
−αs− b√

s

)]
By substituting these results in (5.5) one obtains the result.

5.4 Pricing Knock-out Barrier option via expectation

Let St satisfies

dSt = rStdt+ σStdWt.
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Consider the Knock-out Barrier option with barrier b and strike price K:

VT = (ST −K)+1{max[0,T ] St≤B}.

The risk-neutral price Vt can be expressed as

Vt = EQ
[
e−r(T−t)VT

∣∣∣F(t)
]

= 1{maxu∈[0,t] Su≤B}E
Q
[
e−r(T−t)(ST −K)+1{maxu∈[t,T ] Su≤B}

∣∣∣St].
To obtain an explicit formula for Vt, we need to evaluate

EQ
[
e−r(T−t)(ST −K)+1{maxu∈[t,T ] Su≤B}

∣∣∣St]
= EQ

[
e−r(T−t)(ST −K)+

∣∣∣St]− EQ
[
e−r(T−t)(ST −K)+1{maxu∈[t,T ] Su>B}

∣∣∣St].(5.6)

Since EQ
[
e−r(T−t)(ST −K)+

∣∣∣St] is already given by Black-Scholes formula, we only
need to evaluate

w(t, x) := EQ
[
e−r(T−t)(ST −K)+1{maxu∈[t,T ] Su>B}

∣∣∣St = x
]

:= EQ
[
e−r(T−t)(ST −K)1{ST≥K}1{maxu∈[t,T ] Su>B}

∣∣∣St = x
]

(5.7)

Remark 5.4.1. The split in Equation (5.6) is to allow us to write w(t, x) in the form of
Hs(α, β, k, b) as we will see later.

5.4.1 Step 1: A first rewrite of w(t, x)

Denote

α :=
r − 1

2
σ2

σ
.

Then for s ≥ t

S(s) = St exp
[
σ
{
Ws −Wt + α(s− t)

}]
.

The term inside the exponential (modulo the σ ) is just a Brownian motion with drift
starting at time t. So we denote it by a new name to reflect this fact:

Ŵ (u) := W (t+ u)−Wt + αu, u ≥ 0

M̂(u) := max
s∈[0,u]

Ŵs.
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Note that for s ≥ t

max
u∈[t,s]

Su = Ste
σM̂(s−t).

Then for s ≥ t we have

S(s) = Ste
σŴs−t

1S(s)≥K = 1
Ŵs−t≥ log(K/St)

σ

1maxu∈[t,s] Su>B = 1
M̂(s−t)> log(B/St)

σ

Then substituting this into Equation (5.7), replacing St = x gives

w(t, x) = e−r(T−t)EQ
[(
xeσŴT−t −K

)
1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}

]
= xe−r(T−t)EQ

[
eσŴT−t1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}

]
−Ke−r(T−t)EQ

[
1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}

]
. (5.8)

Remark 5.4.2. Note that the expression in (5.8) involves the distribution of a Brownian
motion with drift and its running maximum. Studying Brownian motion with drift is in-
convenient. But by applying a change of measure (via Girsanov’s theorem), we can find a
different measure such that under it, Ŵ is a Brownian motion. So that’s our next step.

5.4.2 Apply Girsanov’s Theorem to transform Ŵ into a Brownian motion

Observe that there exists a Brownian motion W̃ (u), 0 ≤ u ≤ T − t, namely W̃u = Wt+u−
Wt, such that

Ŵ (u) = W̃ (u) + αu, u ∈ [0, T − t].

Since Ŵ has drift term αt, our change of measure kernel is

ZT−t = exp[−αW̃ (T − t)− α2

2
(T − t)].

Denoting our original measure as Q and define

dP̂ := ZT−tdQ,

then note that

dQ = Z−1
T−tdP̂

= exp[αŴT−t −
α2

2
(T − t)],
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So that

w(t, x) = xe−r(T−t)Ê
[
eσŴT−t1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}e
αŴT−t−α

2

2
(T−t)

]
−Ke−r(T−t)Ê

[
1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}e
αŴT−t−α

2

2
(T−t)

]
= xe−(r+α2

2
)(T−t)Ê

[
e(α+σ)ŴT−t1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}

]
−Ke−(r+α2

2
)(T−t)Ê

[
eαŴT−t1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}

]
, (5.9)

where now what we have gained is Ŵ is a Brownian motion under P̂.

5.4.3 Writing w(t, x) in terms of Hs(α, β, k, b)

Let Wt be a Brownian motion and Mt := max[0,t] Ws its running maximum. Recall that we
defined

Hs(α, β, k, b) := E
[
1{Ws≥k}1{Ms>b}e

αWs+βMs

]
.

Then we have

w(t, x) = e−(r+α2

2
)(T−t)

[
xHT−t

(
α + σ, 0,

log(K/x)

σ
,
log(B/x)

σ

)
−KHT−t

(
α, 0,

log(K/x)

σ
,
log(B/x)

σ

)]
.

and the original Knockout Barrier option price is:

Vt = 1{max[0,t] St≤B}
[
c(t, St)− w(t, St)

]
,

where

c(t, x) = xN(d+(T − t, x))−Ke−r(T−t)N(d−(T − t, x))

is given by Black-Scholes formula.

5.5 Pricing Lookback Option via expectation

5.5.1 Preliminary discussion

Let St satisfies

dSt = rStdt+ σStdWt.
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Consider the Knock-out Barrier option with barrier b and strike price K:

VT = max
[0,T ]

St − ST .

The risk-neutral price Vt can be expressed as

Vt = EQ
[
e−r(T−t)VT

∣∣∣F(t)
]

= EQ
[
e−r(T−t) max

[0,T ]
{St} − ST

∣∣∣F(t)
]

= EQ
[
e−r(T−t) max

[0,T ]
{St}

∣∣∣F(t)
]
− St.

Now to do further analysis (to reduce Conditional Expectation to an Expectation via the
Independence Lemma) we may want to separate the term max[0,T ]{St} into some expres-
sion involving Su, u ∈ [0, t] and Su, u ∈ [t, T ]. One way to do this is

max
t∈[0,T ]

{St} = max
u∈[0,t]

{Su} ∨ max
u∈[t,T ]

{Su}.

So far so good, but we need to do more work here, since the operator ∨ does not
”factor out" of the conditional expectation (we cannot factor max[0,t]{St} out of E(.

∣∣∣F(t))

). Looking at this in another way, the running max of St:

Yt = max
u∈[0,t]

Su

is not a Markov process.
However, there is a usual approach in studying Markov process like this: If X(t) is not

a Markov process, by increasing the components of X(t), we may still yet obtain a Markov
process.

In this case, we consider the two-component process (St, Yt) instead of just Yt. Then
for s > t

Y (s) = max{Yt,max
[t,s]

Su} = max{Yt, SteσM̂(s−t)},

where recall that we defined in Section 1

α :=
r − 1

2
σ2

σ

Ŵ (u) := W (t+ u)−Wt + αu, u ≥ 0

M̂(u) := max
s∈[0,u]

Ŵs.

89



Then since M̂ and Ŵ are independent of F(t) under the risk neutral measure, we get
that (St, Yt) is a Markov process under this measure as well (how to reach this conclusion
is left as a homework exercise).

We then have

Vt = EQ
[
e−r(T−t)VT

∣∣∣F(t)
]

= EQ
[
e−r(T−t) max

[0,T ]
{St}

∣∣∣F(t)
]
− St

= EQ
[
e−r(T−t) max{Yt, SteσM̂T−t}

∣∣∣F(t)
]
− St

= v(t, St, Yt),

where

v(t, x, y) = e−r(T−t)EQ
[

max(y, xeσM̂T−t)
]
− x.

5.5.2 Apply Girsanov

Similar to the discussion in section 1, v(t, x, y) involves the distribution of the running max
of a Brownian motion with drift, so we want to apply Girsanov’s theorem to transform it to
a Brownian motion. The result is

v(t, x, y) = e−r(T−t)Ê
[
eαŴT−t−α

2

2
(T−t) max(y, xeσM̂T−t)

]
− x,

where Ŵ now is a Brownian motion under P̂.
Note that the expression inside expectation is not (yet) of the form provided by the

function Hs(α, β, k, b). Noting the fact that x > 0 since it is the stock price St, we have

max(y, xeσM̂T−t) = y if M̂T−t <
1

σ
log(y/x)

max(y, xeσM̂T−t) = xeσM̂T−t if M̂T−t ≥
1

σ
log(y/x).

Denoting

b :=
1

σ
log(y/x),

and note that the domain of interest for v(t, x, y) is y ≥ x > 0 thus b ≥ 0. Then

max(y, xeσM̂T−t) = y1M̂T−t<b
+ xeσM̂T−t1M̂T−t≥b

= y +
[
xeσM̂T−t − y

]
1M̂T−t≥b.
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Plug this back into the expectation, coupled with the fact that

Ê
[
yeαŴT−t−α

2

2
(T−t)

]
= y,

after simplification we have

v(t, x, y) = e−r(T−t)y − x+ xe−(r+α2

2
)(T−t)Ê

[
1{M̂T−t≥b}e

αŴT−t+σM̂T−t
]

−ye−(r+α2

2
)(T−t)Ê

[
1{M̂T−t≥b}e

αŴT−t
]

= e−r(T−t)y − x+ xe−(r+α2

2
)(T−t)HT−t

(
α, σ,−∞, b

)
−ye−(r+α2

2
)(T−t)HT−t

(
α, 0,−∞, b

)
. (5.10)

Remark 5.5.1. You may question why we go into such length to derive the closed form
expression for the value of the Barrier or Lookback Option via expectation. An alternative,
as you may have already known, is ti simulate the paths of St and take the average over the
simulated paths to obtain an approximation for the expectation. However, the work that we
have done, for example, in expressing v(t, x, y) in the form of (5.10) can be very helpful in
increasing the efficiency of the computation. We have “simplified" the computation (not in
the expression, of course, but in the actual computation time). The reason is the function
Hs(α, β, k, b) is found explicitly via the cumulative distribution of the standard normal,
which we have very efficient algorithms to compute. On the other hand, as you can already
imagine, the efficiency of simulating the paths of St, also taking into account its running
max or when it reaches the barrier and then take the average might not be as good as just
computing the probability of a Normal distribution.
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CHAPTER 6 PDE for Lookback Option

6.1 Preliminary discussion

Let St satisfies

dSt = rStdt+ σ(t, St)StdWt

S(0) = x > 0.

Note that σ is a function of t, St here, in stead of being a constant. We call this the local
volatility model and make the assumption that σ(t, x) > 0 for all t, x.

Consider the Lookback Option:

VT = max
[0,T ]

St − ST .

Then by risk neutral pricing

Vt = E
(
e−r(T−t) max

u∈[0,T ]
Su

∣∣∣F(t)
)
− St.

Similar to what we did in Lecture 5 notes, define

Yt = max
[0,t]

Su,

then for s > t

Y (s) = max{Yt, max
u∈[t,s]

Su}

In Homework 5, we have discussed that when σ is constant, then {Yt, St} is a Markov
process. The argument is by Independence Lemma. For the current local volatility model,
the Independence Lemma no longer applies, since we cannot conclude that

∫ T
t
σ(u, Su)dWu

is independent of F(t). However, it is still true that {Yt, St} is Markov. Indeed, we have
the following principle:

Principle: If St, t ≥ 0 is Markov with respect to F(t) and Yt = maxu∈[0,t] Su then
{Yt, St} is also Markov with respect to F(t).
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We call it a principle instead of a theorem because we will not give it a proof due to
technical details. Thus we also have

V (t) = E
[
e−r(T−t)VT

∣∣∣F(t)
]

= E
[
e−r(T−t) max

[0,T ]
{St}

∣∣∣F(t)
]
− St

= E
[
e−r(T−t) max{Yt, max

u∈[t,T ]
Su}
∣∣∣F(t)

]
− St

= v(t, St, Yt),

where

v(t, x, y) = E
[
e−r(T−t) max{Yt, max

u∈[t,T ]
Su}
∣∣∣St = x, Yt = y

]
− x.

Remark 6.1.1. Note that here VT = G(YT , ST ) where G(x, y) = y − x. For this case,
we call the option floating strike lookback option. Clearly one can consider other types
of function G as well. The only difference this would affect on the PDE is the boundary
conditions. See Section (6.6) for more details.

Now assuming that v is C1,2,2, that is once continuously differetiable in t and twice
continuously differentiable in x, y, we would like to derive a PDE that v satisfies.

But note the following difference in our current case: Yt is not a C1,2 function of St so
we cannot write down its dynamics using Ito’s formula. In other words, we do not know
what dYt is explicitly.

However, observe that for s < t

Y (s) = max
u∈[0,s]

Su ≤ max
u∈[0,t]

Su = Yt,

simply because the max over a bigger set is not smaller than the max over a (smaller) set
contained in it. Therefore Yt is an increasing (meaning it is non-decreasing) function.

From the discussion of the Lebesgue-Stieltjes integral of Chapter 11, we have learned
how to integrate with respect to functions of bounded variation. Recall that increasing func-
tion is of bounded variation. Therefore, it makes sense to talk about dYt (in the Lebesgue-
Stieltjes integral sense, that is).

However, we did not discuss the Ito’s formula for v(t, St, Yt) where St is an Ito process
and Yt is an increasing process. But suppose we just formally carry out the usual Ito’s rule
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to e−rtv(t, St, Yt) , what we should get is

de−rtv(t, St, Yt) = e−rt
{

[−rv(t, x, y) +
∂

∂t
v(t, x, y) +

∂

∂x
v(t, x, y)rx

+
1

2

∂2

∂x2
v(t, x, y)σ2(t, x)x2]

∣∣∣
(x,y)=(St,Yt)

}
dt

+e−rt
∂

∂x
v(t, St, Yt)σ(t, St)StdWt + e−rt

∂

∂y
v(t, St, Yt)dYt

+e−rt
∂2

∂xy
v(t, St, Yt)d〈S, Y 〉(t) + e−rt

∂2

∂y2
v(t, St, Yt)d〈Y 〉(t).

Remark 6.1.2. We will discuss what d〈S, Y 〉(t) and d〈Y 〉(t) means in the following sec-
tion. For now, you can formally replace d〈S, Y 〉(t) with dStdYt and d〈Y 〉(t) with [dYt]

2 to
get an intuition.

Since

e−rtVt = e−rtv(t, St, Yt),

e−rtv(t, St, Yt) is a martingale. On the RHS of the above equation, the only martingale
term we have is

∂

∂x
v(t, St)σ(t, St)StdWt.

The principle of deriving our PDE is that any other terms that do not contribute to the
martingale property of the RHS should be set to 0. But before we can do that, we need to
understand the following:

(i) Is the Ito’s rule that we just formally applied correct? (If it is not correct there is no
point in discussing the items below).

(ii) What are d〈S, Y 〉(t) and d〈Y 〉(t) ?
(iii) How to understand dYt?
We will address these questions in the folowing order (ii), (i) and (iii) and then derive

the PDE for v(t, x, y) after that.

6.2 A summary of the main results

In what follows, we will discuss many technical details about the behavior of Yt, the running
max of St, and the extension of Ito’s formula to functions depending on Yt. Thus, it is easy
to lose track of the main points of the discussion. To help the readers to follow, we list
these points here.

a. Yt is an increasing (non-decreasing) process in t.
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b. Yt has no dynamics. That is we cannot represent Yt in the form

Yt = Y0 +

∫ t

0

αsds+

∫ t

0

σsdWs.

c. 〈Y, S〉t = 〈Y 〉t = 0.
d. If f(y) is a differentiable function then

f(Yt)− f(Y0) =

∫ t

0

f ′(Ys)dYs.

e. Yt can only increase on the set {t : Yt = St}, which is closed and contains no
interval.

f. If the term σ(t) in the dynamics of St is positive for all t then∫ t

0

α(s)ds+

∫ t

0

g(s)dY (s) = 0, ∀t > 0

if and only if α(t) = 0 and g(t)1{Yt=St} = 0 for all t > 0.
(This allows us to set the terms other than the dWt term equal to 0 when we derive the

PDE).

6.3 The quadratic variation and covariation

Fix T > 0. Let X(t), Yt be functions defined on [0, T ]. Recall the following definitions:

Definition 6.3.1. The total variation of Y on [0, T ], denoted as TVY (T ) is defined as the
smallest (finite) number such that for all partitions 0 = t0 < t1 < t2 < ... < tn = T

n−1∑
i=0

|Y (ti+1)− Y (ti)| ≤ TVY (T ).

If there is no such number, we define TVY (T ) =∞.
We also say Y is a function of bounded variation (on [0, T ]) if TVY (T ) <∞.

Definition 6.3.2. The quadratic variation of Y on [0, t], if it exists is defined as

〈Y 〉(t) = lim
n→∞

n−1∑
i=0

|Y (tni+1)− Y (tni )|2,

where the limit is taken in probability, and for each fixed n, 0 = tn0 < tn1 < tn2 < ... < tnn =
t is a partition of [0, t] such that its mesh size: maxi |tni+1 − tni | goes to 0 as n→∞.
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Definition 6.3.3. The covariation between X and Y on [0, t], if it exists is defined as

〈X, Y 〉(t) = lim
n→∞

n−1∑
i=0

(
X(tni+1)−X(tni )

)(
Y (tni+1)− Y (tni )

)
,

where the limit is taken in probability, and for each fixed n, 0 = tn0 < tn1 < tn2 < ... < tnn =
t is a partition of [0, t] such that its mesh size: maxi |tni+1 − tni | goes to 0 as n→∞.

Note: Some authors (including Shreve in our textbook, see Exercise 7.4) called the
covariation the cross quadratic variation.

We will also state the following facts about quadratic variation and covariation. The
proof is more or less contained in the extra credit problem in Homework 1.

(i) If Y is increasing then Y is of bounded variation.

(ii) If Y is continuous and of bounded variation, then 〈Y 〉(t) = 0.

(iii) If Y is of bounded variation and X is continuous, then 〈X, Y 〉(t) = 0.

(iv) The quadratic variation 〈X〉(t) and covariation 〈X, Y 〉(t) of any two processes
X, Y , if exist, are of bounded variation on [0, T ]. Therefore, it makes sense to talk about
d〈X〉(t) and d〈X, Y 〉(t).

Applying these facts to our situation, we see that indeed

〈Y 〉(t) = 0

〈S, Y 〉(t) = 0

So question (ii) of Section 1 is answered.

6.4 An extension of Ito’s formula

We now give answer to question (i) of Section 1. LetW (t) be a Brownian Motion and F(t)
a filtration for W (t).

X i(t) = X i(0) +

∫ t

0

αi(s)ds+

∫ t

0

σi(s)dW (s) + Ai(t), i = 1, 2

where αi, σi, Ai are stochastic processes adapted to F(t), σi are chosen so that the stochas-
tic integral is well-defined, and Ai(t) are continuous functions of bounded variations. Let
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f(t, x1) be a C1,2 function. Then

df(t,X1(t)) =
[ ∂
∂t
f +

(
∂

∂x1

f

)
α1
t +

1

2

(
∂2

∂(x1)2
f

)
(σ1

t )
2
]
dt

+

(
∂

∂x1

f

)
σ1(t)dW (t) +

(
∂

∂x1

f

)
dA1(t).

Let f(t, x1, x2) be a C1,2,2 function. Then

df(t,X1(t), X2(t)) =
[ ∂
∂t
f +

2∑
i=1

{( ∂

∂xi
f

)
αit +

1

2

(
∂2

∂(xi)2
f

)
(σit)

2 +

(
∂2

∂x1x2

f

)
σ1
t σ

2
t

}]
dt

+
{ 2∑

i=1

(
∂

∂xi
f

)
σi(t)

}
dW (t) +

2∑
i=1

(
∂

∂xi
f

)
dAi(t).

where by f we understand as f(t,X1(t), X2(t)).

Remark 6.4.1. We do not give a proof of this extension. But you can see the formula is just
the application of Ito’s formula as we used to do, combined with the facts about quadratic
variation and covariation of bounded variation process that we discussed in Section 2.

Remark 6.4.2. It is true that
∫ t

0
αi(s)ds is also a continuous function of bounded variation.

So what is the difference between
∫ t

0
αi(s)ds and Ai(t)? Can we combine them into just

1 term? The answer is no, because these two terms have very different property. We say
the term

∫ t
0
αi(s)ds is absolutely continuous (with respect to the Lebesgue measure dt).

Basically this means it can be represented as an integral with respect to dt (which it is
already in that form). The term Ai(t) in this formula is meant to be singularly continuous
(with respect to the Lebesgue measure dt). For our purpose, what it means is that even
though Ai(t) is continuous we cannot represent Ai(t) as an integral with respect to dt.
Therefore, the two terms should be kept separate.

Remark 6.4.3. You should compare and contrast these Ito formulas with the ones we ob-
tained in Chapter 11. There, the Ai(t) are the pure jump processes. So while here we
have the term

(
∂
∂xi
f
)
dAi(t); in Chapter 11 the corresponding term is

∑
0<s≤t f(X i(s))−

f(X i(s−)). We mentioned that it’s not always possible to get the differential form in the
Ito’s formula in Chapter 11. Here note that it is always in differential form.

6.4.1 An intuition on the difference between the 2 Ito’s formulae

For simplicity, let’s just consider 2 cases:
(i) X1(t) = A(t)
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A is continuous and of bounded variation.
(ii) X2(t) = J(t),
J is pure jump.
Let f be C1 function. Then (from Ito’s formula) we have

f(X1
t ) = f(X1

s ) +

∫ t

s

f ′(X1
u)dX1(u);

f(X2
t ) = f(X2

s ) +
∑
s<u≤t

f(X2(u))− f(X2(u−)).

Note the derivative in the 1st case and the original function in the 2nd case. Why is
this? We always have the following identity (assuming X1

t −X1
s 6= 0)

f(X1
t )− f(X1

s ) =
f(X1

t )− f(X1
s )

X1
t −X1

s

(X1
t −X1

s ).

And so intuitively, we have for s very close to t,

f(X1
t )− f(X1

s ) ≈ f ′(X1(s))(X1
t −X1

s )

≈ f ′(X1(s))dX1(s).

This is correct, if X1
t → X1

s as t → s, which requires the continuity of X1(t) (so
that the difference quotient approximates the derivative of f ). But in the case of X2, if
X2 is not continuous at s (it has a jump at s), then we cannot say the difference quotient
approximates the derivative of f at X2(s) in any sense. Therefore, we cannot write it in the
differential form, and can only write it as the form we always used in Chapter 11.

6.5 The integral dYt

6.5.1 Some preliminary discussion

Recall that we define Yt := maxu∈[0,t] Su to be the running max of St. We have observed
that Yt is non-decreasing. But can we say more? For example, is there any interval where
Y is strictly increasing, not just non-decreasing? To anwer that, we make the following
observations (recall that by definition, St ≤ Yt):

(i) Suppose that St < Yt for some t then there must exist an interval [a, b] around t (that
is, t ∈ (a, b))so that Y is constant on [a, b].

Reason: Since St is continuous, if St < Yt there must exist an interval [a, b] around t
so that Su < Yt for all u ∈ [a, b]. Since Yt = Ya ∨ maxu∈[a,t] Su, it is clear that Ya = Yt.

98



Similar reasoning gives Yt = Yb. Because Y is increasing, it follows that Y is constant on
[a, b].

Remark: Observation (i) tells us that Y can only increase when Yt = St. The next
observation tells us how often this happens.

(ii) Suppose Yt is strictly increasing on [a, b] (that is for all u < v in [a, b], Y (u) <
Y (v)) then Yt = St for all t ∈ [a, b]. It also follows that St is also strictly increasing on
[a, b].

Reason: Suppose there is u in [a, b] such that Su < Y (u) then by oservation (i) we can
find an interval around u on which Y is constant, contradicting the assumption that Y is
strictly increasing. Thus St = Yt for all t in [a, b]. The second conclusion is obvious.

Remark: Observation (ii) tells us that on any interval where Yt is strictly increasing, St
also has to be strictly increasing. Intuitively you can see that this will not happen on any
interval [a, b] if the volatility term σt of St is positive. The reason is if St is increasing, then
its quadratic variation on [a, b] must be 0 as we mentioned before. On the other hand, this
should be

∫ b
a
σ2
t dt, which is a contradiction if σt > 0.

6.5.2 The set C := {t : Yt = St}

From the above discussion, we see that Yt can only increase on the set C := {t : Yt = St}.
We emphasize that C is a random set, that is we should write

C(ω) := {t : Yt(ω) = St(ω)}.

But our convention is that we just remember the fact that C is random and omit the writing
of ω.

We also observe that C is a closed set (in the sense that its complement is an open set)
from an elementary topological result that says the inverse image of a closed set is closed:

C = (Yt − St)−1({0}).

From observation (ii) in the above section, C does not contain any interval. In this
sense it is rather “small". Trivially then C cannot be the whole interval [0, T ]. Equivalently,
its nonempty complement Cc should be rather “large." But observe also that trivially, Cc

cannot be too large (that is equal to [0, T ]) because it would imply that

YT = Y0,

which would force St ≤ S0 on [0, T ] and that is impossible.
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Because Cc is open, for any point in Cc, we can find an open interval around it that is
also in Cc. In other words, for any t0 ∈ Cc, we can find ε > 0 so that∫ t0+ε

t0−ε
g(s)dY (s) = 0,

for any measurable function g. This is because Y is constant on the interval (t0− ε, t0 + ε)
by the fact that (t0 − ε, t0 + ε) ⊆ Cc.

From this observation, coupled with the fact that any open set in R can be written as a
countable union of open intervals, it follows that for any measurable function g∫ T

0

1Cc(s)gsdYs = 0.

And ∫ T

0

gsdYs =

∫ T

0

1C(s)gsdYs.

Finally, we discuss the fact that C is the set of increase of Yt in the following sense: for
any s < t, let E be the event that there is a point u ∈ (s, t) such that Su = Yu. Then

P (Ys < Yt|E) = 1.

Indeed, let τ := inf{u ≥ s : Su = Yu}. Then τ is a stopping time. Conditioned on E,
τ < t with probability 1. Then Su−Sτ , u ≥ τ is an Ito process starting at τ . By exactly the
same argument as we discussed in lecture 4, with probability 1, there are infinitely many
points un close to τ so that Sun > Sτ . That implies Yun > Yτ . Thus P (Yt > Ys|E) = 1.

Main result

Theorem 6.5.1. Let St satisfies

dSt = α(t)Stdt+ σ(t)StdWt

S(0) = x > 0,

where α, σ can be random processes with σ(t) > 0. Let β(s), g(s) be continuous process.
Then ∫ t

0

β(s)ds+

∫ t

0

g(s)dY (s) = 0, ∀t > 0

if and only if β(t) = 0 and g(t)1{Yt=St} = 0 for all t > 0.
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Proof. Suppose β(t) = 0 and g(t)1{Yt=St} = 0 . We have∫ t

0

β(s)ds+

∫ t

0

g(s)dY (s) =

∫ t

0

g(s)1CdY (s) +

∫ t

0

g(s)1CcdY (s) = 0.

We now show the other direction. Let t0 ∈ Cc. SinceCc is open, we can find an interval
(a, b) around t0 so that (a, b) ⊆ Cc. Thus∫ t

a

g(s)dYs = 0, a ≤ t ≤ b.

It follows that
∫ t

0
g(s)dY (s) is a constant on (a, b) and hence differentiable at t0 with deriva-

tive being 0.
On the other hand ∂

∂t

∫ t
0
β(s)ds = β(t) for all t. Thus by taking derivative of both sides

of the equation ∫ t

0

β(s)ds+

∫ t

0

g(s)dY (s) = 0

at t0, we conclude that β(t0) = 0 for all t0 ∈ Cc.
Now let t0 ∈ C. Since σt > 0, C contains no interval from our above discussion. Thus

for any n, the interval [t0 − 1/n, t0 + 1/n] has non empty intersection with Cc. That is we
can find tn ∈ Cc in any interval [t0 − 1/n, t0 + 1/n], tn 6= t0.

Since tn ∈ Cc, β(tn) = 0 from the previous paragraph. Obseve also that tn → t0 and
hence β(t0) = 0 by continuity of β. Thus β(t) = 0 for all t.

We then have ∫ t

0

g(u)dY (u) = 0,∀t,

which implies ∫ t

s

1C(u)g(u)dY (u) = 0,∀s ≤ t.

Note that since
∫ t

0
1Cc(s)g(s)dYs = 0, we cannot conclude anything about the values

of g on Cc.
Now since C is the set of increase of Yt as discussed above, it follows that g(s)1C(s) =

0. Otherwise, suppose that there is a point t0 ∈ C so that g(t0) > 0. Since g is continuous,
we can find ε and an interval (a, b) around t0 so that g ≥ ε on (a, b). But then∫ b

a

g(s)1C(s)dY s ≥
∫ b

a

ε1C(s)dY s ≥ ε(Yb − Ya) > 0,

which is a contradiction.
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6.6 Derivation of the PDE

Putting all the above information together, we have

e−rtv(t, St, Yt) = v(0, S(0), Y (0)) +

∫ t

0

e−ru[Lv(u, Su, Yu)− rv(u, Su, Yu)]du

+

∫ t

0

e−ru
∂

∂y
v(u, Su, Yu)dYu +

∫ t

0

e−ru
∂

∂x
v(u, Su, Yu)σ(u, Su)SudWu.

where

Lv(t, x, y) =
∂

∂t
v(t, x, y) +

∂

∂x
v(t, x, y)rx+

1

2

∂2

∂x2
v(t, x, y)σ2(t, x)x2.

Since the LHS is a martingale, we set∫ t

0

e−ru[Lv(u, Su, Yu)− rv(u, Su, Yu)]du+

∫ t

0

e−ru
∂

∂y
v(u, Su, Yu)dYu = 0,∀t.

Apply Corollary (6.5.1) we conclude that

−rv(t, x, y) +
∂

∂t
v(t, x, y) +

∂

∂x
v(t, x, y)rx+

1

2

∂2

∂x2
v(t, x, y)σ2(t, x)x2 = 0; t < T, 0 < x ≤ y <∞

∂

∂y
v(t, y, y) = 0; t ≤ T, y > 0 (6.1)

v(T, x, y) = y − x; (6.2)
v(t, 0, y) = e−r(T−t)y. (6.3)

Condition (2),(3),(4) are boundary conditions. Condition (2) is called a Neumann con-
dition, since it imposes the value of a derivative of v on the boundary . Condition (4) comes
from the fact that once St hits 0 at time t it stays there so the running max is a constant on
[t, T ]: Y (u) = Yt, u ≥ t. Thus we get

v(t, 0, Yt) = E(e−r(T−t)Y (T )|F(t))

= E(e−r(T−t)Yt|F(t)) = e−r(T−t)Yt.

More generally, suppose we consider the generalized lookback option:

V (T ) = G(S(T ), Y (T )),

then the same argument shows that V (t) = v(t, St, Yt) where v(t, x, y) satisfies the PDE

−rv(t, x, y) +
∂

∂t
v(t, x, y) +

∂

∂x
v(t, x, y)rx+

1

2

∂2

∂x2
v(t, x, y)σ2(t, x)x2 = 0; t < T, 0 < x ≤ y <∞

∂

∂y
v(t, y, y) = 0; t ≤ T, y > 0 (6.4)

v(T, x, y) = G(x, y); 0 ≤ x ≤ y (6.5)
v(t, 0, y) = e−r(T−t)G(0, y). (6.6)
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6.7 Appendix: The dynamics of Y

The results in this section is not used in deriving the PDE for the Lookback Option. How-
ever, it is interesting in shedding some more light into the behavior of Yt. In particular, we
show here that Y is a singularly continuous process. That is it cannot be represented as a
Ito process.

The question we’ll address is: does there exist α(t), β(t) such that

dYt = αtdt+ βtdW (t)? (6.7)

This indeed cannot happen, as the following Lemma shows

Lemma 6.7.1. Let Yt be the running maximum of St where the volatility σt of St is positive.
Then Yt cannot be represented in the form of equation (6.7). In other words, Yt is a
singularly continuous process.

Proof.
Suppose there exist α(t), β(t) such that

dYt = αtdt+ βtdW (t).

Then since Yt is increasing, 〈Y 〉t =
∫ t

0
β2
sds = 0. But this means βs = 0,∀s. Then

Yt = Y0 +
∫ t

0
αsds. But that means Y is differentiable and Y ′(t) = αt for all t. From the

above discussion, we learned that Y ′(t) = 0 on the set {St < Yt}. But that means αt = 0
on {St < Yt}. Since the set {St = Yt} has Lebesgue measure 0 (see the following Lemma),
it follows that

Yt = Y0 +

∫ t

0

αsds = Y0,

with probability 1. We have observed that this forces Su ≤ S0 on [0, t] with probability 1
and this is not possible.

The above proof relies on the following lemma that tells us precisely how small the set
{Yt = St} is:

Lemma 6.7.2. Let St satisfies

dSt = α(t)Stdt+ σ(t)StdWt

S(0) = x > 0,

where α, σ can be random processes with σ(t) > 0. Define the set C := {t : Yt = St}.
Then with probability 1, ∫ T

0

1C(ω)(s)ds = 0.
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In other words, the Lebesgue measure of the set C(ω), or the total length of C(ω), is 0
with probability 1.
Proof. By Fubini’s theorem:

E

(∫ T

0

1St=Ytdt

)
=

∫ T

0

E(1St=Yt)dt.

Since σt > 0, (St, Yt) has a joint p.d.f. that can be explicitly computed. ThusE(1St=Yt) =
0 for all t. It follows that

E

(∫ T

0

1St=Ytdt

)
= 0.

Since the term inside the expectation is non-negative, it must be 0 with probability 1.
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CHAPTER 7 Asian option

7.1 Preliminary discussion

Let St satisfies

dSt = rStdt+ σ(t, St)StdWt

S(0) = x > 0.

Denote for t ∈ [0, T ]

Yt =

∫ t

0

S(u)du;

Save(t) =
Yt
t
.

Consider the Generalized Asian Option:

VT = G
(
S(T ), Save(T )

)
.

Depends on the specific form G takes, we have the following types of Asian options:

(i) Average price call: G(x, y) = (y −K)+;

(ii) Average price put: G(x, y) = (K − y)+;

(iii) Average strike call: G(x, y) = (x− y)+;

(iv) Average strike put: G(x, y) = (y − x)+.

By risk neutral pricing

Vt = E
{
e−r(T−t)G

(
ST , Save(T )

)∣∣∣F(t)
}

= E
{
e−r(T−t)G

(
ST ,

YT
T

)∣∣∣F(t)
}
.
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In the Lookback Option, we have discussed that the process (St, Yt) (where Yt :=
max[0,t] Su) has Markov property. The same principle applies here

Principle: If St, t ≥ 0 is Markov with respect toF(t) and Yt =
∫ t

0
S(u)du then {Yt, St}

is also Markov with respect to F(t).

The intuitve reason why this principle is true is because we can write

Y (T ) = Yt +

∫ T

t

S(u)du.

Therefore, intuitively, to compute the conditional expectation of Y (T ) onF(t), we only
need the value of Yt plus the conditional expectation of S(u) given F(t), which also only
depends on St by the assumption on Markov property of S. In other words, the conditional
expectation of Y (T ) on F(t) only depends on St, Yt, thus the process St, Yt is Markov.

Note here however that Yt by itself is generally NOT a Markov process (same as the
conclusion we draw for the running max of St in the Lookback option).

Thus there exists v(t, x, y) such that

V (t) = v(t, St, Yt)

where

v(t, x, y) = E
{
e−r(T−t)G

(
ST ,

YT
T

)∣∣∣St = x, Yt = y
}

= E
{
e−r(T−t)G

(
ST ,

y +
∫ T
t
Sudu

T

)∣∣∣St = x
}

To be able to proceed, one would need the knowledge of the joint distribution between∫ T
t
σ(u, Su)dWu and

∫ T
t
Sudu. So without further assumption on S, this is the ultimate

simplification that can be achieved to represent the option price as conditional expectation.

Remark 7.1.1. IfG is a linear function in x, y, however, then we can write down an explicit
formula for v(t, x, y). Do you see why? (Say for example, G(x, y) = y − x).

7.2 PDE for Asian options

An explicit formula for the price in terms of expectation for an option of Asian type is not
known, even if S follows the standard Black-Scholes (that is σ is a constant) model. To get
an idea, observe that one will need to figure out the joint distribution of (

∫ t
0
eWudu, eWt) to

start investigating how to express v(t, x, y) above as an integral.
Therefore, it is important do drive a PDE with boundary conditions for v(t, x, y) defined

above.
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Note that here, unlike the case of Lookback option, the process Yt is an absolutely
continuous process. Indeed, its dynamics is

dYt = Stdt

Y (0) = 0.

Therefore, applying Ito’s formula and setting the “dt" term to 0 is no problem:

de−rtv(t, St, Yt) = e−rtLv(t, St, Yt)dt+ e−rtvx(t, St, Yt)Stσ(t, St)dWt,

where

Lv(t, x, y) := −rv(t, x, y) + vt(t, x, y) + vx(t, x, y)rx+ vy(t, x, y)x+
1

2
vxx(t, x, y)σ2(t, x)x2.

Recall that from the discussion on the quadratic variation and covariation in Lecture 6a,
since Yt is a function of bounded variation, 〈Y 〉t = 0 and 〈S, Y 〉t = 0.

Thus since e−rtv(t, St, Yt) is a martingale, we set the dt term to 0 and get

−rv(t, x, y) + vt(t, x, y) + vx(t, x, y)rx+ vy(t, x, y)x+
1

2
vxx(t, x, y)σ2(t, x)x2 = 0,

0 < x, y <∞, 0 ≤ t < T.

But we also need to impose boundary conditions.

(i) At t = T this is clear:

v(T, x, y) = G(x,
y

T
). (7.1)

(ii) At x = 0: when the stock price hits 0, it stays there: S(u) = 0, u ≥ t , so Y (u)
remains a constant on [t, T ] as well. Thus

v(t, 0, Yt) = E(e−r(T−t)G(S(T ),
YT
T

)|F(t))

= E(e−r(T−t)G(0,
Yt
T

)|F(t)) = e−r(T−t)G(0,
Yt
T

).

This implies that

v(t, 0, y) = e−r(T−t)G(0,
y

T
). (7.2)

(iii) It’s now natural to finish with the boundary condition at y = 0. However, note that

v(t, x, 0) = E(e−r(T−t)G(S(T ),

∫ T
t
Sudu

T
)|St = x),
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but in general we don’t know what this is.

(iv) We instead then tries to seek the “boundary condition" for y at∞. Suppose that

lim
y→∞

G(x, y) = 0.

Note that the average price put: G(x, y) = (K − y)+ and the average strike call:
G(x, y) = (x− y)+ satisfy this condition. Then we have

lim
y→∞

v(t, x, y) = E(e−r(T−t) lim
y→∞

G(S(T ),
y +

∫ T
t
Sudu

T
)|St = x) = 0.

Thus we can set the condition

lim
y→∞

v(t, x, y) = 0. (7.3)

Then we have the following PDE for the Asian option, assuming the condition limy→∞G(x, y) =
0

−rv(t, x, y) + vt(t, x, y) + vx(t, x, y)rx+ vy(t, x, y)x+
1

2
vxx(t, x, y)σ2(t, x)x2 = 0,

0 < x, y <∞, 0 ≤ t < T ;

v(T, x, y) = G(x,
y

T
);

v(t, 0, y) = e−r(T−t)G(0,
y

T
);

lim
y→∞

v(t, x, y) = 0.

But then what about the average price call: G(x, y) = (y −K)+ and the average strike
put: G(x, y) = (y − x)+? Intuitively we want to take limy→−∞G(x, y) = 0. However,
with our current definition of Yt, this does not make sense, since Yt ≥ 0. So we need to
extend our model by defining:

Yt = Y (0) +

∫ t

0

S(u)du,

where Y (0) is a valued specified by the option contract, which can be negative or positive
or zero.

The payoff function G becomes

G(S(T ), Save(T )) = G(S(T ),
1

T
[Y (0) +

∫ T

0

Sudu]).
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and the option value at time t is

v(t, x, y) = E
{
e−r(T−t)G(S(T ), Y (T ))|St = x, Yt = y

}
,

as before. Adding a constant Y (0) at time t = 0 clearly does not change the Markov
property of Vt. Note that since Y (0) can take any value (positive, negative, zero), y here
also can take any value (positive, negative, zero).

In words, what we did here is just allow flexibility for dicussing our function v(t, x, y)
as y → −∞. But then arguing exactly as before, under the assumption that limy→−∞G(x, y) =
0 we have

lim
y→−∞

v(t, x, y) = E
{
e−r(T−t) lim

−y→∞
G(S(T ),

y +
∫ T
t
Sudu

T
)|St = x

}
= 0.

Then we have the following PDE for the Asian option, assuming the condition limy→−∞G(x, y) =
0

−rv(t, x, y) + vt(t, x, y) + vx(t, x, y)rx+ vy(t, x, y)x+
1

2
vxx(t, x, y)σ2(t, x)x2 = 0,

0 < x <∞,−∞ < y <∞, 0 ≤ t < T ;

v(T, x, y) = G(x,
y

T
);

v(t, 0, y) = e−r(T−t)G(0,
y

T
);

lim
y→∞

v(t, x, y) = 0.

Note the change of domain for y on the first equation. Now y is defined on (−∞,∞),
not just [0,∞).
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CHAPTER 8 American Option

8.1 Introduction

Let St have the Black-Scholes dynamics under a risk neutral measure

dSt = rStdt+ σStdWt

S0 = x.

An American option purchased at time t = 0 with pay off function g(x) and expiry T on
an underlying stock St is a contract that gives the buyer the right, but not the obligation,
to exercise the option at any time t ∈ [0, T ] and receive the pay off g(St). If the option
holder does not exercise at or before the expiry T then the option becomes worthless. We
call g(St) the intrinsic value of the option.

Example:
(i) American call option: g(x) := (x−K)+;
(ii) American put option: g(x) := (K − x)+;
(iii) Perpetual American put option: g(x) := (K − x)+ and T =∞.

Remark 8.1.1. It is clear that if g(St) < 0 then the American option holder will not
exercise the option at time t. Thus we can assume that g(x) ≥ 0 for all x. Then g(ST ) ≥ 0
and thus we can assume that the option is always exercised at or before time T .

Remark 8.1.2. We have the following simple, but important observation: Let V A
t be the

(no arbitrage) price of an American option and V C
t the (no arbitrage) price of the corre-

sponding European option purchased at time t = 0 with pay off function g(x) and expiry
T . That is V C

T = g(ST ) and the European option holder cannot exercise the option earlier
than T . Then V A

t ≥ V C
t . That is the price of an American option is always at least as

expensive as its European counterpart. Note that this conclusion is model independent: we
do not make any assumption on St.

Reason: Suppose V C
t > V A

t . Then we take a long position (that is we buy 1 share)
on the American option and a short position on the European option. Then we receive a
positive amount equals V C

t − V A
t . At time T , we exercise the American option to close out

our short position on the European option. This is an arbitrage opportunity. Therefore we
must have V C

t ≤ V A
t .
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Remark 8.1.3. Another important observation is that when g(x) = (x − k)+, then V A
t =

V C
t for all t and thus the optimal exercise time for the American option is at the expiry T

if the asset St does not pay dividend. This obseration is also model-independent. You are
asked to explore this in the extra-credit problem in homework 8. This conclusion does not
extend to the case when St pays dividend.

We now need a mathematical definition of the American option price.

8.2 Preliminary investigation

8.2.1 Exercise times

Exercise times on the time interval [0, T ]

The first step in modeling American option is to formulate the notion of exercise time
mathematically. Here we suppose that our current time is 0 and we are considering all the
future possible exercise times for the option holder.

As usual, we assume the information available to investors as time progresses is en-
coded in a given filtration {F(t); t ≥ 0}. In general, the owner of an American option will
decide when to exercise based on the current level of the price, its past history, and possibly
other information is available about the economy and its past history (this depends on the
construction of the filtration Ft). It is assumed that investors cannot look into the future. So
at the moment an investor decides to exercise, he or she can use only the information in the
filtration up to that moment. Mathematically, this translates into the following assumption:

all exercise times are {F(t); t ≥ 0}-stopping times. (8.1)

Most of the analysis of American options that is presented in this course will be made
under the following additional assumptions:

the price process S is a Markov process; (8.2)
{F(t); t ≥ 0} is the filtration generated by S (8.3)

Assumption (8.3) says that our analysis of the American option in this lecture note will
only deal with the case when the American option owner decides to exercise based on
the current level of the price of the stock and its past history, but not on other additional
information. The analysis we will do shows that, assuming (8.2) and (8.3), the best decision
about whether to exercise or not at time t will use only the current value St of the price of
the underlying. This is ultimately a consequence of the Markov property of S.
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Exercise time on the time interval [t, T ]

Consider now t < T . Here we want to look at all the possible exercise time beyond t for
the option holder, assuming the option has not been exercised before time t. This is the
same as entering into an American option type of contract at time t with payoff function g
and expiry T .

Since S is Markov, the value of St contains all the information from the past relevant to
the future when computing conditional expectations. Define

F (t)(u) be the σ-algebra generated by S(v) for times t ≤ v ≤ u.

This is the filtration of information generated by S for times after t. We will assume for
any exercise time τ taking place at time t or later that

t ≤ τ ≤ T ; and, (8.4)
τ is an {F (t)(u); u ≥ t}-stopping time. (8.5)

The meaning of condition (8.5) is that for every u ≥ t, the event {t ≤ τ ≤ u} must belong
to F (t)(u).

8.2.2 The mathematical definition of the value of an American option

Let {(Ω,F , P ), {St; t ≥ 0} be a risk-neutral price model. Let {F(t); t ≥ 0} be the filtra-
tion generated by S and assume the risk free interest rate is the constant r.

Consider an American option that pays g(St) if exercised at t and let T be its expiration
date.

The following observations are important for us:

(i) Vt ≥ g(St).

Reason: If Vt < g(St), one could buy the option and immediately exercise to realize a
riskless positive profit g(St)− Vt.

(ii)Let τ be a given stopping time satisfying P (τ ≤ T ) = 1. For example,

τ = inf{t ≥ 0 : St = L} ∧ T,

where L is a positive constant. Consider a financial product that pays g(Sτ ) at time τ
(Note that this is not an American option - the payoff time (albeit being random) is specified
in advance at time 0). According to risk-neutral pricing, the price V τ

0 of this product is

V τ
0 = E

[
e−rτg(Sτ )

]
.
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Now consider an American option with payoff function g(x) and expiry T . Let Vt
denote the value of the option at time t. Then V0 ≥ V τ

0 .

Reason: If V0 < V τ
0 , we can buy 1 share the American option and short 1 share of

V τ . We then receive a positive amount equals V τ
0 − V0 at time 0. At time τ , we simply

excercise the American option to cover the payoff g(Sτ ) from the financial product. This
is an arbitrage opportunity.

(iii) It follows that V0, the price of the American option, satisfies

V0 ≥ sup

{
E
[
e−rτg(Sτ )

]
; τ ≤ T, τ is a stopping time

}
.

(iv) On the other hand, if the option holder plans to maximize her gain on the option,
the only “strategy" available to her is to choose judiciously an optimal stopping time (since
she cannot look into the future) to exercise the option. (For example, exercise the option
when St has reached a low enough level L < K, if the option is American put). Therefore,
one would not be willing to pay V0 for the American option if she could not find an exercise
time τ ∗ so that V0 = V τ∗

0 . That is

V0 = E
[
e−rτ

∗
g(S(τ ∗))

]
.

(v) It follows that

V0 = max

{
E
[
e−rτg(Sτ )

]
; τ ≤ T, τ is a stopping time

}
. (8.6)

We shall take this formula as the definition of the value of the American option.

(vi) Actually, we have assumed in our argument of part (v) and (vi) that the maximum
and the optimal exercise time τ ∗ exist. If they do not, we must use the supremum, and so
the proper definition is

V (0) = sup

{
E
[
e−rτg(Sτ )

]
; τ ≤ T, τ is a stopping time

}
. (8.7)

(vii) The definition for the option value at time t is similar.

Vt = sup

{
E
[
e−r(τ−t)g(Sτ )

∣∣∣Ft]; τ satisfies (8.4) and (8.5).
}
. (8.8)
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(viii) Note that at a theoretical level, definition (8.8) tells us how to price and also when
to exercise the American option. We say this is theoretical since at this point we do not
know what Vt is. But assuming that we know Vt then the following principles apply.

At each time t, if Vt > g(St) then continue to hold the option (since this implies there is
a future exercise time τ > t that will give one a higher expected pay off than the immediate
realization of g(St)).

If Vt = g(St) then exercise the option since this is the best possible value one can
realize at time t (among all other possible strategies that make one wait until a future time
τ > t to exercise).

(ix) Define

v(t, x) = sup

{
E

[
e−r(τ−t)g(Sτ )

∣∣∣ St = x

]
; τ satisfies (8.4) and (8.5)

}
(8.9)

From the perspective of time t this is the best, discounted, expected payoff the option can
yield. Then by the Markov property of St:

Vt = v(t, St) (8.10)

The function v(t, x) is called the the value function of the option pricing problem. A
stopping time τ ∗ for which

v(t, x) = E

[
e−r(τ

∗−t)g(S(τ ∗))
∣∣∣ St = x

]
is called an optimal exercise, or optimal stopping time, for valuing the option starting at t.

8.2.3 Our goal

Item (ix) above characterizes the value of the American option (v(t, St)) and when to ex-
ercise (τ ∗). Our goal for this note is to find an equation (a PDE) that v(t, x) sastisfies and
characterize τ ∗ (give a rule for τ ∗ ). This will be accomplised in the sections on the perpet-
ual put and American option with finite time of observation. Before that, we still need to
discuss more about some properties of Vt.

8.3 The super-martingale property of Vt

8.3.1 Introduction

Definition 8.3.1. Let Xt be a stochastic process and F(t) a filtration for X . We say that
Xt is a super-martingale with respect to F(t) if for s ≤ t

E(Xt|Fs) ≤ Xs.
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We say that Xt is a sub-martingale with respect to F(t) if for s ≤ t

E(Xt|Fs) ≥ Xs.

Example: Let Wt be a Brownian motion and let

X1
t = t+Wt;

X2
t = −t+Wt.

Then X1
t is a sub-martingale and X2

t is a super-martingale w.r.t. FWt .

Remark 8.3.2. Note that the definition of super and sub martingale allows for equality.
Thus Xt is a martingale if and only if it is both a super-martingale and a sub-martingale.

Remark 8.3.3. Note that a probability measure is also implicitly involved in the definition
of super-martingale and sub-martingale. In this note, we will always consider the context
under the risk neutral measure (so that e−rtSt is a martingale under our default measure).
However, observe from the above example, that a super-martingale may no longer remain
a super martingale under a change of measure (say we change the drift of the Brownian
motion to 2t, for example, then X2 will be come a sub-martingale under the new measure).

8.3.2 Main results

We need to introduce some new notation. For a fixed t ∈ [0, T ], let T[t,T ] be the set of
stopping times that satisfy (8.4) and (8.5). That is, T[t,T ] is a set of stopping times taking
values in [t, T ] and adapted to the filtration generated by Su for time t ≤ u ≤ T . Then
observe that for s ≤ t

T[t,T ] ⊆ T[s,T ].

As time goes on (when t increases), the set of strategies available for the option holder (the
stopping times) decreases. This intuitively suggests that on average (that is when taking
conditional expectation), Vt should be decreasing (because if A ⊆ B then supA ≤ supB).
That is Vt is a super-martingale.

The rigorous proof for this result is not easy. However, if we accept the fact that for any
time t, there will exists τ ∗ ∈ T[t,T ] such that

Vt = E
[
e−r(τ

∗−t)g(S(τ ∗))
∣∣∣Ft],

then we can show that Vt is a super-martingale. (Later on we will show by an independent
result that such a τ ∗ always exists. This discussion is a motivation for the rigorous results
that will follow).
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Theorem 8.3.4. Assuming the optimal stopping time exists for each Vt, then the discounted
American option value e−rtVt is a super-martingale w.r.t Ft.

Proof. Let s ≤ t. Let τ ∗ ∈ T[t,T ] such that

Vt = E
[
e−r(τ

∗−t)g(S(τ ∗))
∣∣∣Ft],

Then

E(e−rtVt|Fs) = E
{
E(e−rτ

∗
g(Sτ∗)|Ft)

∣∣∣Fs}
≤ sup

τ∈T[s,T ]

E
{
E(e−rτg(Sτ )|Ft)

∣∣∣Fs}
= sup

τ∈T[s,T ]

E(e−rτg(Sτ )
∣∣∣Fs)

= e−rsVs,

where the inequality follows from the fact that if τ ∗ ∈ T[t,T ] then τ ∗ ∈ T[s,T ].
Since Vt ≥ g(St), we say e−rtVt is a super-martingale dominating e−rtg(St). The cru-

cial fact about e−rtVt is that it is also the smallest super-martingale dominating e−rtg(St)
in the following sense:

Theorem 8.3.5. Let Xt be a Ft super-martingale dominating e−rtg(St), that is Xt ∈ Ft a
super-martingale and Xt ≥ e−rtg(St) for all t. Then for all t, with probability 1:

Xt ≥ e−rtVt.

Proof. Let Xt be a Ft super-martingale dominating e−rtg(St). Then it also follows that
Xτ ≥ e−rτg(Sτ ) for all stopping time τ . We have,

e−rtVt = sup
τ∈T[t,T ]

E(e−rτg(Sτ )
∣∣∣Ft)

≤ sup
τ∈T[t,T ]

E(Xτ

∣∣∣Ft)
≤ sup

τ∈T[t,T ]

Xt.

= Xt

We have used the optional sampling theorem in the inequality

E(Xτ

∣∣∣Ft) ≤ Xt,

which basically says the super-martingale property of Xt also applies when we use a
bounded stopping time τ ≥ t .
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8.3.3 Implication

The result that e−rtVt is the smallest super-martingale dominating e−rtg(St) is the key
observation to solve the optimal stopping problem. To illustrate the use of the idea, we’ll
consider the simple senario where everything is deterministic. Then Vt being a super-
martingale is just being a decreasing (i.e. non-increasing) function in t.

Example 1: Let T = 1 and g(t) = t on [0, 1]. What is the smallest decreasing function
dominating g(t) on [0, 1]? You’ll see quickly that it’s the constant function Vt = 1 on [0, 1].

Example 2: Let T = 2 and g(t) = t on [0, 1] and 2 − t on [1, 2]. What is the smallest
decreasing function dominating g(t) on [0, 1]? You’ll see quickly that it’s the function
Vt = 1 on [0, 1] and Vt = 2− t on [1, 2].

So what’s the observation here? In both cases, Vt is always a constant up to the first
time it hits g(t). Moreover, we can find out the value of V0 from the value of V (t∗), where
t∗ is the point that Vt meets g(t).

Going back our stochastic setting. Then it is not hard to guess that being a constant in
the deterministic setting “corresponds" to being a martingale in the stochastic setting. That
is Vt should be a martingale up to the first time it hits g(St). Moreover, the value of V0 can
be deduced by taking expectation of E(Vτ∗), where τ ∗ is the first time Vt hits g(St). All
of this argument is intuitive of course, but it serves to illustrate the idea and will be made
rigorous in the next section.

Example 3: A martingale intuition on why American call option price equals to Euro-
pean call option price:

The pay-off function in American call option is g(St) = (St−K)+. We argue that it is
“increasing" in the sense of taking the discounted price under the conditional risk neutral
measure. In other words, e−rt(St −K)+ is a sub-martingale. That is for all s < t

E(e−rt(St −K)+|Fs) ≥ e−rs(Ss −K)+.

This is equivalent to showing

E(e−r(t−s)(St −K)+|Fs) ≥ (Ss −K)+.

But we have, by Jensen’s inequality

E(e−r(t−s)(St −K)+|Fs) ≥ E
(

(e−r(t−s)St − e−r(t−s)K)+|Fs
)

≥
(
E(e−r(t−s)St|Fs)− e−r(t−s)K

)+

≥
(
Ss − e−r(t−s)K

)+

≥ (Ss −K)+.
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Thus, the smallest super-martingale e−rtV A
t dominating g(St), by the intuition of Ex-

ample 1, must be a martingale that satisfies V A
T = g(ST ). But this is the same as saying the

American call option price equals to the European call option price.

8.4 The American perpetual put

8.4.1 The value function

The perpetual put is defined by the payoff function (K − x)+ and the expiration date
T = ∞. In this case, exercise at time∞ represents no exercise. To include no exercise in
the simplest manner, we make the convention that

e−r∞(K − S(∞))+ = 0

This convention is consistent with taking a limit as t→∞; indeed

lim
t→∞

e−rt(K − St)+ = 0, (8.11)

because 0 ≤ (K − x)+ ≤ K for all x ≥ 0.
For the rest of this discussion, S is the Black-Scholes price with risk free interest rate r

and volatility σ. As usual P denotes the risk-neutral measure.

Define v(t, x) as in (8.9), except now T = ∞ and τ is allowed to take the value ∞.
Denote v(0, x) by v(x): thus,

v(x) = sup

{
E

[
e−rτ (K − Sτ )+

∣∣∣ S(0) = x

]
; τ satisfies (8.4) and (8.5) with T =∞.

}
Because the expiration date is infinite and the volatility and risk free rate are constant

in time, all times should look the same for the perpetual put. That is, if today S(0) = 10
and the price of the perpetual put is 5, it should be 5 whenever the price is 10 in the future.

More precisely, observe that,

(i) Su = S(0) exp{σW (u) + (r − σ2

2
)u} where {W (u);u ≥ 0} is a Brownian motion

independent of S(0), and

(ii) S(t+ u) = St exp{σ(W (t+ u)−W (t)) + (r− σ2

2
)u}, where, for fixed t, {W (t+

u)−W (t); u ≥ 0} is a Brownian motion independent of St.

Therefore, the process {S(t+ u); u ≥ 0} conditioned on St = x is identical in distri-
bution to the process {Su; u ≥ 0} conditioned S(0) = x.

Since the value v(t, x) depends only on the distribution of the price process forward in
time, conditioned on St = x, v(t, x) is independent of t. This proves:

Lemma 1. For the perpetual put, v(t, x) = v(x) for all t ≥ 0.
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8.4.2 Martingale characterization

The next theorem is a rigorous statement of the intuitively derived martingale characteriza-
tion of the price introduced in section 3 above.

Theorem 8.4.1. (Martingale sufficient conditions for the value function.) Assume u(x),
x ≥ 0 satisfies the following conditions:

(a) u(x) ≥ (K − x)+ for all x ≥ 0;

(b) u is bounded—there is a constant M <∞ such that u(x) ≤M for all x ≥ 0;

(c) e−rtu(St) is a supermartingale given any initial condition S(0) = x;

(d) if τ ∗ is the first time that u(St) = (K−St)+, then e−r(τ
∗∧t)u(Sτ∗∧t) is a martingale

given any initial condition S(0) = x;

Then u(x) = v(x), the value function for the perpetual put, and τ∗ is the optimal exercise
time.

Note: We will be able to find such a u, so, in fact, conditions (a)—(d) uniquely charac-
terize v.

Proof. To prove equality of u and v we will first prove u(x) ≥ v(x) for all x, and then
prove u(x) ≤ v(x).

(i) u(x) ≥ v(x):

It suffices to show that

u(x) ≥ E

[
e−rτ (K − Sτ )+

∣∣∣ S(0) = x

]
for any stopping time τ . (8.12)

Indeed, (8.12) would imply that

u(x) ≥ sup

{
E

[
e−rτ (K − Sτ )+

∣∣∣ S(0) = x

]
; τ satisfies (8.4) and (8.5) with T =∞

}
= v(x).

So let τ be any stopping time and assume S(0) = x. We have,

u(x) = e−r(τ∧t)u(Sτ∧t)
∣∣∣
t=0
≥ E

[
e−r(τ∧t)u(Sτ∧t)

∣∣∣ S(0)=x

]
≥ E

[
e−r(τ∧t)

(
K − Sτ∧t

)+ ∣∣∣ S(0)=x

]
,
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where the first inequality follows from assumption (c), e−rtu(St) is a supermartingale,
and by the optional stopping theorem for supermartingales, e−r(τ∧t)u(Sτ∧t) is also a super-
martingale and supermartingales decreasing in expectation. The second inequality follows
from assumption (a): u(Sτ∧t) ≥ (K − Sτ∧t)+.

Because (K − Sτ∧t)+ is bounded above by K and limt→∞ e
−rt(K − St)+ = 0, limits

and expectation can be interchanged in the above equation; this is a consequence of the
dominated convergence theorem and the convention that the value of the option at t = ∞
is 0. Therefore,

u(x) ≥ E

[
lim
t→∞

e−r(τ∧t)
(
K − Sτ∧t

)+ ∣∣∣ S(0)=x

]
= E

[
e−rτ

(
K − Sτ

)+ ∣∣∣ S(0)=x

]
.

This proves (8.12) and so finishes the proof that u(x) ≥ v(x).

(ii) u(x) ≤ v(x):

We will show

u(x) = E

[
e−rτ

∗
(K − S(τ ∗))+

∣∣∣ S(0) = x

]
(8.13)

where τ∗ is defined as in part (d) of the Theorem statement. The value function v(x) is the
maximum discounted expected payoff and so it is certainly greater than or equal than the
right-hand side of (8.13). Hence u(x) ≤ v(x) follows from (8.13).

To prove 8.13 we need only repeat the previous calculation with τ∗ replacing τ . But
now since e−r(τ∗∧t)u(Sτ∗∧t) is a martingale, all inequalities are replaced by equalities and
the result is (8.13). This completes the proof. �

8.4.3 PDE characterization

Theorem 1 assumed only that the price process was a path continuous Markov process.
The following theorem provides analytic conditions on a function u in order that it satisfy
the martingale conditions of Theorem 8.4.1, in the special case that S follows that Black-
Scholes price model. Recall that under the risk-neutral measure,

dSt = rSt dt+ σSt dW (t).

The theorem provides an effective way of finding the value function or at least obtaining
differential equations for the value function. It can easily be extended to other price models.

Theorem 8.4.2. (Hamilton-Jacobi-Bellman equations for the value function.) Assume
u(x), x ≥ 0, satisfies the following conditions:
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(a’) u(x) ≥ (K − x)+ for all x ≥ 0;

(b’) u is bounded—there is a constant M <∞ such that u(x) ≤M for all x ≥ 0;

(c’) u and u′ are continuous and u′′ is continuous except possibly at a finite number of
points, where it has jump discontinuities, and it satisfies

ru(x)− rxu′(x)− 1

2
σ2x2u′′(x) ≥ 0; (8.14)

(d’) on the set where u(x) > (K − x)+ (the continuation set),

ru(x)− rxu′(x)− 1

2
σ2x2u′′(x) = 0. (8.15)

Then u(x) = v(x), the value function for the perpetual put, and the optimal exercise time
is

τ ∗ := inf
{
t ≥ 0 : u(St) = (K − St)+

}
.

Condition (a’) and the two equations in (c’) and (d’) are all contained in the following
equation:

min{u(x)− (K − x)+, ru(x)− rxu′(x)− 1

2
σ2x2u′′(x)} = 0. (8.16)

Remark 8.4.3. The condition that u′′ is continuous except possibly at a finite number of
points may be strange at the beginning, because we’re used to assuming that u has con-
tinuous second derivatives. This is because for this type of PDE, making the assumption
that C1,2 is no longer appropriate. To get a clue on why, note that this PDE is nonlinear
in u (equation (8.16)) while the PDEs we considered so far (in chapter 7 and 11 of Shreve)
is linear in u. This should lead you to expect that the type of regularity property we are
expecting for this type of PDE is weaker than the type of regularity we expect for the PDE
we encountered in chapter 7 of Shreve. Hence assumption c′.

Remark 8.4.4. The Ito’s formula we have learned so far assumes that u ∈ C1,2. We want
to apply Ito’s formula to the function u in the above theorem. So clearly the question is can
we still do so? The answer is essentially yes, via an extension of Ito’s rule. We will present
it at the end of this section, to preserve the flow of discussion.

Proof: We need to check that the conditions (a), (b), (c), and (d) of 8.4.1 are satisfied by u.
Conditions (a) and (b) are automatic from (a’) and (b’). For conditions (c) and (d), we use
Itô’s rule and (c’) and (d’).

(i) e−rtu(St) is a supermartingale given any initial condition S(0) = x:
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Since u′′ is assumed continuous except at a finite number of points where it is undefined
and has a jump discontinuity, Itô’s rule applies and

e−rtu(St) = u(S(0)) +

∫ t

0

e−rs{−ru(Ss) + rSsu
′(Ss) +

1

2
σ2S2(s)u′′(Ss)} ds

+

∫ t

0

σe−rsu′(Ss) dW (s). (8.17)

Let t1 < t2. The stochastic integral is a martingale so

E

[ ∫ t2

0

e−rsu′(Ss) dW (s)
∣∣ F(t1)

]
=

∫ t1

0

e−rsu′(Ss) dW (s)

On the other hand, condition (c’) implies that the integrand of the ds integral is always
non-positive. Hence,

E

[ ∫ t2

0

e−rs{−ru(Ss) + rSsu
′(Ss) +

1

2
σ2S2(s)u′′(Ss)} ds

∣∣ F(t1)

]
=

∫ t1

0

e−rs{−ru(Ss) + rSsu
′(Ss) +

1

2
σ2S2(s)u′′(Ss)} ds

+ E

[ ∫ t2

t1

e−rs{−ru(Ss) + rSsu
′(Ss) +

1

2
σ2S2(s)u′′(Ss)} ds

∣∣∣ F(t1)

]
≤

∫ t1

0

e−rs{−ru(Ss) + rSsu
′(Ss) +

1

2
σ2S2(s)u′′(Ss)} ds

Putting these calculations together,

E

[
e−rt2u(S(t2))

∣∣∣ F(t1)

]
≤ u(0) +

∫ t1

0

e−rs{−ru(Ss) + rSsu
′(Ss) +

1

2
σ2S2(s)u′′(Ss)} ds

+

∫ t1

0

σe−rsu′(Ss) dW (s)

= e−rt1u(S(t1))

This proves that e−rtu(St) is a supermartingale.

(ii) e−r(t∧τ∗)u(St∧τ∗) is a martingale given any initial condition S(0) = x:

Repeat the above calculation but only up to the stopping time τ ∗, that is the first time
St hits the set {x; v(x) = (K − x)+}. Then for t < τ ∗, u(St) > (K − St)+ by definition
of τ ∗ and (a’).
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So by (d’), for s < τ ∗, −ru(Ss) + rSsu
′(s) + (1/2)σ2S2(s)u′′(Ss) = 0. Thus from

(8.17), but carried out up to τ∗ only,

e−r(τ
∗∧t)u(Sτ∗∧t) = u(0) +

∫ τ∗∧t

0

e−rsu′(Ss)σSs dW (s),

and this is a martingale, thereby proving condition (d) of Theorem 8.4.1. �

8.4.4 Finding the value function analytically

(i) Guess for the form of u:

To find the value function, we attempt to solve equation (16), or equivalently (14) and
(15). The technique is to guess the form of the solution. For the perpetual put one expects
that the exercise (stopping) region will have the form 0 ≤ x ≤ L∗ where 0 < L∗ < K;
equivalently the continuation region has the form L∗ < x <∞. It is intuitively clear that if
it is optimal to continue when the price is at a level `, it should also be optimal to continue
at all higher prices, because higher the price, the lower is the payoff. Also, one will never
exercise when the price is higher than K.

Therefore assume the optimal exercise region is 0 ≤ x ≤ L∗ < K. By definition of the
optimal exercise region,

u(x) = (K − x)+, 0 ≤ x ≤ L∗.

According to (8.16) or (8.15), on L∗ < x <∞, u(x) must solve

1

2
σ2x2u′′(x) + rxu′(x)− ru(x) = 0.

This is a homogeneous differential equation of Euler type. Observe the equation, since
there is x2 in front of the 2nd derivative and x in front of the 1st derivative, one can guess
the general form of the solution if Axp, where A is a constant and p is to be determined.
Plug this form in to the equation above, we found the equation for p is

1

2
σ2p2 + (r − 1

2
σ2)p− r = 0.

It is easily checked that p = − 2r
σ2 and p = 1 are the solutions to the above quadratic

equation. Thus the general solution of the ODE for u(x) has the form,

u(x) = Ax−2r/σ2

+Bx,
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whereA andB can be arbitrary constants. The condition that u be bounded requiresB = 0.
Thus,

u(x) =

{
K − x, if 0 ≤ x ≤ L∗;
Ax−2r/σ2

, if x > L∗.

(ii) Impose conditions so that u is “smooth":

For this function u to be continuously differentiable, (K − x)+ and Ax−2r/σ2 and their
first derivatives must be equal to each other at L∗. First, by matching the expression for u
from the left and right of L∗, we get

K − L∗ = u(L∗−) = u(L∗+) = A(L∗)−2r/σ2

. (8.18)

Second, noting that for x < L∗, u′(x) = −1 and for x > L∗, u′(x) = − 2r
σ2Ax

−2r/σ2−1,

− 1 = u′(L∗−) = u(L∗+) = −2r

σ2
A(L∗)−2r/σ2−1. (8.19)

These are called the equations of smooth fit. They can be solved uniquely for A and L∗:

L∗ =
2r

2r + σ2
K and A =

σ2

2r
(L∗)+2r/σ2+1.

Notice that L∗ < K as desired.

(iii) Verify that the function u we came up with is the actual solution:
To finish the proof, we must verify that with L∗ and A so defined, equation (8.14) is

true on 0 < x < L∗, that is

ru(x)− rxu′(x)− 1

2
σ2x2u′′(x) ≥ 0;

on 0 < x < L∗ and u(x) ≥ (K − x)+ for L∗ < x <∞.

(iii - a) Verifying equation (8.14) is true on 0 < x < L∗:

It is only necessary to verify (8.14) on 0 < x < L∗, since it is true by construction on
x > L∗, that is we found u on L∗ < x <∞ by solving

1

2
σ2x2u′′(x) + rxu′(x)− ru(x) = 0.

Since u(x) = K − x on 0 < x < L∗, it follows by direct calculation that that

ru(x)− rxu′(x)− 1

2
σ2x2u′′(x) = r(K − x) + rx = rK > 0,
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which proves (14).

(iii - b) Verifying that u ≥ (K − x)+ on L∗ < x:

By construction, on 0 < x ≤ L∗, u(x) ≥ (K − x)+ (since L∗ < K). So we only need
to verify u ≥ (K − x)+ on L∗ < x.

Since A > 0, it follows that u(x) > 0 for all x. By taking two derivatives of Ax−2r/σ2 ,
one see easily that it is strictly convex up. A and L∗ are chosen so that u′(L∗) = −1 and
u(L∗) = K − L∗. Hence, by convexity, u′(x) > u′(L∗) = −1 for all x > L∗. Thus if
we set g(x) = u(x) − (K − x), it follows that g(L∗) = 0 and that g′(x) > 0 for x > L∗.
This means that g is increasing on L∗ < x < ∞ and hence g(x) = u(x) − (K − x) > 0
on L∗ < x < ∞. Thus we have shown both that u(x) > 0 and that u(x) > K − x on
L∗ < x <∞, which means that u(x) > (K − x)+ on L∗ < x <∞.

In conclusion, we have identified the value function, and, more importantly, we have
found that the optimal time to exercise the perpetual American put is when the price first
hits the region 0 < x < L∗, where L∗ = 2rK/(2r + σ2).

8.4.5 An extension of Itô’s rule

Previously in this course, Itô’s rule was stated for f(Y (t)), where Y is an Itô process and f
is twice continuously differentiable. Actually, Itô’s rule will still work so long as f(x) and
f ′(x) are continuous and f ′′(x) is defined and continuous everywhere except possibley at
a finite number of points, where it has jump discontinuities. As an example, consider the
function

f(x) =

{
x2, if x ≥ 0;
−x2, if x < 0.

For this function, f ′(x) = 2|x|, and f ′′(x) = 2 if x > 0 and f ′′(x) = −2 if x < 0. Thus f ′′

is not defined at x = 0, where it has a jump discontinuity. If W is a Brownian motion, then
one can show directly that

f(W (t)) = f(0) +

∫ t

0

f ′(W (s)) dW (s) +
1

2

∫ t

0

f ′′(W (s))1{W (s)6=0} ds

= f(0) +

∫ t

0

f ′(W (s)) dW (s) +

∫ t

0

1{W (s)>0} ds+

∫ t

0

−1{W (s)>0} ds.

The reason this is true is that Brownian motion spends zero total time at x = 0, in the sense
that ∫ t

0

1{W (u)=0} du = 0, for all t > 0, with probability one.
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Therefore, in the approximation arguments that lead to Itô’s rule, the failure of f ′′ to exist
at x = 0 is not "seen."

More generally, if A = {a1, . . . , an} is any finite collection of points and X(t) =
X(0) +

∫ t
0
α(u) du+

∫ t
0
β(u) dW (u) and β(t) > 0 for all t, with probability one, then∫ t

0

1{X(u)∈A} du = 0, for all t > 0, with probability one. (8.20)

and Itô’s rule will be valid for any f for which f and f ′ are continuous and f ′′ is piecewise
continuous with jump discontinuities at a1, . . . , an. That is,

f(X(t)) = f(0) +

∫ t

0

f ′(X(s)) dW (s) +
1

2

∫ t

0

f ′′(X(s))1{X(s) 6∈A} ds.

For simplicity, we will just write the last term as
∫ t

0
f ′′(X(s)) ds; this is reasonable consid-

ering the fact (8.20). It is just necessary to understand that the second derivative can fail to
exist at the points of A and we really mean

∫ t
0
f ′′(X(s))1{X(s)6∈A} ds.

In a similar way, Itô’s rule extends to functions f(t, x) such that f(t, x), ft(t, x) and
fx(t, x) are continuous and fxx(t, x) is continuous except possibly along a finite number of
curves x = ai(t), where its value can jump.

8.4.6 Connection with optimal stopping problem

This section can be seen as giving the answer to the problem: Given that S0 = x, finding
the value function

V0 = max

{
E

[
e−rτ (K − Sτ )+

]
; τ satisfies (8.4) and (8.5) with T =∞.

}
and characterize the optimal stopping time τ ∗ such that

V0 = E

[
e−rτ

∗
(K − S∗τ )+

]
.

Then the answer is as followed. Solve for the value function u(x) as given in Theorem
2. Define the continuation set as

C = {x;u(x) > (K − x)+}

and it is so-called because one should continue (not exercise) so long as St ∈ C. The
stopping set is the complement of C:

S = {x;u(x) = (K − x)+}.
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When St ∈ S, it is optimal to exercise at t. We also call S the optimal exercise region.
Then V0 = u(S0) = u(x) and the optimal time to exercise τ ∗ is

τ ∗ = min {u ≥ 0; (u, Su) ∈ S} ∧ T (8.21)

Note also that e−rtVt = e−rtv(St) is a martingale before time τ ∗ (that is e−rt∧τ∗Vt∧τ∗
is a martingale) and a super-martingale in general (that is without stopping at τ ∗). This
follows from the following observation: if

dSt = rStdt+ σStdWt

and u satisfies,

ru(x)− rxu′(x)− 1

2
σ2x2u′′(x) = 0,

then u(St) is a martingale. Moreover, if

ru(x)− rxu′(x)− 1

2
σ2x2u′′(x) ≥ 0,

then u(St) is a super martingale. The proof is by Ito’s formula.
Combined this with the result of Theorem 2, that is on u(x) > (K − x)+

ru(x)− rxu′(x)− 1

2
σ2x2u′′(x) = 0,

and

ru(x)− rxu′(x)− 1

2
σ2x2u′′(x) ≥ 0,

it is easy to see that u(St) is a martingale up to the first time u(St) hits (K − St)+ and
generally a super-martingale.

8.5 American options with finite time of expiration

The analysis that we carried out can be generalized to American options with finite expira-
tion.

As usual, assume the price process of the underlying is Black-Scholes with risk-free
rate r and volatility σ2. Suppose the option payoff is g(x), and assume g is bounded. This
assumption is made so that the results we state are rigorously true; extensions are possible
that drop the boundedness condition, but then extra conditions are needed.

Let T be the time of expiration and let v(t, x), t ≤ T , be the value function as defined
above in equation (8.9).

Theorems 1 and 2 have easy generalizations that require little more than inserting extra
dependence on t.
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8.5.1 Martingale characterization

Theorem 8.5.1. (Martingale sufficient conditions for the value function.) Assume u(t, x),
x ≥ 0 satisfies the following conditions:

(a) u(t, x) ≥ g(x) for all x ≥ 0, 0 ≤ t ≤ T ;

(b) u is bounded—there is a constant M < ∞ such that u(t, x) ≤ M for all x ≥ 0,
0 ≤ t ≤ T ;

(c) e−rtu(t, St) is a supermartingale given any initial condition S(0) = x;

(d) if τ ∗ is the first time that u(t, St) = g(St), then e−r(τ
∗∧t)u(τ ∗ ∧ t, Sτ∗∧t) is a

martingale given any initial condition S(0) = x;

Then u(t, x) = v(t, x), the value function for the value function for the American put with
pay off g(St) and expiry T , and τ ∗ is the optimal exercise time.

8.5.2 Equation for the value function

Theorem 8.5.2. (Hamilton-Jacobi-Bellman equations for the value function.) Assume
u(t, x), x ≥ 0 satisfies the following conditions:

(a’) u(t, x) ≥ (K − x)+ for all x ≥ 0, 0 ≤ t ≤ T ;

(b’) u(t, x) is bounded on the set x ≥ 0, 0 ≤ t ≤ T ;

(c’) u(t, x) and ut(t, x) and ux(t, x) are continuous and uxx(t, x) exists and is contin-
uous except possibly along a finite number of curves x = ai(t), where it has jump
discontinuities, and u satisfies

ru(t, x)− ut(t, x)− rxux(t, x)− 1

2
σ2x2uxx(t, x) ≥ 0;

(d’) on the set where u(t, x) > g(x) (the continuation set)

ru(t, x)− ut(t, x)− rxux(t, x)− 1

2
σ2x2uxx(t, x) = 0.

Then u(t, x) = v(t, x), the value function for the American put with pay off g(St) and expiry
T , and the optimal exercise time is the first time τ ∗ that St hits the set {x; v(t, x) = g(x)}.

The proofs of these statements mimic closely the proofs written out above for the per-
petual put.
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8.5.3 Characterization of the optimal exercise region

For the American put, g(x) = (K − x)+. In this case, explicit formulae for the value func-
tion and for the exercise region are not known when T is finite. However, the methodology
of Theorems 3 and 4, which can be generalized greatly, is very important. The equations
presented in parts (c’) and (d’) of Theorem 8.5.2 can be solved numerically to get prices.

Even though explicit solutions for the value function of the American put are not known,
the following can be proved.

The optimal exercise region has the form

{(t, x); 0 ≤ x ≤ L∗(T − t), for x ≥ 0, 0 ≤ t ≤ T},

where L∗(u), u ≥ 0, is a function defined independently of T satisfying,

(i) L∗(0) = K;

(ii) L∗(u) is decreasing as u increases;

(iii) L∗(u) > 2r
2r+σ2K for all u ≥ 0.

All these conditions make good intuitive sense. The parameter u in L∗(u) represents time
until expiration. Thus, L∗(0) is the boundary of the exercise region when t = T , and at this
time one exercises only if the the price is less thanK. As u increases, that is, as we go back
further and further in time from expiration, the value of the option at all price levels should
either increase or stay the same, because more time means a greater range of exercise
opportunities. But if the price increases the optimal exercise region shrinks. Finally, as
u → +∞, L∗(u) should decrease to the optimal exercise boundary of the perpetual put,
which was shown above to be 2r

2r+σ2K.

8.6 Miscellaneous - A related interview question

Can we explain that the American call option value V AC
t is equal to the European call

option value V EC
t but NOT using the martingale theory that we developed in this chapter?

(After all not everyone is familiar with optimal stopping theory). The answer is yes, via the
Put-Call parity relation. The detail is as followed: by Put-Call parity

V EC
t − V EP

t = St −Ke−r(T−t).

Thus

V EC
t − (St −K) = V EP

t + (K −Ke−r(T−t)).

The LHS is the difference between the European option value and the pay off we would
have received from the American option if we exercised at time t (if St is at least K).
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The RHS, on the other hand, is always positive if t < T . Thus the exercise value is always
strictly less than V EC

t , which in turn is less than or equal to V AC
t , the value of the American

call option. Thus it is not optimal to excerise for t < T . But if we exercise the American
call option at time T then it is just like an European option.

The RHS of the above equation also can be interpreted as the “insurance" for the event
ST < K through the put option V EC

t and the time “premium" for early exercise K −
Ke−r(T−t). This premium converges to 0 as t → T . This also explains intuitively why the
optimal exercise time is at T for the American call option.
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CHAPTER 9 Change of numéraire

Main question:
Price a product that pays VT = QT at time T . Is there a domestic risk neutral measure?

If so what is the dynamics of Qt under that measure?
Price a risky asset quoted in foreign currency: VT = ( ST

QT
−K)+, K in foreign currency.

This is not convenient to multiply through with QT . More convenient to work with foreign
risk neutral measure.

Put-call duality: If we hold currency in dollar and suspect Euro to go up we would want
a call on Euro denominated in dollars. If we hold currency in Euro then we suspect the
dollar to go down. Then we would want a put on dollar denominated in Euro. These two
options should be equivalent.

9.1 Introduction

9.1.1 Another look at the Black-Scholes risk neutral model

Let r > 0 be the constant risk free rate. So far, we’ve considered the following Black-
Scholes model of a stock:

dSt = αStdt+ σStdWt,

where α is a constant and Wt a Brownian motion.
To price any financial derivative based on S, the first question we have to answer is:

what is the risk neutral probability measure? In other words, we want to find a probability
measure P̃ such that e−rtSt is a martingale under P̃ .

We’re used to looking at e−rtSt as the discounted stock price. And the risk neutral
measure is interpreted as the probability such that the discounted stock price is a martingale.

There is yet a slightly different way of looking at this. If we denote

dNt = rNtdt

N0 = 1,

that is Nt = ert; then Nt is the price of one unit of the money market account. Then e−rtSt
is nothing but the price of the stock expressed in the unit of the money market account. The
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risk neutral measure above can be looked at as the probability such that the price of the
stock, expressed in the unit of the money market account, is a martingale.

Note that there is another asset, which is also a martingale (albeit a trivial one), when
expressed in the unit of the money market account: the money market price process itself.
It is clear that the price of the money market is 1 when expressed under its own unit, thus
it is a (trivial) martingale.

9.1.2 Main questions of this chapter

The process Nt in the above is a numéraire, and the risk neutral measure we’ve studied in
the Black-Scholes model is the risk neutral measure associated to the (domestic) money
market numéraire. To re-emphasize, it is the probability measure such that the price of
all non-dividend paying assets are martingales when expressed in the unit of the domestic
money market account.

It is clear that the domestic money market is not the only choice for a numéraire. In a
world where there is a foreign currency, then the foreign money market is also a possible
choice of numéraire. The obvious question is, how do we determine the risk neutral prob-
ability associated with the foreign money market numéraire? More generally, how do we
decide a risk neutral probability associated with any numéraire, as long as we have a model
for that particular numéraire?

Specifically, letting
Dt := e−

∫ t
0 Rudu,

be the discount process, and suppose we have two underlying assets St, Nt so that both
DtNt and DtSt are martingales under the risk neutral measure P̃ . Denoting

S
(N)
t :=

St
Nt

as the “price" of St under the numéraire Nt, we will address the following questions:
a. Does there exist a measure P̃ (N) so that S(N)

t is a martingale under P̃ (N)? If yes, we
will call P̃ (N) the risk neutral measure associated with the numéraire Nt.

b. What is the dynamics of S(N)
t under P̃ (N)?

c. How can we relate the pricing of a derivative Vt based on St and Nt under the risk
neutral measure P̃ with the pricing of

V
(N)
t :=

Vt
Nt

under the measure P̃ (N)?
One important thing to note about the choice of numéraire: we shall take only non-

dividend paying assets as numéraire. Another way to put it is that we will only use asset
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Nt that satisfies DtNt is a martingale under the risk neutral measure as a numéraire. Using
this criterion, the domestic currency itself cannot be used as a numéraire because its value
stays constant for all time t.

9.1.3 New set up of this chapter

Since in this chapter, we will introduce the foreign exchange rate and foreign money mar-
ket, it is natural that we are into a multiple risky assets setting. Moreover, the risk free rate
will no longer be a constant r. We will consider a risk-free rate process R(t) that can be
stochastic. The associated discount process is

Dt = exp
{
−
∫ t

0

R(u)du
}
,

and for the domestic money market risk neutral measure P̃ , we will require that DtSt be
a martingale under P̃ . Also, as we use different numéraires, there will be different risk-
neutral measures corresponding to these numéraires. It is important to clarify which risk-
neutral probability we are discussing. For example, we will call the risk neutral measure
associated with the domestic money market the domestic risk neutral measure. Similarly,
we will call the risk neutral measure associated with the foreign money market the foreign
risk neutral measure. In this note, by dollars we also mean the domestic currency and vice
versa.

To prepare for these new set ups, we will review a few details on stochastic calculus
and multi-asset model in the next couple sections.

9.1.4 Why study change of numéraire

(i) A risk neutral pricing formula when the financial product is quoted in foreign currency:
Suppose we have a Euro style derivative that pays VT (in foreign currency) at time T .

We want to find the no-arbitrage price V0 of this derivative at time 0. Let Rf (t) be the
foreign interest rate, which is an adapted process. Intuitively, the pricing formula would be

V0 = Ẽf
[
e−

∫ T
0 Rf (u)duVT

]
,

where Ẽf is a foreign risk neutral measure. How to define this Ẽf so that the above formula
holds is a question that we will address in this chapter.

(ii) Modeling when the interest rate is random:

When the interest rate is random, the pricing formula for a Euro-style derivative on
a stock St becomes complicated (See formula 9.4.6 in Shreve and the discussion after).
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However, when we use a suitable numéraire, which is the zero-coupon bond in this case,
the pricing formula becomes much simpler (formula 9.4.7 in Shreve). Thus this suggests
one should model St under the risk-neutral measure associated with the zero-coupond bond
(called the T-forward measure). Indeed, it turns out that the correct object to model is the
forward price of the stock St ( Section 9.4.3 in Shreve). The point is that our usual choice
of numéraire (the domestic money market) may not be the best choice in all situations.
Studying the change of numéraire suggests other choice of numéraire that would simplify
the problem, both in terms of pricing and in terms of modeling.

9.2 Markets with multiple risky assets

Itô process models for markets with multiple risky assets are treated in Chapter 5 of Shreve.
This is a brief review.

Consider a market with m risky assets. Prices are given in a domestic currency, which,
for convenience, we will assume to be US dollars. A price model consists of a probabil-
ity space (Ω,F ,P), a filtration {F(t); t ≥ 0}, and an m-vector-valued stochastic process
S(t) = (S1(t), . . . , Sm(t)) that represents the asset prices and that is adapted to the filtra-
tion. The goal of modeling is to construct S so that its statistical behavior approximately
matches what is actually observed in the market. The return of asset i over the small in-

terval of time [t, t + dt] is given by
dSi(t)

Si(t)
. From analysis of the historical data or from

structural models for the market, the modeler can generate estimates for all assets of

(i) the mean rate, local of change of asset i: µi(t) dt = E

[
dSi(t)

Si(t)

∣∣∣ F(t)

]
;

(ii) the local (square) volatility of asset i: σ2
i (t) dt = Var

(
dSi(t)

Si(t)

∣∣∣ F(t)

)
; and

(iii) the correlation between the returns of asset i and j, i 6= j;

ρij(t), dt =
Cov

(
dSi(t)
Si(t)

,
dSj(t)

Sj(t)

∣∣∣ F(t)
)

σi(t)σj(t)
.

A nice way to construct models that can fit these informally described parameters, and
for which the price processes are continuous, is to use stochastic differential equations
driven by a multi-dimensional Brownian motion W (t) = (W1(t), . . . ,Wd(t)). Suppose we
set

dSi(t)

Si(t)
= µi(t) dt+

d∑
k=1

σik(t) dWk(t), 1 ≤ i ≤ m. (9.1)

Let {F(t); t ≥ 0} be a filtration for W and assume µi(t) and σij(t), t ≥ 0 are adapted to
{F(t); t ≥ 0}. Recall that, by definition, W1, . . . ,Wd are independent Brownian motions.
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Then, formally, E[dWi(t)
∣∣ F(t)] = 0, E[(dWi(t))

2
∣∣∣ F(t)] = dt and E[dWi(t)) dWj(t)

∣∣∣
F(t)] = 0. Thus, for each asset,

E

[
dSi(t)

Si(t)

∣∣∣ F(t)

]
= µi(t) dt+

d∑
k=1

σik(t)E[dWk(t)
∣∣∣ F(t)] = µi(t) dt,

in conformity with (i). On the other hand,

Var
(
dSi(t)

Si(t)

∣∣∣ F(t)

)
= E

[( d∑
k=1

σik(t) dWk(t)

)2 ∣∣∣ F(t)

]

=

[ d∑
k=1

σ2
ik(t)

]
dt. (9.2)

By a similar calculation

Cov

(
dSi(t)

Si(t)
,
dSj(t)

Sj(t)

∣∣∣ F(t)

)
= E

[ d∑
k=1

σik(t) dWk(t) ·
d∑
l=1

σjl(t) dWl(t)
∣∣∣ F(t)

]

=

[ d∑
k=1

σik(t)σjk(t)

]
dt. (9.3)

Therefore, we can match the model (9.1) to the variances and correlations prescribed in (ii)
and (iii) by choosing d and σij(t), 1 ≤ i, j ≤ m, so that

d∑
k=1

σ2
ik(t) = σ2

i (t)

d∑
k=1

σik(t)σjk(t) = ρij(t)σi(t)σj(t)

Because model (9.1) is flexible enough to capture price means, volatilities, and correla-
tions in this manner, it is a standard model for multi-asset markets. Usually, it is expressed
in the more familiar form

dSi(t) = µi(t)Si(t) dt+ Si(t)
d∑

k=1

σik(t) dWk(t). (9.4)

Example 1. Given σ1(t), σ2(t), and ρ(t) satisfying −1 ≤ ρ(t) ≤ 1, we want to construct a
model with two risky assets so that the volatility process of S1 is σ1(t), that of S2 is σ2(t)
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and

ρ(t) =
Cov

(
dS1(t)
S1(t)

, dS2(t)
S2(t)

)
σ1(t)σ2(t)

.

This can be achieved with the model

dS1(t) = µ1(t)S1(t) dt+ σ1(t)S1(t) dW1(t), (9.5)

dS2(t) = µ2(t)S2(t) dt+ σ2(t)S2(t)

[
ρ(t) dW1(t) +

√
1− ρ2(t) dW2(t)

]
. (9.6)

Indeed, equation (9.5) is by itself just the usual model for an asset with volatility process
σ1(t). As for S2,

Var

(
dS2(t)

S2(t)

∣∣∣ F(t)

)
= E

[(
σ2(t)

[
ρ(t) dW1(t) +

√
1− ρ2(t) dW2(t)

])2 ∣∣∣ F(t)

]
= σ2

2(t)
[
ρ2(t)E[(dW1(t))2] + (1− ρ2(t))E[(dW2(t))2] + 2ρ(t)

√
1− ρ2(t)E[dW1(t) dW2(t)]

]
= σ2

2(t)
[
ρ2(t) dt+ (1− ρ2(t)) dt

]
= σ2

2(t) dt

Also,

Cov

(
dS1(t)

S1(t)
,
dS2(t)

S2(t)

∣∣∣ F(t)

)
= E

[
σ1(t) dW1(t) ·

(
σ2(t)ρ(t) dW1(t) +

√
1− ρ2(t) dW2(t)

) ∣∣∣ F(t)

]
= σ1(t)σ2(t)

[
ρ(t)E[(dW1(t))2] +

√
1− ρ2(t)E[dW1(t)dW2(t)]

]
= σ1(t)σ2(t)ρ(t) dt

9.2.1 Generating multi-dimensional Brownian motion with a given covariance struc-
ture

Another way to phrase the discussion in the previous section is that we are interested in
generating the following multi-dimensional model

dSi(t) = µiSi(t) dt+ σiSi(t)dW
i
t , i = 1 · · · , n (9.7)

where for simplicity we assume all parameters are constants. Here W i
t are Brownian mo-

tions with
Cov(dW̄t) = Sdt

where S is a given positive definite symmetric matrix . Here

W̄t = [W 1
t ,W

2
t , · · · ,W n

t ]T
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represents the vector with length n whose ith component is W i
t .

To achieve this we use the Cholesky decomposition of S. That is we find a lower
triangular matrix L so that S = LLT . This is always possible if S is a positive definite
symmetric matrix. See e.g. this Wikipedia reference. To generate W̄t, we start out with an
independent n-dimensional Brownian motion

Z̄t = [Z1
t , Z

2
t , · · · , Zn

t ]T .

We claim that
W̄t = LZ̄t

has the covariance structure we want. That is

Cov(dW̄t) = Sdt.

To see this, recall the following elementary result of multi-dimensional random vari-
ables: for A a m× n constant matrix and X a n-dimensional random variable,

Cov(AX) = ACov(X)AT .

Reason: WLOG we can assume E(X) = 0 and hence

Cov(AX) = E((AX)(AX)T ) = E(AXXTAT ) = ACov(X)AT .

Applying this to our case, with Cov(dZ̄t) = Indt where In is the n× n identity matrix
since Z̄t are independent Brownian motions, we have

Cov(dW̄t) = Cov(LdZ̄t) = LInL
Tdt = Sdt,

as desired.

9.2.2 Market with foreign currency

Example 1 can be translated into a model for a market with one risky asset and a tradable
foreign currency, which is the important setting we want to discuss in this chapter.

Let S(t) be the price in dollars of the risky asset.
Let Q(t) denote the price (in dollars) of one unit of the foreign currency at time t.

Thus Q(t) is the exchange rate. Q can be thought of as a second risky asset; it fluctuates
randomly and these fluctuations may be correlated with those of S (if we have reason to
believe there is no correlation between S and Q we just have to set ρ(t) = 0 in the model
below). Hence the model of Example 1 is appropriate.
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Following the notation in Shreve, (9.3.1)-(9.3.2), it shall be written:

dS(t) dt = α(t)S(t) dt+ σ1(t)S(t) dW1(t), (9.8)

dQ(t) dt = γ(t)Q(t) dt+ σ2(t)Q(t)

[
ρ(t) dW1(t) +

√
1− ρ2(t) dW2(t)

]
. (9.9)

Suppose that in this market one can purchase a foreign money market account earning
the risk-free rate with one’s foreign cash.

Let Rf (t), t ≥ 0, be the risk-free foreign rate. We will say that one unit of this money
market is an account in which one unit of foreign currency is deposited at time t = 0 and
never withdrawn.

Thus the price at time t in foreign currency of one foreign money market unit is

M f (t) = exp{
∫ t

0

Rf (u) du}.

The price at time t of one foreign money market unit in dollars is

N f (t) = M f (t)Q(t).

If we are investing in this market, we will certainly deposit any idle foreign cash in the
foreign money market; otherwise, we forego the interest we could earn at rate Rf . Thus
it is really more appropriate to write the model for the above market in terms of S(t) and
N f (t). An easy calculation shows that this model is:

dS(t) dt = α(t)S(t) dt+ σ1(t)S(t) dW1(t), (9.10)
dN f (t) dt =

[
γ(t) +Rf (t)

]
N f (t) dt

+ σ2(t)N f (t)

[
ρ(t) dW1(t) +

√
1− ρ2(t) dW2(t)

]
. (9.11)

Remarks:
(i) Both equations (9.10), (9.11) are expressed in terms of dollars, not the foreign cur-

rency; and N f is, again, the price of the foreign money market in dollars.

(ii) Both equations (9.10), (9.11) are not written in risk neutral measure setting.
(iii) Important: Even though Q(t) and N f (t) are closely related, there is one crucial

difference between them: under the domestic risk neutral measure P̃ , D(t)Q(t) is not
a martingale while D(t)N f (t) is a martingale. The reason is because a unit of foreign
currency (without being invested into the foreign money market) loses its value over time
at the rate Rf (t). See also section (9.4.1) for more discussion.
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9.3 A review of multi-dimensional stochastic calculus

This is more review material, collected for convenience of reference.

9.3.1 Multi-dimensional stochastic integration

Let W (t) = (W1(t), . . . ,Wd(t)) be a d-dimensional Brownian motion, and let {F(t); t ≥
0} be a filtration for W . Let the vector-valued process Θ(t) = (θ1(t), . . . , θ(t)) be adapted
to {F(t); t ≥ 0}. For d-dimensional vectors, we use x · y =

∑d
k=1 xiyi to denote the inner

product and ‖x‖ =

√√√√ d∑
k=1

x2
k =
√
x · x to denote the norm of a vector. Accordingly, we use

the following convenient notation:∫ t

0

Θ(u) · dW (u) =
d∑

k=1

∫ t

0

θk(u) dWk(u).

For example, if we define σi(t) = (σi1(t), . . . , σid(t)), the equation for Si(t) in (9.4) can
be written

dSi(t) = µi(t)Si(t) dt+ Si(t)
[
σi(t) · dW (t)

]
.

9.3.2 Linear stochastic differential equations

The following general fact is useful. The solution to the stochastic differential equation
dX(t) = µ(t)X(t) dt+X(t)[Θ(t) · dW (t)] is

X(t) = X(0) exp{
∫ t

0

Θ(u) · dW (u)− 1

2

∫ t

0

‖Θ(u)‖2 du+

∫ t

0

µ(u) du}. (9.12)

To show this expression is a solution requires just an application of the multi-dimensional
Itô rule. We will not show it is the unique solution; this is done in the theory of stochastic
differential equations.

A simple calculation also shows that X solves

dX(t) = µ(t)X(t) dt+X(t)[Θ(t) · dW (t)] (9.13)

if and only if

d
[
e−

∫ t
0 µ(u) duX(t)

]
=
[
e−

∫ t
0 µ(u) duX(t)

]
[Θ(t) · dW (t)] (9.14)

We will pass between these two equivalent equations frequently and without comment.
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9.3.3 Girsanov’s theorem

Let

Z(t) exp{−
∫ t

0

Θ(u) · dW (u)− 1

2

∫ t

0

‖Θ(u)‖2 du}.

If it is assumed that E[Z(T )] = 1, then

PZ(A) = E[1AZ(T )], A ∈ F ,

defines a new probability measure. The multi-dimensional Girsanov theorem says that

WZ(t) = W (t) +

∫ t

0

Θ(u) du =

(
W1(t) +

∫ t

0

θ1(u) du, . . . ,Wd(t) +

∫ t

0

θd(u) du

)
is a Brownian motion up to time T under PZ .

9.3.4 What happens when we use a general FWt martingale Zt in the change of mea-
sure fomula

Suppose that Z(t) is aF(t) martingale and Z(0) = 1. It follows thatE[Z(T )] = Z(0) = 1.
We can still define a new measure

PZ(A) = E[1AZ(T )], A ∈ F ,

as above (the measure PZ is well-defined). However, this is a bit abstract. We did not
impose any dynamics on Zt. But we still want to learn, for example, the distribution of
W (t) under PZ . It turns out that when the filtration is generated by the Brownian motion,
then the martingale representation will give us information about the dynamics of Zt and
the Girsanov’s theorem will tell us about the behavior of Wt under PZ .

(i) Martingale representation:
Assume now that the filtration {F(t); t ≥ 0} is generated byW . Under this important

assumption, if Z(t) is a martingale with respect to {F(t); t ≥ 0} under measure P, then
the martingale representation theorem says there exists an adapted, vector valued process
Γ(t) = (γ1(t), . . . , γd(t)) such that

Z(t) = Z(0) +

∫ t

0

Γ(u) · dW (t).

Suppose that Z(0) = 1 and that Z(t) > 0 for all 0 ≤ t ≤ T almost surely. By defining

ν(t) = (ν1(t), . . . , νd(t)) =
1

Z(t)
Γ(t), one can write

Z(t) = 1 +

∫ t

0

Z(u)
1

Z(u)
Γ(u) · dW (u) = 1 +

∫ t

0

Z(u)[ν(u) · dW (u)].
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It then follows from equation (9.12) that

Z(t) = exp{
∫ t

0

ν(u) · dW (u)− 1

2

∫ t

0

‖ν(u)‖2 du}. (9.15)

(ii) Girsanov’s theorem:
By applying Girsanov’s theorem to this expression we obtain:

Theorem 3. Suppose that {F(t); t ≥ 0} is generated byW and that Z(t) is an {F(t); t ≥
0}-martingale under P such that E[Z(t)] = 1 for all t. Define PZ(A) = E[1AZ(T )],
A ∈ F .

Suppose in addition that Z(T ) > 0 almost surely. Then there is an {F(t); t ≥ 0}-
adapted process ν(t) = (ν1(t), . . . , νd(t)) so that equation (9.15) holds, and for this pro-
cess,

WZ(t) = W (t)−
∫ t

0

ν(u) du is a Brownian motion up to time T under PZ .

The only point we have not justified (and will not) is that if Z(T ) > 0 almost surely,
then Z(t) > 0 for all t ≤ T almost surely.

This theorem is essentially Theorem 9.2.1 in Shreve; we have just stated it more gener-
ally. It is one of the important theorems in this Chapter. Later on, we will replace Zt with
DtNt, where Dt is the discounted process mentioned above and Nt the actual numéraire
we want to study (for example, the domestic or foreign money market). Then PZ is the
risk neutral measure associated with that numéraire. And this theorem tells us how the
distribution of the Brownian motion changes under this risk neutral measure. Note that at
this level, the Theorem is a bit abstract: it only tells us that the process ν exists—it does
not say how to find ν. In applications, one can often determine ν from other assumptions,
as we shall see in studying numéraires.

9.4 The domestic risk-neutral measure

Consider the model for S(t) = (S1(t), . . . , Sm(t)) given in equation (9.4). Assume hence-
forth that {F(t); t ≥ 0} is the filtration generated by W . This allows us to employ the
martingale representation theorem.

Add also to the model a risk-free rate process R(t), t ≥ 0, which is assumed to be
non-negative and adapted to {F(t); t ≥ 0}. The associated discount process is denoted by
D(t) = exp{−

∫ t
0
R(u) du}.

The price of Si, in terms of the domestic money market, is DtSi(t). We have the
following important definition:
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Definition 9.4.1. The domestic risk-neutral measure for the model (9.4) is the probability
measure P̃ such that DtSi(t) is a martingale under P̃ , for all i.

The model (9.4) is equivalent to

d [D(t)Si(t)] = (µi(t)−R(t))D(t)Si(t) dt+D(t)Si(t)
d∑

k=1

σik(t) dWk(t), 1 ≤ i ≤ m,

(9.16)
as an easy calculation shows; (compare to equations (9.13) and (9.14)). We are interested
in finding a domestic risk-neutral measure, assuming one exists. The essential ingredient is
provided in the following theorem, which reviews material from Chapter 5 of Shreve. This
review is useful because the procedure of finding the risk-neutral measure is a template for
changing measure for numéraires.

Theorem 4. Assume that there is a risk-neutral measure P̃ for model (9.16) given by
P̃(A) = E[1AZ], where Z is an F(T ) measurable random variable for which E[Z] = 1
and P(Z > 0) = 1. Then

Z = exp

{
−
∫ T

0

Θ(u) · dW (u)− 1

2

∫ T

0

‖Θ(u)‖2 du

}
, (9.17)

where Θ(t) = (θ1(t), . . . , θd(t)) is an {F(t); t ≥ 0}-adapted process that is a solution of
the market price of risk equation

σ11(t) σ12(t) · · · σ1d(t)
σ21(t) σ22(t) · · · σ2d(t)

...
...

...
σm1(t) σm2(t) · · · σmd(t)

 ·


θ1(t)
θ2(t)

...
θd(t)

 =


µ1(t)−R(t)
µ2(t)−R(t)

...
µm(t)−R(t)

 , 0 ≤ t ≤ T.

(9.18)
If this equation has a unique solution, the risk-neutral measure is unique. Under P̃,

W̃ (t) =

(
W1(t) +

∫ t

0

θ1(u) du, . . . ,Wd(t) +

∫ t

0

θd(u) du

)
(9.19)

is a Brownian motion up to time t.

Proof: The process Z(t) = E[Z
∣∣ F(t)] is a martingale and since Z is F(T )-measurable,

Z(T ) = Z. By Theorem 3, there is an adapted process ν such that Z(t) = exp{
∫ t

0
ν(u) ·

dW (u) − 1
2

∫ t
0
‖ν(u)‖2 du}. Equation (9.17) then follows if we set Θ(t) = −ν(t). By

Girsanov, the process W̃ defined in equation (9.19) is a Brownian motion up to time T
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under P̃. From (9.19), dWi(t) = dW̃i(t) − θi(t) dt. By using this substitution in the
equation (9.16) for D(t)si(t),

d [D(t)Si(t)] =

(
µi(t)−R(t)−

d∑
k=1

σik(t)θk(t)

)
D(t)Si(t) dt+D(t)Si(t)

d∑
k=1

σik(t) dW̃k(t).

(9.20)
This must be a martingale under the risk-neutral measure P̃ for all i; that is what it means
for P̃ to be a risk-neutral measure. Thus the ‘dt’ term in (9.20) must be 0 for each i:

d∑
k=1

σik(t)θk(t) = µi(t)−R(t), 1 ≤ i ≤ m.

The matrix form of these equations is just equation (9.18) of the theorem statement. This
completes the proof. �

As a consequence of the proof, the stochastic differential equation model for the dis-
counted prices under the risk-neutral measure is

d [D(t)Si(t)] = D(t)Si(t)
d∑

k=1

σik(t) dW̃k(t), 1 ≤ i ≤ m.

Remarks:
1) The equations summarized by (9.18) are called the market price of risk equations.

The difference µi(t) − R(t) can be regarded as a risk premium; it is the amount by which
the expected rate of gain of the asset is larger than the risk-free rate. Investors typically
demand µi(t) − R(t) to be positive before investing in i, to make up for the fact that the
investment carries risk. The expression µi(t) − R(t) =

∑d
k=1 σik(t)θk(t) may be thought

of as a decomposition of µi(t)−R(t) into a sum contributions from each source of random
fluctations of Si(t); θk(t) is effectively a price per unit of volatility of the contribution
σik(t)θk(t).

2. Theorem 2 implies that a necessary condition for the existence of a risk-neutral
measure is that (9.18) must have a solution Θ(t). However, having a solution to (9.18)
is not by itself a sufficient condition for the existence of a risk neutral measure. If Θ(t)

is a solution and Z = exp
{
−
∫ T

0
Θ(u) · dW (u)− 1

2

∫ T
0
‖Θ(u)‖2 du

}
, one must check in

addition that E[Z] = 1, in order that P̃Z define a probability measure.
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9.4.1 Model with foreign money market under the domestic risk-neutral measure

Consider the model for a risky asset, a foreign currency and a foreign money market in-
troduced above in Section (9.2.2). Now add a domestic money market, with risk-free rate
R(t), t ≥ 0.

Recall that the price at time t in foreign currency of one foreign money market unit is

M f (t) = exp{
∫ t

0

Rf (u) du}.

Given the exchange rate Q(t), the price in dollars of a unit of the foreign money market
is

N f (t) = M f (t)Q(t).

So there are 2 risky assets in this model:

dS(t) dt = α(t)S(t) dt+ σ1(t)S(t) dW1(t),

dN f (t) dt =
[
γ(t) +Rf (t)

]
N f (t) dt

+N f (t)σ2(t)

[
ρ(t) dW1(t) +

√
1− ρ2(t) dW2(t)

]
.

As definition (9.4.1) states, a domestic risk-neutral measure for this model must make
D(t)S(t) and D(t)N f (t) = D(t)M f (t)Q(t) into martingales.

Equation (9.18) in this case is(
σ1(t) 0

σ2(t)ρ(t) σ2(t)
√

1− ρ2(t)

)(
θ1(t)
θ2(t)

)
=

(
α(t)−R(t)

γ(t) +Rf (t)−R(t)

)
(9.21)

Assume there is a unique, risk-neutral measure for (9.10)–(9.11). By Theorem 4 equation
(9.21) must then have a unique solution. Indeed it will, if σ1(t) > 0, σ2(t) > 0, and
−1 < ρ(t) < 1 for all t with probability one. This solution is

θ1(t) =
α(t)−R(t)

σ1(t)
, θ2(t) =

1

σ2(t)
√

1− ρ2(t)

[
γ(t) +Rf (t)−R(t)−σ2(t)ρ(t)θ1(t)

]
.

Let W̃ (t) = (W1(t) +
∫ t

0
θ1(u) du,W2(t) +

∫ t
0
θ2(u) du). Then one easily derives

dS(t) = R(t)S(t) dt+ σ1(t)S(t) dW̃1(t)

dN f (t) = R(t)N f (t) dt+N f (t)σ2(t)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
.
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Remark 9.4.2. This is similar to the situation in the classical Black-Scholes model, in
which we consider 2 assets: the (domestic) money market and the stock St. The only
difference is in the Black-Scholes model, the dynamics of the domestic money market does
not have a Brownian motion component:

dN(t) = R(t)N(t)dt.

Also note that the Brownian motion component of the foreign money market comes from
the dynamics of the exchange rate Q(t), not from the dynamics of M f (t) itself.

Remark 9.4.3. We cannot require the foreign exchange rate Q(t) to satisfy the condition
D(t)Q(t) being a martingale under the domestic risk neutral measure P̃ . This is because
Q(t) is the price of the foreign currency, which loses value over time if not invested into
the foreign money market. To see this consider a portfolio that invests ∆t into the foreign
money market N f

t and Vt − ∆tN
f
t into the domestic money market. Then because the

portfolio is self-financing

dVt = rtVtdt+ (γt +Rf
t − rt)∆tN

f
t dt+ σt∆tN

f
t dWt

= rtVtdt+ σt∆tN
f
t (αtdt+ dWt),

where αt is such that σtαt = γt + Rf
t − rt. The discounted value of this portfolio, namely

DtVt must be a martingale under the risk neutral measure P̃ . So under P̃

dW̃t = dWt + αtdt

is a Brownian motion. On the other hand,

dQt = γtQtdt+ σtQtdWt

= (rt −Rf )Qtdt+ σtQtdW̃t.

It follows immediately that DtQt cannot be a martingale under P̃ .

In fact if D(t)Q(t) were a martingale under the domestic risk neutral measure and the
foreign interest rate is not identically 0 then we would have an arbitrage opportunity, as the
following lemma shows.

Lemma 9.4.4. Suppose thatD(t)Q(t) is a martingale under P̃ andRf (t) is not identically
0. Then an arbitrage opportunity exists.

Proof. Consider a contract that pays 1 unit of foreign currency at time T . The value of
this contract at time 0 is

V0 = Ẽ(D(T )Q(T )).
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By the assumption that D(t)Q(t) is a martingale under P̃ , we have V0 = Q0. But this
implies an arbitrage opportunity since at time 0, we can sell such a contract for Q(0), use
Q(0) to buy 1 unit of foreign currency and invest in the foreign money market. At time T
we would have eRf (t)dt in units of foreign currency which is larger than 1 since Rf (t) is
not identically 0. We can then use 1 foreign currency to close out the contract and make a
riskless profit.

9.5 Numéraires

Up to now, we have always assumed that prices were given in units of a fixed, domestic
currency, which for concreteness we take to be US dollars. One could choose other units
to measure prices, and it is often convenient, even necessary, to do so.

Let the price in dollars of some given asset or financial instrument be denoted N(t).
Let S(t) be the price in dollars of any other asset. Then the ratio

S(N) =
S(t)

N(t)

is the price of the asset corresponding to S in units of the asset corresponding to N . In
this situation, N is referred as the numéraire. The asset used for the numéraire could in
principle be almost anything— a risky asset in the market, a foreign currency, a money
market account, an index based on the market, or the price of a derivative.

Example 9.5.1. Let R(t) denote the (domestic) risk-free rate. It is common to think of
R(t) as the rate available from a money market account which can be added to or with-
drawn from at will. One unit of a money market account is defined to be the value of
$1 invested at time t = 0 and left in the account. This value in dollars at time t is
M(t) = exp{

∫ t
0
R(u) du}. If S(t) is the price in dollars of an asset at time t, its price

in units of the money market is

S(t)

exp{
∫ t

0
R(u) du}

= e−
∫ t
0 R(u) duS(t).

This is just the discounted price, or present value, of S(t). So we can think of discounting
as an example of pricing in money market account units.

Example 9.5.2. (Non-example) Consider the market model studied in Examples 2 and 3.
This consists of an asset with price (in dollars) S(t), an exchange rate Q(t) (dollars per
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unit of foreign currency), a domestic risk-free rate R(t), and a foreign risk-free rate Rf (t).
Let M(t) = exp{

∫ t
0
R(u) du}.

There are many choices for denominating prices. A tempting example is to use the
foreign currency as the numéraire. In this case, S(Q)(t) = S(t)/Q(t) is the price of the
asset in units of the foreign currency, while a unit of the domestic money market in the
foreign currency is M (Q)(t) = M(t)/Q(t). However, this should not be done, because
under the domestic risk neutral measure, Q(t) is NOT a martingale (See the discussion
in section (9.4.1) and in section (9.5.1)). This is also consistent with our remark at the
beginning of this note that we will only use non-dividend paying asset as numéraire. Q(t),
as denoting the price of the foreign currency, is a dividend paying asset with dividend rate
Rf .

Example 9.5.3. One could also use as numéraire the value in dollars N f (t) = M f (t)Q(t)
of a unit of the foreign money market. Then, in this unit

S(Nf )(t) =
S(t)

M f (t)Q(t)
= e−

∫ t
0 R

f (u) duS(Q)(t).

is the price of the asset, and

Q(t)

M f (t)Q(t)
= e−

∫ t
0 R

f (u) du

is the value of a unit of foreign currency.

9.5.1 Change of measure for change of numéraire

Risk-neutral pricing theory should not depend on the unit of price. If there is a risk-neutral
measure when the price is in dollars, then there ought to be a risk-neutral measure P̃N for
pricing with respect to N , for any numéraire N . This section addresses how to find P̃N .

We will always start out with a risk-neutral model for S(t) = (S1(t), . . . , Sd(t)), given
on a probability space (Ω,F , P̃), with filtration {F(t); t ≥ 0}, and a risk-free (domestic)
rate R(t), t ≥ 0. As usual, D(t) = exp{−

∫ t
0
R(u) , du} denotes the discount factor. Thus

we can also see this as starting out with our default probability measure as the domestic
risk neutral measure.

Let N(t), t ≥ 0, be a strictly positive, numéraire process. Since N(t) represents a price
and the model is risk-neutral, D(t)N(t), t ≥ 0, is a martingale. In particular,

Ẽ [D(T )N(T )] = N(0), for any T ≥ 0. (9.22)
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Let T be the time horizon for which we want to study the market. It follows that

P̃(N)(A) = Ẽ

[
1A
D(T )N(T )

N(0)

]
defines a new probability measure.

Theorem 5. P̃(N) is a risk-neutral measure for pricing with respect to N in the following
sense: for each i, 1 ≤ i ≤ m, S(N)

i (t) is a martingale with respect to {F(t); t ≥ 0} up to
time T under P̃(N).

Proof: The proof is an application of the formula for computing conditional expectations
under a change of measure. Shreve states a special case in Lemma 5.2.2. The formula
implies that for any sub-σ-algebra G,

Ẽ(N)
[
X
∣∣∣ G] =

Ẽ
[
X D(T )N(T )

N(0)

∣∣∣ G]
Ẽ
[
D(T )N(T )
N(0)

∣∣∣ G] . (9.23)

In this formula Ẽ(N) represents expectation with respect to P̃(N). Apply equation (9.23)
with X = S

(N)
i (T ) and G = F(t). The result is

Ẽ(N)
[
S

(N)
i (T )

∣∣∣ F(t)
]

=
Ẽ
[
Si(T )
N(T )

D(T )N(T )
N(0)

∣∣∣ F(t)
]

Ẽ
[
D(T )N(T )
N(0)

∣∣∣ F(t)
] =

Ẽ
[
D(T )Si(T )

∣∣∣ F(t)
]

Ẽ
[
D(T )N(T )

∣∣∣ F(t)
] .

ButD(u)Si(u) andD(u)N(u) are both martingales under P̃, and so Ẽ
[
D(T )Si(T )

∣∣∣ F(t)
]

=

D(t)Si(t) and Ẽ
[
D(T )N(T )

∣∣∣ F(t)
]

= D(t)N(t). Hence

Ẽ(N)
[
S

(N)
i (T )

∣∣∣ F(t)
]

=
D(t)Si(t)

D(t)N(t)
=
Si(t)

N(t)
= S

(N)
i (t).

This shows that S(N)
i (u), 0 ≤ u ≤ T , is a martingale under P̃(N). �

Remark 9.5.4. Intuitively, the foreign risk neutral measure P̃Nf
should satisfy the con-

dition that the discounted (under the foreign interest rate) risky asset price quoted in the
foreign currency is a martingale under P̃Nf . This is indeed true in our framework: Let St
be the dynamics of the risky asset quoted in dollars. Then St

Qt
is the price of the risky asset

quoted in foreign currency. By our construction,

Df (t)
St
Qt

=
St

N f (t)
= S(Nf )(t)

is a martingale under P̃Nf .
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9.5.2 Pricing under a change of numéraire

Suppose we have a financial product that pays V (T ) dollars at time T . Then the (domestic)
risk neutral price of this product at time t is

V (t) = Ẽ
[D(T )

D(t)
V (T )|F(t)

]
( since D(t)V (t) is a martingale under P̃ ).

What is the corresponding pricing formula when V (t) is denoted under the unit of a
numéraire N(t)? Arguing similar to the proof of Theorem (5) we will see that

V (t)

N(t)
= Ẽ(N)

[V (T )

N(T )
|F(t)

]
.

Thus denoting V (N)(t) := V (t)
N(t)

we have

V (N)(t) = Ẽ(N)
[
V (N)(T )|F(t)

]
.

This equation is meaningful by itself. It says that the price in the unit of numéraireN(t)
of the financial product is the conditional expectation under the corresponding risk neutral
measure of the terminal value, also expressed in the same unit of numéraire. Note that the
domestic risk neutral pricing formula is a special case of this when we use N(t) = 1

D(t)
,

the domestic money market account.
It is also important to remember that here V (t) is again in dollars, or the domestic

currency, and N(t) is the price in dollars of the numéraire of interest. To see a consequence
of this, see the below section on pricing a financial product quoted in foreign currency.

9.5.3 Effect of change of numéraire

In section V , no assumptions were made on the nature of the price model. In this sec-
tion, we specialize to the multi-asset model stated above and written under the risk-neutral
measure as

d [D(t)Si(t)] = D(t)Si(t)
d∑

k=1

σik(t) dW̃k(t), 1 ≤ i ≤ m. (9.24)

In addition, we impose the assumption that {F(t); t ≥ 0} is generated by W̃ .
Let N be a numéraire process and P̃(N) the risk-neutral measure for N . W̃ is no longer

a Brownian motion under P̃(N). The object of this section is use Theorem 3 and Girsanov’s
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theorem to identify an appropriate Brownian motion W̃ (N)(t) under P̃(N) and to rewrite
equation (9.24) using it.

Now D(t)N(t) is a martingale under P̃, and N(t), as a numéraire, is strictly positive
for all t. So Theorem 1 implies there is a process ν so that

D(t)N(t)

N(0)
= exp{

∫ t

0

ν(u) · dW̃ (u)− 1

2

∫ t

0

‖ν(u)‖2 du} (9.25)

Since P̃(N)(A) = Ẽ[1A
D(T )N(T )
N(0)

], it also follows from Theorem 1 that W̃ (n)(t) = W̃ (t)−∫ t
0
ν(u) du is a Brownian motion under P̃(N) up to time T .
Define σi(t) = (σi1(t), . . . , σid(t)), so that (9.24) may be written compactly as

dD(t)Si(t) = D(t)Si(t)
[
σi(t) · dW̃ (t)

]
.

By (9.12), the solution to this equation is

D(t)Si(t) = Si(0) exp{
∫ t

0

σi(u) · dW̃ (u)− 1

2

∫ t

0

‖σi(u)‖2 du}.

Thus, using the representation (9.25) for D(t)N(t),

S
(N)
i (t) =

Si(t)

N(t)
=
D(t)Si(t)

D(t)N(t)

=
Si(0)

N(0)
exp{

∫ t

0

[σi(u)− ν(u)] · dW̃ (u)− 1

2

∫ t

0

(‖σi(u)‖2 − ‖ν(u)‖2) du}

Replace dW̃ in this expression by dW̃ (N)(t) + ν(t) dt. Note first that

exp{
∫ t

0

[σi(u)− ν(u)] · [dW̃ (N)(u) + ν(u) du]

=

∫ t

0

[σi(u)− ν(u)] · dW̃ (N)(u) +

∫ t

0

σi(u) · ν(u) du−
∫ t

0

ν(u) · ν(u) du

=

∫ t

0

[σi(u)− ν(u)] · dW̃ (N)(u) +

∫ t

0

σi(u) · ν(u) du−
∫ t

0

‖ν(u)‖2 du

It follows that

S
(N)
i (t)

=
Si(0)

N(0)
exp{

∫ t

0

[σi(u)− ν(u)] · dW̃ (N)(u)− 1

2

∫ t

0

(‖σi(u)‖2 − 2σi(u) · ν(u) + ‖ν(u)‖2) du}.
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But

‖σi(u)− ν(u)‖2 = [σi(u)− ν(u)] · [σi(u)− ν(u)]

= ‖σi(u)‖2 − 2σi(u) · ν(u) + ‖ν(u)‖2)

Thus

S
(N)
i (t) =

Si(0)

N(0)
exp{

∫ t

0

[σi(u)− ν(u)] · dW̃ (N)(u)− 1

2

∫ t

0

‖σi(u)− ν(u)‖2 du}

It follows from equation (9.12) that

dS
(N)
i (t) = S

(N)
i (t)[σi(t)− ν(t)] · dW̃ (N)(t) = S

(N)
i (t)

d∑
k=1

(σik(t)− νk(t)) dW̃ (N)
k (t)

(9.26)
This is an interesting equation because it shows exactly how the volatility of S(N)

i differs
from that of Si. Of course, we expect them to differ because N itself has volatility and
S

(N)
i (t) = Si(t)/N(t). In fact, from the expression (9.25) and from (9.12) one finds that

dN(t) = R(t)N(t) dt+
d∑

k=1

νk(t) dW̃k(t),

so νk(t) is the component of the volatility of N at time t due to W̃k.

9.6 Foreign risk-neutral measure

The discussion of the previous section established the existence of ν, but not a formula for
it. In examples it can be found explicitly if the numéraire is defined explicitly.

Consider the example of a market with an asset and foreign currency formulated above.
Its risk neutral version was derived in Example 3 and is

dS(t) = R(t)S(t) dt+ σ1(t)S(t) dW̃1(t) (9.27)

dN f (t) = R(t)N f (t) dt+N f (t)σ2(t)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
.(9.28)

Recall that N f (t) = exp{
∫ t

0
Rf (u) du}Q(t) is the dollar value of one unit of the foreign

money market account. We shall use it as the numéraire in this section. The domestic
discount factor is D(t) = exp{−

∫ t
0
R(u) du}.
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From (9.28),

d[D(t)N f (t)] = D(t)N f (t)σ2(t)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
= D(t)N f (t)

(
σ2(t)ρ(t), σ2(t)

√
1− ρ2(t)

)
· dW̃ (t).

Note: D(0)N f (0) = Q(0). It follows from (9.12) that

D(t)N f (t) = Q(0) exp{
∫ t

0

ν(u) · dW̃ (t)− 1

2

∫ t

0

‖ν(u)‖2 du},

where ν(t) =
(
σ2(t)ρ(t), σ2(t)

√
1− ρ2(t)

)
.

The risk-neutral measure for denominating prices in units of the foreign money market
up to time T , or the foreign risk neutral measure in short, is therefore defined by

P̃(Nf )(A) = Ẽ

[
1A
D(T )N f (T )

Q(0)

]
= Ẽ

[
1A exp{

∫ t

0

ν(u) · dW̃ (t)− 1

2

∫ t

0

‖ν(u)‖2 du}
]
,

and

W̃ (Nf )(t) =

(
W̃1(t)−

∫ t

0

σ2(u)ρ(u) du, W̃2(t)−
∫ t

0

σ2(u)
√

1− ρ2(u) du

)
is a Brownian motion up to time T under P̃(Nf ).

The price of the asset with respect to numéraire N f (t) is S(Nf )(t) = S(t)/N f (t). It is
the present value of the asset price in units of the foreign currency (or just simply the value
of the asset price at time t in units of the foreign money market). It is a martingale with
respect to P̃(Nf ). By applying (9.26),

dS(Nf )(t) = S(Nf )(t)
[
(σ1(t)− σ2(t)ρ(t)) dW̃

(Nf )
1 (t)− σ2(t)

√
1− ρ2(t) dW̃

(Nf )
2 (t)

]
, t ≤ T.

Because W̃2 contributes to the volatility of N f (t), dW̃ (Nf )
2 (t) contributes to the volatility

of S(Nf )(t).

9.6.1 Pricing a financial product quoted in foreign currency

Suppose we have a financial product that pays V f (T ) := Φ(S·) units of foreign currency
at time T . Then we have the following lemma

Lemma 9.6.1. The risk neutral price (in foreign currency) of the above product is

V f (t) = Ẽ(Nf )
(
e−

∫ T
t Rf (u)duV (T )

∣∣∣F(t)
)
.
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Note that the result is very intuitive: to price a financial product quoted in foreign cur-
rency, we take conditional expectation under the foreign risk neutral measure, discounted
under the foreign interest rate.
Proof. The proof of this Lemma relies on the result of Section (9.5.2). Using the foreign
money market N f (t) as numéraire, the value of V f (T ) denoted in the units of N f (T ) is

V f (T )Q(T )

N f (T )
.

To price V f (T ) using N f (T ) as numéraire we need to use P̃ (Nf ). Thus we have

V (Nf )(t) = Ẽ(Nf )
[V f (T )Q(T )

N f (T )

∣∣∣F(t)
]
.

Note that N f (T ) = M f (T )Q(T ), and V (Nf )(t) = V f (t)
Mf (t)

. After simplifying, we get

V f (t)

M f (t)
= Ẽ(Nf )

[ V f (T )

M f (T )

∣∣∣F(t)
]
.

Since M f (t) = e
∫ t
0 R

f (u)du the conclusion follows.
Remark: Alternatively, the risk neutral price (in dollars) of this financial product is

Vt = Ẽ
[D(T )V f (T )Q(T )

D(t)

∣∣∣F(t)
]
.

But we have

Ẽ
[D(T )V f (T )Q(T )

D(t)

∣∣∣F(t)
]

= Ẽ(Nf )
[D(T )V f (T )Q(T )

D(t)

Q(t)M f (t)D(t)

Q(T )M f (T )D(T )

∣∣∣F(t)
]

= Ẽ(Nf )
[Df (T )V f (T )Q(t)

Df (t)

∣∣∣F(t)
]
.

Thus dividing by Q(t) on both sides gives

Df (t)V f (t) = Ẽ(Nf )
[
Df (T )V f (T )

∣∣∣F(t)
]
.

9.7 The exchange rate

Recall the exchange rate model. There is asset price S(t), foreign exchange rate Q(t),
domestic money market rate R(t) and foreign money market rate Rf (t). Recall

N f (t) = exp{
∫ t

0

Rf (u) du}Q(t) (9.29)
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is the dollar value of one unit of the foreign money market account. The risk-neutral model
when prices are in dollars is

dS(t) = R(t)S(t) dt+ σ1(t)S(t) dW̃1(t)

dN f (t) = R(t)N f (t) dt+N f (t)σ2(t)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
(9.30)

The risk-neutral measure P̃(Nf ) when prices are denominated using N f as numéraire is
given in Shreve, page 386, equation (9.3.17) and in the previous set of lecture notes. Here,
we make some remarks concerning the exchange rate process Q(t).

9.7.1 The exchange rate under the domestic risk-neutral measure

It follows from equations (9.29), (9.30) that

dQ(t) = [R(t)−Rf (t)]Q(t) dt+Q(t)σ2(t)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
(9.31)

When dealing with Q alone it is convenient to write this in a simpler form. Define

W̃3(t) =

∫ t

0

[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
.

Observe that

[dW̃3(t)]2 =
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]2

= ρ2(t) dt+ (1− ρ2(t)) dt = dt.

W̃3(t) is a continuous martingale starting at 0 with quadratic variation t and so Lévy’s
theorem implies that W̃3(t) is itself a Brownian motion. Using W̃3,

dQ(t) = [R(t)−Rf (t)]Q(t) dt+ σ2(t)Q(t) dW̃3(t). (9.32)

Remark: The foreign exchange rate behaves exactly like a risky asset that pays divi-
dents at rateRf (t). Equation (9.32) is the same as equation (5.5.6) in Shreve for a dividend-
paying asset if A(t) in that equation is replaced by Rf (t).
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9.7.2 Black-Scholes formula for a Call option on the exchange rate

Let σ2(t) = σ2 be constant, and also let R(t) = r and Rf (t) = rf be constant. Then
equation (9.32) becomes

dQ(t) =
[
r − rf

]
Q(t) dt+ σ2Q(t) dW̃3(t). (9.33)

The solution to this equation is

Q(t) = Q(0) exp{σ2W̃3(t) + (r − rf − 1

2
σ2)t}. (9.34)

We can look at Q(t) (from a computational point of view) as the Black-Scholes price of
an asset following the geometric Brownian motion model, when the volatility is σ2 and the
risk free rate is rf − r.

The fact that Q(t) is a classical Black-Scholes price gives immediate formulas for op-
tions on the exchange rate in the constant coefficient case, which we will develop below.

Suppose that the risk free rate is r and under P̃ , a stock St has dynamics:

dSt = rStdt+ σStdW̃t.

Let C(T − t, x,K, r, σ) the price of at time t of a European call on S with strike K,
conditioned on St = x. That is

C(T − t, x,K, r, σ) = Ẽ
(
e−r(T−t)(ST −K)+

∣∣∣St = x
)
.

Then the Black-Scholes formula for C(T − t, x,K, r, σ) is

C(T − t, x,K, r, σ) = e−r(T−t)Ẽ

[(
xeσW̃ (T−t))+(r−σ2/2)(T−t) −K

)+
]

= xN

(
ln(x/K) + (r + σ2

2
)(T − t)

σ
√
T − t

)

−Ke−r(T−t)N

(
ln(x/K) + (r − σ2

2
)(T − t)

σ
√
T − t

)
Consider now a European call option onQ(T ) at strikeK, for the model of (9.34). This

can also be looked at as a call option with strike K on a unit of foreign currency, quoted in
domestic currency.

According to risk-neutral pricing, the value of this option at time t is

V (t) = e−r(T−t)Ẽ
[
(Q(T )−K)+

∣∣ F(t)
]

= e−r
f (T−t)e−(r−rf )(T−t)Ẽ

[
(Q(T )−K)+

∣∣ Q(t)
]
.
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But evaluating e−(r−rf )(T−t)Ẽ
[
(Q(T )−K)+

∣∣ Q(t)
]

is exactly the same as evaluating the
price of a European call when the risk free rate is r− rf and the volatility is σ2. Therefore,

V (t) = e−r
f (T−t)C(T − t, Q(t), K, r − rf , σ2).

This is called the Garman-Kohlhagen formula. You can also recover this formula from the
formula (5.5.12) in Shreve for the price of a call on dividend-paying asset. Just replace a
in this formula by rf .

9.7.3 The exchange rate from the foreign currency viewpoint

Starting with the model (9.29)-(9.30), suppose we use the foreign currency money market
N f (t) as the numéraire. In the previous lecture we found that

W̃ (Nf )(t) = (W̃1(t)−
∫ t

0

σ2(u)ρ(u) du, W̃2(t)−
∫ t

0

σ2(u)
√

1− ρ2(u) du)

is a Brownian motion under P̃(Nf ) and we showed

dS(Nf )(t) = S(Nf )(t)
[
(σ1(t)− σ2(u)ρ(u)) dW̃

(Nf )
1 (t)− σ2(t)

√
1− ρ2(t) dW̃

(Nf )
2 (t)

]
To completely describe the model from the viewpoint of the foreign currency we should

also look at the dollar to foreign currency exchange rate 1/Q(t), which is the value of one
dollar in units of the foreign currency. The equation for this should have a form symmetrical
to the equation (9.33) for Q(t) when units are in dollars. Indeed,

d

[
1

Q(t)

]
= [Rf (t)−R(t)]

1

Q(t)
dt−σ2(t)

1

Q(t)

[
ρ(u) dW̃

(Nf )
1 (t) +

√
1− ρ2(t) dW̃

(Nf )
2 (t)

]
.

(9.35)
This may be verified from Itô’s rule, but one can see why it must be correct by the following
reasoning. From the perspective of numéraire N f , Rf (t) is the domestic risk free rate and
R(t) is the domestic rate, so, whereR(t)−Rf (t) appears in (9.32),Rf (t)−R(t) appears in
(9.35). The volatility terms are essentially the same because the same stochastic fluctuation
is obviously driving both Q(t) and 1/Q(t). To explain why σ2 appears in (9.32) but −σ2

appears in (9.35) just note that 1/Q(t) goes down when Q goes up and vice-versa.
Concerning this topic, the student should read section 9.3.4 on Siegel’s paradox (which

is not really a paradox, but arises from a misunderstanding of the correct numéraire to use
in interpreting a model.)
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9.8 Zero coupon bonds as numéraire

In this section we assume given a risk-neutral model with a stochastic interest rate process
R(t), t ≥ 0.

9.8.1 Zero-coupon bonds

Bonds are financial instruments that promise fixed payoffs. Most bonds provide periodic
payments called coupons and then a final payment consisting of a coupon and a lump sum
called the principal or face value. A zero-coupon bond pays out only at the terminal time.
We let B(t, T ) denote the price at time t ≤ T of a zero-coupon bond that pays $1 at time
T .

Given a risk-neutral model defined by a probability measure P̃, the no-arbitrage prin-
ciple demands that D(t)B(t, T ) be a martingale in t up to time T . Since B(T, T ) = 1, it
follows that

B(t, T ) =
Ẽ[D(T )B(T, T )

∣∣∣ F(t)]

D(t)
=
Ẽ[D(T )

∣∣∣ F(t)]

D(t)
=
Ẽ
[
e−

∫ T
0 R(u) du

∣∣∣ F(t)
]

e
∫ t
0 R(u) du

.

(9.36)
Hence,

B(t, T ) = Ẽ
[
e−

∫ T
t R(u) du

∣∣∣ F(t)
]

(9.37)

This is an interesting formula. If R(·) is a random process, and we are at time t, we do
do not know what R will be exactly after time t. But we do the market tells us what all
zero-coupon bond prices are. Any model we create for R must be consistent with (in quant
lingo, must be calibrated to) the zero-coupon bond prices via (9.37).

9.8.2 Forward prices

Suppose at time t, where t < T , Alice contracts to buy a unit of an asset from Bob at price
F at time T . This is called a forward contract. No money changes hands at time t. Let
S(u) denote the price of the asset as a function of time u. From Alice’s perspective she is
getting an option that pays off S(T )−F , because she is purchasing something worth S(T )

dollars for F dollars at time T . The value of this option at t is D−1(t)Ẽ[D(T )(S(T )−F )
∣∣∣

F(t)] = S(t)− FB(t, T ); remember, D(t)S(t) is a martingale with respect to P̃! If she is
paying or receiving no money for the contract at time t this value should be zero. Hence

F =
S(t)

B(t, T )
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is the fair price for this contract. It is called the T -forward price and denoted by ForS(t, T ).
Really, it is the price of S(t) obtained using B(t, T ) as a numéraire.

A trivial but important observation is that the forward price and the market price concur
at time T :

ForS(T, T ) =
S(T )

B(T, T )
= S(T ). (9.38)

9.8.3 The risk-neutral measure associated with the zero-coupon bond

Under the domestic risk neutral measure P̃ , DtB(t, T ) is a martingale. Therefore, B(t, T )
can be used as a numéraire. Indeed, the risk-neutral measure corresponding to numéraire
B(t, T ), according to Theorem 3 of Lecture 9, is

P̃T (A) = Ẽ[1A
D(T )B(T, T )

B(0, T )
] =

1

B(0, T )
Ẽ[1AD(T )]

We will call P T , following Shreve (Definition 9.4.1), the T-forward measure.
Consider the special case in which the filtration in the risk neutral market is generated

by a single Brownian motion W̃ . Then in this case we know from Theorem 9.1 of Shreve
that there is a process νT (u) such that

D(T )

B(0, T )
= e

∫ T
0 νT (u) dW̃ (u)− 1

2

∫ T
0 ν2T (u) du

and that W̃ T (t) = W̃ (t)−
∫ t

0

νt(u) du is a Brownian motion under P̃T . (In Shreve, 9.4.2,

the notation −σ∗(t, T ) stands for our νT (t).

9.8.4 Pricing under the T-forward measure

Pricing under the domestic risk neutral measure with random interest rate

Suppose the interest rate is Rt, an adapted process. Then the risk neutral price Vt of a Euro
style financial product that pays VT at time T is

Vt = Ẽ
(
e−

∫ T
t RuduVT

∣∣∣Ft).
Since all we know about Rt is that it is an adpated process, we cannot go further with

this pricing formula, unless we make some assumption on Rt (which is about modeling the
interest rate, the topic of next Chapter). This is certainly a complex topic. Moreover, even
if we have a model for Rt, it doesn’t mean the pricing formula will be simple, if

∫ T
t
Rudu
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has non zero correlation with VT , for example. However, a nice observation here is that we
do not have to compute this equation under Ẽ. Indeed, recall from the section 5.2 result,
we have:

V T
t = ẼT

(
V T
T

∣∣∣Ft).
where V T

t := Vt
B(t,T )

is the price of the product denoted in the unit of zero-coupon bond.
Note that since B(T, T ) = 1, we have V T

T = VT .
The nice thing about the pricing formula under P̃ T is that it is only a conditional ex-

pectation of the terminal value, not involving other quantities like the interest rate (this is
not a pure gain, since the interest rate was absorbed into ẼT ). However, this suggests a
new approach to the entire problem: we may directly model the assets under P̃ T , rather
than under domestic measure P̃ . Note that if we model the asset under P̃ T , then the unit of
denomination ( or the numéraire) is the price of zero coupon bond B(t, T ). In particular, if
our objective is to model the stock price St (under P̃ ) then under P̃ T , we model

STt :=
St

B(t, T )
= ForS(t, T ).

Pricing a call option on S(t) under the domestic risk neutral measure is equivalent to
pricing a call option on the forward price ForS(t, T ) under the T-forward measure. The ad-
vantage here is again about modeling. If we model under P̃ then necessarily we need to in-
volve the model ofRt and need to know how to handle the expectation Ẽ

(
e−

∫ T
t RuduVT

∣∣∣Ft).

If we model under P̃ T then we only need to model the forward price of St (which poten-
tially maybe easier to calibrate to market parameters than modelingRt) and then the expec-
tation ẼT

(
V T
T

∣∣∣Ft) is straight forward. The detailed computation is done in the following
section.

Pricing a Call option under the T-forward measure

Here one assumes that the forward price of asset S, is given by the simple formula

dForS(t, T ) = σForS(t, T ) dW̃ T (t), t ≤ T.

The point is that this is the Black-Scholes price model with r = 0, and if one looked at
S(t) under the original risk-neutral measure, it would not follow a Black-Scholes model
with constant volatility. However it is possible to explicitly price a call. Indeed, let C(T −
t, x,K, r, σ) denote the Black-Scholes price of a European call when the price is x, the risk-
free interest rate is r and the volatility is σ. Let V (t) be the dollar price of the call. Then
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its forward price is V T (t) = V (t)/B(t, T ). But, recalling from (9.38) that ForS(T, T ) =
S(T ), we know from risk-neutral pricing that

V T (t) = ẼT

[
(S(T )−K)+

B(T, T )

∣∣∣ F(t)

]
= ẼT

[
(ForS(T, T )−K)+

∣∣∣ F(t)
]

= ẼT
[
(ForS(T, T )−K)+

∣∣∣ ForS(t, T )
]
.

But since ForS(t, T ) follows the Black-Scholes price model with r = 0 and volatility σ,

V T (t) = C(T − t,ForS(t, T ), K, 0, σ).

Hence,
V (t) = B(t, T )C(T − t,ForS(t, T ), K, 0, σ).

By substitution into the explicit formula for C (given above on page 2),

V (t) = B(t, T )ForS(t, T )N

(
ln(ForS(t,T )

K
) + σ2

2
(T − t)

σ
√
T − t

)

−KB(t, T )N

(
ln(ForS(t,T )

K
)− σ2

2
(T − t)

σ
√
T − t

)
This is essentially formula (9.4.9) in Shreve.

Clearly, this procedure could be applied to other cases where explicit pricing formulae
are known for the Black-Scholes price model.

9.9 Miscellaneous - A related interview question

Consider the Black-Scholes formula:

V0 = S0N(d+)−Ke−rTN(d−).

What events are N(d+), N(d−) probabilities of (and, maybe not obvious at first, under
what measure)? This is an interview question that I was asked. The answer is as followed:
by risk neutral pricing

V0 = Ẽ(e−rT (ST −K)+)

= Ẽ(e−rT (ST −K)1{ST≥K})

= Ẽ(e−rTST1{ST≥K} −Ke−rT1{ST≥K}).

Therefore it is clear that N(d−) is the probability that ST ≥ K under the risk neutral
measure. What about N(d+)? The presence of the term e−rTST may make it seem like
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it is not a probability. However, if we note that Zt = e−rtSt
S0

is a martingale under the risk
neutral measure with initial value Z0 = 1, then we can write

Ẽ(e−rTST1{ST≥K}) = S0Ẽ(
e−rTST
S0

1{ST≥K}) = S0P
(S)(ST ≥ K).

That is N(d+) is the probability that ST ≥ K under the measure using S itself as a
numéraire.
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CHAPTER 10 Interest rate models

10.1 Introduction

So far in this class, we have studied various financial derivatives connected with a stock
model. The stock is a typical example of a risky asset. On the other hand, we also have the
bond, whose price is directly related to the interest rate, which in turn influences the price
of the risk free asset: the money market account. In this Chapter, we will study various
models of the short rate and the forward rate, which leads us to the price of the bond.

10.1.1 Money market account versus zero-coupon bond

It is clear that both the money market account and the zero-coupon bond prices are deter-
mined by the interest rate. But just how the two are similar and how are they different?

When the interest rate is a deterministic constant r, then the price at time t of a zero-
coupon bond is B(t, T ) = e−r(T−t). This is the same as the price of a money market
account that has initial deposit at time 0 equals e−rT = B(0, T ). On the other hand, it’s
also clear that the price at time t of a money market account with initial deposit K is Kert,
which is also the price of KerT shares of zero-coupon with maturity T .

The situation is not the same when the interest rate is stochastic. First, observe that if
the interest rate is an adapted process R(t), then the value of the money market with an
initial deposit K at time T is

M(T ) = K exp(

∫ T

0

Rudu),

and is random. Thus one cannot determine an initial deposit amount so that M(T ) =
B(T, T ) = 1: the money market account cannot replicate a zero-coupon bond.

Similarly, the price at time 0 of a zero-coupon bond is

B(0, T ) = Ẽ
(
e−

∫ T
0 Rudu

)
,

where Ẽ is the expectation under a risk neutral measure. So without a prior assumption (or
a model) of R(t) under the risk neutral measure P̃ , one cannot compute what B(0, T ) is
(We say the bond price B(0, T ) is determined by the market).
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An interesting question is by observing B(t, T ) for all 0 ≤ t ≤ T , can one determine
what R(t) is? I believe for a fixed T , the answer is no. However, if we know the price of
B(t, T ) for various maturity T , then we can deduce what R(t) is, see the next section.

10.1.2 Various rates connected with bond

Since the payment of the bond with maturity T at time T is fixed, one can use the bonds
(with various maturities, if necessary) to “lock-in" certain interest rates. Thus, zero-coupon
bond prices are used as the standard for calculating interest rates. Throughout, it is assumed
we deal with the market for risk free bonds and loans. The price at time t ≤ T of a
zero-coupon bond that pays $1 at time T shall always be denoted by B(t, T ). Notice that
B(T, T ) = 1. There are various interest rates associated with B.

(i) Continuous compounding:

In this discussion all interest rates are quoted assuming continuous compounding. Con-
sider an account which at time S has $LS and at time T > S has $LT , where S and T are
measured in years. Then the interest rate r, per annum, continuously compounded, earned
over [S, T ] is determined by the equation LSer(T−S) = LT , or

r =
1

T − S
ln

(
LT
LS

)
(10.1)

(ii) The spot rate (yield to maturity)

The zero rate for the period [t, T ], also called the spot rate, or, more precisely, the
continuously compounded spot rate for the period [t, T ] is the function which gives the
interest rate of a zero coupon bond over the interval [t, T ]. That is, if we denote this rate by
R(t, T ) then

1 = B(t, T ) exp
(
R(t, T )(T − t)

)
.

From which it follows that

R(t, T ) =
1

T − t
ln

(
1

B(t, T )

)
= − lnB(t, T )

T − t
(10.2)

Thus
B(t, T ) = e−(T−t)R(t,T ). (10.3)

For a fixed t, a plot of R(t, T ) as a function of T is called a spot rate curve. It gives
the (continuously compounded) interest rates available for risk free zero coupon bonds for
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all maturities starting from t. The notable fact about the spot rate curve is that it is not
constant—normally it tends to be upward sloping. This phenomenon is called the term
structure of interest rates. R(t, T ) is also referred to as the yield to maturity of the zero
coupon bond at time t for the time to maturity τ = T − t.

(iii) The forward rate

Consider times t < S < T . Suppose at time twe would want to lock in certain spot rate
for the time interval [S, T ]. Let’s call this rate F (t, S, T ). Then clearly this rate must be
related with the bond priceB(t, S) andB(t, T ). So we should determine what F (t, S, T ) is
and further inquire into whether we can indeed lock in this rate at time t by trading certain
shares of the bonds with maturities at S and T .

To answer the first question, clearly what we want is if we invest 1 dollar at time S
then we should receive exp

(
F (t, S, T )(T − S

)
at time T . Note that, 1 dollar at time S is

equivalent to B(t, S) at time t and exp
(
F (t, S, T )(T −S)

)
dollars at time T is equivalent

to B(t, T ) exp
(
F (t, S, T )(T − S)

)
at time t. These clearly should be equal if we want to

lock in the rate F (t, S, T ) at time t. Therefore

B(t, S) = B(t, T ) exp
(
F (t, S, T )(T − S)

)
,

or

F (t;S, T ) =
1

T − S
ln

(
B(t, S)

B(t, T )

)
= − lnB(t, T )− lnB(t, S)

T − S
.

To answer the second question, first plug

F (t, S, T ) = − lnB(t, T )− lnB(t, S)

T − S

into B(t, T ) exp
(
F (t, S, T )(T − S)

)
and observe that

B(t, T ) exp
(
F (t, S, T )(T − S)

)
= B(t, T )

B(t, S)

B(t, T )
.

This suggests that we should hold B(t,S)
B(t,T )

shares of bond with maturity T at time t. To
finance this position, we should sell 1 share of bond with maturity S at time t (since we
expect to invest 1 dollar at time S). This turns out to be the right scheme because this
costs nothing at time t: If at t we sell one zero-coupon bond maturing at S for B(t, S)
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and with this money buy B(t, S)/B(t, T ) zero-coupon bonds maturing at T , the net value
of this transaction for us is 0. At time S we pay out a dollar and at time T receive
B(t, S)/B(t, T ). This is indeed equivalent to earning, at T , the amount B(t, S)/B(t, T ) =

exp
(
F (t, S, T )(T − S)

)
from a deposit of $ 1 at S. The rate of interest earned by this

transaction, F (t, S, T ) is called the forward rate for [S, T ] contracted at t.
Remark: F (t, S, T ) is known at time t by observingB(t, S) andB(t, T ), that isF (t, S, T ) ∈

Ft, where Ft is the filtration generated by B(t, S) and B(t, T ).

(iv) The instantaneous forward rate

The forward rate F (t, S, T ) has the formula

F (t;S, T ) = − lnB(t, T )− lnB(t, S)

T − S
.

If we let T goes to S, then the right hand side should go to − ∂
∂T

ln[B(t, S)], if the
derivative exists. Indeed, if we assume B(t, T ) is differentible in T , then this is the case.
This is not an unreasonable assumption since for a fixed t, one can believe that the bond
price is a smooth function of different maturities. (On the other hand, for a fix maturity T ,
the bond price should not be a smooth function of t. It should be very irregular, indeed, in
t, similar to behavior of the graph of a Brownian motion in t).

So we define the instantaneous forward rate at t for investing at time T as

f(t, T ) = − ∂

∂T
ln[B(t, T )]. (10.4)

By integrating in T , it follows that

B(t, T ) = exp{−
∫ T

t

f(t, u) du} (10.5)

For brevity, we refer to f(t, T ) as the forward rate function.
Remark: Again, note that here f(t, T ) is known at time t, that is f(t, T ) ∈ Ft where Ft

is the filtration generated by B(t, T ).

(v) The short rate
The short rate is the rate available at time t for the shortest period loans. Formally it is

defined as
R(t) = f(t, t) (10.6)

Remark: It seems reasonable to define R(t) = f(t, t) (just from the understanding of
what the forward rate is). First, it is reasonable to believe the spot rate R(t, T ) should
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converge to the short rate R(t) when T → t. Recall

R(t, T ) = − lnB(t, T )

T − t
=

∫ T
t
f(t, u)du

T − t
.

The RHS converges to f(t, t) (by Lesbegue differentation theorem) as T → t. So if we
expect R(t, T ) to converge to R(t), then it is reasonable to set R(t) = f(t, t).

Second, from comparing the risk neutral pricing formula

B(t, T ) = Ẽ
(
e−

∫ T
t R(u)du

)
with the definition of the forward rate:

B(t, T ) = e−
∫ T
t f(t,u)du,

we should expect R(t) = f(t, t) as well. Indeed, suppose R(t) > f(t, t). Then if we
suppose R(u) and f(t, u) are continuous functions of u (which is reasonable) then there
must exist some T > t so that R(u) > f(t, u) for u ∈ [t, T ]. But then we have

B(t, T ) = e−
∫ T
t f(t,u)du > Ẽ

(
e−

∫ T
t R(u)du

∣∣F(t)
)

= B(t, T ),

which is a contradiction. So this cannot happen.

10.1.3 Remarks on modeling B(t, T ), R(t), f(t, T )

At each t, the market presents us with the function B(t, t + s), s ≥ 0, or, equivalently,
f(t, t + s), s ≥ 0, capturing, at each time t, the return on zero-coupon bonds of all matu-
rities. As a function of s, this term structure of interest rates fluctuates as t changes, and,
we regard these fluctuations as random, because we cannot predict them exactly for future
values of t. Developing good stochastic process models for the term structure of interest
rates is a major area of mathematical finance. These models are used to analyze and price
derivatives that depend on credit markets.

A few, loosely stated principles guide the construction of the basic models covered in
this course. First, the models should be simple enough for fairly explicit calculation or at
least easy simulation. Second, they should be rich enough that they can be calibrated to
the market; that is, it should be possible to choose the parameters of the model so that its
statistical behavior mimics reasonably well actual market performance. Of course, these
two criteria push in opposite directions—the richer the model, the harder it is to analyze and
simulate—and one must strike a good balance between them. A third important principle
is that the model should not admit arbitrage.

From the previous section, all three processes B(t, T ), R(t), f(t, T ) are objects of in-
terest in modeling and we would like to obtain models for all three of them (for a fixed
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maturity T , as a process in t). It is also clear that if we get a model for one then the other
two can be deduced out of it, via the relations:

B(t, T ) = e−
∫ T
t f(t,u)du

B(t, T ) = Ẽ
(
e−

∫ T
t R(u)du

∣∣F(t)
)

R(t) = f(t, t).

But there are subtle differences in which process we choose to model actually. First
suppose we want to model B(t, T ) (which means we fix the maturity T and model B(t, T )
as a process in t). And let’s say we go with the Geometric framework:

dB(t, T ) = α(t, T )B(t, T )dt+ σ(t, T )B(t, T )dWt,

under the physical measure P , where B(0, T ) is assumed known. The question is what
should α and σ be? We recognize that they cannot be just any processes because we have
the contraint:

B(T, T ) = 1.

Indeed, unless for very trivial choices (σ = 0, α a constant) the terminal constraint
cannot be easily satisfied. So modeling B(t, T ) as a function of t does not seem straight-
forward.

Note that the constraint B(T, T ) = 1 is naturally built into the formula

B(t, T ) = e−
∫ T
t f(t,u)du.

Thus, a good idea is to model the forward rate f(t, T ) and then deriveB(t, T ) via the above
formula. This is the HJM model and will be discussed in the next lecture.

The last approach is of course to model R(t) and derive B(t, T ) via the relation

B(t, T ) = Ẽ
(
e−

∫ T
t R(u)du

∣∣F(t)
)
.

The subtle point to note here is if we take this approach, then necessarily we need to
model R(t) in under the risk neutral measure P̃ to obtain a price for B(t, T ). The reason
is this: if we model R(t) in the physical probability P , say

dR(t) = α(t)dt+ σ(t)dWt,

under P ; then we do not have a market price of risk equation: there is one random source
and there is no asset here. (Remember that we do not have the bond price dynamics under
P under this approach, whose goal is to induce the bond price from the risk neutral pricing
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formula). Starting to modelR(t) under the risk neutral measure doesn’t seem unreasonable;
all it takes is to declare

dR(t) = α(t)dt+ σ(t)dW̃t,

under P̃ . But this may pose a problem for model calibration when we need to determine
α, σ. The reason is we live in the physical world, i.e. we observe distribution under P .
Nevertheless, modeling R(t) under the risk neutral measure is an approach that many have
taken and it leads to a connection with the forward rate HJM model, which can be modeled
under the physical measure P . So in this lecture, we will discuss modeling the short rate
R(t) under the risk neutral measure and leave the connection with the forward rate for the
next lecture.

The last question you may ask is, if we do not have the market price of risk equation,
then who determines the risk neutral measure P̃ ? The answer is: the market does. I.e., it
decides the bond price B(t, T ), which in turns imply what the risk neutral measure P̃ is
(This is the answer given by Björk in his book: Arbitrage theory in continuous time). I’ll
leave it to you to ponder more about the meaning of this answer.

In both approaches (modeling R(t) and f(t, T )), the models we present have an ad
hoc flavor. It would seem more reasonable to build models supported by some theory of
how the economy works. Such models would try to incorporate in a quantitative manner
the economic factors and indicators that influence term structure. But we shall proceed
innocent of all economic theory. We just look for models based on stochastic differential
equations that we hope are rich enough to capture actual market behavior.

10.2 Multi-factor short rate models

A multi-factor model will consist of a vector-valued process

X(t) =

 X1(t)
...

Xm(t)

 ,

that solves a stochastic differential equation and is a Markov process under the risk-neutral
measure, and a function Φ(x1, . . . , xm). The short rate is then defined by

R(t) = Φ(X1(t), . . . , Xm(t)).

The factors Xi, i = 1, · · · ,m are meant to model economic factors that might influence
the interest rate, such as GDP, import-export rate, inflation etc. A particularly simple choice
for Φ(X1(t), . . . , Xm(t)) would be R(t) = δ0(t) +

∑m
i=1 δi(t)Xi(t). That is R(t) is just a
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linear combination of the factors. One can then use linear regression to determine δi, i =
0, · · · ,m.

Recall that the relation between the bond price and the short rate is via the equation

B(t, T ) = Ẽ
(
e−

∫ T
t R(u)du

∣∣F(t)
)

(10.7)

In the short-rate approach, being able to analyze the model comes down to calculating
the conditional expectation in formula (10.7).

The key in evaluating this conditional expectation is an old idea that we have used over
and over again in this course:

(i) Construct a model for the process R(t) so that it is Markovian. Then (10.7) becomes

B(t, T ) = Ẽ

[
exp{−

∫ T

t

Φ(X1(s), . . . , Xm(s)) ds}
∣∣∣ X1(t), . . . , Xm(t)

]
.

Thus we can find a function c(t, x1, x2, ..., xm) so that c
(
t,X1(t), X2(t), ..., Xm(t)

)
=

B(t, T ).
(ii) Find a PDE that c(t, x1, x2, ..., xn) satisfies. If we can solve the PDE (via numerical

procedure, for example) then we can recover the bond price B(t, T ) as described in (i).

10.2.1 Affine-yield model

Definition 10.2.1. The short rate model is called an affine-yield model if it turns out that
the zero-coupon bond price can be written as

B(t, T ) = exp{−C1(t, T )X1(t)− · · · − Cm(t, T )Xm(t)− A(t, T )}, (10.8)

for some functions C1(t, T ), . . . , Cm(t, T ), and A(t, T ).

Remark: Recall that the spot rate, or the yield to maturity R(t, T ) is defined such that

B(t, T ) = e−(T−t)R(t,T ).

Compare this with (10.8) we see that an affine yield model is such that the yield to maturity
R(t, T ) is an affine combination of the factors Xi, i = 1, · · · ,m. The Vasicek, CIR and
Hull-White models discussed below are affine-yield models.

The case in which m = 1 is called a single-factor model. In such a model one takes
R(t) itself to be a Markov process; no auxiliary process X(t) is defined.
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10.2.2 Connection with the forward rate

Affine yield models are particularly nice because it is easy to read off of an affine model a
model for the instantaneous forward rate:

B(t, T ) = exp{−C1(t, T )X1(t)− · · · − Cm(t, T )Xm(t)− A(t, T )}

= exp(−
∫ T

t

f(t, u)du).

Thus

−C1(t, T )X1(t)− · · · − Cm(t, T )Xm(t)− A(t, T ) = −
∫ T

t

f(t, u)du.

By differentiating both sides of the equation with respect to T , (assuming Ci(t, T ) and
A(t, T ) are differentiable w.r.t T ) we have a model for f(t, T ).

The obvious question is then how can we come up with candidates for affine yield
models? We’ll give an idea of how this is done in the two factor model in the section
below. The generalization of this procedure for multi-factor model is straight forward.

10.3 Affine yield model in general

We illustrate the idea for two factor models under the risk neutral measure P̃ ,

dX1(t) = a1(t,X1(t), X2(t)) dt+ b11(t,X1(t), X2(t)) dW̃1(t) + b12(t,X1(t), X2(t)) dW̃2(t)

dX2(t) = a2(t,X1(t), X2(t)) dt+ b21(t,X1(t), X2(t)) dW̃1(t) + b22(t,X1(t), X2(t)) dW̃2(t)

There is a lot of freedom in this general set-up, and we will quickly be more specific.
But an easy first observation is that to obtain an affine yield model, we need R(t) to be an
affine function of X1, X2.

Thus we assume that R(t) = δ0(t) + δ1(t)X1(t) + δ2(t)X2(t), where δi(t), i = 0, ...2
are parameters of the model that would be determined by model calibration.

Because (X1, X2) is a Markov process, we know that B(t, T ) = g(t,X1(t), X2(t)) for
some function g.

To find an equation for g we start with the observation that

D(t)g(t,X1(t), X2(t)) = D(t)B(t, T )

is a martingale under the risk-neutral measure and that

g(T,X1(T ), X2(T )) = B(T, T ) = 1.

Apply Ito’s formula,
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d[D(t)B(t, T )] = D(t)Lg(t,X1(t), X2(t)) dt

+D(t)M1g(t,X1(t), X2(t)) dW̃1(t) +D(t)M2g(t,X1(t), X2(t)) dW̃2(t),

where

Lg(t, x1, x2) = −(δ0 + δ1(t)x1 + δ2(t)x2)g + gt + a1(t, x1, x2)gx1 + a2(t, x1, x2)gx2

+
1

2
[b2

11 + b2
12](t, x1, x2)gx1x1 + [b11b21 + b12b22](t, x1, x2)gx1x2

+
1

2
[b2

21 + b2
22](t, x1, x2)gx2x2

and

M1g(t,X1(t), X2(t)) = b11(t, x1, x2)gx1 + b21(t, x1, x2)gx2
M2g(t,X1(t), X2(t)) = b12(t, x1, x2)gx1 + b22(t, x1, x2)gx2 .

(In these expressions we have omitted writing the argument (t, x1, x2) of g and its partials.)
In order that D(t)g(t,X1(t), X2(t)) be a martingale, g must be a solution of the parabolic
pde,

Lg(t, x1, x2) = 0, t ≤ T, g(T, x1, x2) = 1. (10.9)

The following is the key observation:
If all the coefficients of the operator L—that is

a1(t, x1, x2), a2(t, x1, x2), [b2
11 + b2

12](t, x1, x2), etc.

are affine functions, i.e. functions of the form

η0(t, T ) + η1(t, T )x1 + η2(t, T )x2,

then (10.9) has a solution of the affine-yield form. That is, we can find α(t, T ), c1(t, T ), c2(t, T )
such that

g(t, x1, x2) = exp{−c1(t, T )x1 − c2(t, T )x2 − α(t, T )}, with
c1(T, T ) = c2(T, T ) = α(T, T ) = 0.

Remark:
a. We require the b2

11 + b2
12 etc. to be affine, not b11 or b12 themselves. This explains the

choice of the volatility in Vasicek model: constant in xi and the choice of volatility in CIR
model:

√
xi for bii and 0 for bij, i 6= j.
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b. If η0(t, T ), η1(t, T ), η2(t, T ) are constants, that is the coefficients in the affine form of
ai(t, x1, x2 etc. are constants, (which is the case for the standard Vasicek and CIR models)
then we can check that ci(t, T ) takes the form ci(T − t), similarly for α(t, T ). That is their
dependence on the two variables t, T is only on the difference T − t.

The conditions c1(T, T ) = c2(T, T ) = α(T, T ) = 0 imply that this function automati-
cally satisfies the boundary condition g(T, x1, x2) = B(T, T ) = 1.

Moreover, for this g, one can see by direct calculation that

Lg = D1(t, T )x1g +D2(t, T )x2g +D3(t, T )g,

where D1(t, T ), D2(t, T ), D3(t, T ) are defined in terms of c1(t, T ), c2(t, T ), α(t, T ) and
their first derivatives (in t).

Since Lg(t, x1, x2) = 0 we need the RHS of the above equation to be equal to 0 as well.
This is accomplished by setting Di(t, T ) = 0, for all i.

So by setting D1(t, T ) = 0, D2(t, T ) = 0, D3(t, T ) = 0, we obtained equations
for determining c1(t, T ), c2(t, T ), α(t, T ) so that exp{−c1(t, T )x1 − c2(t, T )x2 − α(t, T )}
indeed solves (10.9).

If you examine the multi-factor CIR model or mixed models you will see that they are
formulated exactly so that the coefficients of Lg are affine. Following the derivation of the
affine-yield expressions for these models in Shreve and doing Exercise 10.2 will help you
understand this overall strategy.

10.4 One factor Hull-White model

10.4.1 Explicit formula for R(t)

The one-factor Hull-White model is defined by a short rate which solves a linear differential
equation

dR(t) = k(µ−R(t)) dt+ σ dW̃ (t),

where W̃ is a Brownian motion under the risk-neutral measure. To find the explicit solution
for R(t), note that

d(ektR(t)) = ekt(kR(t)dt+ dR(t)).

Thus we get

ektR(t) = R(0) +

∫ t

0

kµeksds+

∫ t

0

σeksdW̃s.
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And

R(t) = e−ktR(0) + µ(1− e−kt) + e−kt
∫ t

0

σeksdW̃s.

From this formula we can see that as t approaches infinity, R(t) is centered around µ with
variance σ2

2k
. The formula also explains why we refer to this model as mean-reverting and

k as the rate of mean reversion.

10.4.2 Explicit formula for B(t, T )

From the risk neutral pricing formula

B(t, T ) = Ẽ[e−
∫ T
t R(u)du|Ft].

Note that for u ≥ t

R(u) = e−k(u−t)R(t) + µ(1− e−k(u−t)) + e−k(u−t)
∫ u

t

σek(s−t)dW̃s.

We need to integrate∫ T

t

e−k(u−t)
∫ u

t

σek(s−t)dW̃sdu =

∫ T

t

∫ u

t

e−k(u−t)σek(s−t)dW̃sdu

= σ

∫ T

t

∫ u

t

e−k(u−s)dW̃sdu

Accepting the fact that change of order of integration applies to this double integral of dW̃s

and du we have

σ

∫ T

t

∫ u

t

e−k(u−s)dW̃sdu = σ

∫ T

t

∫ T

s

e−k(u−s)dudW̃s.

The above stochastic integral is independent of Ft and has normal distribution with mean
0 and variance

A(T − t) = σ2

∫ T

t

(

∫ T

s

e−k(u−s)du)2ds

=
σ2

k2

[
T − t+

2

k
(1− e−k(T−t)) +

1

2k
(1− e−2k(T−t))

]
.

Thus the conditional distribution of the integral
∫ T
t
Rudu on Ft has normal distribution

with mean

B(T − t) = −
[
R(t)

1

k
(1− e−k(T−t)) + µ(T − t)− µ

k
(1− e−k(T−t))

]
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and variance A(T − t).
Thus by the Independence Lemma and the moment genrating function of a Normal

random variable we have

B(t, T ) = eB(T−t)+ 1
2
A(T−t).

10.4.3 Model calibration

By model calibration we mean making the choices for µ, k, σ in the Hull-White model so
that the resulting bond prices B(t, T ) most closely match the market data.

It should be remarked that we possibly do not observe the short rate R(t) directly in the
market; if by R(t) we mean the process such that

B(t, T ) = Ẽ(e−
∫ T
t R(u)du|Ft).

There are some proxys for the risk free short rate, such as the OIS (overnight interest rate
swap) but strictly speaking this is not the rate R(t) we have in mind when plugging in
the pricing formula for the treasury bond B(t, T ). This is why even though we have the
dynamics of R(t) directly dependent on µ, k, σ we cannot use that dynamics to calibrate
these parameters. The yield to maturity R(t, T ) on the other hand, is readily observable as
a function of the bond price B(t, T ).

Observe that the previous formula for B(t, T ) can be written as

B(t, T ) = e−C(T−t)R(t)−D(T−t)

where

C(T − t) =
1

k
(1− e−k(T−t))

D(T − t) = µ(T − t)− µ

k
(1− e−k(T−t))− 1

2
A(T − t).

Recall that in terms of the yield to maturity R(t, T )

B(t, T ) = e−R(t,T )(T−t).

Thus we conclude that

R(t, T ) =
C(T − t)
T − t

R(t) +
D(T − t)
T − t

.

Now we start to look at R(t, T ) as dependent instead on t and the time to maturity
τ = T − t and we keep τ fixed for varying t. This is subtle conceptually because for
s 6= t, R(s, τ) and R(t, τ) refers to the yields to maturity of different bonds with the same
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time to maturity τ . Nevertheless these quantities are readily observable in the market and
we have

dR(t, τ) =
C(τ)

τ
dR(t) +

D(τ)

τ

Thus

dR(t, τ) = k(τ)(µ(τ)−R(t, τ))dt+ σ(τ)dW̃t,

where the coefficients k(τ), µ(τ), σ(τ) depend only on τ, k, µ, σ. Observe that R(t, τ) is
again a mean-reverting process like R(t). Since we can observe R(t, τ) at different t,
there are readily availble methods to estimate the coefficients k(τ), µ(τ), σ(τ) (see e.g.
calibration for Ornstein-Uhlenbeck process using linear regression technique) from which
we can get estimates of k, µ, σ.

Remark: The dynamics for R(t, τ) given above holds for any τ . In practice for each
time to maturity τ we have a different set of data R(t, τ), 0 ≤ t ≤ T for example. Each set
of data potentially gives rise to a different estimate of k, µ, σ. Thus we may have the issue
of having too much data for too few parameters. Or put it in another way: the Hull-White
model may not be flexible enough to fit the market term structure. A solution for this is of
course to increase the number of parameters, by going to the multi-factor setting. However,
it’s good to keep in mind that since the bond market is huge, with many different time to
maturity it probably is not easy to come up with a model that captures the term structure
perfectly across the spectrum, from the short end to the long end.

10.5 Multi-factor Vasicek models

Multi-factor Vasicek models generalize the Hull-White model to the multi-factor case. In
these models, X solves a linear stochastic differential equation with constant coefficients:

dX(t) = AX(t) dt+B dW̃ (t), X(0) = X0 (10.10)

where bX0 is a given initial value, W̃ is a multi-dimensional Brownian motion under the
risk-neutral measure, and

R(t) = δ0 + δ1X1(t) + · · ·+ δmXm(t).

Note that the choice of the liner coefficients δi, i = 0, · · · ,m in R(t) are constants (not
depending on t or ω). This is also a siginifcant simplifcation compared with the general
multifactors model we proposed above.
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Note also that no constant term c dt enters (10.10). This causes no loss of generality
if A is invertible, as we usually assume, because the constant term can be removed by an
affine change of variables, as was shown in subsection (10.7.6) of this lecture.

Remark: The multi-factor Vasicek models have the advantage of having an explicit
solution. More precisely, we can solve for an explicit formula for the factors X(t) - see the
dicussion in section (10.7). This in turn leads to explicit computation for B(t, T ), which
we will discuss below.

On the other hand, if one wants a model so that the short rate R(t) is non-negative,
then the Vasicek model may not satisfy this condition (since X(t) may be negative). Thus
if imposing this non-negativity condition takes piority over the explicit solution, then one
should go with the CIR model, discussed below. The CIR model does not have an explicit
solution, but the interest rate R(t) under the CIR model is guaranteed to be non-negative.

Example Two-factor Vasicek; Canonical form. The canonical form of the two-factor
Vasicek is obtained by a linear change of variables to get an equivalent system with as few
free parameters as possible. It is derived in Shreve assuming that W is a 2-dimensional
Brownian motion and that A and B are invertible. The factors solve the system of Example
2 in Section (10.7.4) with σ1 = σ2 = 1:

d

(
X1(t)
X2(t)

)
=

(
−λ1 0
−λ21 −λ2

)(
X1(t)
X2(t)

)
dt+

(
dW1(t)
dW2(t)

)
(10.11)

The short rate is

R(t) = δ0 + δ1X1(t) + δ2X2(t) = δ0 + (δ1, δ2) ·X(t). �

10.5.1 Explicit formula for B(t, T ) under the Vasicek model

In this subsection, we will obtain an explicit formula for B(t, T ) under the Vasicek model.
This requires some details about stochastic calculus in multi-dimensional model. These
details will be presented in section (10.7).

Recall that the factors under Vasicek model have the following dynamics

dX(t) = AX(t) dt+B dW̃ (t), X(0) = X0 (10.12)

Recall that {X(u); u ≥ 0} is a Gaussian process. Because of this, it can be shown
that the conditional distribution of

∫ T
t
R(u) du given (X1(t), . . . , Xm(t)) is Gaussian with

a mean of the form

Ẽ[

∫ T

t

R(u) du
∣∣∣ X1(t), . . . , Xm(t)] = C1(T−t)X1(t)+· · ·+Cm(T−t)Xm(t)+(T−t)δ0,
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where
(C1(τ), . . . , Cm(τ)) =

∫ τ

0

(δ1, · · · , δm)eA·u du,

and with variance Ā(T − t), where

Ā(τ) =

∫ τ

0

(C1(u), . . . , Cm(u))BB∗(C1(u), . . . , Cm(u))∗ du.

Here B∗ denotes the transpose of B (the volatility in equation (10.12), don’t confuse B
with the bond price). (C1(u), . . . , Cm(u))∗ is the column vector that is the transpose of the
row vector (C1(u), . . . , Cm(u)).)

Indeed, the explicit solution to equation (10.12) (given X(t) - see equation (10.24)) is

X(u) = eA·(u−t)X(t) +

∫ u

t

eA·(u−s)B dW̃ (s).

Therefore∫ T

t

R(u)du =

∫ T

t

δ ·X(u)du

=
{∫ T

t

δ · eA·(u−t)du
}
X(t) +

∫ T

t

∫ u

t

δ · eA·(u−s)B dW̃ (s)du.

By switching the order of integration between dW̃ (s) and du, we have∫ T

t

∫ u

t

δ · eA·(u−s)B dW̃ (s)du =

∫ T

t

∫ T

s

δ · eA·(u−s)Bdu dW̃ (s)

=

∫ T

t

∫ T−s

0

δ · eA·uBdu dW̃ (s)

=

∫ T

t

C(T − s)B dW̃ (s),

where
C(τ) := (C1(τ), . . . , Cm(τ)) =

∫ τ

0

(δ1, · · · , δm)eA·u du,

is defined above.
We have ∫ T

t

C(T − s)B dW̃ (s)
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has Normal distribution with mean 0 and variance matrix∫ T

t

C(T − s)BB∗C∗(T − s)ds =

∫ T−t

0

C(s)BB∗C∗(s)ds.

Thus the distribution of
∫ T
t
R(u)du =

∫ T
t
δ ·X(u)du is normal with mean{∫ T

t

δ · eA·(u−t)du
}
X(t) (10.13)

and variance∫ T

t

C(T − s)BB∗C∗(T − s)ds =

∫ T−t

0

C(s)BB∗C∗(s)ds. (10.14)

It is trivial but helpful to keep in mind that the mean and variance here are real numbers,
not vectors.

It follows from the formula E[eλY ] = eλµ+σ2λ2/2 for the moment generating function
of a normal random variable with mean µ and variance σ2 that

B(t, T ) = Ẽ

[
exp{−

∫ T

t

R(u) du}
∣∣ X1(t), . . . , Xm(t)

]
= exp{−C1(T − t)X1(t)− · · · − Cm(T − t)Xm(t)− (T − t)δ0 +

1

2
Ā(T − t)},

where
C(τ) := (C1(τ), . . . , Cm(τ)) =

∫ τ

0

(δ1, · · · , δm)eA·u du

and
Ā(τ) =

∫ τ

0

(C1(u), . . . , Cm(u))BB∗(C1(u), . . . , Cm(u))∗ du.

are defined above. δ0 is given from the model of R(t).
Application of this formula to the canonical two-factor Vasicek model is carried out in

this week’s Assignment.

10.6 Cox-Ingersoll-Ross model

As mentioned above, the short rate R(t) under Vasicek model can become negative. We
consider instead the two-factor CIR model:

dX(t) = {µ(t)− A(t)X(t)} dt+B(Xt) dW̃ (t).
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where

A(t) =

(
a11 a12

a21 a22

)
, µ(t) =

(
µ1

µ2

)
,

B(Xt) =

( √
X1(t) 0

0
√
X2(t)

)
, W̃ (t) =

(
W̃1(t)

W̃2(t)

)
,

where µ1, µ2, a11, a22 > 0 and a12, a21 ≤ 0.
The dynamics is constructed so that when X1(t) = 0 then µ1 − a12X2(t) ≥ 0 pushing

X1 above 0. Similarly for X2. Thus one sees that X1(t), X2(t) stays non-negative for all t
if X1(0), X2(0) are non-negative.

Thus by choosing

R(t) = δ0 + δ1X1(t) + δ2X2(t),

where we set δ0 ≥ 0, δi > 0 for all i = 1, 2 then R(t) is non-negative as well.
There is no explicit solution for the CIR factor models (because of the

√
Xi(t) term in

the volatility). But also exactly because of this structure, and the independence of W̃1, W̃2

we also have an affine yield structure for the CIR model. In other words, the bond price
B(t, T ) has the form

B(t, T ) = f(t,X1(t), X2(t))

f(t, x1, x2) = e−x1C1(T−t)−x2C2(T−t)−A(T−t).

One can then set up a system of ODE equations for C1, C2, A in the fashion discussed in
the Section (10.3) and solve for the bond price that way. See also Shreve’s Section 10.2.2
for more details.

10.6.1 One factor CIR model

We can demonstrate the idea of the CIR model more clearly if we simplify it to a one
dimensional case. Namely, suppose the short rate follows the dynamics

dRt = k(µ−Rt)dt+ σ
√
RtdW̃t.

This is a mean reveversion equation but it does not have an explicit solution. By Markov
property, there exists a function u(t, Rt) such that

u(t, Rt) = B(t, T ) = Ẽ(e−
∫ T
t Rudu|Ft).

The PDE that u(t, x) satisfies is

−xu+ ut + uxk(µ− x) +
1

2
uxxσ

2x = 0

u(T, x) = 1.
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On the other hand, to be affine-yield, u(t, x) has the representation

u(t, x) = e−C(t,T )x−A(t,T ).

Plug this form into the PDE, factoring the terms that involves x gives an ODE system
in t

At + kµC = 0

Ct − kC −
1

2
σ2C2 + 1 = 0.

The terminal conditions are A(T, T ) = C(T, T ) = 0. This is as far as we can go to
describe the form of the explicit solution for B(t, T ). It is not our interest here to find the
explicit solution to the above system of ODEs. The interested readers can find the solution
in Shreve section 6.6.

We remark that similar to the one-factor Hull-White case, here we will also find that
indeed C(t, T ) = C(T − t) and A(t, T ) = A(T − t). That is the coefficients only depend
on the time to maturity T − t. Thus for calibration, we can fix τ = T − t and find the
dynamics of R(t, τ) in t as described in the section on the one-factor Hull-White.

10.7 Linear Systems of Stochas tic Differential Equations

10.7.1 The setting

This is a purely mathematical section. Linear systems of stochastic differential equations
appear frequently in applied modeling and it is useful for the mathematical finance practi-
tioner to know the basics about them.

By a linear system of stochastic equations we mean a system of the form

dX1(t) = {a11(t)X1(t) + a12X2(t) + · · ·+ a1m(t)Xm(t) + c1(t)} dt+
d∑

k=1

σ1k(t) dWk(t)

dX2(t) = {a21(t)X1(t) + a22X2(t) + · · ·+ a2m(t)Xm(t) + c2(t)} dt+
d∑

k=1

σ2k(t) dWk(t)

· · · = · · · · · · · · · · · · · · ·

dXm(t) = {am1(t)X1(t) + am2X2(t) + · · ·+ amm(t)Xm(t) + cm(t)} dt+
d∑

k=1

σmk(t) dWk(t)

It is much more efficient to write this in vector notation. Define

X =

 X1(t)
...

Xm(t)

 , A(t) =

 a11(t) · · · a1m(t)
...

...
...

am1(t) · · · amm(t).

 , c(t) =

 c1(t)
...

cm(t)

 ,
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B(t) =

 σ11(t) · · · σ1d(t)
...

...
...

σm1(t) · · · σmd(t).

 , W (t) =

 W1(t)
...

Wd(t)

 .

Then the system of equations becomes

dX(t) = {A(t)X(t) + c(t)} dt+B(t) dW (t). (10.15)

Here W (t) is a multi-dimensional Brownian motion, and A(t), c(t), and B(t) are given
functions of t. They could even be stochastic processes adapted to a filtration {F(t); t ≥ 0}
for W . In this lecture we shall present results only for the case in which A(t) = A, B(t) =
B, and c(t) = c are constant, deterministic matrices or vectors. This is the simplest, most
often encountered case, and the theory for (10.15) is a fairly straightforward generalization
from this case.

In equation (10.15) the components of X(t) do not appear in the ‘dW (t)’ term. It is
common to use the term “bilinear" for equations in which linear functions of the compo-
nents of X(t) multiply dWi(t) terms. The Black-Scholes equation is bilinear in this sense.

Consider
dX(t) = {AX(t) + c} dt+B dW (t), (10.16)

where A is an m × m matrix, B is an m × d matrix, c is an m-vector, and W is a d-
dimensional Brownian motion. An explicit solution to this equation can be written down
using the theory of ordinary linear systems of differential equations. This requires a bit of
review.

10.7.2 The fundamental matrix for a linear system

Let I denote the m×m identity matrix. For a given m×m matrix A, define

eA·t = I +
∞∑
k=1

Ak
tk

k!
. (10.17)

This is a matrix-valued, infinite series, and it can be proved that it converges for any A and
any t, −∞ < t <∞, and so eA·t is well-defined.

Let
d

dt
eA·t denote the matrix obtained by differentiating each entry of eA·t. Then it can

be shown also that

d

dt
eA·t =

∞∑
k=1

Ak
d

dt

tk

k!
=
∞∑
k=1

Ak
tk−1

(k − 1)!
= A ·

[
I +

∞∑
k=1

Ak
tk

k!

]
= AeA·t. (10.18)
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Also, clearly, eA·0 = I . As a result, if Z0 is any m-vector, Z(t) = eA·tZ0 solves

d

dt
Z(t) = AZ(t), Z(0) = Z0. (10.19)

This is easily verified; eA·0Z0 = I ·Z0 = Z0 and (d/dt)eA · tZ0 = [AeA·t]Z0 = A[eA·tZ0].

For this reason, eA·t is called the fundamental matrix for the equation
d

dt
Z(t) = AZ(t).

From the fact that solutions to (10.19) are unique, one can also deduce a converse
statement:

if Φ(t) is a matrix valued solution to
d

dt
Φ(t) = AΦ(t), Φ(0) = I, then Φ(t) = eA·t.

(10.20)
The following basic fact can be proved using either the definition (10.16) or the fact that

eA·t solves equation (10.17): for any −∞ < s, t < ∞, eA·teA·s = eA·(t+s); in particular,
e−A·teA·t = eA·0 = I , and hence e−At is the inverse of eAt. However, if C 6= A, it is not in
general true that eA·teC·t = e(A+C)·t.

Another very useful fact when it come to computing matrix exponentials is the follow-
ing. Suppose P is an invertible matrix. Observe that

[PAP−1]k = [PAP−1][PAP−1] · · · [PAP−1] = PAkP−1.

Thus

e[PAP−1]·t = I +
∞∑
k=1

PAkP−1 t
k

k!
= PeA·tP−1.

Example 1. Let

A =

(
−λ1 0
−λ21 −λ2

)
.

Then if λ1 6= λ2,

eA·t =

(
e−λ1t 0

λ21
λ1−λ2

(
e−λ1t − e−λ2t

)
e−λ2t

)
. (10.21)

If λ1 = λ2,

eA·t =

(
e−λ1t 0

λ21te
−λ1t e−λ1t

)
. (10.22)

Shreve gives a derivation of these formulas in Lemma 10.2.3 on page 417. It is not neces-
sary to study this derivation in detail. From the characterization of eA·t in (10.20), it suffice

to show that the given formula in each case solves
d

dt
Φ(t) = AΦ(t) with Φ(0) = I . Con-

sider the case of (10.21). Obviously the given matrix is the identity matrix when t = 0. A
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simple calculation shows that

d

dt

(
e−λ1t 0

λ21
λ1−λ2

(
e−λ1t − e−λ2t

)
e−λ2t

)
=

(
−λ1e

−λ1t 0
−λ21
λ1−λ2

(
λ1e

−λ1t − λ2e
−λ2t

)
−λ2e

−λ2t

)
.

It is left to the student to show that

A ·
(

e−λ1t 0
λ21

λ1−λ2

(
e−λ1t − e−λ2t

)
e−λ2t

)
=

(
−λ1e

−λ1t 0
−λ21
λ1−λ2

(
λ1e

−λ1t − λ2e
−λ2t

)
−λ2e

−λ2t

)
.

This completes the verification of (10.21) and (10.22) may be checked in the same way.

10.7.3 Multi-dimensional Ito’s formula

Let

µ(t) =

 µ1(t)
...

µm(t)

 , σ(t) =

 σ11(t) · · · σ1d(t)
...

...
...

σm1(t) · · · σmd(t).

 ,

W (t) =

 W1(t)
...

Wd(t)

 .

Let the m-dimensional process X have the dynamics given by

dX(t) = µ(t)dt+ σ(t)dWt.

Let f be a smooth function that maps (R+,Rm)→ R. Then the process f(t,X(t)) has
a stochastic differential given by

df =
{∂f
∂t

+
m∑
i=1

µi(t)
∂f

∂xi
+

1

2

m∑
i,j=1

(σσ∗)ij
∂2f

∂xi∂xj

}
dt+

m∑
i=1

∂f

∂xi
σi(t) · dWt,

where σi denotes the ith row f the matrix σ:

σi = [σi1, ..., σid],

and σ∗ denotes the transpose of σ.
All the expression of df and the partials of f in the above are evaluated at (t,Xt), which

we suppressed in the formula for simplicity of notation.
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Alternatively, if we denote

∇f :=
( ∂f
∂x1

, ...,
∂f

∂xm

)
σ(t) =


∂2f
∂x21

· · · ∂2f
∂x1∂xm

...
...

...
∂2f

∂x1∂xm
· · · ∂2f

∂x2m
(t).

 ,

to be the gradient and the Hessian matrix of f respectively, then the Ito’s formula can
be written succinctly as

df =
{∂f
∂t

+ µ(t) · ∇f +
1

2
tr
(
σσ∗(t)Hf

)}
dt+∇f · σdWt,

where tr(A) :=
∑

iAii denotes the trace of a a square matrix A.

10.7.4 The solution to equation (10.16)

The matrix exponential function of A may be used to express the solution to (10.16). This
solution is

X(t) = eA·tX(0) +

∫ t

0

eA·(t−s)B dW (s) +

∫ t

0

eA·(t−s)c ds (10.23)

In the expression
∫ t

0
eA·(t−s)B dW (t), the term eA·(t−s)B is an m × d matrix multiplying

a d-dimensional vector dW (t) of Brownian differentials; hence
∫ t

0

eA·(t−s)B dW (t) is an

m-dimensional, vector-valued process.
A variant of (10.23) is true for representing X(T ) for T > t in terms of T ,

X(T ) = eA·(T−t)X(t) +

∫ T

t

eA·(T−s)B dW (s) +

∫ T

t

eA·(t−s)c(s) ds (10.24)

The increments dW (s) for times s > t are independent of X(t); hence (10.24) exhibits
X(T ) is the sum of a linear transformation of X(T ) plus a random vector independent of
X(t).

Example 2. Let λ1 6= λ2. Consider

d

(
X1(t)
X2(t)

)
=

(
−λ1 0
−λ21 −λ2

)(
X1(t)
X2(t)

)
dt+

(
σ1 0
0 σ2

)(
dW1(t)
dW2(t)

)
(10.25)
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Using the result of Example 1,(
X1(t)
X2(t)

)
=

(
e−λ1t 0

λ21
λ1−λ2

(
e−λ1t − e−λ2t

)
e−λ2t

)(
X1(0)
X2(0)

)
+

∫ t

0

(
e−λ1(t−s) 0

λ21
λ1−λ2

(
e−λ1(t−s) − e−λ2(t−s)) e−λ2(t−s)

)(
σ1dW1(s)
σ2dW2(s)

)
.

The student should verify that:

X1(t) = e−λtX1(0) +

∫ t

0

e−λ1(t−s)σ1 dW1(t)

X2(t) =
λ21

λ1 − λ2

(
e−λ1t − e−λ2t

)
X1(0) + e−λ2tX2(0)

+

∫ t

0

λ21

λ1 − λ2

(
e−λ1(t−s) − e−λ2(t−s))σ1 dW1(s)

+

∫ t

0

e−λ2(t−s)σ2 dW2(s). �

To show the validity of (10.23), write eA·(t−s) = eA·te−A·s and factor eA·t out of the
integrals to write,

X(t) = eA·t
[
X(0) +

∫ t

0

e−A·sB dW (t) +

∫ t

0

e−A·sc ds

]
.

Let Y (t) = X(0)+
∫ t

0
e−A·sB dW (t)+

∫ t
0
e−A·sc ds be the vector-valued Itô process in this

expression, and note that dY (t) = e−A·t [c dt+B dW (t)]. Then

dX(t) =

[
d

dt
eA·t
]
Y (t) dt+ eA·tdY (t)

= AeA·tY (t) dt+ c dt+B dW (t) = AX(t) dt+ c dt+B dW (t).

10.7.5 Joint distribution of the solution to (10.16)

In Theorem 4.4.9, Shreve states and proves the important fact that the Itô integral of a
deterministic integrand is a normal random variable. This fact generalizes. If W (t) is a
d-dimensional Brownian motion and B(t) is a deterministic m×d-matrix-valued function,
then

∫ t
0
B(s) dW (s) is a normally distributed random vector. Hence, its joint density is

determined by its mean vector and covariance matrix. The proof is essentially the same as
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that of Theorem 4.4.9. This fact has the following consequence for the solution X(t) of
(10.16): for any 0 ≤ t ≤ T , the conditional distribution of X(T ) given X(t) is Gaussian
(normal). In particular, if X(0) is deterministic or is a normal random variable independent
of W , then {X(t); t ≥ 0} is a vector-valued, Gaussian process.

Exercise 10.1 in Shreve is about the mean vector and covariance matrix of the process
defined in Example 2.

10.7.6 How (10.16) changes under affine change of variable

Let X solve equation (10.16), let P be an invertible m ×m matrix, let a be an m-vector,
and define

Y(t) = PX(t) + a.

Then Y(t) also satisfies a system of linear stochastic differential equations. Note that
X(t) = P−1(Y(t)− a). Thus,

dY(t) = P dX(t) = P [(AX(t) + c) dt+B dW (t)]

=
[
PAP−1Y(t) + P (c− AP−1a)

]
dt+ PB dW (t).

Linear transformations like this are extremely useful for simplifying linear systems. For
example, if A is invertible, and we choose a = PA−1C, then (c − AP−1a) equals the
zero vector, and hence dY(t) = PAP−1Y(t) dt + PB dW (t). More importantly, one can
choose P so that the matrix PAP−1 has a canonical form that is simple to work with, in
terms of calculating ePAP−1·t = PeA·tP−1 and in terms of understanding how the different
components of Yi(t) influence one another. For example, if A has a basis of eigenvectors
with real eigenvalues λ1, . . . , λm, P can be chosen so that PAP−1 is the diagonal matrix

PAP−1 =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
... . . . ...
0 . . . . . . . . . . . λm

 .

It is easily seen that

ePAP
−1·t =


eλ1t 0 0 · · · 0
0 eλ2t 0 · · · 0
... . . . ...
0 . . . . . . . . . . . . eλmt

 .
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CHAPTER 11 The Heath-Jarrow-Morton model for forward rates

11.1 Set up of the HJM model

We start with a probability space, (Ω,F ,P), which supports a Brownian motion W (t) =
(W1(t), . . . ,Wd(t)). Let {F(t); t ≥ 0} be the filtration generated by W .

The HJM model for the forward rate is

df(t, T ) = α(t, T ) dt+
d∑
j=1

σj(t, T ) dWj(t), 0 ≤ t ≤ T ≤ T̄ , (11.1)

where for each T , {α(t, T ); 0 ≤ t ≤ T} and {γ1(t, T ); ; 0 ≤ t ≤ T}, . . . , {γd(t, T ); 0 ≤
t ≤ T} are {F(t); t ≥ 0}-adapted process for each T , 0 < T ≤ T̄ .

The interpretation is that we fix a time horizon T̄ and we investigate all bonds with
expiry T , T ≤ T̄ .

At time t = 0, we know the forward rate curve, T → f(0, T ) from market price quotes.
This provides an initial condition for equation (11.1) for each T , and by integrating (11.1)
forward in time,

f(t, T ) = f(0, T ) +

∫ t

0

α(u, T ) du+

∫ t

0

d∑
j=1

σj(u, T ) dWj(u). (11.2)

In particular, the short rate is

R(t) = f(t, t) = f(0, t) +

∫ t

0

α(u, t) du+

∫ t

0

d∑
j=1

σj(u, t) dWj(u).

From now on, for simplicity, we study the case in which d = 1:

df(t, T ) = α(t, T ) dt+ σ(t, T ) dW (t), 0 ≤ t ≤ T ≤ T̄ . (11.3)
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11.2 Equations for zero-coupon bond prices

What stochastic differential equation for B(t, T ) is implied by the HJM model? To answer
this, set

Y (t, T ) = −
∫ T

t

f(t, v) dv.

Since
B(t, T ) = eY (t,T ),

Itô’s rule implies

dB(t, T ) = B(t, T ) dY (t, T ) +
1

2
B(t, T )[dY (t, T )]2,

so to derive an equation for dB(t, T ) we need only to compute dY (t, T ).

Remark: Note that by dY (t, T ) and dB(t, T ) here we mean the differentials of Y and
B in t, not T . That is for δ small, we mean

dY (t, T ) ≈ Y (t+ δ, T )− Y (t, T );

dB(t, T ) ≈ B(t+ δ, T )−B(t, T ).

Now to calculate dY (t, T ), since this is the differential in t, note that t appears in 2 places
in the formula

Y (t, T ) = −
∫ T

t

f(t, v)dv.

If f(t, v) is differentiable in t, then the computation falls under the Newton-Leibniz
formula. Here we have a differential form of f , but a similar version of that formula still
holds, and thus

dY (t, T ) = f(t, t)dt−
∫ T

t

[df(t, v)]dv.

Define

α∗(t, T ) =

∫ T

t

α(t, v) dv and σ∗(t, T ) =

∫ T

t

σ(t, v) dv.
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Substituting df(t, v) by (11.3) and by switching the order of integration if follows that

dY (t, T ) = f(t, t)dt−
∫ T

t

[
α(t, v) dt+ σ(t, v) dW (t)

]
dv

= f(t, t)dt−
[ ∫ T

t

α(t, v) dv
]
dt−

[ ∫ T

t

σ(t, v) dv
]
dW (t)

= f(t, t)dt− α∗(t, T )dt− σ∗(t, T )dW (t).

Thus

Y (t, T ) = Y (0, T ) +

∫ t

0

f(u, u) du−
∫ t

0

α∗(u, T ) du−
∫ t

0

σ∗(u, T ) dW (u)

= −
∫ T

0

f(0, u) du+

∫ t

0

f(u, u) du−
∫ t

0

α∗(u, T ) du

−
∫ t

0

σ∗(u, T ) dW (u). (11.4)

Since f(t, t) = R(t), it follows that

dY (t, T ) =

[
R(t)− α∗(t, T )

]
dt− σ∗(t, T ) dW (t), (11.5)

and hence that

dB(t, T ) = B(t, T )

[
R(t)−α∗(t, T )+

1

2
(σ∗(t, T ))2

]
dt−B(t, T )σ∗(t, T ) dW (t). (11.6)

It is interesting to note that σ∗(T, T ) = 0. This makes sense: the volatility of B(T, T ) is
zero because B(T, T ) = 1.

Remark: Recall the dynamics for f(t, T ) is

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t). (11.7)

It is important to observe that equations (11.5), (11.6), (11.7) are equivalent. That is if
we have the dynamics ofB(t, T ) following (11.6) then the dynamics of Y (t, T ) and f(t, T )
have to follow (11.5) and (11.7) respectively. The other cases are similar. The reason is
because B(t, T ), f(t, T ) and Y (t, T ) are connected via the relations

B(t, T ) = eY (t,T )

∂Y

∂T
= −f(t, T ).

The implication of this will be seen in Section (11.4), where we conclude that the drift
of f(t, T ) have to be σ(t, T )σ∗(t, T ) under the risk neutral measure, even when we derive
f from a short rate model, for example the Hull-White model.

189



11.3 Existence of a risk-neutral model

In order that there be no arbitrage in the HJM model it is necessary that there exists an
equivalent probability measure P̃ with respect to which {D(t)B(t, T ); t ≤ T} is a martin-
gale for all 0 ≤ T ≤ T̄ . Note that this is a subtle condition since for each T , we have a
different financial product B(t, T ). So this statement requires that the discounted price of
infinitely many financial products must be P̃ martingale. But in our model, we only have
finitely many sources of noise. This has implication about the existence of solution to the
market price of risk equation. (Recall from what we have learned that if the number of
assets m is less than the number of random sources d then the risk neutral measure many
not exist).

From the previous section, we have the dynamics of the bond B(t, T ) under the HJM
model under the physical measure P:

dB(t, T ) = B(t, T )

[
R(t)− α∗(t, T ) +

1

2
(σ∗(t, T ))2

]
dt−B(t, T )σ∗(t, T ) dW (t).

This is a geometric Brownian motion model with drift term

γ(t, T ) := R(t)− α∗(t, T ) +
1

2
(σ∗(t, T ))2

and volatility −σ∗(t, T ).
Thus, the market price of risk equation for this particular bond with expiry T is: to find

an adapted process θ(t) such that

−σ∗(t, T )θ(t) = γ(t, T )−R(t)

=

[
R(t)− α∗(t, T ) +

1

2
(σ∗(t, T ))2

]
−R(t)

= −α∗(t, T ) +
1

2
(σ∗(t, T ))2.

Or equivalently

σ∗(t, T )θ(t) = α∗(t, T )− 1

2
(σ∗(t, T ))2.

Note that θ(t) does not depend on T (the risk neutral measure, which is defined from θ
should not depend on an expiry). On the other hand, for each T , we have such an equation
and thus this gives an infinite system of equations for θ(t).

By differentiating both sides of the above equation with respect to T , this reduces to the
equivalent and simpler sufficient condition:

σ(t, T )θ(t) = α(t, T )− σ∗(t, T )σ(t, T ), for all 0 ≤ t ≤ T ≤ T̄ . (11.8)
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Indeed, if θ(t) satisfies (11.8) then by taking the anti-derivative (in T ) we get

σ∗(t, T )θ(t) = α∗(t, T )− 1

2
(σ∗(t, T ))2 + C(T ),

where C(T ) is a constant depending on T . Plug in t = T we conclude C(T ) = 0 and
thus θ(t) solves the market price of risk equation.

Therefore, if equation (11.8) has a solution and if

E[exp{−
∫ T̄

0

θ(u) dW (u)−
∫ T̄

0

θ2(u) du}] = 1,

(this is a technical condition to make sure the change of measure is well-defined) then there
is an equivalent risk-neutral measure.

Again, (11.8) places heavy restrictions on the relation of α(t, T ) to σ(t, T ). If σ(t, T )
is non-zero always then θ(t) = σ−1(t, T )α(t, T ) − σ∗(t, T ) and the right-hand side must
not actually depend on T . Thus α(t, T ) and σ(t, T ) must be related in a very special way.

You are asked to derive a version of (11.8) when W is multidimensional in Shreve,
Exercise 10.9.

11.4 The risk-neutral form of HJM

Assume that the market price of risk equations of (11.8) have a solution θ. Then under the
risk-neutral measure, W̃ (t) = W (t) +

∫ t
0
θ(u) du is a Brownian motion, and

df(t, T ) = α(t, T ) dt+ σ(t, T ) [dW̃ (t)− θ(t) dt]
= [α(t, T )− σ(t, T )θ(t)] dt+ σ(t, T ) dW̃ (t)

= σ∗(t, T )σ(t, T ) dt+ σ(t, T ) dW̃ (t) (11.9)

Here is an important observation for the risk neutral form of the forward rate: there is
no freedom in choosing the drift of the forward rate under the risk-neutral model. This,
in some sense is similar to the situation we are used to with modeling the asset in Black-
Scholes framework, where the drift term of the asset must be R(t)S(t)dt under the risk
neutral measure.

For the forward rate, the drift must be σ∗(t, T )σ(t, T ), which is completely determined
by the volatility σ(t, T ). This fact limits the nature of the models that can be proposed for
the forward rate.

For example, suppose we wanted to have a lognormal model for f(t, T ) uder the risk-
neutral measure (So that we can have explicit computation for the distribution of f(t, T )
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and possibly B(t, T )). A reasonable way to approach this would be to let σ(t, T ) =
σf(t, T ), where σ is a constant. (This is possibly the simplest way to propose the volatility
of a log-normal model).

However, if we do this the drift term will become

σ∗(t, T )σ(t, T ) = σ2(t)f(t, T )

∫ T

t

f(t, v) dv

which is not a linear function of f(t, T ). (So even if we want, a log-normal model
under the risk neutral measure is not possible for the forward rate).

Even worse, with this drift (11.9) will not even have a solution defined for all sample
paths (near the expiry T the forward rate may get very large - due to the drift being almost
like quadratic in f(t, T ). See Shreve’s Section 10.4.1 for the more details. This is also a
motivating example for us to switch our attention to the forward LIBOR model in the 2nd
part of this lecture.

On the other hand, we can use (11.9) to define a risk-neutral model directly. We suppose
the Brownian motion W̃ on (Ω,F , P̃) to be given, we assume we have a σ(t, T ) such that
(11.9) has a solution (in the case when σ(t, T ) depends on f(t, T )), and this gives us a
risk-neutral model with

R(t) = f(t, t) = f(0, t) +

∫ t

0

σ∗(u, t)σ(u, t) du+

∫ t

0

σ(u, t) dW̃ (u),

and with

B(t, T ) = exp{−
∫ T

t

f(t, v) dv}

satisfying
dB(t, T ) = R(t)B(t, T ) dt− σ∗(t, T )B(t, T ) dW̃ (t) (11.10)

(We know this has to be the right equation for B(t, T ) from equation (11.6) and from the
fact that D(t)B(t, T ) is a martingale under P̃.)

11.5 Example of HJM models

The fact that the market price of risk equations

σ(t, T )θ(t) = α(t, T )− σ∗(t, T )σ(t, T ), for all 0 ≤ t ≤ T ≤ T̄

is an infinite systems for θ(t) might give us the impression that it is not easy to have an
example of HJM model, except perhaps for trivial cases when α and σ do not depend on
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T . But this is not the case. All previous short rate models we discussed (Vasicek, CIR and
also the one factor model Hull-White) are examples of HJM model as we will see. The key
is again, if we start directly under the risk neutral measure (which is the case for all short
rate models) then we do not have the market price of risk equation to deal with.

More generally, we can always obtain a risk-neutral HJM model as described in the pre-
vious section, if we choose an exogenously determined volatility σ(t, T ) (that is, a volatility
that is not a function of f(t, T ) but is defined a priori.

Indeed this will be so for any affine yield model based on a model for the short rate,
under the risk-neutral measure.

B(t, T ) = exp{−
m∑
j=1

Cj(t, T )Xj(t)− A(t, T )},

where X1(t), . . . , Xm(t) solves a system of stochastic differential equations driven by W̃
(possibly multi-dimensional), and C1(t, T ), . . . , Cm(t, T ), and A(t, T ) are differentiable in
T . Then

f(t, T ) =
m∑
j=1

Xj(t)
∂Cj(t, T )

∂T
+
∂A(t, T )

∂T

and

df(t, T ) =
m∑
j=1

d[
∂Cj(t, T )

∂T
Xj(t)] + d[

∂A(t, T )

∂T
]

This enables one to recover an HJM type model for the forward rate.

11.5.1 Example with one-factor model

For simpliciy, suppose m = 1 (that is we have a one-factor model), from which R(t) has
dynamics under P̃

dR(t) = β(t)dt+ γ(t)dW̃ (t),

where we do allow β, γ to depend on R(t), we just do not explicitly write it out that way.

The form of the bond is

B(t, T ) = exp{−C(t, T )R(t)− A(t, T )},

where, C(t, T ) and A(t, T ) are functions of β, γ (that is obtained from the risk neutral
pricing formula).

The forward rate f(t, T ) is derived from B(t, T ) via the relation

f(t, T ) = − ∂

∂T
logB(t, T ) = R(t)

∂

∂T
C(t, T ) +

∂

∂T
A(t, T ).
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Therefore, f(t, T ) has the dynamics

df(t, T ) = d[
∂C(t, T )

∂T
R(t)] + d[

∂A(t, T )

∂T
]

=
[∂C(t, T )

∂T
β(t) +R(t)

∂C ′(t, T )

∂T
+
∂A′(t, T )

∂T

]
dt+

∂C(t, T )

∂T
γ(t)dW̃ (t),

where C ′(t, T ), A′(t, T ) denotes the derivative of these functions with respect to t.

In order that this be a valid HJM model, the drift term must be related to the volatility
term as in equation (11.9). That is denoting

σ(t, T ) =
∂C(t, T )

∂T
γ(t),

then it must follow that

∂C(t, T )

∂T
β(t) +R(t)

∂C ′(t, T )

∂T
+
∂A′(t, T )

∂T
= σ(t, T )σ∗(t, T ).

But you do not really need to check it to know that it must be true, because the Hull-White
model was created under the risk-neutral measure so that D(t)B(t, T ) was automatically a
martingale. And we know from the analysis of the previous section that if D(t)B(t, T ) is
a martingale under the risk-neutral measure and if df(t, T ) has a stochastic differential, it
must be of the form in (11.9).

Indeed, as discussed in the remark at the end of Section (11.2), once we know the
dynamics of the bond B(t, T ), then the dynamics of f(t, T ) is forced. Recall the dynamics
of B(t, T ) and f(t, T ) as discussed in Section (11.2) under the physical measure P :

dB(t, T ) = B(t, T )

[
R(t)− α∗(t, T ) +

1

2
(σ∗(t, T ))2

]
dt−B(t, T )σ∗(t, T ) dW (t);

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t).

Since the derivation is via Ito’s formula, this relation also holds under the risk neutral
measure P̃, we just need to change W (t) to W̃ (t) and modify the drift accordingly. Under
risk neutral, the drift of B(t, T ) is B(t, T )R(t). Thus one must have

α∗(t, T ) =
1

2
(σ∗(t, T ))2.

But this implies

α(t, T ) =
∂α∗(t, T )

∂T
= σ(t, T )σ∗(t, T ),

194



which is what the drift of f(t, T ) must be under risk neutral. So as long as we derive
B(t, T ) and f(t, T ) from a consistent risk neutral model (which is any factor model for the
short rate) then the dynamics of f(t, T ) and B(t, T ) would be consistent as discussed in
the above.

Apply this to the Hull-White example above, we see that since

B(t, T ) = exp{−C(t, T )R(t)− A(t, T )},

the dynamics of B(t, T ) under P̃ is

dB(t, T ) = something dt−B(t, T )C(t, T )γ(t)dW̃ (t).

(The fact that the something becomes B(t, T )R(t) comes from the relation between
C(t, T ), A(t, T ), β(t), γ(t). The fact that the volatility has this form comes from the fact
that only R(t) has Brownian motion component in its dynamics and the Ito’s formula ap-
plied to B(t, T )). This implies that

σ∗(t, T ) = C(t, T )γ(t).

Note that this is consistent with the fact that we assign

σ(t, T ) =
∂C(t, T )

∂T
γ(t)

for the dynamics of f(t, T ). Then the conclusion that

∂C(t, T )

∂T
β(t) +R(t)

∂C ′(t, T )

∂T
+
∂A′(t, T )

∂T
= σ(t, T )σ∗(t, T ).

can be seen as a consequence of the dynamics of f(t, T ) being forced once we known
the dynamics of B(t, T ) as discussed above.

Because the Hull-White, Vasicek, etc. models are examples of HJM models, all theory
we develop later assuming the HJM model is valid for these earlier models.
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CHAPTER 12 Forward LIBOR model

12.1 Forward LIBOR

12.1.1 Continuous vs simple compounding

Let 0 < t < S < T . Suppose we want to price a product based on the forward rate, say a
cap K on the forward rate for a loan taken on the interval from S to T , with the rate locked
in at time t. The risk neutral pricing formula for this product would be

Ẽ
(
e−

∫ T
S (f(t,u)−K)+du

)
.

(The meaning of such cap would be clearer when we discuss the Caplet below).
It is certainly desirable to be able to obtain a closed form solution to such formula,

under the assumption that the volatility of f(t, T ) (as a process in t) is of the form σf(t, T )
where σ is a constant. But we saw that from a purely mathematical point of view, this is
not possible since it would force the drift term of f(t, T ) under the risk neutral measure P̃
to have certain form, which in turn makes the solution to f(t, T ) explode near T (Shreve’s
Section 10.4.1).

Furthermore, the problem of the drift term of f(t, T ) cannot be solved by a change of
measure associated with a change of numéraire. You should try to derive the dynamics
of f(t, T ) under the P̃ T ′-forward measure, for some T < T ′ for example, and convince
yourself that the drift term of f(t, T ) cannot be eliminated.

The presence of the drift term, or equivalently the dynamics of f(t, T ), can be seen as
coming from the continuous compouding used in its definition:

B(t, T ) = e−
∫ T
t f(t,u)du.

It turns out that in order to “eliminate the drift term" in the “interest rate", so that we
will be able to posit a log-normal distribution for it, we want to use simple compounding
instead. That is, we denote Lδ(t, T ) as the quantity that satisfies

B(t, T + δ)(1 + δLδ(t, T )) = B(t, T ).

You should see that Lδ(t, T ) is the interest rate one can lock in at time t for investing
on the time interval [T, T + δ] with simple compounding: repayment = investment × (1 +
duration of investment × interest rate).
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Lδ(t, T ) is called the simple forward LIBOR rate of tenor δ.
The reason why Lδ(t, T ) should have a “better" dynamics than f(t, T ) (in terms of

being able to posit a log normal distribution) is because of its definition:

1 + δLδ(t, T ) =
B(t, T )

B(t, T + δ)
.

Thus clearly the dynamics of Lδ(t, T ) is related to the dynamics of B(t, T ) under the P̃ T+δ

forward measure, using B(t, T + δ) as numéraire. Since D(t)B(t, T ) is a martingale under
P̃ we expect the dynamics of Lδ(t, T ) under P̃ T+δ is “nice" as well.

Thus in this note we will develop the dynamics of Lδ(t, T ) under the T + δ forward
measure and show how to price financial products based on it (cap and caplet), under the
assumption of determinsitic volatility, using Black-Scholes type of calculation.

12.1.2 How to construct a portfolio that realize the simple interest rate Lδ(t, T )

Suppose at time t < T , we go short one share of B(t, T ) and long B(t, T )/B(t, T + δ)
shares of B(t, T + δ). The value of this portfolio is zero at time t; at time T it requires us
to pay out one dollar and at time T + δ we receive B(t, T )/B(t, T + δ) dollars. Thus at
time t we can lock in a deposit that multiplies to B(t, T )/B(t, t + δ) over [T, T + δ] and
hence earns the simple interest rate Lδ(t, T ) satisfying

1 + δLδ(t, T ) =
B(t, T )

B(t, T + δ)

Thus

Lδ(t, T ) =
1

δ

[
B(t, T )

B(t, T + δ)
− 1

]
=

1

δ

B(t, T )−B(t, T + δ)

B(t, T + δ)
.

We have immediately that

1 + δLδ(T, T ) =
1

B(T, T + δ)
.

Thus Lδ(T, T ) is the simple interest rate available at time T for a deposit over time period
[T, T + δ]. This is a financially important quantity, because it is often used for floating rate
loans or as a benchmark for interest rate caps and floors.

12.1.3 Dynamics of Lδ(t, T )

Here is an elementary, but very important observation:

Lδ(t, T ) =
1

δ

B(t, T )−B(t, T + δ)

B(t, T + δ)

=
1
δ
B(t, T )− 1

δ
B(t, T + δ)

B(t, T + δ)
.
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Thus Lδ(t, T ), for t ≤ T is the T + δ forward price of a portfolio that is long 1/δ zero
coupon bonds that mature at T and short 1/δ zero coupon bonds that mature at T + δ.

In this section, we will derive the model implied for the forward LIBOR rate by the
risk-neutral HJM model. To start out, observe that since

Lδ(t, T ) =
1

δ

B(t, T )−B(t, T + δ)

B(t, T + δ)

=
1

δ

B(t, T )

B(t, T + δ)
− 1

δ
,

we have
dLδ(t, T ) = δ−1d[B(t, T )/B(t, T+δ)].

Following the notation of the change of numéraire section, we define

BT+δ(t, T ) := B(t, T )/B(t, T+δ)

as the T+δ forward price of B(t, T ).

Observe then, that it is most natural to express the model for Lδ(t, T ) under the T+δ

forward measure P̃T+δ. We know from Theorems 9.2.1 and 9.2.2 in Shreve that because

dD(t)B(t, T ) = −D(t)B(t, T )σ∗(t, T ) dW̃ (t)

dD(t)B(t, T+δ) = −D(t)B(t, T+δ)σ∗(t, T+δ) dW̃ (t),

we have

dLδ(t, T ) =
1

δ
BT+δ(t, T )[σ∗(t, T+δ)− σ∗(t, T )] dW̃ T+δ(t)

=
1

δ
[1 + δLδ(t, T )] [σ∗(t, T+δ)− σ∗(t, T )] dW̃ T+δ(t)

= Lδ(t, T )

{
1 + δLδ(t, T )

δLδ(t, T )
[σ∗(t, T+δ)− σ∗(t, T )]

}
dW̃ T+δ(t), (12.1)

where W̃ T+δ(t) = W̃ (t) +
∫ t

0
σ∗(u, T + δ) du is a Brownian motion under P̃T+δ. From

this equation we can easily derive the model for the forward LIBOR rate under the original
risk-neutral measure P̃, but we will not have need for this.

Remark:
(i) If we denote

γ(t) :=
1 + δLδ(t, T )

δLδ(t, T )
[σ∗(t, T+δ)− σ∗(t, T )],
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then it follows that

dLδ(t, T ) = Lδ(t, T )γ(t)dW̃ T+δ(t).

If we assume γ(t) is a constant then it is easy to see that Lδ(t, T ) has log-normal
distribution under P̃T+δ, which is a goal we have set out to achieve. This will help us to
derive pricing equation in Black-Scholes style for financial products based on Lδ(t, T ) as
discussed in the Sections below.

(ii) Assuming γ(t) is a constant is a big assumption if we start from the risk neutral
model ofB(t, T ) andB(t, T+δ). However, we can start modeling under the T+δ-forward
measure, where we are free to assume the fact that γ(t) is a constant. The distribution of
B(t, T ) and B(t, T + δ) under the risk neutral measure can then be derived from the P̃ T+δ

model.

12.2 T -forward models

Previously, we defined a T -forward measure. This is a measure, P̃T , if it exists, under
which T -forward prices of all market assets are martingales. Recall that the T -forward
price of an asset whose price in dollars is S(t) is S(t)/B(t, T ). Now assume we have an
HJM model driven by a single Brownian motion, and write it under the risk-neutral measure
P̃. According to the theory developed in Chapter 9 of Shreve, the T -forward measure is
defined by a change of measure from P̃ by the Radon-Nikodym derivative,

dP̃T

dP̃
=

D(T )

B(0, T )
. (12.2)

That is, P̃T (A) = E[1AD(T )]/B(0, T ), for A ∈ F . But we know the solution to

dB(t, T ) = R(t)B(t, T )dt− σ∗(t, T )B(t, T )dWt

is

D(t)B(t, T ) = B(0, T ) exp{−
∫ t

0

σ∗(u, T ) dW (u)− 1

2

∫ t

0

(σ∗)2(u, T ) du}

and hence

dP̃T

dP̃
= exp{−

∫ T

0

σ∗(u, T ) dW (u)− 1

2

∫ T

0

(σ∗)2(u, T ) du}. (12.3)

It follows from Girsanov’s theorem that

W̃ T (t) = W̃ (t) +

∫ t

0

σ∗(u, T ) du (12.4)

is a Brownian motion under P̃T , at least for times t ≤ T .
All this is review of section 9.4 in Shreve.
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12.3 Financial products based on forward LIBOR

12.3.1 Description

The forward LIBOR Lδ(t, T ) is strictly not a financial asset by itself. However, if we think
about investing a principal P at time T for the duration [T, T + δ] to realize the interest
payment PδLδ(T, T ) at time T + δ, then we have a product that is very much like a Euro
style derivative, with expiry T + δ.

One can also create another product that is in the spirit of the Euro Call option, in this
case called an interest rate cap. For a constant K positive, we can consider a financial
product that pays

VT+δ = δP
(
Lδ(T, T )−K

)+

at time T + δ. The interpretation is that if we borrow an amount P at time T , we may not
want the interest rate Lδ(T, T ) to go beyond K. Therefore to protect ourselves, we would
want to get an interest rate cap that would pay us the difference should the interest rate go
beyond K.

Moreover, since P and δ are deterministic (we think of them as determined at time 0),
for simplicity we can take Pδ = 1. Thus, one can discuss the following products:

(i) A contract that pays Lδ(T, T ) at time T + δ. This is called a backset LIBOR on a
notional amount of 1.

(ii) A contract that pays (Lδ(T, T )−K)+ at time T + δ. This is called an interest rate
caplet.

Clearly the question is what are the risk neutral prices of these products at time 0. We
will give the formula for backset LIBOR in this section and give a detailed discussion of
interest rate cap and caplet in the next section.

12.3.2 Risk neutral price of backset LIBOR

Theorem 12.3.1. The no arbitrage price at time t of a contract that pays Lδ(T, T ) at time
T + δ is

S(t) = B(t, T + δ)Lδ(t, T ), 0 ≤ t ≤ T

= B(t, T + δ)Lδ(T, T ), T ≤ t ≤ T + δ.

(S(t) is the notation Shreve used in the textbook. Don’t confuse it with the stock price).

Proof:

200



By the risk neutral pricing formula

S(t) = Ẽ
[
e−

∫ T+δ
t R(u)duLδ(T, T )

∣∣∣F(t)
]
.

If T ≤ t then Lδ(T, T ) is F(t) measurable. Therefore

S(t) = Lδ(T, T )Ẽ
[
e−

∫ T+δ
t R(u)du

∣∣∣F(t)
]

= B(t, T + δ)Lδ(T, T ).

If t < T then by the change of numéraire pricing formula under P̃T+δ we have

S(t)

B(t, T + δ)
= ẼT+δ

[
Lδ(T, T )

∣∣∣F(t)
]
.

But Lδ(t, T ) is a martingale under P̃T+δ (see equation 12.1 in Section 1). Therefore,

S(t)

B(t, T + δ)
= Lδ(t, T )

and the conclusion follows.

12.4 Caps and caplets

12.4.1 Description

We will consider the following type of floating rate bond. It starts at T0 = 0 and pays
coupons C1, . . . , Cn+1 on principal P at dates T1 = δ, T2 = 2δ, . . . , Tj = jδ, . . . , Tn+1 =
(n + 1)δ. The interest charged over [Tj−1, Tj] is the LIBOR rate set at Tj−1. So coupon
Cj = δPLδ(Tj−1, Tj−1).

Suppose now that Alice has issued such a bond. An equivalent interpretation is she
has taken out a floating rate loan. For convenience, assume the principal is $1. She can
purchase an interest rate cap to protect herself against unacceptable increases in the floating
rate.

A cap set at strikeK and lasting until Tn+1 will pay her δ(Lδ(Tj−1, Tj−1)−K)+ at each
time Tj , 1 ≤ j ≤ n + 1. This means that she will never pay more than rate K over any
period; the cap will make up the difference between the δLδ(Tj−1, Tj−1) she owes the bond
holder and the maximum δK she wishes to pay. We shall use Capm(0, n+ 1) to denote the
market price of this cap at time T0 = 0.

Consider the derivative which pays the interest rate cap only at time Tj . So it consists of
a single payoff δ(Lδ(Tj−1, Tj−1)−K)+ at Tj . This is called a caplet. Caplets are not traded
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as such. However, we can imagine them for the purposes of pricing. Clearly, if Capletj(0)
denotes the price of this caplet at time T0 = 0, the total price at T0 = 0 of a cap of maturity
Tn+1 will be

n+1∑
j=1

Capletj(0).

If caps of all maturities are available on the market, we can create a caplet with payoff at Tj
by going long one cap maturing at Tj and short one cap maturing at Tj−1. Thus the market
price of the caplet at Tj is

Capletj(0) = Capm(0, j)− Capm(0, j − 1).

Just as there are interest rate caps, there are also interest floors. By going long a cap
and short a floor, one can create also a collar that keeps the interest rate one pays between
two levels.

Interest rate caps and floors are widely traded and their prices are readily available from
the market.

12.4.2 A remark on the Black-Scholes formula

The pricing formula for the caplet follows the argument of the Black-Scholes formula. The
derivation of the Black-Scholes formula is a direct consequence of the following result
about normal random variables, which in turn is a consequence of Corollary 1 in the class
lecture notes, Review of Mathematical Finance I.

Theorem 6. If Y is a normal random variable with mean 0 and variance ν2,

E

[(
xeY−ν

2/2 −K
)+
]

= xN

(
ln(x/K) + ν2/2

ν

)
−KN

(
ln(x/K)− ν2/2

ν

)
. (12.5)

To see the connection to the Black-Scholes formula, note that the price at time 0 of a
call with strike K is

e−rT Ẽ

[(
xeσW̃ (T )+rT− 1

2
σ2T −K

)+]
= e−rT Ẽ

[(
xerT eσW̃ (T )− 1

2
σ2T −K

)+]
.

Since σW̃ (T ) is a normal random variable with mean 0 and variance σ2T , we are exactly in
the situation of Theorem 6, and it is easy to derive the Black-Scholes formula from (12.5).
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12.4.3 Black’s caplet model and pricing formula

The idea behind Black’s caplet model and price is to take advantage of Theorem 6 by
positing lognormal models where possible. We already saw this strategy in section 9.4 of
Shreve, where we assumed T -forward prices for a given T were lognormal. The idea for
caplets is similar. Consider the caplet that pays δ(Lδ(Tj, Tj)−K)+ at Tj+1. We posit that
there is a risk-neutral model P̃Tj+1 under which Tj+1 forward prices are martingales, that
there is a Brownian motion W̃ Tj+1 under P̃Tj+1 and that

dLδ(t, Tj) = γ(t, Tj)Lδ(t, Tj) dW̃
Tj+1 , (12.6)

where γ(t, Tj) is deterministic. Equivalently,

Lδ(t, Tj) = Lδ(0, Tj) exp

{∫ t

0

γ(u, Tj) dW̃
Tj+1(u)− 1

2

∫ t

0

γ2(u, Tj) du

}
.

For convenience of notation, let

γ̄2(Tj) =
1

Tj

∫ Tj

0

γ2(u, Tj) du.

Let Capletj+1(0, γ̄(Tj)) denote the price at T0 = 0 of the caplet maturing at Tj+1);
(we will see that this price depends only on γ̄(Tj), if δ and K are fixed, so the notation is
appropriate.) By the risk-neutral pricing formula, the Tj+1-forward price of the caplet is

Capletj+1(0, γ̄(Tj))

B(0, Tj+1)
= δẼTj+1

[(
Lδ(0, Tj)e

∫ Tj
0 γ(u,Tj) dW̃

Tj+1 (u)− 1
2

∫ Tj
0 γ2(u,Tj) du −K

)+
]
.

But, since γ(t, Tj) is deterministic,
∫ Tj

0
γ(u, Tj) dW̃

Tj+1(u) is a normal random variable
with mean 0 and variance

∫ Tj
0
γ2(u, Tj) du = Tj γ̄(Tj). Thus from Theorem 6,

Capletj+1(0, γ̄(Tj))

B(0, Tj+1)
= δLδ(0, Tj)N

(
ln

Lδ(0,Tj)

K
+ 1

2
γ̄2(Tj)Tj

γ̄(Tj)
√
Tj

)

− δKN

(
ln

Lδ(0,Tj)

K
− 1

2
γ̄2(Tj)Tj

γ̄(Tj)
√
Tj

)
In this way, we derive Black’s caplet formula:

Capletj+1(0, γ̄(Tj)) = B(0, Tj+1)

[
δLδ(0, Tj)N

(
ln

Lδ(0,Tj)

K
+ 1

2
γ̄2(Tj)Tj

γ̄(Tj)
√
Tj

)

− δKN

(
ln

Lδ(0,Tj)

K
− 1

2
γ̄2(Tj)Tj

γ̄(Tj)
√
Tj

)]
(12.7)
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The implied spot volatility is a number γj , which, when substituted into Black’s caplet
formula, gives the market value:

Capletj+1(0, γj) = Capletj+1(0).

By finding the implied volatilities and then choosing γ(t, Tj) for each j so that∫ Tj

0

γ2(u, Tj) du = Tjγ
2
j ,

we can fit Black’s model to the market for all j.
We emphasize that this model is formulated directly for forward LIBOR and does not

assume that one has formulated a prior model, such as an HJM model, for zero-coupon
bond prices.

12.5 Calibration of forward LIBOR model

12.5.1 Motivation

From the above, we’ve seen that the forward LIBOR rates for different maturity Tj, 1 ≤
j ≤ n have the dynamics:

dLδ(t, Tj) = γ(t, Tj)Lδ(t, Tj) dW̃
Tj+1 ,

where W̃ Tj+1 is a Brownian motion under the Tj+1 forward measure.
The financial products associated with these LIBOR rates are the caplets that pay

δ(Lδ(Tj−1, Tj−1) − K)+ at Tj . The market price of these caplets can be derived from
the price of the caps:

Capletj(0) = Capm(0, j)− Capm(0, j − 1).

On the other hand, from the model of the LIBOR rates, we can also derive, under the
assumption that γ(t, Tj) are determinstic, via Black-Scholes formula, the theoretical price
of these caplets. We denote these prices by Capletj(0, γ̄(Tj−1)).

The obvious question is: can we build a model of these forward LIBOR rates so that

Capletj(0) = Capletj(0, γ̄(Tj−1))?

The answer is of course yes. Since Capletj(0, γ̄(Tj−1)) is a function of γ̄(Tj−1)) we
can choose a number γj−1 so that the above equation holds:

Capletj(0) = Capletj(0, γj−1).
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γj−1 is called the implied volatility of the LIBOR rate with maturity Tj . In general, we
do not have an explicit formula for γj−1. The way to find γj−1 is via numerical procedure,
but it can be done.

Next we can construct a determinsitic function γ(t, Tj−1) so that∫ Tj−1

0

γ2(t, Tj−1) = Tj−1γj−1.

There is much freedom in choosing γ(t, Tj−1) of course.
We may think the next step is just to construct n Brownian motions: W̃ Tj+1 , 1 ≤

j ≤ n (question: how are they related?) and from which we can derive n LiBOR rates
Lδ(t, Tj), 1 ≤ j ≤ n from which the Caplet price will match the market data. But this is
missing some details.

First, we want to build a consistent model for Lδ(t, Tj), 1 ≤ j ≤ n, beyond just match-
ing the market data at time 0. Recall the definition of the LIBOR rates:

Lδ(t, Tj) =
1

δ

B(t, Tj)−B(t, Tj + δ)

B(t, Tj + δ)

=
1

δ

B(t, Tj)−B(t, Tj+1)

B(t, Tj+1)

So even without knowing the details, we should suspect that Lδ(t, Tj) and Lδ(t, Tj+1)

are related at some level. If we simulate W̃ Tj+1 and W̃ Tj+2 without regards to this relation,
we’re missing certain things.

Second, suppose starting out from the risk neutral measure P̃ , we have the dynamics of
the bond B(t, Tj) as

dB(t, Tj) = R(t)B(t, Tj)dt+ σ∗(t, Tj)B(t, Tj)W̃ (t).

Note that there is only one Brownian motion W̃ here, which is independent of Tj . (The
choice of how many Brownian motions we put in is up to us, of course, but the point is that
we use the same Brownian motions to model the dynamics of B(t, Tj) for different Tj). So
from what we learned from the change of numéraire section, the Brownian motion W̃ Tj+1

are all related to W̃ via the equation:

dW̃ Tj(t) = dW̃ (t) + σ∗(t, Tj) dt.

Thus all Brownian motions W̃ Tj are related actually. So to model Lδ(t, Tj) properly,
beyond determining the γ(t, Tj) to match the market data, we also need to learn about the
relations of Lδ(t, Tj). We will do so in the next section.

Finally, as the bond price B(t, Tj) and LIBOR rates Lδ(t, Tj) are clearly related, we
will see that by modeling the Lδ(t, Tj) properly, this will also give us a handle on how to
model the volatility σ∗(t, Tj) of the bonds and the (discounted) value of the bond B(t, Tj)
themselves. The details will be given in the third section.
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12.5.2 Consistent forward LIBOR models - Relation among the Lδ(t, Tj)

Relation among W̃ Tj

Recall from section (12.5.1) that for every j, dW̃ Tj(t) = dW̃ (t)+σ∗(t, Tj) dt. In particular,
it follows from this that

dW̃ Tj(t) = dW̃ Tj+1(t) + [σ∗(t, Tj)− σ∗(t, Tj+1)] dt (12.8)

Next, from the dynamics of Lδ(t, Tj) that we derived before:

dLδ(t, Tj) = Lδ(t, Tj)

{
1 + δLδ(t, Tj)

δLδ(t, Tj)
[σ∗(t, Tj+1)− σ∗(t, Tj)]

}
dW̃ Tj+1(t).

This will be the same as the Black model dLδ(t, Tj) = γ(t, Tj)Lδ(t, Tj) dW̃
Tj+1(t) only if

γ(t, Tj) =
1 + δLδ(t, Tj)

δLδ(t, Tj)
[σ∗(t, Tj+1)− σ∗(t, Tj)], t ≤ Tj

or equivalently,

σ∗(t, Tj+1)− σ∗(t, Tj) =
δLδ(t, Tj)

1 + δLδ(t, Tj)
γ(t, Tj), t ≤ Tj. (12.9)

Assume this is the case for all j ≤ n. By combining this result with equation (12.8),

dW̃ Tj(t) = dW̃ Tj+1(t)− δLδ(t, Tj)

1 + δLδ(t, Tj)
γ(t, Tj) dt (12.10)

The significance of this equation is that the processes σ∗(t, T ) no longer explicitly appear—
everything is expressed in terms of the LIBOR rates themselves and their volatility functions
γ(t, Tj).

By working backward with (12.10), dW̃ Tj(t) can be expressed in terms of dW̃ Tn+1(t)
for all j. Indeed,

dW̃ Tn(t) = dW̃ Tn+1(t)− δLδ(t, Tn)

1 + δLδ(t, Tn)
γ(t, Tn) dt.

But then

dW̃ Tn−1(t) = dW̃ Tn(t)− δLδ(t, Tn−1)

1 + δLδ(t, Tn−1)
γ(t, Tn−1) dt

= dW̃ Tn+1(t)−
[

δLδ(t, Tn)

1 + δLδ(t, Tn)
γ(t, Tn) +

δLδ(t, Tn−1)

1 + δLδ(t, Tn−1)
γ(t, Tn−1)

]
dt.
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Continuing further, and using what has just been derived,

dW̃ Tn−2(t) = dW̃ Tn−1(t)− δLδ(t, Tn−2)

1 + δLδ(t, Tn−2)
γ(t, Tn−2) dt

= dW̃ Tn+1(t)−
[ n∑
i=n−2

δLδ(t, Ti)

1 + δLδ(t, Ti)
γ(t, Ti)

]
dt.

Clearly, this will yield for general j ≤ n that

dW̃ Tj(t) = dW̃ Tn+1(t)−
[ n∑
i=j

δLδ(t, Ti)

1 + δLδ(t, Ti)
γ(t, Ti)

]
dt. (12.11)

The significance of this equation, compare with (12.10) is that now all W̃ Tj is written
in terms of W̃ Tn+1 . Thus, instead of generating n Brownian motions, we only need to
generate one Brownian motion W̃ Tn+1 . This is consistent with what we mentioned before
that we started out with only one Brownian Motion under risk neutral measure W̃ .

The relation among the L(t, Tj) - Their construction

Now we can write down a coherent system of equations for the LIBOR forward rates . First
of all, Black’s model for j = n gives

dLδ(t, Tn) = Lδ(t, Tn)γ(t, Tn) dW̃ Tn+1(t), t ≤ Tn. (12.12)

Next, for arbitrary j < n, dLδ(t, Tj) = Lδ(t, Tj)γ(t, Tj) dW̃
Tj+1(t), and so

dLδ(t, Tj) = Lδ(t, Tj)γ(t, Tj)

[
−

n∑
i=j+1

δLδ(t, Ti)

1 + δLδ(t, Ti)
γ(t, Ti) + dW̃ Tn+1(t)

]
, t ≤ Tj

(12.13)
This system of equations makes no reference to the original risk-neutral HJM model.

In fact, it can stand alone as its own model. By working backwards on this set of equations
using standard theorems, one can prove that it generates a consistent model for caplets
of all maturities up to Tn+1, without assuming the prior existence of an HJM model for
B(t, T ). We state this result and summarize the forward LIBOR model in the following
theorem. The proof will be given in the next subsection where we discuss the relation
between forward measures, see (8).

Theorem 7. Let there be given a probability space with measure P̃Tn+1 supporting a Brow-
nian motion W̃ Tn+1 . Then there exists a unique solution Lδ(t, T1), . . . , Lδ(t, Tn) to the sys-
tem of equations (12.12)–(12.13). If the measures P̃Tj , j = n, n − 1, . . . , 1 are defined

207



recursively by

P̃Tj(A) = ẼTj+1

[
1A

1 + δLδ(Tj, Tj)

1 + δLδ(0, Tj)

]
,

and the processes W̃ Tj(t), 1 ≤ j ≤ n, are defined recursively by

dW̃ Tj(t) = dW̃ Tj+1(t)− δLδ(t, Tj)

1 + δLδ(t, Tj)
γ(t, Tj) dt,

then W̃ Tj is a Brownian motion under P̃Tj for each j ≤ n and

dLδ(t, Tj) = Lδ(t, Tj)γ(t, Tj) dW̃
Tj+1(t), for each j ≤ n.

Changing between T -forward measures

Let 0 < T < T ′. Suppose that we have a risk-neutral model for the T ′ forward prices of
a market in which zero-coupon bonds are offered on all maturities. We are not assuming
that this has necessarily been derived from an HJM model, just that we have a probability
space with a measure P̃T ′ under which the T ′-forward prices of all assets are martingales.
Let us denote the T ′ forward price of an asset whose price in dollars is S(t) by ST ′(t) =
S(t)/B(t, T ′). In particular, the T ′-forward price of a zero-coupon bond maturing at T ,
which is

BT ′(t, T ) =
B(t, T )

B(t, T ′)
, t ≤ T,

is a martingale under P̃T ′ . The T forward price of an asset whose T ′ forward price is ST ′(t)
is

ST (t) =
S(t)

B(t, T )
=

S(t)/B(t, T ′)

B(t, T )/B(t, T ′)
=

ST
′
(t)

BT ′(t, T )
.

We are interested in finding the P̃T -forward measure that makes prices ST (t) into mar-
tingales. Since we are not starting from an HJM model as in the previous section, we want
to derive this in terms of the T ′-forward measure. Denote expectation with respect to P̃T ′

by ẼT ′ .

Theorem 8. Define, P̃T by

P̃T (A) =
B(0, T ′)

B(0, T )
ẼT ′ [1A

1

B(T, T ′)
] (12.14)

Then if an asset is such that its T ′- forward price is a martingale under P̃T ′ then its T -
forward price is also a martingale under P̃T .
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This theorem is a generalization of formula (9.2.7) in Shreve.

Heuristic idea:

The intuitive idea why formula (12.14) is true is as followed. We want to convert
from P̃T ′ to P̃T . The numéraire associated with P̃T is B(t, T ). The price process of this
numéraire under P̃T ′ is

N(t) :=
B(t, T )

B(t, T ′)
.

Thus the change of measure formula states that

P̃T (A) = ẼT ′ [1A
N(T )

N(0)
]

=
B(0, T ′)

B(0, T )
ẼT ′ [1A

1

B(T, T ′)
].

Compare this with what we did for change of measure from P̃ to P̃(N), for example.
The numéraire under P̃(N) is clearly N(t). Its “price" under P̃ is D(t)N(t). Therefore the
change of measure formula is

P̃(N)(A) = Ẽ[1A
D(T )N(T )

D(0)N(0)
]

Rigorous proof:

The proof is an application of Lemma 5.2.2 in Shreve: Suppose that Z(t) is a positive
martingale under a probability measure P and define

PZ(A) = E[1AZ(T )]/Z(0).

Then if M(t) is a martingale under P,

{M(t)/Z(t); t ≤ T}

is a martingale under PZ . To prove the theorem, simply apply this principle with P̃ in place
of P and BT ′(t, T ) = B(t, T )/B(t, T ′) in place of Z(t). Note that the definition in (12.14)
is the same as

P̃T (A) = ẼT ′ [1AB
T ′(T, T )]/BT ′(0, T ).

Since a T ′ forward price ST ′(t) is a martingale under P̃T ′ , it follows that the T forward
price

ST (t) = ST
′
(t)/BT ′(t, T ),

is a martingale under P̃T as defined in (12.14). This completes the proof.
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12.5.3 Construction the Tj-Maturity Discounted Bonds

Construction of σ∗(t, Tj)

The above theorem does not give us a HJM model, which is defined in terms of functions
σ∗(t, Tj) on the risk-neutral probability for prices denominated in the domestic currency.
This is done in Shreve on pages 444-447. We will only outline the main idea here.

With the deterministic functions γ(t, Tj) in hand, we can construct the functions σ∗(t, Tj)
that are consistent with γ(t, Tj)

σ∗(t, Tj+1)− σ∗(t, Tj) =
δLδ(t, Tj)

1 + δLδ(t, Tj)
γ(t, Tj) t ≤ Tj.

By writing this as

σ∗(t, Tj+1) = σ∗(t, Tj) +
δLδ(t, Tj)

1 + δLδ(t, Tj)
γ(t, Tj), t ≤ Tj. (12.15)

we see that Lδ(t, Tj), γ(t, Tj), and σ∗(t, Tj) determine σ∗(t, Tj+1) at least for t ≤ Tj .
This leads to a recursive procedure for defining σ∗(t, Tj). We outline the procedure of
construction here:

1. Choose σ∗(t, T1) for 0 ≤ t ≤ T1. The only constraint is

lim
t→T1

σ∗(t, T1) = 0.

2. Construct σ∗(t, T2) for 0 ≤ t ≤ T1 (note the time interval) using the relation

σ∗(t, Tj+1) = σ∗(t, Tj) +
δLδ(t, Tj)

1 + δLδ(t, Tj)
γ(t, Tj), t ≤ Tj.

3. Choose σ∗(t, T2) for T1 ≤ t ≤ T2 (again note the time interval). The only constraint
is

lim
t→T2

σ∗(t, T2) = 0.

4. Repeat this procedure to construct σ∗(t, Tj) for j ≥ 3.

Observe that in the above procedure, we had freedom to construct σ∗(t, Tj) on the
interval Tj−1 ≤ t ≤ Tj subject to the only constraint

lim
t→Tj

σ∗(t, Tj) = 0.

Thus there is also much freedom in constructing σ∗(t, Tj).
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Construction the Tj-Maturity Discounted Bonds

Now that we have constructed σ∗(t, Tj), the dynamics of the bond B(t, Tj) under the risk
neutral measure P̃ is straightforward:

dB(t, Tj) = R(t)B(t, Tj)dt− σ∗(t, Tj)B(t, Tj)dW̃ (t).

Since we constructed the LIBOR rate under the forward measure P̃ Tn+1 and the Brow-
nian motion W̃ Tn+1 , it’s also convenient to write the dynamics of B(t, Tj) using these as
well:

dB(t, Tj) = R(t)B(t, Tj)dt+ σ∗(t, Tj)σ
∗(t, Tn+1)B(t, Tj)dt− σ∗(t, Tj)B(t, Tj)dW̃

Tn+1(t).

Lastly, since we haven’t constructed R(t), it is better to write the dynamics of the
discounted bond price instead:

d
(
D(t)B(t, Tj)

)
= σ∗(t, Tj)σ

∗(t, Tn+1)D(t)B(t, Tj)dt− σ∗(t, Tj)D(t)B(t, Tj)dW̃
Tn+1(t).

We need the initial conditions to generate the bonds. They can be obtained from the
LIBOR rates we have constructed as well:

D(0)B(0, Tj) = B(0, Tj) =

j−1∏
i=0

B(0, Ti+1)

B(0, Ti)
=

j−1∏
i=0

(
1 + δLδ(0, Ti)

)−1

.

The verification that our construction is consistent: D(t)B(t, Tj) is a martingale under
P̃ is stated in Shreve’s Theorem 10.4.4. (The only subtle point is we start out modeling
under the forward measure P̃ Tn+1 . So we need to define the risk neutral measure P̃ from
P̃ Tn+1 . After that the verification is straightforward.)
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