
Homework 9 (Due 4/7/2017)

Math 622

April 7, 2017

1. Let N be a Poisson process with rate λ and filtration F(t). Define

Y (t) := exp
(
uN(t)− λt(eu − 1)

)
,

that is Y is the exponential martingale associated with N . Use stochastic calculus

(Ito’s formula) for jump processes to show that

Y (t) = 1 +

∫ t

0

(eu − 1)Y (s−)dM(s),

where M(t) = N(t)− λt and conclude that Y (t) is a martingale w.r.t F(t).

Ans: Let X(t) = uN(t)− λt(eu − 1). Then Y (t) = eX(t). By Ito’s formula

Y (t) = 1−
∫ t

0

λY (s)eu−1ds+
∑
s≤t

Y (s)− Y (s−).

Now

Y (s)− Y (s−) = Y (s−)(eu∆N(s) − 1) = Y (s−)(eu − 1)∆N(s)

and ∫ t

0

λY (s)eu−1ds =

∫ t

0

λY (s−)eu−1ds.

These two facts together give the result.

2. Let N1(t), N2(t) be independent Poisson processes with rate λ1, λ2 and F(t) a

filtration for both N1, N2. Also define Mi(t) = Ni(t)− λit, i = 1, 2.

(i) Use Ito’s formula to show that

M1(t)M2(t) = M1(0)M2(0) +

∫ t

0

M1(s−)dM2(s) +

∫ t

0

M2(s−)dM1(s)

+
∑
s≤t

(M1(s)−M1(s−))(M2(s)−M2(s−)).
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Hint: Add and subtract M1(s)M2(s−) to get∑
s≤t

M1(s)M2(s)−M1(s−)M2(s−) =
∑
s≤t

M1(s)(M2(s)−M2(s−))

+
∑
s≤t

M2(s−)(M1(s)−M1(s−)).

Ans: By Ito’s formula and the hint

M1(t)M2(t) = M1(0)M2(0)− λ2

∫ t

0

M1(s)ds− λ1

∫ t

0

M2(s)ds+
∑
s≤t

M1(s)(M2(s)−M2(s−))

+
∑
s≤t

M2(s−)(M1(s)−M1(s−))

= M1(0)M2(0)− λ2

∫ t

0

M1(s)ds− λ1

∫ t

0

M2(s)ds+
∑
s≤t

M1(s−)(M2(s)−M2(s−))

+
∑
s≤t

(M1(s)−M1(s−))(M2(s)−M2(s−)) +
∑
s≤t

M2(s−)(M1(s)−M1(s−))

= M1(0)M2(0)− λ2

∫ t

0

M1(s)ds− λ1

∫ t

0

M2(s)ds+

∫ t

0

M1(s−)dN2(s)

+

∫ t

0

M2(s−)dN1(s) +
∑
s≤t

(M1(s)−M1(s−))(M2(s)−M2(s−))

= M1(0)M2(0) +

∫ t

0

M1(s−)dM2(s) +

∫ t

0

M2(s−)dM1(s)

+
∑
s≤t

(N1(s)−N1(s−))(N2(s)−N2(s−)).

(ii) Conclude that the probability that N1 and N2 have the same jump time is 0 .

Take expectation on both sides, since both
∫ t

0
Mi(s−)dMj(s), i, j = 1, 2 are mar-

tingales and M1,M2 are independent, we get

E(
∑
s≤t

(N1(s)−N1(s−))(N2(s)−N2(s−))) = 0.

Since the expression inside the sum is non-negative, it means with probability 1,

(N1(s) − N1(s−))(N2(s) − N2(s−)) = 0 for every s. This means either N1(s) −
N1(s−) = 0 or N2(s) − N2(s−) = 0 for every s. That is N1, N2 cannot jump at the

same time.

3. Let N(t) be a Poisson(λ) process and Wt a Brownian motion. Let

Xu(t) := exp
(
uN(t)− λt(eu − 1)

)
,

Y v(t) := exp
(
vW (t)− 1

2
v2t
)
.
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It is a fact that if E(Xu(t)Y v(t)) = E(Xu(t))E(Y v(t)) for any u, v then Wt and Nt

are indepedendent. Show that this is the case by using Ito’s formula on Xu(t)Y v(t),

(utilize the fact that Xu(t), Y v(t) are martingales).

Ans: Using problem 1 and the usual Ito Calculus we know

Xu(t) = 1 +

∫ t

0

Xu(s−)(eu − 1)d(N(s)− λs)

and

dY v(t) = vY v(t)dW (t).

Thus by Ito’s formula

Xu(t)Y v(t) = 1 +

∫ t

0

vXu(s)Y v(s)dW (s)− λ(eu − 1)

∫ t

0

Y v(s)Xu(s−)ds

+
∑
s≤t

Xu(s)Y v(s)−Xu(s−)Y v(s−)

= 1 +

∫ t

0

vXu(s)Y v(s)dW (s)− λ(eu − 1)

∫ t

0

Y v(s)Xu(s−)ds

+
∑
s≤t

Y v(s)(Xu(s)−Xu(s−))

= 1 +

∫ t

0

vXu(s)Y v(s)dW (s)− λ(eu − 1)

∫ t

0

Y v(s)Xu(s−)ds

+
∑
s≤t

Y v(s)Xu(s−)(eu − 1)∆N(s),

= 1 +

∫ t

0

vXu(s)Y v(s)dW (s)−
∫ t

0

Y v(s)Xu(s−)(eu − 1)d(N(s)− λds).

Thus E(Xu(t)Y v(t)) = 1 = E(Xu(t))E(Y v(t)) for any u, v from which the conclusion

follows.

Remark: What we actually have is

E(exp(uN(t) + vW (t)) = exp(λt(eu − 1)) exp(
1

2
v2t).

That is the joint moment generating functions equals the product of the individual

moment generating function. This is the reason for independence. where the second

equality comes from the fact that Y (s) is continuous so Y (s) = Y (s−).

4. Let Y1, Y2, · · · be i.i.d with distribution P (Yi = k
10

) = 1/10, k = 1, 2, · · · , 10.

Let N(t) be a Poisson(1/2) process.
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a) Simulate the compound Poisson process Q(t) =
∑N(t)

i=1 Yi, for t ∈ [0, 1].

b) Compute E(Q(1)) using simulation. Compare with the theoretical value.

5. Consider the following model for a stock with default :

dSt = rS(t)dt+ σS(t)dW̃t − S(t−)d(Q(t)− µdt), 0 ≤ t ≤ 1

where Q(t) =
∑N(t)

i=1 Yi, Yi is given in problem 4 but now N(t) is a Poisson(1/10)

process (so that the default happens only once over 10 years on average, a rare event)

and µ = E(Q(1)). To see that this indeed models default, note that when default

happens (when N(t) jumps) we have

S(t)− S(t−) = −S(t−)∆Q(t).

That is

S(t) = S(t−)(1−∆Q(t)) = S(t−)(1− Yi).

Thus depending on the value of Yi we can have the fall in stock value (percentage) of

10, 20 · · · , 100%.

a) Let S0 = 50, σ = 0.1, r = 0.01. Use simulation to compute Ẽ(e−rT (ST −K)+),

the price of call option with T = 1, K = 45. (There is a theoretical expression for

this, see lecture notes for more details).

b) Do you expect the Black-Scholes price of the same call option when St has no

jump part to be higher or lower than the answer in part a) ? Compute this difference.

c) Repeat part a and b with European put option with strike K = 55 and expiry

T = 1.

Discussion:

(i) This is a simplistic model of company default. One can easily adapt it to make

it more realistic, i.e. change the distribution of Yi (make it less likely to fall over a

large percentage, for example), make the default rate dependent on the stock value

(that is λ is a function of S(t)) etc.

(ii) The concept of credit spread is used to estimate the riskiness of a company.

Usually it is measured as the difference in price of a similar instrument on a risky

entity and a risk-free entity. In this sense, the difference in part b) and c) in problem

5 might be proposed as a measure for the credit spread. There are two problems with

this:

First, the lack of benchmark. To be able to observe such a credit-spread in the

market, we need to have a similar company (in terms of their volatility level) but

4



is default-free, so that we can obtain their market-value call-option price (it is easy

to see that there might be no such company). This is why corporate bond probably

is a better instrument to measure credit risk since we have the benchmark of the

government-issued bond, which is considered default-free.

Second, we perform the pricing under the risk-neutral framework. Thus the dif-

ference we come up with in part b) and c) are obtained under a risk-neutral point

of view, and may not be proper to measure risk. Specifically, intuitively one might

expect the call option price to be cheaper under defaultable model (since stock can

only jump downward). In fact this may not be the case since the downward jump is

compensated by the updrift µdt. A similar situation applies to the put option. In

short, to measure risk one should work under the real-world probability (where no

such compensation for Q(t) occurs) ).
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