
Homework 8 (Due 3/31/2017)

Math 622

April 7, 2017

1. Let P̃ be a risk neutral measure. Let St have the dynamics of geometric

Brownian motion under P̃ :

dSt = (0.5)Stdt+
√

2StdW̃t.

Consider a perpetual American option on St with payoff function g(St), where

g(x) =
(
K−
√
x
)+

and K is a positive constant. Let Vt be the value of this American

option at time t, assuming it has not been exercised.

a) By the Markov property of St, there is a bounded function v(x) such that

v(St) = Vt. State the equation for the obstacle problem that v(x) satisfies. (You only

need to state what it is and do not have to justify).

The obstacle problem is

min(v(x)− (K −
√
x)+, (0.5)v − vx(0.5)x− vxxx2) = 0.

b) Assuming that the continuation region has the form C =
{
x > L∗

}
and

exercise region has the form E =
{

0 ≤ x ≤ L∗
}

where L∗ ≤ K2. By using the

smooth pasting principle, solve for L∗ and the solution v(x) of the above problem.

(Take care to verify that v(x) is the actual solution.)

The general solution to

−(0.5)v + vx(0.5)x+ vxxx
2 = 0

is

v(x) = Ax−0.5 +Bx.
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Since v(x) is bounded for x > 0, v(x) = Ax−0.5. So the form of the solution is

v(x) = K −
√
x, 0 < x ≤ L∗

= Ax−0.5, L∗ < x.

The smooth pasting conditions give

v(L∗) = A(L∗)−0.5 = K −
√
L∗

vx(L
∗) = −0.5A(L∗)−1.5 = − 1

2
√
L∗
.

Solving for the above system gives

A = L∗

L∗ =

(
K

2

)2

.

Thus

v(x) = K −
√
x, 0 < x ≤

(
K

2

)2

=
K2

4
x−.5,

(
K

2

)2

< x.

Verification: We need to check that

(i) K2

4
x−.5 ≥ K −

√
x for

(
K
2

)2
< x

and

(ii) v(x) = K −
√
x satisfies (0.5)v − vx(0.5)x− vxxx2 ≥ 0 for 0 < x ≤

(
K
2

)2
.

For part (i) we apply the simple inequality (a+ b)2 ≥ 4ab to conclude

(
K2

4
x−.5 +

√
x)2 ≥ K2,

which implies the desired inequality. As for part (ii) simply plugging in gives

(0.5)v − vx(0.5)x− vxxx2 = 0.5(K −
√
x) +

1

2
√
x

(0.5)x− 1

4x3/2
x2 = 0.5(K −

√
x) ≥ 0 for x ≤

(
K

2

)2

.

2. Let

G(t) =


2t , 0 ≤ t < 1;

t2 − 3 , 1 ≤ t < 2;

t+ 1 , 2 ≤ t.
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Evaluate
∫ 3

0
sdG(s).

Ans:∫ 3

0

sdG(s) =

∫ 1

0

s(2ds) + 1(G(1)−G(1−)) +

∫ 2

1

s(2sds) + 2(G(2)−G(2−)) +

∫ 3

2

sds

= 1 + (−2− 2) +
2

3
(8− 1) + 2(3− 1) +

5

2
=

49

6
.

3. Let Nt be a Poisson process. For this problem, it is important to remember

that by definition, Nt is a right continuous with left limit process. For example, if we

denote τ1 as the time of the first jump of Nt then Nτ1− = 0 and Nτ1 = 1.

(i) Show that ∫ t

0

N(u)dN(u) =
N(t)(N(t) + 1)

2
.

Ans:

∫ t

0

N(u)dN(u) =
∑
s≤t

N(s)(N(s)−N(s−)) =
∑
s≤t

N(s) =

N(t)∑
k=1

k =
N(t)(N(t) + 1)

2
.

(ii) For a function f(t), we denote f(t−) to be the function that takes value as

the left limit of f(t) at every t. For example, if f(t) = t then f(t−) = t as well. On

the other hand, the process N(t−) will be a left continuous with right limit process.

N(t−) = N(t) if t is not a jump time of N(t) and N(t−) = N(t) − 1 at the jump

points of N(t).

Show that ∫ t

0

N(u−)dN(u) =
N(t)(N(t)− 1)

2

Ans:∫ t

0

N(u−)dN(u) =
∑
s≤t

N(s−)(N(s)−N(s−)) =
∑
s≤t

N(s−) =

N(t)−1∑
k=0

k =
N(t)(N(t)− 11)

2
.

4. Simulate 100 sample points of an X random variable having Poisson(2) distri-

bution. Try both approaches using the inverse distribution function (X = F−1(U), U

uniform [0,1]) and by viewing the Poisson(2) random variable as the value of a

Poisson(2) process at time t = 1 using exponential inter-arrival times (That is
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Nt = {maxn :
∑n

i=1 τi ≤ t } where τi are i.i.d exponential(1
2
)). Verify your sim-

ulation by checking that E(X) = 2 and V ar(X) = 2 using the sample.

5. Simulate 100 paths of a Poisson (4) process Nt, 0 ≤ t ≤ 1. Try both approaches

using the fact that the independent increments dN(t) has distribution Poisson(4dt)

and using exponential inter-arrival times. Verify your result by computing E(
∫ 1

0
tdNt).

It should be equal to 4
∫ 1

0
tdt (coming from the fact that Nt−4t is a martingale, which

we’ll discuss in the next lecture).

6. Extra credit (5 points for midterm 2, must be turned in before midterm 2) In

class we discuss the analytic solution to the perpetual American put problem (that

is we solve the obstacle problem directly). For the finite horizon problem in terms

of computation we always have 2 options: the stochastic (simulation) approach and

the PDE (numerical) approach. Can you find the stochastic approach for finding the

solution to the perpetual put problem? (The challenge of course is T =∞ so it’s not

clear what the stochastic approach should look like). Demonstrate by verifying that

your approach agrees with the analytic solution we obtained before.
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