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Chapter 1

Linear algebra

1.1 Vector Spaces and Matrix Algebra

1.1.1 Introduction
The Laplace transform we studied in the last chapter is an example of a linear operator.
The natural domain of a linear operator is a linear space, roughly a collection of objects
that is closed under addition and scalar multiplication. For example, for any integer n, the
collection of n-tuples Rn is an example of a vector space. In the first part of this section we
study the basic properties of linear space.

The natural linear operator that acts on Rn is represented by am×nmatrix. The second
part of this section deals with matrix algebra: the interaction between linear operators on
Rn.

1.1.2 Vector spaces
Definition 1.1.1. A vector space is essentially a collection that is closed under addition
and scalar multiplication. That is let V be a vector space. Then for any x, y ∈ V and
scalars a, b,

ax+ by ∈ V.

The usual properties of addition and multiplication apply, such as commutatitivity, as-
sociativity and distributivity. The (unique) identity for the addition operation is called the
0 vector:

x+ 0 = 0 + x = x.

Finally every element x has its additive inverse −x:

x+ (−x) = −x+ x = 0.

Example 1.1.2. The typical examples of a vector space include
a. Rn, the space of n-tuples.
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b. C[0,∞), the space of continuous functions on [0,∞).
c. Cn[0,∞), the space of functions that are continously differentiable up to the nth

order.
In general, one just check that the collection is closed under addition and scalar multi-

plication. The 0 element and the existence of additive inverse are usually obvious.

1.1.3 Subspace
A subset W of a vector space V is a subspace if W itself is a vector space. For example,
C[0,∞) is a subspace of C1[0,∞). Another example is the collection of 3-tuples with zero
first entry being a subspace of R3.

1.1.4 Linear independence and basis
Definition 1.1.3. A subset W of a vector space V is linearly independent if the following
holds for any w1, · · · , wn ∈ W :

n∑
i=1

ciwi = 0

if and only if
c1 = c2 = · · · = cn = 0.

We say W is linearly dependent if the above fails.

Example 1.1.4. The collection {[1, 0, 0], [0, 1, 0], [0, 0, 1]} is a linearly independent subset
of R3. The collection {[1, 0, 0], [0, 1, 0], [1, 2, 0]} is a linearly dependent subset of R3.

Definition 1.1.5. A subset W of a vector space V is a basis of V if the following holds:
a. W is linearly-independent.
b. For any v in V , there exist w1, · · · , wn and scalars c1, · · · , cn such that

n∑
i=1

ciwi = v.

Remark: It is a fact that any vector space has a basis. Moreover, all bases of a vector
space have the same size. The size of a basis of a vector space is referred to as its dimension.

Example 1.1.6. The collection {[1, 0, 0], [0, 1, 0], [0, 0, 1]} is a basis of R3. Thus (obvi-
ously) the dimension of R3 is 3.
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1.1.5 Matrix algebra
Definition 1.1.7. A matrix is a rectangular array of elements a11 a12 · · · a1n

...
...

am1 am2 · · · amn

 .
The above matrix has m rows and n columns. We also say it is a m× n matrix.

Let A,B be m× n matrices. We say A = B if aij = bij for any i, j. We define A+ B
to be a m× n matrix such that

(A+B)ij = aij + bij.

Similarly, for a scalar c, we define cA to be a m× n matrix such that

(cA)ij = caij.

Now let A be m×n and B be n×k matrices. We define AB to be a m×k matrix such
that

(AB)ij =
n∑
l=1

ailblj.

Matrix addition and multiplication enjoy the usual properties of addition and multi-
plication such as commutatitivity, associativity and distributivity. We won’t go into the
details.

Finally, let A be a m× n matrix. The transpose of A, denoted as AT , is a n×m matrix
such that

ATij = Aji.

The following is a frequently used result about the transpose of a product of matrices:

(AB)T = BTAT .

1.1.6 Special matrices
A n × n matrix A is upper triangular if all the entries below the diganoal are 0: Aij = 0
for all i > j. We say An×n is lower triangular if all the entries above the diagonal are 0:
Aij = 0 for all j > i.

If only the diagonal entries of A is non-zero then we say A is a diagonal matrix.
A diagonal matrix is a scalar matrix if all the diagonal entries are equal.
A scalar matrix is an identity matrix, denoted as I , if all the diagonal entries are 1s.
A matrix A is symmetric if A = AT .
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1.1.7 System of linear equations
A system of m linear equations and n unknowns are of the form Ax = b where A is a
m × n matrix and b is a vector in Rm. The standard way to solve the system is to reduce
the augmented matrix [A|b] to row echelon form or reduced row echelon form. Roughly
speaking, a row echelon form transforms A into a matrix that is as close to upper triangular
as possible while a reduced row echelon form transforms A into a matrix that is as close to
the identity matrix as possible.

The operations that one can perform on a matrix to reduce it to echelon forms are:
swapping rows, multiplying a row with a scalar, adding two rows and replace the sum with
one of the rows.

We say a system is inconsistent if it has no solution and is consistent otherwise. If
m < n the system is under-determined and if m > n it is over-determined. An under-
determined system always has at least one solution (and usually infinitely many solutions)
while an over-determined system usually is inconsistent. If m = n it is of interest to see if
there is only one solution (solution is unique). Also note that the system Ax = 0 is always
consistent (no matter the size of A) since x = 0 is always a trivial solution.

1.2 Rank of a matrix and determinants

1.2.1 Introduction
In studying a linear system of equations Ax = b, it is clear that the properties of A play
a crucial role in the existence of uniqueness of the solution. We have mentioned two in
the last section: over-determined (m > n) and under-determined (m < n). These tell us
whether we have more (or less) equations than the unknowns. Note, however that not all
equations tell us something “new". For example, the following are essentially 1 equation:

x+ y = 1

2x+ 2y = 2.

If we look at the matrix
[

1 1
2 2

]
superficially, we may conclude that this system is neither

over- nor under-determined sincem = n = 2. Yet this system is under-determined because
only the second equation is redundant. We will see that in stead of the size of the rows,
a better way to capture how many equations are “relevant" is the rank of a matrix. By
comparing the rank with the number of the unknowns, we will be able to tell whether we
can expect the existence of a solution and whether it is unique.

An alternative way to investigate the existence and uniqueness of the solution is via the
determinant of a matrix, which is only defined if a matrix is square.
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1.2.2 Rank of a matrix
Definition 1.2.1. The rank of a m × n matrix A is the maximum number of linearly inde-
pendent row vectorsi n A.

Remark: Since elementary row operations do not change the linear structure among the
rows, the rank of a matrix is equal to the number of non-zero rows in its row echelon form
or reduced row echelon form. This is how we find the rank of a matrix in practice.

Example 1.2.2. After row reduction, the matrix

A =

 1 1 −1 3
2 −2 6 8
3 5 −7 8


is reduced to

Ã =

 1 1 −1 3
0 1 −2 −1/2
0 0 0 0

 .
Thus rank(A) = 2.

In the previous example, suppose we want to solve the system Ax = b. After reduction,
the augmented matrix [A|b] is reduced to [Ã|b̃] where Ã is given above. It is clear that if
the the system is consistent if and only if the last entry of b̃ is zero. We capture this fact by
saying a system Ax = b is consistent if and only if rank(A) = rank([A|b]).

On the other hand if the system Ax = b is consistent then in the above example, it is
clear that only the first two equations are relevant. There are 4 unknowns in the system.
Thus we have the freedom to choose 2 of them to be arbitrary values (usually the last two
unknowns by convention). If we let r denote the rank of the matrix then n−r is the number
of free unknowns we can assign arbitrary values to.

1.2.3 Determinants
Roughly speaking, determinant is a mapping from the space of n × n matrices to the real
line. To give its definition we need to introduce some notation. For a n × n matrix A, we
denote Aij to be the n− 1×n− 1 matrix obtained by deleting the ith row and jth column.
The determinant of A is defined inductively as followed:

a. det(A) = a11a22 − a12a21 for A2×2.
b. Generally, for a fixed j,

det(A) =
m∑
i=1

(−1)i+jdet(Aij).
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This is expansion along the j-th column. Also for a fixed i,

det(A) =
n∑
j=1

(−1)i+jdet(Aij).

This is expansion along the i-th row. It is a remarkable fact that we obtain a single number,
called the determinant of A, for expansion along any row or any column.

Example 1.2.3. Expanding along the first row:

det(

 2 4 7
6 0 3
1 5 3

) = 2(0× 3− 3× 5)− 4(6× 3− 3× 1) + 7(6× 5− 0× 1) = 120.

1.2.4 Properties of determinants
We list here some basic properties of determinants:

a. det(A) = det(AT ).
This is easy to see for 2×2 matrices. For 3×3 and higher it is easy to see that expanding

along a row of A is the same as expanding along a column of AT and the resulting matrices
after deleting specific row and column of A and AT are in fact transposes of each other.
Thus the result is true by induction.

b. det(AB) = det(A)det(B).
c. Let A′ be the resulting matrix after swapping two rows (columns) of A. Then

det(A′) = −det(A).
d. Let A′ be the result of multiplying a row (column) of A with a constant c. Then

det(A′) = cdet(A).
e. Let A′ be the result of multiplying a row of A wit a constant, add it to another row

and replace that row. Then det(A′) = det(A).
Remarks: c, d, e can be derived from b by represnting the elementary row operations

with action by a matrix. That is we can show A′ = EA for some matrix E. It is easy to
show that the matrix E has the expected determinant (e.g. det(E) = −1 in statement c).

f. If A has a zero row (column) then det(A) = 0. This is easy to see by expanding
along the zero row or column.

g. If A have two identical rows or columns then det(A) = 0. This follows from e and
f .

h. If A is triangular then det(A) =
∏n

i=1 aii. This can be seen by expanding along the
first column (if A is upper triangular) or the first row (if A is lower triangular).
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1.3 Inverse of a Matrix and Cramer’s Rule

1.3.1 Inverse of a matrix
We have seen that a m × n matrix A is a linear mapping from Rn to Rm. When m = n
the linear map A might be one-to-one and onto. That is it might have an inverse, denoted
as A−1. From its definition as an inverse, A−1 satisfies

AA−1 = A−1A = I.

Conversely, if there exists a matrix B such that AB = BA = I then B is the inverse of
A. In fact, we only need either AB = I or BA = I to conclude B = A−1 (this fact needs
some explaination which we’ll skip).

Example 1.3.1.

A =

[
2 1
1 1

]
A−1 =

[
1 −1
−1 2

]
.

If A−1 exists we say A is non-singular. Otherwise we sa A is singular.

1.3.2 Some properties of inverse
a. The inverse is unique. That is if there are B,C such that BA = CA = I then B = C.

Reason: The above equation implies (B − C)A = 0. Since A−1 exists (from either the
existence of B or C), multipliying both sides with A−1 on the right gives B − C = 0 or
B = C.

b. (AB)−1 = B−1A−1.
Reason: Clearly B−1A−1AB = I .
c. (A−1)−1 = A.
Reason: From definition of the inverse.
d. (AT )−1 = (A−1)T .
Reason: (A−1)TAT = (AA−1)T = IT = I .

1.3.3 Finding the inverse
Let A be a n × n matrix. Let Cij = (−1)i+jMij where Mij is the determinant of the
(n− 1)× (n− 1) submatrix obtained by deleting the ith row and jth column of A. Denote

adjA =


C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
Cn1 Cn2 · · · Cnn


T

=


C11 C21 · · · C1n

C12 C22 · · · C2n
...

...
C1n C2n · · · Cnn

 .
11



Suppose det(A) 6= 0 then

A−1 =
1

det(A)
adjA.

Note that this result also implies that A−1 exits if and only if det(A) 6= 0. To show that it
is true, we need to show

A
1

det(A)
adjA = I,

or equivalently
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
a1n an2 · · · ann



C11 C21 · · · C1n

C12 C22 · · · C2n
...

...
C1n C2n · · · Cnn

 =


det(A) 0 · · · 0

0 det(A) · · · 0
...

...
0 0 · · · det(A)

 .
That is we need to show

n∑
j=1

aijCij = det(A),∀i

and
n∑
j=1

aijCkj = 0, ∀i 6= k.

The first equation is exactly the definition of det(A), expanding along the ith row. The
second equation can be explained as followed. For simplicity let’s say we want to show

n∑
j=1

a1jC2j = 0.

Imagine that we replace the second row of A with the first row and call the resulting matrix
Ã. If we calculate C̃2j of Ã it is the same as C2j of A, ∀j since C2j is obtained exactly
by deleting the second row of A and the jth column (so the second row’s information is
irrelevant). Now since Ã has two identical rows, its determinant is 0. We thus have

n∑
j=1

a1jC2j = 0 =
n∑
j=1

ã2jC̃2j = det(Ã) = 0.

In practice, an easier way to find the inverse if to look at the n× 2n augmented matrix
[A|I] and perform Gaussian elimination until we obtain [I|B]. The matrix B is exactly
A−1. The reason is because Gaussian elimination is equivalent to being multiplied on the
left by a matrix. That is there must be a matrix B such that

B[A|I] = [I|B].

But then BA = I or B = A−1.
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1.3.4 Solving system of equations with inverse
Consider the n × n system Ax = b. If A−1 exists then the system has a unique solution:
x = A−1b. In particular, the homogenous system Ax = 0 has a unique and trivial solution
x = 0 if and only if A is invertible. Conversely, Ax = 0 has a non-zero solution if and only
if A is non-invertible. Also note the aside fact that finding the inverse to solve for a system
is much more costly in terms of computation than using Gaussian elimination.

1.3.5 Cramer’s rule
Consider the νtimesn system Ax = b and suppose that A is invertible. Then we can repre-
sent x = A−1b. Note however that we do not have a representation for x1 (or x2, · · · , xn)
individually using the inverse approach. If for some reason our interest is to only find a
particular xi in the whole vector x, Cramer’s rule gives us the way to do so.

Theorem 1.3.2. Cramer’s rule Let Ai, i = 1, · · · , n be the matrix that resulted from re-
placing the ith column with the b column. Then

xi =
det(Ai)

det(A)
.

Example 1.3.3. Consider the system 3 2 1
1 −1 3
5 4 −2

 =

 7
3
1
.

 .
Then

A1 =

 7 2 1
3 −1 3
1 4 −2


and

x!1 =
−39

13
= −3.

1.4 Eigenvalues and Eigenvectors

1.4.1 Introduction
Let A be a n× n matrix. We have mentioned that A is a linear map from Rn to Rn. It is of
interest and importance to look at the vectors that A “fixed". That is to find v ∈ Rn,v 6= 0
so that

Av = λv
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for some constant λ. In the above equation,the action of A on v essentially does not change
v, aside from a constant factor. Intuitively, one can believe that v captures some essential
characteristic of A because A does not change v. We say λ is an eigenvalue and v is an
eigenvector associated with the eigenvalue λ. (Note: there can be more than one eigen-
vectors associated with one eigenvalue). It turns out that under certain conditions, we can
re-construct A from its complete set of eigenvalues and eigenvectors. This is the diago-
nalization result and it shows how eigenvalues and eigenvectors give information about the
original matrix.

1.4.2 Finding eigenvalues
The system Av = λv is equivalent to (A − λI)v = 0. The requirement that it has a
non-trivial solution v is equivalent to requiring that A− λI is singular or

det(A− λI) = 0.

This is the equation for the eigenvalues of A. The LHS is a polynomial in λ, usually
of degree n. Since eigenvalues are the roots of a polynomial, it can be repeated, real or
complex-valued.

Example 1.4.1. An example of real, repeated eigenvalues:

A =

[
3 4
−1 7

]
det(A− λI) = (λ− 5)2 = 0 iff λ = 5.

Example 1.4.2. An example of repeated complex eigenvalues:

A =

[
0 −1
1 0

]
det(A− λI) = λ2 + 1 = 0 iff λ = ±i.

1.4.3 Finding eigenvectors
Once we find a specific value of λ, we can proceed to sovle the system (A − λI)v = 0.
Since det(A − λI) = 0 this system has infinitely many solutions by construction. As a
consequence eigenvector is not unique. That is if v is an eigenvector then cv is also an
eigenvector for any c 6= 0 becaus

Av = λv

implies

A(cv) = λ(cv).

What we present as eigenvectors are the basis vectors of the solution space. Note that there
are n− r basis vectors of the solution space (where r is the rank of the matrix A− λI).
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Example 1.4.3.

A =

[
3 4
−1 7

]
.

We have showed λ = 5 is the eigenvalue.

A− 5I =

[
−2 4
−1 2

]
.

And thus an eigenvector would be v =

[
2
1

]
.

Example 1.4.4.

A =

 9 1 1
1 9 1
1 1 9

 .
You can easily check that λ = 8 is an eigenvalue.

A− 8I =

 1 1 1
1 1 1
1 1 1

 .
Here A − 8I is of rank 1 so we would expect two (linearly independent) eigenvectors
associated with eigenvalue 8. Indeed if v = [v1, v2, v3]T then the only equation v satisfies
is v1 + v2 + v3 = 0. Thus v1 = [−1, 0, 1]T and v2 = [−1, 1, 0]T would be 2 eigenvectors
associated with eigenvalue 8.

1.4.4 Some properties
Here we list some properties about eigenvalues and eigenvectors that can be useful in their
computation.

a. If a+ ib is an eigenvalue of a (real entry) matrix A then a− ib is also an eigenvalue
of A. If v is an eigenvector associated with a+ ib then v̄ (the complex conjugate of v taken
entriwise) is an eigenvector associated with a− ib.

Reason: This comes from an algebra fact that complex roots of a real entry polynomial
come in conjugate pairs. Since A has real entry,

Av = λv

implies

Av̄ = Av = λv = λ̄v̄.
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b. A matrix A is singular iff it has an eigenvalue 0.
Reason: An eigenvalue equalling 0 is equivalent to det(A) = 0 iff A is singular.
c. Conversely, a matrix A is non-singular (invertible) iff all of its eigenvalues are non-

zero. In this case, if λ is an eigenvalue of A with eigenvector v then 1
λ

is an eigenvalue of
A−1 with the same eigenvector v.

Reason: Av = λv implies v = λA−1v or 1
λ
v = A−1v.

d. If A is triangular then its eigenvalues are exactly its diagonal entries.
Reason: If A is triangular then A−λI is also triangular and det(A−λI) =

∏n
i=1(aii−

λ). Clearly the roots of this polynomial are λii, i = 1, · · · , n.

1.5 Orthogonal Matrices and Diagonalization of Matrices

1.5.1 Introduction
The notion of orthogonality is of fundamental importance in many areas. The motivation
is quite natural: two vectors v1,v2 (in R2 or R3) are orthogonal if vT1 v2 = 0. This can be
verified geometrically by just drawing out v1,v2. For example, [−1, 1] and [1, 1] are clearly
orthogonal.

More abstractly, we can define for any two vectors v1,v2 in Rn to be orthogonal if
vT1 v2 = 0. Note that we lose the geometrical intuition for n > 3. On the otherhand, some
fundamental properties of orthogonal vectors are still applicable in higher dimension, such
as orthogonal vectors are linearly independent. We can also discuss orthogonality of two
functions, as we will see in the chapter on Fourier series. It is of interest then to see
discuss properties related to orthogonality of vectors and matrices, onf of which is the
diagonalization of matrices.

1.5.2 Orthogonal eigenvectors
Theorem 1.5.1. Let A be an n× n symmetric matrix. The eigenvectors corresponding to
distinct eigenvalues are orthogonal.

Remark:
a.First it is only true for symmetric matrix. For example, the matrix

A =

[
1 2
0 3

]

has distinct eigenvalues 1, 3 and two eigenvectors
[

1
0

]
, corresponding to λ = 1 and

[
1
1

]
corresponding to λ = 3 but they are not orthogonal.
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Second it is only true for eigenvectors corresponding to distinct eigenvalues. For exam-
ple the matrix

A =

 7 4 −4
4 −8 −1
−4 −1 −8


has eigenvalues λ1 = −9 and λ2 = 9. There are two eigenvectors corresponding to λ1 =
−9

v1 =

 0
1
1

 ;v2 =

 1
−4
0

 .
The eigenvector corresponding to λ2 = 0 is

v3 =

 4
1
−1

 .
Observe that v1,v2 are orthogonal to v3 but v1 is not orthogonal to v2.
Proof. Let A be symmetric and λ1 6= λ2 be two distinct eigenvalues of A. Since they are
distinct both of them cannot be zero. WLOG suppose λ1 6= 0. Then

vT1 v2 = (
1

λ1

(Av1)T )v2

=
1

λ1

vT1 Av2 =
λ2

λ1

vT1 v2.

That is
(
λ2

λ1

− 1)vT1 v2 = 0.

The conclusion follows since λ2
λ1
6= 1 because they are distinct.

Next we cover a result for eigenvalues of symmetric matrix.

Theorem 1.5.2. Let A be an n× n symmetric matrix. Then all of its eigenvalues are real.

Proof. Let λ be an eigenvalue of A with associated eigenvector v. WLOG λ 6= 0 since
then it is real. We know that λ̄ is also an eigenvalue (if λ is real then λ̄ = λ and if it is
complex then this is the result from the previous section) with associated eigenvector v̄.
Then

v̄Tv =
1

λ̄
(Av̄)Tv =

1

λ̄
v̄TAv =

λ

λ̄
v̄Tv.

Now vTv is real and non-zero since v is not a zero vector. Therefore λ
λ̄

is real. Thus λ = λ̄
is a real number.
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1.5.3 Orthogonal matrices
Definition 1.5.3. A set of vectors {v1, · · · ,vn} is orthonormal if vTi vi = 1 and vTi vj =
0, i 6= j for all 1 ≤ i, j ≤ n.

Definition 1.5.4. A matrix A is orthogonal if ATA = I . Equivalently, A is orthogonal if
AT = A−1. The last equivlanet definition is if the columns of A form an orthonormal set.

Remark: It is worthwhile to note that an orthogonal matrix is automatically invertible
(its inverse is its transpose).

1.5.4 Orthogonal matrix formed by eigenvectors
Let A be a symmetric matrix. We will accept without proof the fact that A has n indepen-
dent eigenvectors. So we can form a n × n matrix P whose columns are eigenvectors of
A. Since the eigenvectors corresponding to distinct eigenvalues are orthogonal, P is “al-
most" orthogonal. If we can make the eigenvectors corresponding to the same eigenvalue
orthogonal and normalize all columns to length 1 then P will indeed be orthogonal. In fact
this can always be done and the procedure used is referred to as Gram-Schimidt process,
see e.g. here.

In practice, we do not have to employ Gram-Schmidt but more or less “guess" at what
we need. The following example will illustrate.

Example 1.5.5. Reconsider the matrix

A =

 7 4 −4
4 −8 −1
−4 −1 −8


which has eigenvalues λ1 = −9 and λ2 = 9. There are two eigenvectors corresponding to
λ1 = −9

v1 =

 0
1
1

 ;v2 =

 1
−4
0

 .
The eigenvector corresponding to λ2 = 0 is

v3 =

 4
1
−1

 .
We mentioned that v1,v2 are orthogonal to v3 but v1 is not orthogonal to v2. It is easy to
choose ṽ2 orthogonal to v1 so that ṽ2 is still an eigenvector indepndent of v1 using Gram-
Schmidt. Nevertheless, what we’ll do is look at how we find v1,v2, namely from the system
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A+ 9I = 0. The reduced form is 1 1/4 −1/4
0 0 0
0 0 0

 .
Thus if v =

 x
y
z

 is an eigenvector coressponding to λ = 9 then 4x+ y− z = 0. We want

to choose two solutions for x, y, z that are orthogonal to each other. Utilizing 0, 1 helps.

So the first choice is v1 =

 0
1
1

 and the second choice is v2 =

 1
−2
2

 .
Thus

P =


1√
2
− 1√

3
1√
6

0 1√
3

2√
6

1√
2

1√
3
− 1√

6

 .
1.5.5 Diagonalization of matrices
Diagonal matrices are very simple to work with. Specifically, the productC of two diagonal
matrices A,B is diagonal, with diagonal entries equal to the product of the corresponding
diagonal entries of A,B. That is Cii = AiiBii,∀i. Consequently, if A is diagonal, An is
also diagonal and (An)ii = (Aii)

n.
Thus given a square matrix A, we would like to relate it to a diagonal matrix via the

notion of simlarity. Two matrices A,B are similar if there exists an invertible matrix P
so that A = P−1AP . One motivation for calling such relation simlarity is because two
similar matrices have the same eigenvalues (can you see why?). Thus given a matrix A, we
would like to see if it is similar to a diagonal matrix D. By the above remark, if this can be
done, the diagonal entries of D are exactly the eigenvalues of A. We say in this case that A
can be diagonalized and the process of finding such matrix P is called the diagonalization
process.

It turns out that not all matrices can be diagonalized. This has to do with the fact
that not all matrices has a full set of eigenvectors. If a matrix A does have a full set of
eigenvectors, an orthogonal matrix P can be formed using these eigenvectors similar to the
above example. Moreover, in this case

A = PDP−1 = PDP T ,

where the column of P is the corresponding eigenvector to the eigenvalue on the diagonal
of D.

To see that this is the case, we will show that

P TAP = D.
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Indeed, P = [v1v2 · · ·vn] where vi is the ith eigenvector of A. We see that

AP = [Av1Av2 · · ·Avn] = [λ1v1λ2v2 · · ·λnvn].

Thus

P TAP =


vT1
vT2
...
vTn

 [λ1v1λ2v2 · · ·λnvn] = D,

where Dij = viλivj = 0 if i 6= j and equals λi if i = j by the orthogonality of vi,vj .

Example 1.5.6. Reconsider the matrix

A =

 7 4 −4
4 −8 −1
−4 −1 −8

 .
We have showed that an orthognal matrix formed by eigenvectors of A is

P =


1√
2
− 1√

3
1√
6

0 1√
3

2√
6

1√
2

1√
3
− 1√

6

 .
A has eigenvalues λ1 = −9 (with multiplicity 2) and λ2 = 9. One can verify that 7 4 −4

4 −8 −1
−4 −1 −8

 =


1√
2
− 1√

3
1√
6

0 1√
3

2√
6

1√
2

1√
3
− 1√

6


 −9 0 0

0 −9 0
0 0 9




1√
2

0 1√
2

− 1√
3

1√
3

1√
3

1√
6

2√
6
− 1√

6


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Chapter 2

The Laplace transform

2.1 Definition of the Laplace transform

2.1.1 Introduction
In mathematics, there is an abstract notion of an operator: a mapping from a function space
to a function space. Let L denote such an operator. We say L is a linear operator if it
satisfies

L(af + bg) = aL(f) + bL(g),

where a, b are real numbers and f, g are functions. From elementary calculus, the differen-
tiation d

dt
and integration

∫
dt are examples of linear operators.

The Laplace transform that we will study in this chapter is a linear operator that has
many important applications, e.g. (but not limited to) in solving ordinary differential equa-
tions (ODEs) and partial differential equations (PDEs).

2.1.2 Definition and basic remarks
Definition 2.1.1. Let f be a function defined for t ≥ 0. Then the integral

L(f(t)) =

∫ ∞
0

e−stf(t)dt

is said to be the Laplace transform of f , if the integral exists.

Remarks:
a. While f is a function of t, the Laplace transform of f is a function of s.
b. An arbitrary function f does not necessarily have a Laplace transform (if the integral

does not converge). E.g. f(t) = et
2 does not have a Laplace transform.

c. Also because of the issue of convergence of the integral, the Laplace transform of an
arbitrary function f may not be defined for all values of s. E.g. if f(t) = eat, a a constant
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then L(f) is only defined for s > a. When the domain of s is not explicitly stated, we
understand that we only work with the values of s such that L(f) is well-defined.

d. The Laplace transform is indeed a linear operator:

L(af + bg) =

∫ ∞
0

e−st[af(t) + bg(t)]dt

= a

∫ ∞
0

e−stf(t) + b

∫ ∞
0

e−stg(t) = aL(f) + bL(g).

You can see the linearity of the Laplace transfrom comes from the linearity property of the
integral operator.

2.1.3 Connection with power series
The Laplace transform can be viewed as a continuous anolog of a power series. Specifi-
cally, if a(n) is a discrete function of a positive integer n, the power series associated with
a(n) is

∞∑
n=0

a(n)xn,

where x is a real variable. For example, the power series representation of ex is
∑∞

n=0
xn

n!
.

That is a(n) = 1
n!

in this particular series.
Suppose we formally replace the discrete variable n with a continous variable t. Then

the summation over n becomes integration over t. The function a(n) becomes a function
f(t) (which is a continuous extension of a(n) to the positve half of the real line). Thus a
continuous version of the power series becomes∫ ∞

0

f(t)xtdt.

Replacing x with e−s gives∫ ∞
0

f(t)xtdt =

∫ ∞
0

f(t)(e−s)tdt =

∫ ∞
0

f(t)e−stdt.

Thus, the Laplace transform can be viewed as a continuous version of a power series
where the discrete variable n is replaced by the continuous variable t, the discrete coeffi-
cients a(n) replaced by f(t) and x replaced by e−s.

2.1.4 The Laplace transform of basic functions
The following are some formulas that you should memorize for the purpose of this course.
It is also recommended that you go over their derivation at least once.
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L(1) =
1

s

L(tn) =
n!

sn+1
, n = 1, 2, 3 · · ·

L(eat) =
1

s− a

L(sin(kt)) =
k

s2 + k2

L(cos(kt)) =
s

s2 + k2

L(sinh(kt)) =
k

s2 − k2

L(cosh(kt)) =
s

s2 − k2
.

Remarks:
a. L(1) can be seen as a special case of L(tn) with n = 0 from the fact that 0! = 1.
b. The Euler formula states eix = cosx + i sinx. Hence cosx = 1

2
(eix + e−ix) and

sinx = 1
2i

(eix − e−ix). Also from definition, cosh(x) = ex+e−x

2
, sinh(x) = ex−e−x

2
. These

identities, coupled with the formula for L(eat) can be used to derive the Laplace transforms
of sin, cos, sinh, cosh.

Example 2.1.2. Laplace transform of a piece-wise defined function Let

f(t) = 1, if 0 ≤ t ≤ 3

2, if t ≥ 3.

Then

L(f) =

∫ 3

0

e−stdt+ 2

∫ ∞
3

e−stdt

=
1

s
(1− e−3s)− 2

s
e−3s

=
1

s
− 3e−3s

s
.

2.2 Inverse Laplace Transform and Transform of Deriva-
tives

2.2.1 The inverse problem
Given a function g(s), it is natural to ask if there is a function f such that L(f) = g. That
is g is the Laplace transform of f ; or f is the inverse Laplace transform of g. We denote

f(t) = L−1(g(s)).
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For example, if g(s) = 1
s−a then f(t) = eat is such that L(f) = g and f = L−1(g).

It is worthwhile to compare L and L−1 with differentiation and integration in elementary
calculus.

Remarks:
a. There is a general formula for the inverse Laplace transform, called the Mellin’s

inverse formula, see e.g. here. It requires integration in complex coordinates and hence
the formula is beyond the scope of this course. We will rely on the formulas for Laplace
transform of basic functions and basic manipulations to find inverse Laplace transforms.

b. The inverse Laplace transform is not unique point wise. For example

f1(t) = 0, t ≥ 0

and

f2(t) = 0, t 6= 1

= 1, t = 1

have the same Laplace transforms, that is L(f1) = L(f2) = 0. However, if we know apriori
that the inverse Laplace transform is continuous then it is also unique pointwise.

c. The inverse Laplace transform is a linear operator. That is

L−1(ag1(s) + bg2(s)) = aL−1(g1(s)) + bL−1(g2(s)).

(It follows from the linearity of the Laplace transform). We will utilize this property to find
the inverse Laplace transforms.

2.2.2 Examples
Example 2.2.1.

L−1
( 1

s2
− 1

s
+

1

s− 2

)
= t− 1 + e2t.

Example 2.2.2.

L−1
( s2 + 6s+ 9

(s− 1)(s− 2)(s+ 4)

)
= L−1

( −16
5

s− 1
+

25
6

s− 2
+

1
30

s+ 4

)
= −16

5
et +

25

6
e2t +

1

30
e−4t.

In the second example, we have utilized the technique of partial fraction decomposition.
That is we find A,B,C such that

s2 + 6s+ 9

(s− 1)(s− 2)(s+ 4)
=

A

s− 1
+

B

s− 2
+

C

s+ 4
.

For a review of partial fraction decomposition, see e.g. here.
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2.2.3 Laplace transform of the derivatives
Theorem 2.2.3. Let f be a function defined on [0,∞) with sufficiently nice derivatives.
Then

L(f (n)) = snL(f)(s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0).

Example 2.2.4.

L(f ′(t)) = sL(f)(s)− f(0)

L(f ′′(t)) = s2L(f)(s)− sf(0)− f ′(0).

Remark:
a. The Laplace transform of derivatives of f (of any order) involves the Laplace trans-

form of f (multiplied with a power of s) subtracting a polynomial in s. Note that the terms
f(0), f ′(0), · · · , f (n−1)(0) are constants.

b. This makes the Laplace transform a suitable tool to solve linear ODEs with initial
conditions. After the transform, the ODEs becomes an equation where the the Laplace
transform L(f)(s) is the term to solve for. The linearity of the Laplace transform preserves
the linearity of the equations. The initial conditions provide information for f(0), f ′(0), · · · , f (n−1)(0).

2.2.4 Solving linear ODEs
Example 2.2.5. Solve

y′(t) + 3y = 13 sin(2t),

y(0) = 6.

Sol:
Denoting Y (s) = L(y)(s). Taking the Laplace transform on both sides yield

sY (s)− y(0) + 3Y (s) = 13
2

s2 + 4
.

That is

Y (s) =
6s2 + 50

(s+ 3)(s2 + 4)
.

Using partial fraction yields

6s2 + 50

(s+ 3)(s2 + 4)
=

8

s+ 3
+
−2s+ 6

s2 + 4
.

Taking the inverse Laplace transform yields

y(t) = 8e−3t − 2 cos(2t) + 3 sin(2t).
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Example 2.2.6. Solve

y′′ − 3y′ + 2y = e−4t,

y(0) = 1, y′(0) = 5.

Sol:
Again denoting Y (s) = L(y)(s). Taking the Laplace transform on both sides yield

[s2Y (s)− sy(0)− y′(0)]− 3[sY (s)− y(0)] + 2Y (s) =
1

s+ 4
.

That is

(s2 − 3s+ 2)Y (s) =
1

s+ 4
+ s+ 2.

Or

Y (s) =
s2 + 6s+ 9

(s2 − 3s+ 2)(s+ 4)
=

s2 + 6s+ 9

(s− 1)(s− 2)(s+ 4)
.

From Example (2.2.2) we have

y(t) = L−1
( s2 + 6s+ 9

(s− 1)(s− 2)(s+ 4)

)
= −16

5
et +

25

6
e2t +

1

30
e−4t.

2.2.5 Zero-input response and zero-state response
Consider an abstract linear ODE:

n∑
i=0

aiy
(i)(t) = g(t)

yi(0) = ci, i = 0, · · · , n− 1.

Denoting L(y)(s) = Y (s) and L(g)(s) = G(s), from the examples in the previous section
the Laplace transform of the ODE has the form

P (s)Y (s) +Q(s) = G(s),

where P (s) =
∑n

i=0 ais
i and Q(s) is a polynomial of degree at most n − 1 whose coeffi-

cients come from the initial conditions y(i)(0), i = 0, · · · , n− 1. Thus

y(t) = L−1
(−Q(s)

P (s)

)
+ L−1

(G(s)

P (s)

)
:= y0(t) + y1(t).

This is the abstract formulation of the solution of a linear ODE using Laplace transform.
There are two special cases:

a. The input g(t) = 0. Then clearly G(s) = 0 and y(t) = y0(t). Thus we refer to y0(t)
as the zero-input response.

b. The initial conditions ci = 0, i = 0, · · · , n − 1. Then clearly Q(s) = 0 and y(t) =
y1(t). Thus we refer to y1(t) as the zero-state response.

In general then, the solution to the initial value ODE is the sum of the zero-input re-
sponse and the zero-state response.
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2.3 Translation Theorems; Unit Step Function (Heaviside
Function)

2.3.1 Introduction
The previous section on the Laplace transform of derivatives can be looked at as a study of
a particular interaction of linear operators. Indeed, if we denote Dn as the n-th derivative
operator then the previous result says that L ◦ Dn is also a linear operator, and

L ◦ Dn(f(t)) = snL(f)(s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0).

(It is a quick but still interesting exercise to verify that L ◦ Dn is indeed linear).
Another interesting example of a linear operator is the translation operator. Let a be a

fixed constant. We denote Ta to be the linear operator such that

Ta(f(t)) := f(t− a).

Again, you can quickly verify that Ta is indeed linear. In this section we study the interac-
tion between the inverse Laplace transform and the translation operator. That is we study
the operator L−1 ◦ Ta.

A last interesting example of a linear operator is as followed. Define the unit step
function or the Heaviside function as followed:

U(t) = 1, t ≥ 0

= 0, t < 0.

With a slight abuse of notion, we denote Ua to be the operator:

Ua(f(t)) := Ta
(
U(t)f(t)

)
= U(t− a)f(t− a).

Note that the right hand side of the above is just a multiplication of two functions. Roughly
speaking, Ua(f) has the effect of shifting f by a units to the right and “zero" out the part
of f to the left of a. The last result we study in this section is the interaction between the
Laplace transform and the operator Ua. That is we study the operator L ◦ Ua.

2.3.2 The operator L−1 ◦ Ta: translation on the s-axis
Theorem 2.3.1. Let a be a real number and suppose that L(f) = F (s) then

L(eatf(t)) = F (s− a).

Equivalently,

L−1(F (s− a)) = eatf(t).
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Example 2.3.2.

L(e5tt3) =
3!

(s− 5)4

Example 2.3.3.

L−1

(
2s+ 5

(s− 3)2

)
= L−1

(
2(s− 3) + 11

(s− 3)2

)
= L−1

(
2

s− 3

)
+ L−1

(
11

(s− 3)2

)
= 2e3t + 11e3tt.

Remark: Note how we would approach this example from the previous section using
partial fraction. Using the result about translation it is much quicker to find the inverse
Laplace transform of this example.

Example 2.3.4.

L−1

(
s

s2 + 4s+ 6

)
= L−1

(
s

(s+ 2)2 + 2

)
= L−1

(
s+ 2

(s+ 2)2 + 2

)
− L−1

(
2

(s+ 2)2 + 2

)
= e−2t cos(

√
2t)−

√
2e−2t sin(

√
2t).

Remark: Again note how we would not be able to handle this example using partial
fraction and the result of the previous section, because s2 + 4s + 6 is irreducible and it is
not of the form s2 + k2.

2.3.3 The operator L ◦ Ua: translation on the t-axis
Theorem 2.3.5. Let a be a real number and suppose that L(f) = F (s) then

L(f(t− a)U(t− a)) = e−asF (s).

Equivalently,

L−1(e−asF (s)) = f(t− a)U(t− a).

Example 2.3.6.

L−1

(
1

s− 4
e−2s

)
= e4(t−2)U(t− 2).
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Remark: The thinking process for the above example is as followed: first we need to
identify the function f such that L(f) = 1

s−4
. This already is an application of the first

translation theorem; which gives f(t) = e4t. Then we apply the second translation theorem
to get the conclusion.

Example 2.3.7.

L(t2U(t− 2)) = L([(t− 2)2 + 2(t− 2) + 4]U(t− 2))

= e−2s
[ 2!

s3
+

2

s2
+

4

s

]
.

Example 2.3.8.

L(cos(t)U(t− π)) = L(− cos(t− π)U(t− π)) = −e−πs s

s2 + 1
.

Example 2.3.9. Solve

y′ + y = f(t), y(0) = 5

where

f(t) = 0, 0 ≤ t < π

= 3 cos(t), t ≥ π.

Remarks:
a. f is a piecewise defined function. It represents an external force that is “kept off"

from time 0 to π and then “turned on" afterwards.
b. The procedure to solve this problem is routine; i.e. we apply the Laplace transform

on both sides. We skip the details (see also Section 4.3 Example 9 in the textbook). The
only thing new is to express f in a convenient form that utilizes the result we developed in
section. Namely we write

f(t) = −3 cos(t− π)U(t− π)

and use the result in the previous example.
c. f(t) may also take the form

f(t) = 3 cos(t), 0 ≤ t < π

= 0, t ≥ π.

That is the external force that is “turned on" from time 0 to π and then “turned off" after-
wards. We can re-write f(t) using the Heaviside function as

f(t) = 3 cos(t)(1− U(t− π))

= 3 cos(t) + 3 cos(t− π)U(t− π).
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2.4 Derivatives of Transforms and Transforms of Integrals

2.4.1 Introduction
In this section, we continue to pursue the theme of the interaction between linear operators
we’ve already known (translation, differentiation · · · ) and the Laplace transform (or the
inverse Laplace transform). In particular, we will look at the interaction of differentiation
and the inverse Laplace transform. Secondly, we look at the interaction between integration
(more specifically the convolution operation) and the Laplace transform. As an application,
we will use the results covered in this section to solve the Volterra Integral Equation).

2.4.2 Derivatives of the Laplace transforms
Theorem 2.4.1. Let F (s) = L(f(t)). Denote F (n) as the n-th derivative of F . Then

L(tnf(t)) = (−1)nF (n)(s).

Equivalently,

tnf(t) = L(−1)
(

(−1)nF (n)(s)
)
.

Remark: Compare this result with the Laplace transform of the derivative of f :

L(f (n)(t)) = snL(f)(s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0).

Example 2.4.2.

L(t sin(kt)) = − d

ds

( k

s2 + k2

)
=

2ks

(s2 + k2)2

Example 2.4.3. Solve

x′′ + 16x = cos(4t), x(0) = 0, x′(0) = 1.

Ans:
Denote F (s) = Λ(x(t)). Taking the Laplace transform on both sides give

s2F (s)− sx(0)− x′(0) + 16F (s) =
s

s2 + 16
.

That is

F (s) =
s

(s2 + 16)2
+

1

s2 + 16
.
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Observe that
d

ds

( 1

s2 + 16

)
=

−2s

(s2 + 16)2
.

Thus

x(t) =
t

8
sin(4t) +

1

4
sin(4t).

2.4.3 Convolution
Definition 2.4.4. Let f(t) and g(t) be two functions defined on [0,∞) with nice enough
properties. The convolution of f and g, denoted as f ∗ g is defined as

f ∗ g(t) =

∫ t

0

f(u)g(t− u)du.

Remarks:
a. The convolution of two functions is a function.
b. Applying a change of varible by letting v = t− u we have

g ∗ f(t) =

∫ t

0

f(u)g(t− u)du =

∫ t

0

f(t− v)g(v)dv.

That is f ∗ g = g ∗ f : the convolution operator is commutative.

Example 2.4.5.

et ∗ sin(t) =

∫ t

0

eu sin(t− u)du =
1

2
(et − sin t− cos t).

2.4.4 Transforms of integrals
Theorem 2.4.6. Let f(t) and g(t) be two functions defined on [0,∞) with nice enough
properties and F (s), G(s) their corresponding Laplace transforms. Then

L(f ∗ g(t)) = F (s)G(s).

Equivalently,

L−1(F (s)G(s)) = f ∗ g(t).

Remarks:
a. We do not have the converse result. That is we do NOT have

L(f(t)g(t)) = F (s) ∗G(s).

b. A useful particular case : the inverse Laplace transform of F 2(s) is f ∗ f(t). Re-
peating this procedure we can find the inverse Laplace transform of F n(s) for any n, even
though it may be tedious.
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Example 2.4.7.

L−1

(
1

(s2 + k2)2

)
=

1

k2
sin ∗ sin(kt) =

sin(kt)− kt cos(kt)

2k3
.

c. Another useful particular case: taking g(t) = 1 we have

L
(∫ t

0

f(u)du
)

=
F (s)

s
.

Example 2.4.8.

L−1
( 1

s(s2 + 1)

)
=

∫ t

0

sin(u)du = 1− cos t.

c. Convolution versus partial fractions: sometimes it is convenient to give the answer to
an inverse Laplace transform as a convolution. This has the drawback of being not explicit
(since the convolution might be hard to calculate). On the other hand a partial fraction may
be performed on the Laplace transform which gives an explicit inverse Lapalce transform.
The following example will make clear.

Example 2.4.9. Find

L−1

(
s2

(s2 + 2)(s2 + 12)

)
.

Sol: The answer can be given simply as

f(t) =
1√
24

cos(
√

2t) ∗ cos(
√

12t).

But notice this is not as explicit as we would like (the convolution would be inconvenient to
carry out). On the other hand, using partial fraction we get

s2

(s2 + 2)(s2 + 12)
=
−1/5

s2 + 2
+

6/5

s2 + 12
.

Thus

f(t) = − 1

5
√

2
sin(
√

2t) +
6

5
√

12
sin(
√

12t).

Example 2.4.10. Volterra integral equation Solve for f(t) that satisfies

f(t) = 3t2 − e−t −
∫ t

0

f(u)et−udu.

Sol:
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Taking the Laplace transform on both sides gives

F (s) =
3!

s3
− 1

s+ 1
− F (s)

s− 1
.

That is

F (s) =
(−s3 + 6s+ 6)(s− 1)

s4(s+ 1)

=
−s4 + s3 + 6s2 − 6

s4(s+ 1)
.

We simplify F (s) as followed:

−s4 + s3

s4(s+ 1)
=

−1

s+ 1
+

1

s(s+ 1)

=
−1

s+ 1
+

1

s
− 1

s+ 1

=
−2

s+ 1
+

1

s
6s2 − 6

s4(s+ 1)
=

6(s− 1)(s+ 1)

s4(s+ 1)

=
6s− 6)

s4
=

6

s3
− 6

s4
.

We can now find f(t) = 3t2 − t3 + 1− 2e−t by applying the routine inverse transform.

2.5 Transforms of a Periodic Function ; the Dirac Delta
Function

2.5.1 Transform of periodic functions
Theorem 2.5.1. Let f be periodic with period T . Then

L(f(t)) =

∫ T
0
e−stf(t)dt

1− e−sT
.

Proof. By definition

L(f(t)) =

∫ ∞
0

e−stf(t)dt =

∫ T

0

e−stf(t)dt+

∫ ∞
T

e−stf(t)dt

=

∫ T

0

e−stf(t)dt+

∫ ∞
0

e−s(t+T )f(t+ T )dt

=

∫ T

0

e−stf(t)dt+ e−sTL(f(t)).
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The conclusion follows.

Example 2.5.2. Let f(t) be a square-wave function. Namely:

f(t) = 1, k ≤ t ≤ k + 1; k even
= 0, otherwise.

Then f(t) is periodic with period 2. Thus

L(f(t)) =

∫ 1

0
e−stdt

1− e−2s
=

1− e−s

s(1− e−2s)

=
1

s(1 + e−s)
.

2.5.2 The Dirac Delta function
Unit impulse function

Definition 2.5.3. Let a, t0 be given. We define

δa(t− t0) =
1

2a
, t0 − a ≤ t < t0 + a

= 0 otherwise.

We say δa(t− t0) is a unit impulse function (concentrated around t0 with width a).

Remarks:
a.
∫∞

0
δa(t− t0)dt = 1. Hence the name unit impulse function.

b. We usually thinks of a as very small. δa(t− t0) represents a force that acts for a very
short period of time around t0 with large magnitude.

The Dirac Delta function

Imagine if we let a→ 0 in the unit impulse function δa(t− t0) and obtain a limiting object,
denoted as δ(t − t0). Since for any a, the integral

∫∞
0
δa(t − t0)dt = 1 we also expect

the same holds for δ(t − t0). Also from the definition of δa(t − t0), the pointwise value
of δ(t − t0) should be ∞ at t = t0 and 0 otherwise. This expectation is very informal
and in fact we cannot justify the existence of δ(t− t0) as a function. Nevertheless, we can
still view δ(t− t0) as an object that has certain characteristics when it interacts with other
functions. (In more advanced mathematics course you will learn that δ(t − t0) is referred
to as a distribution.)

Definition 2.5.4. The Dirac Delta “function" concentrated at t0 > 0 denoted by δ(t− t0),
is characterized by two properties:

a. δ(t− t0) =∞, t = t0

= 0, t 6= 0.

b.

∫ ∞
0

δ(t− t0)dt = 1.
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Remark: Again, we emphasize that the Dirac Delta function is not a function. Its
existence is “seen" by its action on other functions as in the following result.

Theorem 2.5.5. Let f(t) be a function with nice enough properties. Then for t0 > 0∫ ∞
0

f(t)δ(t− t0)dt := lim
a→0

∫ ∞
0

f(t)δa(t− t0)dt = f(t0).

Remarks:
a. Note that the integral on the LHS is defined via the limit as a → 0. By itself it does

not necessarily have any meaning because δ(t− t0) is not a function.
b. The action of δ(t− t0) on the function f is precisely the evaluation of f at t0.
c. The condition t0 > 0 is because the left limit of the integral is at 0. That is if t0 = 0

then t0 − a < 0 will be outside the left limit of the integral and what we say below in the
proof will no longer be correct.
Proof. Denote F (t) as the anti-derivative of f(t). Then by L’Hospital rule:

lim
a→0

∫ ∞
0

f(t)δa(t− t0)dt = lim
a→0

F (t0 + a)− F (t0 − a)

2a

= lim
a→0

f(t0 + a) + f(t0 − a)

2
= f(t0).

The following corollary is immmediate:

Corollary 2.5.6. For t0 > 0

L(δ(t− t0)) = e−st0 .

Remark: Again note that this corollary only holds for t0 > 0. That is we CANNOT
conclude L(δ(t)) = 1 by plugging in t0 = 0 on both sides of the equation. Observe also
that for a nice enough function f ,

lim
s→∞
L(f) = lim

s→∞

∫ ∞
0

e−stf(t)dt

=

∫ ∞
0

lim
s→∞

e−stf(t)dt = 0.

Even though δ(t − t0) is not a function, L(δ(t − t0)) is consistent in the sense that it also
sastisfies lims→∞ L(δ(t− t0)) = 0 for t0 > 0. This property does not hold for L(δ(t)).

Example 2.5.7. Solve

y′′ + y = 4δ(t− 2π)

y(0) = 1, y′(0) = 0.
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Sol Let Y (s) denote the Laplace transform of y. Then

s2Y − sy(0)− y′(0) + Y = 4e2πs.

That is

Y (s) =
4e2πs

s2 + 1
+

s

s2 + 1
.

Taking the inverse Laplace transform gives

y(t) = 4 sin(t− 2π)U(t− 2π) + cos(t)

= 4 sin(t)U(t− 2π) + cos(t).
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2.5.3 A summary of Laplace transform results

Property t domain s domain

Linearity af(t) + bg(t) aF (s) + bG(s)

s domain derivative tnf(t) (−1)nF (n)(s)

t domain derivative f (n)(t) snF (s)−
∑n−1

i=1 s
if (n−1−i)(0)

t domain convolution f ∗ g(t) =
∫ t

0
f(u)g(t− u)du F (s)G(s)

t domain integration
∫ t

0
f(u)du F (s)

s
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Property t domain s domain

t domain translation f(t− a)U(t− a) e−asF (s)

s domain translation eatf(t) F (s− a)

t domain scaling f(at) F ( s
a

)

a

Periodic function f(t+ T ) = f(t) 1
1−e−Ts

∫ T
0
e−stf(t)dt

Dirac delta function δ(t− t0) e−st0

2.6 Systems of Linear Differential Equations

2.6.1 Introduction
In this section we look at system of differential equations. The technique of Laplace trans-
forms will be used to solve such system. Specifically after the transform we get a system
of algebraic equations, where the unknowns are the Laplace transforms of the original so-
lutions. The original solutions are obtained by solving for those Laplace transforms and
taking the inverse Laplace transform.
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2.6.2 Example
Example 2.6.1. Solve

x′′1 + 10x1 − 4x2 = 0

−4x1 + x′′2 + 4x2 = 0

x1(0) = 0, x′1(0) = 1, x2(0) = 0, x′2(0) = −1.

Sol: Let X1(s), X2(s) denote the Laplace transforms of x1(t), x2(t) respectively. Then

s2X1 − sx1(0)− x′1(0) + 10X1 − 4X2 = 0

−4X1 + s2X2 − sx2(0)− x′2(0) + 4X2 = 0

Adding the two equations gives

(s2 + 6)X1 + s2X2 = 0

or

X2 = −s
2 + 6

s2
X1.

Substituing into the first equation gives

X1(s2 + 10 + 4
s2 + 6

s2
) = 1.

That is

X1(s) =
s2

s4 + 14s2 + 24
=

s2

(s2 + 2)(s2 + 12)
.

Thus

X2(s) = − s2 + 6

(s2 + 2)(s2 + 12)
.

Taking the Laplace transform gives

x1(t) =
1√
24

cos(
√

2t) ∗ cos(
√

12t).

Alternatively, using partial fraction we get

X1(s) =
−1/5

s2 + 2
+

6/5

s2 + 12
.

Thus

x1(t) = − 1

5
√

2
sin(
√

2t) +
6

5
√

12
sin(
√

12t).
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Similarly,

X2(s) =
−2/5

s2 + 2
− 3/5

s2 + 12
.

Thus

x2(t) = − 2

5
√

2
sin(
√

2t) +− 3

5
√

12
sin(
√

12t).
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Chapter 3

Fourier Series

3.1 Orthogonal Sets of Functions and Fourier Series

3.1.1 Orthogonal structure and geometry of a vector space
Let V be a vector space with a basis B. For simplicity suppose that B is a finite collection
of vectors v1,v2, · · · ,vn. This means that any vector x in V can be expressed as a linear
combination of vi, i = 1, · · · , n:

x =
n∑
i=1

civi.

The coefficients ci are called the coordinates of x with respect to the basis B. Thus given
a vector x, we want to determine the corresponding coefficents ci. A good choice of the
basis B can make this process very simple. For example, in V = R2 the most natural basis
is B = {[1, 0]T , [0, 1]T}. We can immediately read off the coefficients ci for any vector x:

x =

[
x1

x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
.

Indeed, the coordinates we use to express x is implicitly understood as using B as the
choice of basis. Compare this with the choice of B′ = {[1, 0]T , [1, 1]T}. To find the
coordinates of a vector x with respect toB′ requires us to solve a linear system of equations.

What makes the choice of B good and B′ not as good? It is the orthonomality of B
(and not of B′). Recall that inner-product between two vectors x = [x1, x2, · · · , xn]T and
y = [y1, y2, · · · , yn]T is defined as

x · y =
n∑
i=1

xiyi.

Inner-product is a bilinear operator. That is

(ax + by) · ζ = a(x · ζ) + b(y · ζ)

x · (ay + bζ) = a(x · y) + b(x · ζ).
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Thus if we have an orthonomal basis B, that is

vi · vj = 0, i 6= j

= 1, i = j.

Then

x =
n∑
i=1

civi

implies

ci = x · vi,∀i.

Finding the coefficients ci then requires taking inner-products, a much simpler procedure
than solving system of equations.

We can generalize this concept to functions (which is the continuous version of vectors).
We want to define the notion of orthogonality (which requires the notion of inner-product).
From there we can find candidates for orthonormal bases of functions and express an arbi-
trary function in terms of the vectors in a basis. A particular choice of basis (the cosine and
sine functions) will be the focus of the remainder of the chapter. Fourier series involves
studying the representation of functions in this basis and their properties.

3.1.2 Orthogonal functions
Definition 3.1.1. Let f1, f2 be defined on [a, b] with nice enough properties. The inner
product of f1, f2, denoted as (f1, f2) is defined as

(f1, f2) =

∫ b

a

f1(x)f2(x)dx.

f1, f2 are orthogonal if (f1, f2) = 0. The L2 norm of f1, denoted as ‖f1‖ is defined as

‖f1‖ =
√

(f1, f1) =

√∫ b

a

f 2
1 (x)dx.

A set of (possibly infinite) functions {φ0, φ1, · · · } is orthogonal if (φi, φj) = 0,∀i 6= j. A
set of functions {φ0, φ1, · · · } is orthonormal if it is orthogonal and ‖φi‖ = 1 for all i.

Remark: The norm of a function tells us how “big" it is in a certain sense. There are
many ways to define a norm, for example the sup norm which returns the maximum of |f |;
the L1 norm which returns the area under the curve of |f |. In this sense, the L2 norm is one
of the many norms but it has the advantage of having a natural connection with the inner
product.
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Example 3.1.2. The set {1, cos 2x, cos 3x, · · · } is orthogonal but not orthonormal on [−π, π].
Indeed, for any m 6= n

(1, cosmx) =

∫ π

−π
cosmxdx =

1

m
(sin(mπ)− sin(−mπ)) = 0

(cosmx, cosnx) =

∫ π

−π
cosmx cosnxdx =

1

2

∫ π

−π
[cos(m+ n)x+ cos(m− n)x]dx = 0,

since
∫ π
−π cosmx = 0 for any integer m as we have seen from the first computation

On the other hand, for any m

‖ cos(mx)‖2 =

∫ π

−π
(cosmx)2dx =

1

2

∫ π

−π
[1 + cos 2mx]dx = π.

Therefore the set {1, cos 2x, cos 3x, · · · } is not orthonormal but the set { 1√
π
, cos 2x√

π
, cos 3x√

π
, · · · }

is.

3.1.3 Orthogonality with respect to a weight function
We may have a set of functions that are orthogonal on any finite interval say [−a, a] and
want to extend the orthogonality property to the whole real line (−∞,∞). A problem that
may arise is integrability : the integral on (−∞,∞) may not converge. For example, it is
clear that φ0 = 1 and φ1(x) = x are orthogonal on any interval [−a, a]. We cannot say
they are orthogonal on (−∞,∞) because

∫∞
−∞ xdx is undefined. To proper way to extend

the notion of orthogonality is orthogonality with respect to a weight function. The weight
function helps with integrability on the whole real line but also preserves the symmetry of
the original set.

Definition 3.1.3. Let f1, f2 be defined on [a, b] with nice enough properties. The inner
product of f1, f2 with respect to a weight function w(t) denoted as (f1, f2)w is defined as

(f1, f2)w =

∫ b

a

w(x)f1(x)f2(x)dx.

The L2 norm of f1, denoted as ‖f1‖w is defined as

‖f1‖w =
√

(f1, f1)w =

√∫ b

a

w(x)f 2
1 (x)dx.

A set of functions {φ0, φ1, · · · } is orthogonal with respect to a weight function w(x) on if
(φi, φj)

w = 0,∀i 6= j. A set of functions {φ0, φ1, · · · } is orthonormal with respect to a
weight function w(x) if it is orthogonal and ‖φi‖w = 1 for all i.

Example 3.1.4. The set {H0 = 1, H1(x) = 2x,H2(x) = 4x2 − 2} are orthogonal on
(−∞,∞). with respect to weight function e−x

2
.
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3.1.4 Fourier series

3.1.5 Orthogonal series expansion
Given an orthogonal set of functions {φ0, φ1, · · · } and a function f , it is natural to ask if
we can expand f in terms of the φ′is. That is can we find coefficients ci so that

f(x) =
∞∑
i=1

ciφi(x)?

Note that unlike the example in Rn, we usually expect the expansion to be an infinite
series since a general space of functions is usually infinite in dimension. In an ad hoc way,
suppose that the equation f(x) =

∑∞
i=1 ciφi(x) is true, then it is actually simple to find ci

by the orthogonality of φi. Indeed, for a specific index k

(f, φk) = (
∞∑
i=1

ciφi(x), φk) =
∞∑
i=1

ci(φi(x), φk) = ck‖φk‖2.

That is ck = (f,φk)
‖φk‖2

if the representation is true. As we will see in the next section, the
representation is true if and only if the series representation converges.

3.1.6 Trigonometric Series
Lemma 3.1.5. For any p > 0, the set of trigonometric functions{

1, cos
π

p
x, cos

2π

p
x, cos

3π

p
x, · · · , sin π

p
x, sin

2π

p
x, sin

3π

p
x, · · ·

}
is orthogonal on [−p, p].

Proof. We first show the orthogonality between 1 and cos kπ
p
x as well as 1 and sin kπ

p
x∫ p

−p
cos

kπ

p
xdx =

p

π

∫ π

−π
cos kxdx =

p

kπ
sin kx

∣∣∣π
−π

= 0∫ p

−p
sin

kπ

p
xdx =

p

π

∫ π

−π
sin kxdx = − p

kπ
cos kx

∣∣∣π
−π

= 0.

Now we show the orthogonality between cos mπ
p
x and cos nπ

p
x∫ p

−p
cos

mπ

p
x cos

nπ

p
xdx =

p

π

∫ π

−π
cosmx cosnxdx

=
p

2π

∫ π

−π
[cos(m+ n)x+ cos(m− n)x]dx = 0.
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Similarly, sin mπ
p
x and sin nπ

p
x are orthogonal:∫ p

−p
sin

mπ

p
x sin

nπ

p
xdx =

p

π

∫ π

−π
sinmx sinnxdx

=
p

2π

∫ π

−π
[cos(m− n)x− cos(m+ n)x]dx = 0.

Lastly, cos mπ
p
x and sin nπ

p
x are orthogonal:∫ p

−p
cos

mπ

p
x sin

nπ

p
xdx =

p

π

∫ π

−π
cosmx sinnxdx

=
p

2π

∫ π

−π
[sin(m+ n)x+ sin(n−m)x]dx = 0.

We would like to use the trigonometric series as the orthogonal basis for a function
expansion as discussed in the previous section. The expansion of a function f , defined on
[−p, p], using this basis would read

f(x) =
a0

2
+
∞∑
n=1

(
an cos

nπ

p
x+ bn sin

nπ

p
x
)
.

The choice of a0
2

for the constant coefficient is conventional and probably helps to keep the
formula for a0, an, bn in a uniform way (see below). The series is called the Fouries series
of f and an, bn are called the the Fourier coefficients of f .

Now note that ∫ p

−p
1dx = 2p∫ p

−p
(cos

nπ

p
x)2dx = p∫ p

−p
(sin

nπ

p
x)2dx = p.

If the Fourier serires representation is true, the Fourier coefficients are determined as we
discussed before:

a0 =
1

p

∫ p

−p
f(x)dx

an =
1

p

∫ p

−p
f(x) cos

nπ

p
xdx

bn =
1

p

∫ p

−p
f(x) sin

nπ

p
xdx.

Whether this representation holds depends on the convergence of the Fourier series, which
we discuss in the next section.
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3.2 Fourier Series

3.2.1 Orthogonal series expansion
Given an orthogonal set of functions {φ0, φ1, · · · } and a function f , it is natural to ask if
we can expand f in terms of the φ′is. That is can we find coefficients ci so that

f(x) =
∞∑
i=1

ciφi(x)?

Note that unlike the example in Rn, we usually expect the expansion to be an infinite
series since a general space of functions is usually infinite in dimension. In an ad hoc way,
suppose that the equation f(x) =

∑∞
i=1 ciφi(x) is true, then it is actually simple to find ci

by the orthogonality of φi. Indeed, for a specific index k

(f, φk) = (
∞∑
i=1

ciφi(x), φk) =
∞∑
i=1

ci(φi(x), φk) = ck‖φk‖2.

That is ck = (f,φk)
‖φk‖2

if the representation is true. As we will see in the next section, the
representation is true if and only if the series representation converges.

3.2.2 Trigonometric Series
Lemma 3.2.1. For any p > 0, the set of trigonometric functions{

1, cos
π

p
x, cos

2π

p
x, cos

3π

p
x, · · · , sin π

p
x, sin

2π

p
x, sin

3π

p
x, · · ·

}
is orthogonal on [−p, p].

Proof. We first show the orthogonality between 1 and cos kπ
p
x as well as 1 and sin kπ

p
x∫ p

−p
cos

kπ

p
xdx =

p

π

∫ π

−π
cos kxdx =

p

kπ
sin kx

∣∣∣π
−π

= 0∫ p

−p
sin

kπ

p
xdx =

p

π

∫ π

−π
sin kxdx = − p

kπ
cos kx

∣∣∣π
−π

= 0.

Now we show the orthogonality between cos mπ
p
x and cos nπ

p
x∫ p

−p
cos

mπ

p
x cos

nπ

p
xdx =

p

π

∫ π

−π
cosmx cosnxdx

=
p

2π

∫ π

−π
[cos(m+ n)x+ cos(m− n)x]dx = 0.
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Similarly, sin mπ
p
x and sin nπ

p
x are orthogonal:∫ p

−p
sin

mπ

p
x sin

nπ

p
xdx =

p

π

∫ π

−π
sinmx sinnxdx

=
p

2π

∫ π

−π
[cos(m− n)x− cos(m+ n)x]dx = 0.

Lastly, cos mπ
p
x and sin nπ

p
x are orthogonal:∫ p

−p
cos

mπ

p
x sin

nπ

p
xdx =

p

π

∫ π

−π
cosmx sinnxdx

=
p

2π

∫ π

−π
[sin(m+ n)x+ sin(n−m)x]dx = 0.

We would like to use the trigonometric series as the orthogonal basis for a function
expansion as discussed in the previous section. Now note that∫ p

−p
1dx = 2p∫ p

−p
(cos

nπ

p
x)2dx = p∫ p

−p
(sin

nπ

p
x)2dx = p.

Thus, to keep the norm on all basis functions the same, the series we would actually use is{1

2
, cos

π

p
x, cos

2π

p
x, cos

3π

p
x, · · · , sin π

p
x, sin

2π

p
x, sin

3π

p
x, · · ·

}
.

The expansion of a function f , defined on [−p, p], using this basis would read

f(x) =
a0

2
+
∞∑
n=1

(
an cos

nπ

p
x+ bn sin

nπ

p
x
)
.

This is called the Fouries series of f and an, bn are called the the Fourier coefficients of f .
If the Fourier serires representation is true, the Fourier coefficients are determined as

we discussed before:

a0 =
1

p

∫ p

−p
f(x)dx

an =
1

p

∫ p

−p
f(x) cos

nπ

p
xdx

bn =
1

p

∫ p

−p
f(x) sin

nπ

p
xdx.

Whether this representation holds depends on the convergence of the Fourier series, which
we discuss in the next section.
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3.2.3 Convergence of Fourier series
Theorem 3.2.2. Let f be a piece-wise differentiable function on [−p, p] with piece-wise
continuous f ′. Then at any point of continuity the Fourier series of f converges to f(x). At
a point of discontinuity, the Fourier series for f converges to f(x+)+f(x−)

2
.

We will give an example of this convergence at the end of the section.

3.2.4 Periodic extension
Observe that all the functions in{

1, cos
π

p
x, cos

2π

p
x, cos

3π

p
x, · · · , sin π

p
x, sin

2π

p
x, sin

3π

p
x, · · ·

}
have a period 2p (even qthough this is not neccessarily their fundamental period):

cos
kπ

p
(x+ 2p) = cos(

kπ

p
x+ 2kπ) = cos

kπ

p
x

sin
kπ

p
(x+ 2p) = sin(

kπ

p
x+ 2kπ) = sin

kπ

p
x.

Thus if we have a function f defined on [−p, p] and a Fourier series for f , we can extend
f to (−∞,∞) by defining that f(x + 2p) = f(x) for all x. That is we do a periodic
extension on f with period 2p. Since all the functions in the trigonometric basis as period
2p, the same Fourier series will hold for the extension of f to (−∞,∞).

3.2.5 An example
Let f(x) be a square wave. That is

f(x) = −1,−1 ≤ x ≤ 0

= 1, 0 ≤ x ≤ 1

f(x+ 2) = f(x).

That is f(x) is defined on [−p, p] with p = 1 and we extend f with period 2 to (−∞,∞).
We will give a picture example of how the partial series converge to the function f(x). For
notational purpose, the partial series a0

2
+
∑k

n=1

(
an cos nπ

p
x+ bn sin nπ

p
x
)

will be denoted
as Sk. The picture compares S1, S5, S11, S49 with f(x), respectively. Note that f(x) has
discontinuities at x = 2k + 1, in particular at x = 1. By the convergence theorem, the
series converges to f(1−)+f(1+)

2
= 0. Note how the Sk always attains value 0 at x = 2k+ 1.
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3.3 Fourier Sine and Cosine series, Complex Fourier Se-
ries

3.3.1 Even and odd functions
In the previous section, we expand a function f defined on [−p, p] with a series involving
cosine and sine. Since cosine and sine are symmetric around 0, we suspect that represent-
ing a function with a similar symmetric structure around 0 may involve less trigonemtric
functions. We will show that this is indeed the case. First we recall that a function f is odd
if f(x) = −f(−x) and even if f(x) = f(−x). The following are some properties of even
/ odd functions:

a. The product of two even or odd functions is even.
b. The product of an even and an odd function function is odd.
c. The sume (difference) of two even (odd) functions is even (odd).
d.
∫ a
−a f(x)dx = 2

∫ a
0
f(x)dx if f is even.

e.
∫ a
−a f(x)dx = 0 if f is odd.

3.3.2 Cosine and sine series
Lemma 3.3.1. Let f be an even function on [−p, p]. Then the Fourier series of f only
involve cosine functions:

f(x) =
a0

2
+
∞∑
n=1

an cos
nπ

p
x.
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On the other hand, if f is an even function on [−p, p] then its Fourier series only involve
sine functions:

f(x) =
∞∑
n=1

bn sin
nπ

p
x.

Proof. Recall that if f has the Fourier series

f(x) =
a0

2
+
∞∑
n=1

(
an cos

nπ

p
x+ bn sin

nπ

p
x
)

then

a0 =
1

p

∫ p

−p
f(x)dx

an =
1

p

∫ p

−p
f(x) cos

nπ

p
xdx

bn =
1

p

∫ p

−p
f(x) sin

nπ

p
xdx.

If f is even then f(x)f(x) sin nπ
p
x is odd and bn = 0,∀n by property e in the previous

section. Similarly, if f is odd then a0 = 0 and f(x) cos nπ
p
x is odd so an = 0,∀n also by

property e.

Example 3.3.2. Consider the square wave function defined on [−π, π] as

f(x) = −1,−π ≤ x ≤ 0;

= 1,−0 ≤ x ≤ π.

This is an odd function. Thus it only involves sine in its expansion. The coefficients are

bn =
2

π

∫ π

0

(1) sinnxdx =
2

π

1− (−1)n

n
.

That is

f(x) =
2

π

∞∑
n=1

1− (−1)n

n
sinnx.

3.3.3 Half range expansions
Let f be defined on [0, p]. We would like to find a Fourier series representation for f . That
is we want to expand f using the basis{

1, cos
π

p
x, cos

2π

p
x, cos

3π

p
x, · · · , sin π

p
x, sin

2π

p
x, sin

3π

p
x, · · ·

}
.

50



We cannot proceed immediately because this trigonometric basis is NOT orthogonal on
[0, p]. Indeed if m is even and n is odd (so that both m+ n and m− n are odd)∫ p

0

cos
mπ

p
x cos

nπ

p
xdx =

p

π

∫ π

0

cosmx cosnxdx

=
p

2π

∫ π

0

[cos(m+ n)x+ cos(m− n)x]dx =
−4p

2π
6= 0.

One can modify the choice of basis to something more suitable for the interval [0, p]. On
the other hand, there is a very simple way to re-use the results we have developed so far
by extending f to the interval [−p, p] using an odd or even extension. Specifically we can
define, for an even extension:

f(x) = f(−x),−p ≤ x ≤ 0

and for an odd extension

f(x) = −f(−x),−p ≤ x ≤ 0.

One last way to extend f is to use the identity expansion. That is we just “copy and paste"
the entire graph of f onto the interval [−p, 0]. In this way, the extension of f is periodic
with period p.

Note that for odd and even extension, f is periodic with period 2p. Therefore, for an
odd extension we can use the sine expansion with basis{

sin
π

p
x, sin

2π

p
x, sin

3π

p
x, · · ·

}
.

In this case the Fourier coefficients are

a0 =
2

p

∫ p

0

f(x)dx

an =
2

p

∫ p

0

f(x) cos
nπ

p
xdx.

Note that the integration is from 0 to p with a factor of 2 because f(x) cos nπ
p
x is an even

function. For an even extension we can use the cosine expansion with basis{
1, cos

π

p
x, cos

2π

p
x, cos

3π

p
x, · · ·

}
.

In this case the Fourier coefficients are

bn =
2

p

∫ p

0

f(x) sin
nπ

p
xdx.

51



Again note that the integration is from 0 to p with a factor of 2 because f(x) sin nπ
p
x is

again an even function. For the identity expansion, f is periodic with period p. Thus we
would need to use the entire Fourier series expansion with a modified basis{

1, cos
2π

p
x, cos

4π

p
x, cos

6π

p
x, · · · , sin 2π

p
x, sin

4π

p
x, sin

6π

p
x, · · ·

}
.

That is p is replaced by p/2 in the basis so that every basis function has a period p (instead
of 2p as before) which coincides with the period of f .

a0 =
2

p

∫ p

0

f(x)dx

an =
2

p

∫ p

0

f(x) cos
2nπ

p
xdx

bn =
2

p

∫ p

0

f(x) sin
2nπ

p
xdx.

Here again the integration is from 0 to p with a factor of 2 but the reason is not because
of odd or even property. It has to do with the fact that all functions in the integrand are
periodic with period p. The original Fourier coefficients are computed as integration from
−p to p. But since the period is pwe can integrate on half the period and double the integral
to get the same result.

Latly, since the Fourier series holds for the extension of f on the interval [−p, p] it also
holds for f on its original domain [0, p].

Example 3.3.3. Consider f(x) = x2 defined on [0,p].
a. Expanding f in a cosine series gives

a0 =
2

p

∫ p

0

x2dx =
2

3
p2

an =
2

p

∫ p

0

x2 cos(
nπ

p
x)dx =

4p2(−1)n

n2π2
.

Thus

f(x) =
p2

3
+

4p2

π2

∞∑
n=1

(−1)n

n2
cos

nπ

p
x.

b. Expanding f in a sine series gives

bn =
2

p

∫ p

0

x2 sin(
nπ

p
x)dx =

4p2(−1)n+1

nπ
+

4p2

n3π3
[(−1)n − 1].

Thus

f(x) =
∞∑
n=1

{4p2(−1)n+1

nπ
+

4p2

n3π3
[(−1)n − 1]

}
sin

nπ

p
x.
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c. Expanding f using the identity expansion gives

a0 =
2

p

∫ p

0

x2dx =
2

3
p2

an =
2

p

∫ p

0

x2 cos(
2nπ

p
x)dx =

p2

n2π2

bn =
2

p

∫ p

0

x2 sin(
2nπ

p
x)dx =

−p2

nπ
.

Thus

f(x) =
p2

3
+
∞∑
n=1

p2

n2π2
cos

2nπ

p
x− p2

nπ
sin

2nπ

p
x.

3.3.4 Application: Particular solution of a differential equation
Consider a spring mass system that is subject to a driving force f :

mx′′(t) + kx = f(t),

where f is periodic with period 2:

f(t) = πt, 0 < t < 1

= π(t− 2), 1 < t < 2.

To solve for x(t), we first represent f in a half-range sine expansion. With p = 1, the
Fourier coefficents for f are

bn = 2

∫ 1

0

πt sin(nπt)dt =
2(−1)n+1

n
.

That is

f(t) =
∞∑
n=1

2(−1)n+1

n
sin(nπt).

Since the second derivative of sine is negative sine, we guess the particular solution xp is
of the form

xp(t) =
∞∑
n=1

Bn sin(nπt).

Plug this form into the differential equation gives

∞∑
n=1

(k −mn2π2)Bn sin(nπt) =
∞∑
n=1

2(−1)n+1

n
sin(nπt).
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That is

Bn =
2(−1)n+1

n(k −mn2π2)
.

The particular solution is

xp(t) =
∞∑
n=1

2(−1)n+1

n(k −mn2π2)
sin(nπt).

Remark: It is conceivable to approach this problem using the Laplace transform for
periodic function as we discussed before. However, we can anticipate that the Laplace
transform X(s) of x(t) is easy to solve for; but the explicit inverse Laplace transform may
not be easy to find given the fact that we have found the particular solution to be an infinite
sine series. This may be considered as an advantage of the Fourier series method over the
Laplace transform.

Resonance

Consider the problem

x′′(t) + x(t) = f(t), t > 0

where f(t) is periodic with period 2π and defined on [0, 2π] as followed:

f(t) = t, 0 ≤ t ≤ π

= 2π − t, π ≤ t ≤ 2π.

We want to find a particular solution to this problem. Using even-extension (cosine), we
have

f(t) = π +
∞∑

n=1,n odd

−4

n2π
cos(nt).

Assuming xp(t) = a0
2

+
∑∞

n=1 an cos(nt) and plugging into the equation we have

a0

2
+
∞∑
n=1

an(1− n2) cos(nt) = π +
∞∑

n=1,n odd

−4

n2π
cos(nt).

But here we see a problem: when n = 1 the equation reads

a1 × 0 =
−4

π
,
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which, at least right now, yields no solution for a1 (and hence for xp(t)). Intuitively, this
problem occurs because the period of the forcing function, which is 2π, coincides with the
period of the homogenous solution to the problem:

x′′(t) + x(t) = 0,

which is xh(t) = C1 cos(t) + C2 sin(t). When this happens, resonance occurs.
To understand better why the coincidence of the two periods causes a problem, consider

the ODE

x′′(t) + x(t) = cos t,

Here we put cos t for the forcing function, which also has period 2π but it is easier to find
a particular solution in this case. Indeed, we can see that xp(t) = 1

2
t sin t is a particular

solution. Observe that sin t is multiplied by t, which causes the amplitude of the solution
to go to infinity as t→∞, hence resonance. This explains why any other forcing function
f(t) of fundamental period 2π will also induce this resonance property since the Fourier
expansion of f(t) will either have cos(t) or sin(t) term. (Fundamental period because
sin(nt) for n > 1 also have period 2π bu won’t induce resonance on the system. Clearly
2π is not the fundamental period of sin(nt) for n > 1.)

Now that we know how to solve the problem x′′(t)+x(t) = cos t, we revisit the problem

x′′(t) + x(t) = f(t), t > 0

where f(t) is periodic with period 2π and

f(t) = t, 0 ≤ t ≤ π

= 2π − t, π ≤ t ≤ 2π.

We now view it as a sum of problems of the form

x′′(t) + x(t) = An cos(nt), t > 0

where An is given as above. When n 6= 1, this problem has solution

xn(t) =
An

1− n2
cos(nt).

When n = 1 it has solution

x1(t) =
A1

2
t sin t.

Thus a particular solution to the original problem is

x(t) =
A1

2
t sin t+

∞∑
n=2

An
1− n2

cos(nt).
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Finally, we can easily see that the problem

x′′(t) + αx(t) = f(t), t > 0

α 6= 1 and f(t) given as above has a particular solution that is representable by Fourier
series. Similarly,

x′′(t) + x(t) = f(t), t > 0

also has a particular solution that is representable by Fourier series if we modify f(t) to

f(t) = t, 0 ≤ t ≤ L

= 2L− t, L ≤ t ≤ 2L,

where L 6= π. Indeed in this case we need to assume xp(t) = a0
2

+
∑∞

n=1 an cos(nπ
L
t) and

plugging into the equation we have

a0

2
+
∞∑
n=1

an(1− (
nπ

L
)2) cos(nt) = f(t).

The term 1− (nπ
L

)2 6= 0 for all integers n as long as L 6= π.

3.3.5 Complex Fourier series
Recall the Euler formula

eix = cos(x) + i sin(x)

and conversely,

cos(x) =
eix + e−ix

2

sin(x) =
eix − e−ix

2i
.

Given this connection, we can expect that the Fourier series can be represented in terms of
the complex exponential eix instead of sine and cosine. Indeed, the collection of functions{

· · · , e
−3iπx
p , e

−2iπx
p , e

−iπx
p , 1, e

iπx
p , e

2iπx
p , e

3iπx
p , · · ·

}
is orthogonal on [−p, p]. Note that the sequence is double sided : this has to do with the
fact that we need e−ix to represent sine and cosine. It also has to do with the fact that if
f(x) is a complex valued function (such as eix) then the L2 norm of f(x) is defined as√∫ p

−p
f(x)f(x)dx.
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To verify orthogonality, for any −∞ < m 6= n <∞, by Euler’s formula∫ p

−p
e
inπx
p e

imπx
p dx =

p

iπ(n+m)
e
iπ(n+m)x

p

∣∣∣p
−p

=
p

iπ(n+m)
(ei(n+m)π − e−i(n+m)π)

=
p

2π(n+m)
sin(n+m)π = 0.

Similarly, ∫ p

−p
(1)e

inπx
p dx =

p

πn
sinnπ = 0.

Now the L2 norm squared of e
inπx
p is∫ p

−p
e
inπx
p e

−inπx
p dx = 2p.

Therefore, if f(x) has complex Fourier series representation

f(x) = c0 +
∞∑

n=−∞

e
inπx
p ,

then

cn =
1

2p

∫ p

−p
f(x)e

−inπx
p dx,∀n.

Example 3.3.4. Let f(x) = e−x on [−π, π]. Then

cn =
1

2π

∫ π

−π
e−xe−inxdx = − 1

2π(in+ 1)

(
e−i(n+1)x − e(in+1)x

)
= − 1

2π(in+ 1)

(
(−1)ne−π − (−1)neπ

)
= (−1)n

sinhπ

π

1− in
n2 + 1

.

Thus

f(x) =
∞∑

n=−∞

(−1)n
sinh π

π

1− in
n2 + 1

einx.
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3.3.6 Fundamental period and fundamental frequency
Let f(x) defined on [−p, p] have Fourier series

f(x) =
a0

2
+
∞∑
n=1

an cos
nπ

p
x+ bn sin

nπ

p
x

=
∞∑

n=−∞

cne
nπ
p
x.

In both of the representation, the fundamental period (measured in time, usually seconds)
is T = 2p. The fundamental frequency (measured in Hertz, which is number of revolutions
per second) is f = 1

T
. If we map the periodic motion to a circular motion, then each

revolution corresponds to a 2π radian. Hence we can define the angular frequency (which
serves a similar role to angular speed) as ω = 2πf , whose unit is radian per second. Thus
the fundamental angular frequency is ω = 2π

T
= p

π
and the Fourier series can be written as

f(x) =
a0

2
+
∞∑
n=1

an cosnωx+ bn sinnωx

=
∞∑

n=−∞

cne
nωx.

The graph of (nω, |cn|) is referred to as the frequency spectrum of f .
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Chapter 4

Basic Partial Differential Equations

4.1 Boundary Value Problems (BVP) and Regular Sturm-
Liouville Problems

4.1.1 Introduction - Linear operator in infinite dimensional space
Linear operators on finite dimensional space (such as Rn) can always be represented by
matrices. Matrices are relatively “simpler" to study in terms of their properties (this does
not mean that theorems about matrices are not deep or sometimes very hard to prove) due
to their finite dimensional nature. In infinite dimensional space (such as C2[a, b], the space
of twice differentiable functions on [a, b]) we also have linear operators, such as differential
operators. In fact, the study of solutions to linear differential equations can be viewed as
the search for the eigenfunction corresponding to the eigenvalue 0 of this linear operator.
As we have seen, among the matrices symmetric matrices have very nice properties : all
their eigenvalues are real and their eigenvectors form an orthogonal basis. The analogy of
symmetric matrices in the infinite dimensional space is self-adjoint operator. It is beyond
the scope of this course to study such operator in abstract. We present instead a concrete
example of such an operator, in the form of a differential equation: the Sturm-Liouville
problem.

4.1.2 Regular Sturm-Liouville problem
Let p, q, r be real-valued functions on [a, b] with sufficiently nice property, r(x) > 0, p(x) >
0∀x. A regular Sturm-Liouville problem with coefficients p, q, r is

d

dx
(r(x)y′) + (q(x) + λp(x))y = 0,

subject to

A1y(a) +B1y
′(a) = 0

A2y(b) +B2y
′(b) = 0.
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Remarks:
a. This is a boundary value problem, in the sense that the solution is defined on a (usu-

ally spatial) interval [a, b] and its (and its derivative’s) values are specified on the boundary
points a, b. Compare this with the initial value problem where the solution is defined on a
(usually time) interval [0,∞) and values are specified at the initial time t = 0.

b. The boundary conditions are said to be homogeneous (it is non-homogenous if the
RHS are non-zero). The differential equation is linear. Homogenous boundary conditions
and the linear DE imply that a linear combination of solutions is still a solution (which is
not the case for the non-homogenous boundary conditions).

4.1.3 Eigenvalues and eigenfunctions
Definition 4.1.1. The values of λ so that the regular Sturm-Liouville problem has a non-
trivial solution are called the eigenvalues of the problem. The solution(s) correspond to a
specific eigenvalue is called the eigenfunction(s) associated to this eigenvalue.

Remark: Let L be a linear operator (that maps function to function). An example would
be the derivative operator. A more interesting example would be

L =
d2

dt2
+ 2

d

dt
− 4I

where I is the identity operator. In this sense the LHS of a linear DE can be seen as the
image of a linear operator map. One usually define an eigenvalue associated with L as the
value λ so that there exists a non-zero function f such that

Lf = λf.

f is said to be the eigenfunction associated with eigenvalue λ. In this way it is an extension
of the notion of eigenvalue / eigenvector of a matrix.

The way we (and the textbook) define eigenvalue / eigenfunction of a Sturm-Liouville
problem above is similar, except for a negative sign and a weight function p(x). That is

d

dx
(r(x)y′) + q(x)y = −λp(x)y,

so the linear operator is

L =
d

dx
(r(x)

d

dx
) + q(x)I.

The function p(x) is interpreted as the weight function that we will use to define orthogo-
nality of eigenfunctions in the next section.

Example 4.1.2. Consider the regular Sturm-Liouville problem

y′′ + λy = 0, y(0) = 0, y(L) = 0.
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This is a model of the deflection of a beam (see section 3.9 of the textbook). It is a special
case of the Sturm-Liouville problem described in the previous section with r(x) = p(x) =
1, q(x) = 0, A1 = A2 = 1, B1 = B2 = 0.

Case 1 : λ = 0. The solution to the DE is y = c1x + c2. Applying the boundary
conditions imply c1 = c2 = 0. Thus y = 0 is the only solution.

Case 2 : λ = −α2 < 0. The solution to the DE is y = c1 coshαx+c2 sinhαx. Applying
the boundary conditions imply c1 = c2 = 0. Thus again y = 0 is the only solution.

Case 3 : λ = α2 > 0. The solution to the DE is y = c1 cosαx + c2 sinαx. Applying
the boundary conditions imply c1 = 0 and α = nπ

L
. Thus a nonzero solution is

y = c2 sin
nπ

L
x

.
Eigenvalues and eigenfunctions: From the three cases we see that the eigenvalues are

λ =
(
nπ
L

)2 and the associated eigenfunctions are sin nπ
L

.

4.1.4 Properties of regular Sturm-Liouville problem
a. There exist an infinite number of real eigenvalues that can be arranged in increasing
order λ1 < λ2 < · · · < λn < · · · such that λN →∞ as n→∞.

b. The dimension of the eigenspace corresponding to each eigenvalue is 1. That is for
each eigenvalue, there is only one eigenfunction (excluding scalar multiples)

c. Eigenfunctions corresponding to distinct eigenvalues are independent.
d. The set of eigenfunctions form an orthogonal set with respect to weight function

p(x) on [a, b].
Remarks: Compare how similar these properties are to those of symmetric matrices

(except perhaps for property b).

Lemma 4.1.3. Let y1, y2 be two eigenfunctions corresponding to two distinct eigenvalues
λ1, λ2. Then

y1(a)y′2(a) = y2(a)y′1(a)

y1(b)y′2(b) = y2(b)y′1(b).

Remark: We already have y1 6= y2 from property c. This lemma will be useful to show
the self-adjoint property of the Sturm-Liouville operator below. Proof.

By assumption, y1, y2 satisfy

A1y1(a) +B1y
′
1(a) = 0

A1y2(a) +B1y
′
2(a) = 0.

Since the boundary condition is not trivial, A1, B1 cannot be both 0. That is the deter-
minant of the above system must be 0: y1(a)y′2(a) − y′1(a)y2(a) = 0. The equation at b is
similar.
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4.1.5 Self-adjoint form

4.1.6 Definition
As mentioned in the introduction, self-adjoint operator is a generalization of symmetric
matrices in infinite dimensional space and the Sturm-Liouville operator is an example of
it. First, we clarify how to generalize the notion of symmetric matrices into an operator.
Recall that we define a matrix to be symmetric if aij = aji, ∀i, j. This characterization
clearly cannot be generalized. Instead, we look at how symmetric interacts with inner-
product, as we also have inner product in infinite dimensional space. Indeed, a matrix A is
symmetric if and only if for any vectors u,v

(Au)Tv = uT (Av).

The proof is quite simple and the direction when A is symmetric is obvious. On the other
hand, let u = εi,v = εj, i, j = 1, · · · , n where εi denotes the vector with 1 a the ith entry
and 0 otherwise. Then we can see the above equation implies that Aij = Aji.

Now similarly we can define an operator L to be self-adjoint if for all functions u, v in
the domain of L

(Lu, v) = (u,Lv),

where (·, ·) denotes the inner product between two functions.

4.1.7 Sturm-Liouville operator
We now show that the Sturm-Liouville operator

L =
d

dx
(r(x)

d

dx
) + q(x)I

is self-adjoint on the domain that is the eigenfunctions of the problem.
First note that since the sum of self-adjoint operators is self-adjoint, and it is clear that

q(x)I is self-adjoint, we only need to check the operator

L =
d

dx
(r(x)

d

dx
).

By integration by parts∫ b

a

d

dx
(r(x)u′(x))v(x)dx = r(x)u′(x)v(x)

∣∣∣b
a
−
∫ b

a

r(x)u′(x)v′(x)dx.

On the other hand,∫ b

a

d

dx
(r(x)v′(x))u(x)dx = r(x)v′(x)u(x)

∣∣∣b
a
−
∫ b

a

r(x)u′(x)v′(x)dx.

From (4.1.3)

r(x)u′(x)v(x)
∣∣∣b
a

= r(x)v′(x)u(x)
∣∣∣b
a

and the proof is complete.

62



4.1.8 Converting to self-adjoint form
We have seen that self-adjoint operators enjoy nice properties: real eigenvalues, orthogonal
eigenvectors etc. The Sturm-Liouville operator is self-adjoint, thus the eigenvalues and
eigenfunctions of the Sturm-Liouville differential equations have the same properties. It is
clear that not all differential equations are Sturm-Liouville type and hence not self-adjoint.
However, we can transform an linear ODE into a self-adjoint form using the following
technique.

Consider the ODE:

a(x)y′′ + b(x)y′ + (c(x) + λd(x))y = 0 (4.1)

with appropriate boundary conditions. Recall the Sturm-Liouville problem:
d

dx
(r(x)y′) + (q(x) + λp(x))y = 0

which is equivalent to

r(x)y′′ + r′(x)y′ + (q(x) + λp(x))y = 0.

Thus the ODE (4.1) would be a Sturm-Liouville problem if
d

dx
b(x) = a(x).

This clearly cannot always be the case. On the other hand, the ODE (4.1) can be turned
into a Sturm-Liouville problem if there is a function m(x) so that

m(x)[a(x)y′′ + b(x)y′] =
d

dx

(
r(x)y′

)
.

That is

m(x)a(x) = r(x)

m(x)b(x) = r′(x).

Assuming m(x) 6= 0, we have

r′(x)

r(x)
=
b(x)

a(x)
.

That is
d

dx
(log(r(x)) =

b(x)

a(x)

or

r(x) = e
∫ b(x)
a(x)

dx.

Reversing the above argument, we can see that by multiplying both sides of (4.1) by

m(x) = e

∫ b(x)
a(x)

dx

a(x)
the ODE (4.1) is transformed a Sturm-Liouville problem with r(x) =

e
∫ b(x)
a(x)

dx, which is a self-adjoint form.

63



4.2 Separable Partial Differential Equations

4.2.1 Introduction
A partial differetial equation (PDE) is an equation that involes the partial derivatives of
a multi-variate function. The variables can be purely spatial (x, y, z) such as the wave
equation or both temporal and spatial (t, x) such as the heat equation. There is no universal
technique to find explicit solution of a PDE (even a linear one). In fact, explicit solution
is rather the exception than the norm when one investigates a PDE. Nevertheless, we will
study several classes of PDE that yield more or less explicit solutions for the remainder of
the course.

A useful thing to keep in mind is the techniques we study will yield a particular solution
to the PDE, but not necessarily the general solutions of the PDE. For example, in the
equation

uxx + uyy = 0

a particular solution would be u(x, y) = cxy where c is a constant. But one easily sees that
another possible solution is u(x, y) = ax+ by, a, b are constants.

4.2.2 Separable PDEs
A particularly useful technique when we look for an explicit solution of a PDE is to make
an ansatz, that is a guess for the functional form of the solution. The guess should certainly
be based on the structure of the equation, for example the wave equation mentioned above

uxx + uyy = 0

can be re-written as

uxx = −uyy.

So it is natural to guess that a form of u(x, y) is

u(x, y) = a(x)b(y), (4.2)

for some function a, b (since then the part of x is unaffacted by differentiation with respect
to y and vice versa). Any solution of u(x, y) in the form (4.2) is referred to as a product
solution of the PDE, and the technique of finding a product solution is called separation of
variables. Lastly the PDE is said to be separable if we can use separation of variables to
find a solution for it.

An example

Find the product solution of

uxx = 4uy.
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Sol:
Let u(x, y) = a(x)b(y). Then the equation becomes

axx(x)b(y) = 4a(x)by(y).

That is

‘
axx(x)

4a(x)
=
by(y)

b(y)
.

Since the LHS only depends on x and the RHS only on y, it means that they both equals to
a constant −c. Solving

by
b

= −c

gives b(y) = Ke−cy for some arbitrary constant K. The second order ODE

axx + 4ca = 0

has solution

‘a(x) = c1e
√

2|c|x + c2e
−
√

2|c|x.

if c < 0. If c > 0 then it has solution

a(x) = c1 cos(
√

2cx) + c2 sin(
√

2cx).

Note: For the particular choice c1 = c2 = 1
2

and c1 = −c2 = 1
2

we have sinh(
√

2cx) and
cosh(

√
2cx) as general solution. Thus it is also possible, and indeed common, to express

the general solution when c > 0 in terms of sinh and cosh. Lastly if c = 0 then it has
solution

a(x) = c1 + c2x.

4.2.3 Classification of second order linear PDEs
A second order linear PDE has the form

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G,

where A,B,C,D,E, F,G are constants. It is second order because the highest partial
derivative has second order. It is linear because a linear combination of solutions to such
an equation is also a solution. We have the following classifications:

a. The equation is elliptic if B2 − 4AC < 0
b. The equation is parabolic if B2 − 4AC = 0
c. The equation is hyperbolic if B2 − 4AC > 0.
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Example 4.2.1. The heat equation

ut − kuxx = 0, k > 0

is parabolic. The wave equation

utt − α2uxx = 0

is hyperbolic. The Laplace equation

uxx + uyy = 0

is elliptic.

These classifications are important because the techniques to solve different types of
PDEs are very different. Also, different types of PDEs model different physical phenom-
ena. For example, the parabolic PDEs usually model the temperature of an object (thus it
is called the heat equation) while the hyperbolic PDEs usually model the displacement of
an object from its equilibrium (thus it is called the wave equation).

Remarks:
The names elliptic, parabolic, hyperbolic comes from the analogy of the form of the

PDE with the representation of the conic sections in quadratic form:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.

This equation represents an ellipse if B2 − 4AC < 0, a parabola if B2 − 4AC = 0 and a
hyperbola if B2 − 4AC > 0. See also here for more details.

4.3 Heat Equation and Boundary Value Problems (BVPs)

4.3.1 Derivation of the heat equation
Consider a rod with length L and cross sectional area A. We assume that this rod is in-
sulated except possibly at the two ends (that is no heat goes in and out anywhere of the
rod except possibly at the two ends). We denote the temperature at time t > 0 at a point
x, 0 < x < L of the rod as u(t, x).

We need to introduce some concepts before deriving the heat equation. First we define
the notion of heat. The quantity of heat in an element of mass m and temperature u is
defined as

Q = γmu. (4.3)

That is the heat quantity is proportional to the mass and temperature of the object. The
propotional constant γ is called the specific heat. This makes sense as the more mass, the
higher temperature and / or higher specific heat should all lead to higher heat quantity.
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Remark 4.3.1. It is worth emphasizing that formula (4.3) is an idealized formula for a
point mass object. For an extended object that may have different temperature at different
points, an integration (adding over the heat quantity of the point mass components) is
needed to get the heat quantity of that object.

Another phenomenon we need to introduce is heat conduction, which is the transfer
of heat within a body. Specifically, imagine we have a cool rod at the beginning of the
experiment:

u(0, x) = 0, 0 ≤ x ≤ L.

Suppose we heat the rod at the left end x = 0 : u(t, 0) = C > 0, t > 0. This will make
the rest of the rod increase in temperature, that is u(t, a) > 0 for a > 0, t > 0. Obviously
some heat quantity has been transfered from x = 0 to x = a > 0.

The law that governs the heat conduction is called the Fourier’s law, and for the one
dimensional rod in consideration it is as followed

Qt = −KAux, (4.4)

where K is the constant called the thermal conductivity (of the rod’s material). Approxi-
mating ux with u(t,x+dx)−u(t,x)

dx
, Fourier’s law states that

Qt ≈ −KA
u(t, x+ dx)− u(t, x)

dx
.

That is, roughly speaking, the rate of change of heat is proportional to the cross sectional
area A and the temperature difference u(t, x + dx) − u(t, x). This essentially is New-
ton’s law of cooling. The difference here is Fourier’s law states rather that the rate of
change of heat is proportional to the cross sectional area A and the tempreature gradient
u(t,x+dx)−u(t,x)

dx
(in discrete version) or ux (in continuous version). Either way this makes

emperical sense. Lastly the negative sign captures the convention that heat flows from
higher temperature to lower temperature. That is if u(t, x) > u(t, x + dx) then there is a
positive heat flow from (t, x) to (t, x + dx) thus Qt(t, x) should be positive. The negative
sign guarantees this happens. Conversely, if we computeQt(t, x) to be positive then we can
conclude that heat flows (instantaneously) from x to the right at time t. For more details on
Fourier’s law and heat conduction see here.

Now consider a slice of the rod [x0, x0 + ∆] with length ∆. Let the mass density of
the rod’s material be ρ. We can imagine the slice is composed of (infinitely many) point
masses with coordinate x and “length" dx. By formula (4.3), the heat quantity in each of
this point mass x at time t is

Q(t, x) = γρ(Adx)u(t, x).

The heat quantity of the slice is the (continous) sum of the heat quantity in each of the point
mass:

Q(t, x0,∆) =

∫ x0+∆

x0

γρAu(t, x)dx.
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We want to analyze the rate of heat change in this slice Q(t, x0,∆). That is how fast
heat goes in (or out) of this slice at any given time. By definition, it is just the derivative of
Q(t, x0,∆) with respect to t:

d

dt
Q(t, x0,∆) =

∫ x0+∆

x0

γρAut(t, x)dx. (4.5)

Note that we have interchanged the order of differentiation and integration in the RHS of
the above equation, which can be justified under certain technical assumptions.

On the other hand, since the rod is insulated, from conservation of energy the heat
change from the slice must results from the change at the two ends of the slice [x0, x0 +∆].
That is the rate of change of the heat in the slice can also be expressed as

d

dt
Q(t, x0)− d

dt
Q(t, x0 + ∆).

This is simply saying the rate of change of heat is equal to the rate of heat going in at the
left end minus the rate of heat going out at the right end. For example, if d

dt
Q(t, x0 + ∆) =

d
dt
Q(t, x0) then the heat change at one end balances the heat change change at the other

end and the rod’s heat remains constant (over time). If heat flows in at the left end x0 then
d
dt
Q(t, x0) > 0 and no heat flows out at the right end x0 + ∆ then d

dt
Q(t, x0) = 0 and the

net heat change in the slice is positive.
By Fourier’s law (4.4),

d

dt
Q(t, x0)− d

dt
Q(t, x0 + ∆) = KA

{
ux(t, x0 + ∆)− ux(t, x0)

}
. (4.6)

Equating (4.5) and (4.6) gives∫ x0+∆

x0

γρAut(t, x)dx = KA
{
ux(t, x0 + ∆)− ux(t, x0)

}
.

Dividing both sides by ∆ and let ∆→ 0 gives

ut =
K

γρ
uxx = kuxx.

This is the heat equation. The constant k = K
γρ

is called the thermal diffusivity (of the
material fo the rod).

4.3.2 Heat equation as a boundary value problem
The boundary value problem

Consider an insulated rod with length L whose temperature at the two ends are always kept
at 0:

u(t, 0) = u(t, L) = 0, t > 0.
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Suppose that its initial temperature profile is given by a function f(x):

u(0, x) = f(x), 0 < x < L.

From our derivation of the heat equation above, the temperature u(t, x) of the rod at any
time t and position x is described by the solution to the BVP

ut = kuxx (4.7)
u(t, 0) = u(t, L) = 0, t > 0 (4.8)
u(0, x) = f(x), 0 < x < L. (4.9)

The general solution

We will now solve this BVP. First we look for the solution to the equation

ut = kuxx

without worrying about the boundary and initial conditions. This equation is separable,
that is we make the ansatz

u(t, x) = A(t)B(x).

Note that we have considered this equation in the example of the last section. Plugging in
to the equation we have

At
kA

=
Bxx

B
= −λ,

for some constant λ. Thus A,B satisfy respectively the DEs

At + kλA = 0

Bxx + λB = 0.

The solution for A(t) is

A(t) = Ce−kλt,

for some constant C to be determined. The solution for B(x) depends on the sign of λ and
it is

B(x) = C1x+ C2, λ = 0

B(x) = C1 cos(αx) + C2 sin(αx), λ = α2 > 0

B(x) = C1 cosh(αx) + C2 sinh(αx), λ = −α2 < 0.

Remark 4.3.2. We observe that we look for non-zero solutions in both A(t), B(x). The
reason is if either one is zero then u(t, x) = 0 and it contradicts the initial condition
u(0, x) = f(x) (unless f(x) = 0). This will be a general theme in subsequent sections
when we investigate the wave and Laplace equations which are also separable.
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4.3.3 The boundary condition
We now consider the boundary condition. u(t, 0) = u(t, L) = 0 implies

A(t)B(0) = A(t)B(L) = 0.

Since A(t) is not the zero function, we conclude that B(0) = B(L) = 0 and note that B(x)
solves the regular Sturm-Liouville problem

Bxx + α2B = 0

B(0) = B(L) = 0.

The condition B(0) = B(L) = 0 implies that λ = α2 > 0 and

B(x) = C1 cos(αx) + C2 sin(αx)

since the other two possibilities of λ also forcesB(x) = 0, which again implies u(t, x) = 0.
The condition B(0) = 0 implies C1 = 0. The condition B(L) = 0 implies

sin(αL) = 0.

Thus (recalling that we have the freedom to choose what λ = α2 is)

α =
nπ

L
,

for some natural number n. For each choice of α = nπ
L

, it is conceivable that we have a
different corresponding constant Cn

2 . That is we have a family of solution

Bn(x) = Cn sin(
nπ

L
x).

Since the boundary condition is homogeneous, the sum of solutions is a solution and thus
the general solution to the DE:

Bxx + α2B = 0

B(0) = B(L) = 0

is

B(x) =
∞∑
n=1

Cn sin(
nπ

L
x).

Thus the general solution to the heat equation, considering only the boundary condition is

u(t, x) =
∞∑
n=1

Cne
−k n

2π2

L2 t sin(
nπ

L
x).

(The constant C in the general solution of A(t) is absorbed into the Cn in the above repre-
sentation).

Remark: As t → ∞, each term of the series converges to 0. Thus we may believe that
u(t, x)→ 0 as t→∞ (we need to justify exchanging the limit and the summation to make
it rigorous). This agrees with our intuitition that the temperature of the rod converges to 0
everywhere due to the fact that the two ends are kept at constant 0 degree.
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The initial condition

The condition u(0, x) = f(x) implies

∞∑
n=1

Cn sin(
nπ

L
x) = f(x).

That is C ′ns are the Fourier coefficients in the half-range expansion of f(x) on the interval
[0, L] using the sine series. Recalling our results in the Fourier chapter gives

Cn =
2

L

∫ L

0

f(x) sin(
nπ

L
x)dx.

Thus the solution to the heat equation (4.7) is

u(t, x) =
∞∑
n=1

( 2

L

∫ L

0

f(x) sin(
nπ

L
x)dx

)
e−k

n2π2

L2 t sin(
nπ

L
x).

An example

Consider the heat equation

ut = uxx

u(t, 0) = u(t, π) = 0, t > 0

u(0, x) = 1, 0 < x < π.

The Fourier coefficient Cn is

Cn =
2

π

∫ π

0

sin(nx)dx =
2

π

−1− (−1)n

n
.

That is

u(t, x) =
2

π

∞∑
n=1

−1− (−1)n

n
e−n

2t sin(nx).

4.4 Wave Equation and Boundary Value Problems (BVPs)

4.4.1 Derivation of the wave equation
Consider a string of length L that originally ( before time t = 0 ) lies along the interval
[0, L] on the x-axis. Suppose at time t = 0 we pluck the string and let go. Let u(t, x) be the
displacement of the string away from the x-axis at time t > 0 and coordinate x, 0 < x < L.
We suppose that the string is clamped at the two ends:

u(t, 0) = u(t, L) = 0, t > 0.
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The “shape" of the string given by the pluck is described by a function f(x):

u(0, x) = f(x).

We seek to find an equation that u(t, x) follows, under the following assumptions:
a. The displacement u(t, x) is always small compared with the length L of the string.

This has the practical consequence that the length of any segment of string whose x coor-
dinates lie between [x, x+ ∆x] for some small ∆x can be approximated by ∆x.

b. The string is light. That is the effect of gravity on the string is negligible. Conse-
quently, the motion of the string is the result of only the tension of the string itself.

c. The magnitude of the tension of the string is constant in time and uniform through
out the string.

Remarks: It goes without saying that the only “motion" of the string is vertical motion.
That is if we fix any coordinate x of the string then the only motion at that coordinate is
along the y axis.

Now we look at the forces that act on a segment of the string whose x coordinates lie
between [x, x+ ∆x] for some small ∆x. The goal is to apply Newton’s second law to this
segment, whose (vertical) acceleration can be captured approximately by utt(t, x) since ∆x
is small.

From assumptiob b, the only forces acting on this segment are the tensions of the string
(the part excluding this segment). Thus there are two tensile forces T1,T2 acting at the two
end of the segments as in the picture above. The angles T1,T2 make with the horizontal
line are α and β respectively.

Remarks: More technically precise, β is measured counter-clockwise from the positive
x-axis to T2; α is measured counter-clockwise from the negative x-axis to T1. This would
ensure that the expression (4.10) of the net force acting on the segment is correct no matter
how T1,T2 point ( “up" or "down" ). For example, if (contrary to the picture) T2 points
“down" then sin β is negative. Similarly if T1 points “up" then sinα is negative.

From assumption a, α, β are close to 0. Thus cos(α) ≈ cos(β) ≈ 1, which implies
sin(α) ≈ tan(α) (sin(β) ≈ tan(β)). Finally from assumption c, the maginute of T1 and
T2 are equal, which we denote as T . Thus the net force that acts on this segment vertically
is

T sin β − T sinα ≈ T (tan β − tanα). (4.10)
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Remark: The negative sign on T sinα can be thought intuitively as because T1 always
points “left." See also the above remark about how we precisely define α, β.

Geometrically, the tensile forces T1,T2 are tangents to the segment at the two ends.
Thus the slope they make with the horizontal line are equal to the derivatives of u with
respect to x at these two ends, respectively. Finally, recall that the slope of a line is equal
to the tangent of the angle it makes with respect to the horizontal line. That is

tanα = ux(t, x)

tan β = ux(t, x+ ∆x)

Thus the net force acting on the segment vertically is

T sin β − T sinα ≈ T (tan β − tanα) = T (ux(t, x+ ∆x)− ux(t, x)).

Let ρ be the mass per unit length of this segment. By assumption a, the length of this
segment is approximately ∆x. By Newton’s second law, the net vertical force acting on
the segment is equal to the mass of the segment, which is approximately ρ∆x times the
acceleration, which is approximately utt(t, x). That is

T (ux(t, x+ ∆x)− ux(t, x)) = ρ(∆x)utt(t, x).

All these approximations become exact as ∆x→ 0. Thus dividing both sides by ∆x an let
∆x→ 0 we have

utt = a2uxx,
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where a2 = T
ρ

is a constant that depends on the material of the string.

4.4.2 Wave equation as a boundary value problem
The boundary value problem

Consider a string of length L that is clamped at the two ends:

u(t, 0) = u(t, L) = 0, t > 0.

Suppose the initial shape of the string is given by a function f(x):

u(0, x) = f(x), 0 < x < L.

Also suppose that the initial velocity of the string is given by a function g(x):

ut(0, x) = g(x), 0 < x < L.

Remark: The initial velocity of the string ut(0, x) = g(x) tells us the initial velocity of
the string at the coordinate x (whether it’s going up or down and how fast). In particular, if
the string is plucked, that is we give it an initial shape f(x) and let go, then g(x) = 0.

From our derivation of the wave equation above, the y-coordinate of the string at the
point x at time t follows the BVP:

utt = a2uxx

u(t, 0) = u(t, L) = 0, t > 0

u(0, x) = f(x), 0 < x < L

ut(0, x) = g(x), 0 < x < L.

The general solution

Like the heat equation, the wave equation is also separable. Thus again we make the ansatz

u(t, x) = A(t)B(x).

Plugging in to the equation we have

Att
a2A

=
Bxx

B
= −λ,

for some constant λ. Thus A,B satisfy the DEs

Att + a2λA = 0

Bxx + λB = 0.
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The solutions for A(t), B(x) depend on the sign of λ and they are

A(t) = C1t+ C2, λ = 0

A(t) = C1 cos(aαt) + C2 sin(aαt), λ = α2 > 0

A(t) = C1 cosh(aαt) + C2 sinh(aαt), λ = −α2 < 0

B(x) = C ′1x+ C ′2, λ = 0

B(x) = C ′1 cos(αx) + C ′2 sin(αx), λ = α2 > 0

B(x) = C ′1 cosh(αx) + C ′2 sinh(αx), λ = −α2 < 0.

The boundary condition

The boundary condition we are considering is exactly the same as the boundary condi-
tion for the heat equation. That is we conclude B(x) satisfies the regular Sturm-Liouville
problem

Bxx + λB = 0

B(0) = B(L) = 0.

Repeating the same argument as in the heat equation, we have a family of solutions

Bn(x) = Cn sin(
nπ

L
x),

where n = 1, 2, · · · .
From the analysis of the boundary condition, we also have λn = n2π2

L2 > 0. Thus the
form of the general solution for A(t) is:

A(t) = C1 cos(a
nπ

L
t) + C2 sin(a

nπ

L
t).

Thus the general solution for u(t, x) is

u(t, x) =
∞∑
i=1

{
C1
n cos(a

nπ

L
t) + C2

n sin(a
nπ

L
t)
}

sin(
nπ

L
x).

The initial conditions

Plugging in initial conditions

u(0, x) = f(x), 0 < x < L

ut(0, x) = g(x), 0 < x < L,

we have
∞∑
i=1

C1
n sin(

nπ

L
x) = f(x)

∞∑
i=1

(
a
nπ

L
C2
n

)
sin(

nπ

L
x) = g(x).
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That is C1
n’s (resp. anπ

L
C2
n’s ) are the Fourier coefficients in the half-range expansion of

f(x) (resp. g(x)) on the interval [0, L] using the sine series. Recalling our results in the
Fourier chapter gives

C1
n =

2

L

∫ L

0

f(x) sin(
nπ

L
x)dx

C2
n =

2

anπ

∫ L

0

g(x) sin(
nπ

L
x)dx.

In particular, when the string is plucked, g(x) = 0 and C2
n = 0,∀n.

4.4.3 Standing waves
We first present a technical result:

Lemma 4.4.1. For all n, there exists C3
n and φn so that

C1
n cos(a

nπ

L
t) + C2

n sin(a
nπ

L
t) = C3

n sin(a
nπ

L
t+ φn).

Proof: Using trig identity, we have

sin(
nπ

L
t+ φn) = sin(φn) cos(a

nπ

L
t) + sin(a

nπ

L
t) cos(φn).

Thus we require

C3
n sin(φn) = C1

n

C3
n cos(φn) = C2

n.

This system has solution

C3
n =

√
(Cn

1 )2 + (Cn
2 )2

φn = tan−1

(
Cn

1

Cn
2

)
.

Thus, u(t, x) can be written as

u(t, x) =
∞∑
i=1

C3
n sin(a

nπ

L
t+ φn) sin(

nπ

L
x)

:=
∞∑
i=1

un(t, x),

where

un(t, x) = C3
n sin(a

nπ

L
t+ φn) sin(

nπ

L
x).
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The un(t, x) is referred to as the n-th standing wave or the n-th normal mode. It is called
a standing wave because each un has the shape of essentially sin(nπ

L
x) with time-varying

amplitude C3
n cos(anπ

L
t+ φn).

The points on [0, L] for which sin(nπ
L
x) = 0 corresponds to the points of the standing

waves where there is no motion. These points are called nodes. It is easy to see that the
n-th standing wave has n− 1 nodes.

The period of the standing wave is the time it takes to complete one cycle (of up and
down motion). For each fixed x, the up and down motion is described by the term

C3
n sin(a

nπ

L
t+ φn).

Thus the period of the n-th standing wave is

Tn =
2L

an
.

The frequency of the n-th standing wave is

fn =
1

Tn
=
an

2L
=

n

2L

√
T

ρ
.

f1 is called the fundamental frequency or the first harmonic. For n > 1 fn’s are called the
overtones. In particualr, fn is referred to as the n− 1 overtone.

4.4.4 Wave equation on unbounded domain
Some physical phenomena such as electromagnetic waves also follow the wave equation
(see e.g. Maxwell’s equation ). The difference is they happen on an unbounded domain. In
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this section we consider the solution of a wave equation on the real line. The difference with
the previous section is that there is no boundary condition imposed. (Properly speaking
we need to consider electromagnetic waves in 3-d spatial variables. For demonstration
purposes, we’ll just consider the equation in 1-d spatial variable).

Consider the problem

utt = a2uxx,−∞ < x <∞, t > 0

u(0, x) = f(x), ut(0, x) = g(x).

We solve this problem in 3 steps.
Step 1: Change of variables. We let

ξ = x+ at

η = x− at.

By the chain rule:

ux = uξ
∂ξ

∂x
+ uη

∂η

∂x
= uξ + uη

ut = uξ
∂ξ

∂t
+ uη

∂η

∂t
= auξ − auη.

Similarly

uxx =
∂ux
∂ξ

∂ξ

∂x
+
∂ux
∂η

∂η

∂x
= uξξ + uηξ + uξη + uηη

utt =
∂ut
∂ξ

∂ξ

∂t
+
∂ut
∂η

∂η

∂t
= a2uξξ − a2uηξ − a2uξη + a2uηη.

Multiply uxx with a2 and subtracting utt, using the fact that a2uxx − utt = 0 we obtain

uηξ = 0.

Step 2: Integrate uηξ = 0
Integrate this equation first with respect to η gives uξ = f(ξ), for some function f(ξ)

to be determined (so that when we differentiate with respect to η we obtain 0). Integrate
again with respect to η gives u(ξ, η) = F (ξ) + G(η), where F ′(ξ) = f(ξ) and G(η) is
some function of η also to be determined (again so that when we differentiate with respect
to ξ we only obtain f(ξ)). Converting back to (t, x) variables, we have

u(t, x) = F (x+ at) +G(x− at).

Step 3: Plugging in the initial conditions:
We have

u(0, x) = F (x) +G(x) = f(x)

ut(0, x) = aF ′(x)− aG′(x) = g(x).
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The second equation can be integrated to give

a[F (x)− F (x0)]− a[G(x)−G(x0)] =

∫ x

x0

g(s)ds,

where x0 is an arbitrary constant. Letting c = F (x0)−G(x0) we obtain the system

F (x) +G(x) = f(x)

F (x)−G(x) =
1

a

∫ x

x0

g(s)ds+ c.

That is

F (x) =
1

2
f(x) +

1

2a

∫ x

x0

g(s)ds+ c

G(x) =
1

2
f(x)− 1

2a

∫ x

x0

g(s)ds− c.

Finally, plugging in u(t, x) = F (x+ at) +G(x− at) gives

u(t, x) =
1

2
[f(x+ at) + f(x− at)] +

1

2a

∫ x+at

x−at
g(s)ds.

In particular, when g(x) = 0 we see that the solution is the superposition of two traveling
waves: 1

2
f(x + at) traveling to the right and 1

2
f(x − at) traveling to the left, both with

speed a.

4.5 Laplace Equation and BVP in a rectangle

4.5.1 Context for Laplace equations
In this section we study the Laplace equation:

∆u(x, y) = uxx + uyy = 0, (x, y) ∈ Ω

where Ω is a rectangle inside R2 subject to some boundary conditions on the boundary of
Ω. Note that unlike the heat or wave equations, conventionally both independent variables
of u(x, y) are spatial variables. In this sense there is no time dimension in the Laplace
equations. The choice of Ω as a rectangular domain is to facilitate the derivation of ex-
plicit solution. We note that one can study the Laplace equation on a general domain (for
example, a circle) and in dimension larger than two.

Also unlike the heat or wave equation, we will not present the derivation for the Laplace
equation. The reason is there are many contexts where the Laplace equation arises, e.g.
describing the steady state solution of the heat or wave equation in higher dimensions (see
below). For more information about the situation where the Laplace equation arises, see
e.g. here.
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4.5.2 The Laplace equation as steady state solution to heat and wave
equation in higher dimensions

The main principle behind the heat equation is Fourier’s law, which says in one dimension

Qt = −KAux.

The quantity q = Qt
A

is called the local local heat flux density and in higher dimension we
have

q = −K∇u.

(Note: q is a vector in the above equation). Thus we can believe that arguing in a similar
way to the one dimensional case, by analyzing the rate of change of the heat in a rectangle,
we can derive the heat equation in two dimension as

ut = k(uxx + uyy). (4.11)

The wave equation in two dimension requires the analysis of the tension in a membrane
(e.g. that of a drum), which is beyond the scope of this note. We will accept that the wave
equation in two dimension is

utt = α2(uxx + uyy). (4.12)

A steady state is a state where the system’s property (the temperature of the rod, the
displacement of the string) becomes steady, i.e. does not change with time. For example,
the solution of the heat equation for a rod subject to the zero boundary condition tends to
u(t, x) = 0 as t→∞. Thus u(t, x) = 0 is the steady state solution for this particular heat
equation.

We maynot know whether a system will converge to a steady state solution. On the
other hand, if a steady state is reached then by definition we must have

ut = 0

(which also implies utt = 0 ). Plugging this into (4.11) and (4.12) we obtain in both cases

uxx + uyy = 0,

which is the Laplace equation. The time dimension disappears since the steady state does
not depend on time by definition.

4.5.3 Some other contexts for the Laplace equation
We mentioned some other contexts where the Laplace equation may arise. First, in complex
analysis if we have a complex function

f(z) = u(x, y) + iv(x, y)
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where z = x + iy and f(z) is analytic (roughly an infinitely differentialbe function) then
both u and v satisfy the Laplace equation. Second, the potential of an eletric field follows
a non-homogenous Laplace equation, or more precisely referred to as a Poisson equation:

uxx + uyy = −ρ.

Lastly, the stream function of an incompressible fluid that is also irrotational also follows a
Laplace equation.

4.5.4 Laplace equation as BVP in a rectangle
Consider the steady state temperature u(x, y) on a rectangular plate [0, a] × [0, b] that is
kept at 0 at the lower horizontal end y = 0 and at temperature profile f(x) at the upper
horizontal end y = b. The plate is insulated at the two vertical ends x = 0, x = a. The
insulation condition implies that Qt(0, y) = Qt(a, y) = 0, where Q is the heat quantity at
the point (x, y). Recalling the Fourier’s law

Qt = −kux,

the insulation condition is translated to

ux(0, y) = ux(a, y) = 0, 0 < y < b.

Thus the steady-state temperature is described by the BVP:

uxx + uyy = 0

u(x, 0) = 0;u(x, b) = f(x), 0 < x < a

ux(0, y) = ux(a, y) = 0, 0 < y < b. (4.13)

The general solution

Similar to the wave equation we make the ansatz

u(x, y) = A(x)B(y).

Plugging in to the equation we have

Axx
A

= −Byy

B
= −λ,

for some constant λ. Thus A,B satisfy the DEs

Axx + λA = 0

Byy − λB = 0.

81



The solutions for A(x), B(y) depend on the sign of λ and they are

A(x) = C1x+ C2, λ = 0

A(x) = C1 cos(αx) + C2 sin(αx), λ = α2 > 0

A(x) = C1 cosh(αx) + C2 sinh(αx), λ = −α2 < 0

B(y) = C ′1y + C ′2, λ = 0

B(y) = C ′1 cosh(αy) + C ′2 sinh(αy), λ = α2 > 0

B(y) = C ′1 cos(αy) + C ′2 sin(αy), λ = −α2 < 0.

Note the reverse case for B(y) compared to A(x) for λ > 0 and λ < 0. This is because the
DE for B has the term −λB instead of +λA in the DE for A.

The boundary condition for x

The boundary condition for x is

ux(0, y) = ux(a, y) = 0, 0 < y < b.

This implies

Ax(0)B(y) = Ax(a)B(y) = 0.

Since B(y) is not identically 0, we conclude that Ax(0) = Ax(a) = 0. That is A(x) solves
the regular Sturm-Liouville problem

Axx + λA = 0

Ax(0) = Ax(a) = 0.

There are two possible cases for λ that would lead to non-trivial solution here. First λ = 0
implies A(x) = C1x + C2. The boundary condition implies C1 = 0. Thus A(x) = C0 for
some constant C0 is a solution correspond to the λ = 0 case.

Second, λ > 0 implies

A(x) = C1 cos(αx) + C2 sin(αx),

In this case, ux(0, y) = 0 implies C2 = 0 and ux(a, y) = 0 implies

αa = 2nπ

or α = 2nπ
a

. Thus there is a family of solution

An(x) = Cn cos(
2nπx

a
),

where αn = 2nπ
a
, n = 1, 2, · · · .
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The boundary condition for y

The boundary condition for y is

u(x, 0) = 0;u(x, b) = f(x), 0 < x < a.

Using a similar argument as the above section, we conclude that B(y) solves the problem

Byy − λB = 0

B(0) = 0, B(b) = f(x),

where we have concluded from the above section that λn = α2
n =

(
2nπ
a

)2
, n = 0, 1, · · · are

the possible choices for λ.
If αn = 0 then B(y) = C ′1y + C ′2. B(0) = 0 implies C ′2 = 0.
If αn = 2nπ

a
> 0 the general solution for B(y) takes the form

Bn(y) = C ′1 cosh(
2nπ

a
y) + C ′2 sinh(

2nπ

a
y).

The condition B(0) = 0 implies C ′1 = 0.
We now have the general form of u(x, y) as

u(x, y) =
∞∑
n=0

An(x)Bn(y) = C0y +
∞∑
n=1

Cn sinh(
2nπ

a
y) cos(

2nπx

a
).

The condition u(x, b) = f(x) implies

C0b+
∞∑
n=1

Cn sinh(
2nπ

a
b) cos(

2nπx

a
) = f(x).

We can rewrite this as

C0b+
∞∑
n=1

Cn sinh(
2nπ

a
b) cos(

2nπx

a
) =

∞∑
n=0

Ĉn cos(
2nπx

a
) = f(x)

to make the LHS into a Fourier cosine series, where

Ĉ0 = C0b

Ĉn = Cn sinh(
2nπ

a
b).

We see that Ĉn are the Fourier coeficients in the cosine series expansion of f(x). Thus

Ĉ0 =
1

a

∫ a

0

f(x)dx

Ĉn =
2

a

∫ a

0

f(x) cos(
2nπx

a
)dx.
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From this it follows that

C0 =
1

ab

∫ a

0

f(x)dx

Cn =
2

a sinh(2nπ
a
b)

∫ a

0

f(x) cos(
2nπx

a
)dx.

Thus the solution to the BVP (4.13) of the steady-state tempreture on the plate is

u(x, y) =
{ 1

ab

∫ a

0

f(x)dx
}
y +

∞∑
n=1

{ 2

a sinh(2nπ
a
b)

∫ a

0

f(x) cos(
2nπx

a
)dx
}

sinh(
2nπ

a
y) cos(

2nπx

a
).

Dirichlet problem

The BVP (4.13) we considered has a mixture of boundary condition types. That is it has
both Dirichlet type of condition:

u(x, 0) = 0;u(x, b) = f(x), 0 < x < a

and Neumann condition

ux(0, y) = ux(a, y) = 0, 0 < y < b.

This comes from the physical property of the problem we want to solve, that is the plate
is kept at certain temperatures at two ends and kept insulated at the other two ends. On
the other hand, one can consider problem where all boundary conditions are of Dirichlet
type. This problem is, not surprisingly, referred to as the Dirichlet problem (for Laplace
equation). It will have the following form

uxx + uyy = 0

u(x, 0) = f(x);u(x, b) = g(x), 0 < x < a

u(0, y) = F (y);u(a, y) = G(y), 0 < y < b. (4.14)

This problem is not straightforward to solve in this form. Observe that the general solution
that we found in (4.5.4) is the same. The difficulty lies in the fitting of the boundary
conditions as in (4.5.4) and (4.5.4). There, the zero boundary conditions played a major
role in simplifying the process of fitting the boundary conditions.

Nevertheless, we can utilize the superposition principle to help us solve the Dirichlet
problem by dividing it to two Dirichlet problems with boundary conditions equal to zero
on two sides. More specifically, we can consider the problems

uxx + uyy = 0

u(x, 0) = f(x);u(x, b) = g(x), 0 < x < a

u(0, y) = 0;u(a, y) = 0, 0 < y < b. (4.15)
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and

uxx + uyy = 0

u(x, 0) = 0;u(x, b) = 0, 0 < x < a

u(0, y) = F (y);u(a, y) = G(y), 0 < y < b. (4.16)

It is straightforward to show that if u1(x, y) is the solution to (4.15) and u2(x, y) is the
solution to (4.16) then

u(x, y) := u1(x, y) + u2(x, y)

is the solution to (4.14). The problems (4.15) and (4.16) can be solved using a similar
techniques to the one we presented above. More spefically, the reader can verify that

u1(x, y) =
∞∑
n=1

{
An cosh

nπ

a
y +Bn sinh

nπ

a
y
}

sin
nπ

a
x,

where

An =
2

a

∫ a

0

f(x) sin
nπ

a
xdx

Bn =
2

a sinh nπ
a
b

∫ a

0

g(x) sin
nπ

a
xdx− An cosh

nπ

a
b.

And

u2(x, y) =
∞∑
n=1

{
An cosh

nπ

b
x+Bn sinh

nπ

b
x
}

sin
nπ

b
y,

where

An =
2

b

∫ b

0

F (y) sin
nπ

b
ydy

Bn =
2

b sinh nπ
b
a

∫ b

0

G(y) sin
nπ

b
ydy − An cosh

nπ

b
a.

4.6 Nonhomogeneous Boundary Value Problem

4.6.1 Non-seperable equations
The heat, wave and Laplace BVPs we considered so far are all separable. That is we can
make the ansatz u(t, x) = A(t)B(x) and proceed to solve for A,B. In this section we will
consider extension of BVPs such that separability no longer holds and how to solve such
problems.
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Non-homogenous equations

The term homogenous in mathematics when referred to ODEs and PDEs usually means
“the RHS equals to zero and the LHS only involves terms that contains the solution u". For
example the heat, wave and Laplace equations we have considered so far are homogenous:

ut − kuxx = 0 (heat equation)
utt − α2uxx = 0 (wave equation)
uxx + uyy = 0 (Laplace equation).

On the other hand, the following heat equation that models heat being generated inter-
nally with rate F (x, t) is non-homogenoues:

kuxx + F (x, t) = ut,

because if we collect terms that involve u on the LHS it becomes

ut − kuxx = F (x, t).

The non-homgeneity makes the equation no-longer separable (The ansatz u(t, x) = A(t)B(x)
is not appropriate unless it is also the case that F (x, t) = C(t)D(x) ). Thus we need a dif-
ferent approach for the non-homogeneous case.

Time-dependent boundary conditions

Another extension would be solving the usual homogenous equations we considered so far,
subject to time dependent boundary conditions instead of constant boundary conditions.
For example, consider the problem

ut = uxx, 0 < x < 1, t > 0

u(0, t) = cos t, u(1, t) = 0, t > 0

u(x, 0) = 0, 0 < x < 1.

This is similar to the heat BVP we consider except for the boundary condition

u(0, t) = cos t,

which depends on t. However, this also makes the problem non-separable. To see why, sup-
pose we make the ansatz u(t) = A(t)B(x). Then u(0, t) = cos t implies that A(t)B(0) =
cos t or A(t) = cos t

B(0)
. The equation ut = uxx becomes

sin tB(x) = cos tBxx.

This implies
Bxx

B(x)
= tan t

which is impossible as B is only dependent on x.
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4.6.2 Solving non-homogeneous BVP with homogenous boundary con-
ditions

The abstract procedure

Consider the problem

uxx + F (x, t) = ut, 0 < x < L, t > 0

u(t, 0) = u(t, L) = 0, t > 0

u(0, x) = f(x), 0 < x < L.

The technique to solve this problem is to assume that both v(x, t) and F (x, t) can be ex-
panded using Fourier sine series with time dependent Fourier coefficients:

u(t, x) =
∞∑
n=1

un(t) sin(
nπ

L
x)

F (t, x) =
∞∑
n=1

Fn(t) sin(
nπ

L
x). (4.17)

Remarks:
a. This assumption essentially says that our problem is still separable. Indeed the

crucial assumption is on the form of F (x, t). It is conceivable that we can come up with
an example of F (x, t) that does not admit the representation as in (4.17). However, for a
specific F (x, t) we can easily check to see if the assumption is satisfied and proceed. An
easy example where the assumption holds is when F is only dependent on x.

b. The representation u(t, x) =
∑∞

n=1 un(t) sin(nπ
L

apriori satisfies the boundary con-
ditions u(t, 0) = u(t, L) = 0. In order to solve for t we only need to find the coefficients
un(t). Also observe that Fn(t) is known once we know the specific form of F (t, x).

Plugging in the form as in (4.17) gives

∞∑
n=1

{
Fn(t)− n2π2

L2
un(t)

}
sin(

nπ

L
x) =

∞∑
n=1

u′n(t) sin(
nπ

L
x).

Equating the coefficients of sin(nπ
L
x) gives an ODE in t:

u′n(t) +
n2π2

L2
un(t) = Fn(t).

This is a linear first order ODE whose general solution can be found explicitly. Each
general solution for un depends on a constant Cn. Finally these C ′ns can be found by the
initial condition u(t, 0) = f(x).
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An example

Consider the BVP

uxx + (1− x) sin t = ut, 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0, t > 0

u(x, 0) = x− 1, 0 < x < 1.

We first consider the representation

(1− x) sin t =
∞∑
n=1

Fn(t) sin(nπx).

That is
∞∑
n=1

Fn(t)

sin t
sin(nπx) = 1− x.

Clearly Fn(t)
sin t

is the Fourier coefficients of the sine series expansion of 1− x. Thus we have

Fn(t) = 2 sin t

∫ 1

0

(1− x) sin(nπx)dx =
2

nπ
sin t.

The ODE in t becomes

u′n(t) + n2π2un(t) =
2

nπ
sin t.

It has a general solution

un(t) =
2

nπ
e−n

2π2t

∫ t

0

en
2π2s sin sds+ un(0)e−n

2π2t.

To determine un(0) we use the initial condition

u(x, 0) = x− 1, 0 < x < 1.

That is
∞∑
n=0

un(0) sin(nπx) = x− 1.

From the Fourier sine series of x− 1 we have

un(0) = 2

∫ 1

0

(x− 1) sin(nπx)dx.
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4.6.3 Solving homogeneous BVP with time dependent boundary con-
ditions

The abstract procedure

Consider the problem

uxx = ut, 0 < x < L, t > 0

u(t, 0) = u0(t) , u(t, L) = u1(t), t > 0

u(0, x) = f(x), 0 < x < L.

We seek to transform this problem into a problem with time independent boundary condi-
tions by making the substitution

u(t, x) = v(t, x) + φ(t, x),

where

φ(t, x) = u0(t) +
x

L
(u1(t)− u0(t)).

The function φ(t, x) enjoys the following nice properties:

φ(t, 0) = u0(t) , φ(t, L) = u1(t)

φxx = 0.

Pluggging in the form u(t, x) = v(t, x) + φ(t, x) into the original BVP, we see that v(t, x)
satisfies the BVP

vxx + F (t, x) = vt, 0 < x < L, t > 0

v(t, 0) = v(t, L) = 0, t > 0

v(0, x) = g(x), 0 < x < L,

where F (t, x) = −φt(t, x) and g(x) = f(x)−φ(0, x). This is a non-homogenous BVP with
homogenous boundary conditions. We can follow the procedure outlined in the previous
section to solve it.

An example

Consider the problem

ut = uxx, 0 < x < 1, t > 0

u(0, t) = cos t, u(1, t) = 0, t > 0

u(x, 0) = 0, 0 < x < 1.
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We make the substitution

u(t, x) = v(t, x) + (1− x) cos(t).

Then v(t, x) solves the BVP

vxx + (1− x) sin t = vt, 0 < x < 1, t > 0

v(0, t) = 0, v(1, t) = 0, t > 0

v(x, 0) = x− 1, 0 < x < 1.

This is exactly the problem we solved in the section (4.6.2).

4.6.4 Solving non-homogeneous BVP with time dependent boundary
conditions

Lastly, consider the problem

uxx + F (x, t) = ut, 0 < x < L, t > 0

u(t, 0) = u0(t) , u(t, L) = u1(t), t > 0

u(0, x) = f(x), 0 < x < L.

We can use the same substitution in the previous section to transform this problem into a
problem with time independent boundary conditions:

u(t, x) = v(t, x) + φ(t, x),

where

φ(t, x) = u0(t) +
x

L
(u1(t)− u0(t)).

Pluggging in the form u(t, x) = v(t, x) + φ(t, x) into the original BVP, we see that
v(t, x) satisfies the BVP

vxx +G(t, x) = vt, 0 < x < L, t > 0

v(t, 0) = v(t, L) = 0, t > 0

v(0, x) = g(x), 0 < x < L,

where F (t, x) = G(t, x)− φt(t, x) and g(x) = f(x)− φ(0, x). This is a non-homogenous
BVP with homogenous boundary conditions and we can follow the procedure outlined in
the section (4.6.2) to solve it.
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4.7 Orthogonal Series Expansions for BVP

4.7.1 Introduction
In this section, we consider several examples of BVPs with nonstandard boundary condi-
tions. The technique to sovle these problems is orthogonal series expansion, the details of
which we present below.

4.7.2 A heat equation example
Consider the BVP

ut = kuxx

subject to

u(t, 0) = 0, ux(t, 1) = −hu(x, 1), h > 0, t > 0

u(0, x) = 1, 0 < x < 1.

Remark:
a. This problem models a rod of unit length, whose initial tempreature is 1 everywhere.

At the right end there is heat transfer into a surrounding medium, whose temperature is
kept at a constant zero. (Hence the rod’s left end is at a constant temperature 0). To see
this, recall Fourier’s law for heat transfer:

Qt = −Kux

and Newton’s law of cooling, which says the rate of change of heat is proportional to
the temperature difference. Thus the condition ux(t, 1) = −hu(x, 1) can be seen as Qt =
h(u(x, 1)−0), which captures the fact that the heat transfer is proportional to the difference
of temperature of the right end of the rod and the environment.

b. In terms of boundary condition, the condition ux(t, 1) = −hu(x, 1) is a new one and
thus the techniques we developed before to solve BVP will need to be modified to solve it.

Solution:
We will still use separation of variables, that is we make the ansatz

u(t, x) = A(t)B(x).

This is because this ansatz is still consistent with the boundary condition ux(t, 1) = −hu(x, 1).
Proceed as before, we have

At
kA

=
Bxx

B
= −λ,
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for some constant λ. Thus A,B satisfy respectively the DEs

At + kλA = 0

Bxx + λB = 0.

The solution for A(t) is

A(t) = Ce−kλt,

for some constant C to be determined. The solution for B(x) depends on the sign of λ and
it is

B(x) = C1x+ C2, λ = 0

B(x) = C1 cos(αx) + C2 sin(αx), λ = α2 > 0

B(x) = C1 cosh(αx) + C2 sinh(αx), λ = −α2 < 0.

We now consider the boundary conditions

u(t, 0) = 0, ux(t, 1) = −hu(x, 1).

A quick check shows that the choice B(x) = C1x + C2 is not possible unless we have
C1 = C2 = 0. The choice B(x) = C1 cosh(αx) + C2 sinh(αx) also is not possible. First
the condition u(t, 0) = 0 implies C1 = 0. Second the condition ux(t, 1) = −hu(x, 1)
implies tanh(α) = −α

h
. The graph of tanh(x) intersects the graph of −x

h
only at x = 0

(note that h > 0 so− 1
h
< 0). The choise α = 0 is not possible here since this form of B(x)

implies λ = α2 > 0.
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This leaves us with the choice of B(x) = C1 cos(αx) + C2 sin(αx). The left boundary
condition implies that C1 = 0. The right boundary condition implies

tan(α) = −α
h
.

The graph of tan(x) intersects the graph of −x
h

at infinitely many points αn, n = 1, 2, · · · .
We do not have an explicit representation αn. Nevetheless, we can still write the general

solution to the BVP as

u(t, x) =
∞∑
n=1

Cne
−kα2

nt sin(αnx).

Pluggin in the initial condition we have

u(0, x) =
∞∑
n=1

Cn sin(αnx) = 1.
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The αn are not of the form nπ
L

so this is not a Fourier expansion of 1. Rather, we re-
call the following result about eigenvalues and eigenfunctions of a regular Sturm-Liouville
problem. Consider the problem

d

dx
(r(x)y′) + (q(x) + λp(x))y = 0, a < x < b.

Subject to

A1y(a) +B1y
′(a) = 0

A2y(b) +B2y
′(b) = 0.

Then the eigenfunctions corresponding to distinct eigenvalues are orthogonal with respect
to the weight function p(x) on [a, b]. In our problem, sin(αnx) are eigenfunctions corre-
sponding to eigenvalues αn for the Sturm-Liouville problem

Bxx + λB = 0, 0 < x < 1

B(0) = 0, Bx(1) + hB(1) = 0.

Thus sin(αnx) are orthogonal with weight functions p(X) = 1. Applying this result gives

Cn =

∫ 1

0
sin(αnx)dx∫ 1

0
sin2(αnx)dx

.

4.7.3 A wave equation example
Consider the BVP

utt = a2uxx, 0 < x < 1, t > 0

subject to

u(t, 0) = 0, ux(t, 1) = 0, , t > 0

u(0, x) = x, ut(0, x) = 0, 0 < x < 1.

Remarks:
a. This problem models the twist angle u(t, x) of a torsionally vibrating shaft of unit

length.
b. In terms of boundary condition, we get a Dirichlet type on the left end and a Neu-

mann type on the right end. We will still use separation of variable to solve the problem.
Similar to what we have above, the mixed boundary condition has the effect of making the
eigenvalues of the regualr Sturm-Liouville problem

Bxx + λB = 0, 0 < x < 1

B(0) = 0, Bx(1) = 0
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to have eigenvalues not of “Fourier type", that is they are not of the form nπ
L

. Nevetheless,
the eigenfunctions corresponding to the eigenvalues are still orthogonal so when it comes
to solving for the undetermined coefficients using the initial conditions, we can still use
orthogonal series expansion techniques.

c. There are two initial conditions on u(0, x) and ut(0, x) because the PDE is second
order in t.

Solution:
Using separation of variables

u(t, x) = A(t)B(x),

we have

At
a2A

=
Bxx

B
= −λ,

for some constant λ. Thus A,B satisfy respectively the DEs

Att + α2λA = 0

Bxx + λB = 0.

We first discuss the solution for B(x). As mentioned above, B(x) satisfies the regular
Sturm-Liouville problem

Bxx + λB = 0, 0 < x < 1

B(0) = 0, Bx(1) = 0.

We would not verify the details that if λ ≤ 0, the only solution to this problem isB(x) = 0.
Thus we conclude λ > 0 and

Bn(x) = Cn sin(αnx),

where αn satisfies

cos(αn) = 0.

Here we do have an explit formula for αn :

αn =
(2n− 1)π

2
, n = 1, 2, · · ·

Going back to A(t), A(t) solves the DE

Att + a2λnA = 0, n = 1, 2, · · ·

Because a2λn > 0, we know A(t) has the form

An(t) = C1
n sin(aαnt) + C2

n cos(aαnt).
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The initial condition ut(0, x) = 0 translates to A′n(t) = 0, which implies C1
n = 0. Thus

u(t, x) =
∞∑
n=1

An(t)Bn(x)

=
∞∑
n=1

Cn cos(aαnt) sin(αnx).

The initial condition u(0, x) = x implies

u(0, x) =
∞∑
n=1

Cn sin(αnx) = x.

As we mentioned, the collection {sin(αnx), n = 1, 2, · · · } is orthogonal. Thus

Cn =

∫ 1

0
x sin(αnx)dx∫ 1

0
sin2(αnx)dx

.

4.8 Fourier Series in Two Variables

4.8.1 Introduction
In this section, we explore the techniques of solving two dimensional heat and wave equa-
tions. They are

ut = k(uxx + uyy) heat equation
utt = α2(uxx + uyy) heat equation.

At first glance, separation of variables is still applicable. That is it is still reasonable to
assume

u(t, x, y) = A(t)B(x)C(y),

(with appropriate boundary conditions, of course). The difference is when we obtain the
general form for B(x), C(y) in terms of a series and use the initial condition to solve for
the coefficients, we will have to deal with a series in two variables:

∞∑
m=1

∞∑
n=1

Amn sin(
mπ

a
x) sin(

nπ

b
y) = f(x, y), 0 ≤ x ≤ a, 0 ≤ y ≤ b.

We will see how to solve for the coefficients Amn in the following section.
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4.8.2 Two dimensional Fourier sine and cosine series
We present the following results without proof. The intuition behind the representation is
similar to the one dimensional sine and cosine series. The technical difficulty lies in the
convergence of the series to the true function, which we skip.

Let f(x, y) be a sufficiently nice function defined on 0 ≤ x ≤ a, 0 ≤ y ≤ b. Then the
two dimensional Fourier sine series representation of f is

f(x, y) =
∞∑
m=1

∞∑
n=1

Amn sin(
mπ

a
x) sin(

nπ

b
y),

where

Amn =
4

ab

∫ a

0

∫ b

0

f(x, y) sin(
mπ

a
x) sin(

nπ

b
y)dxdy.

On the other hand, the two dimensional Fourier cosine series representation of f is

f(x, y) = A00 +
∞∑
m=1

Am0 cos(
mπ

a
x) +

∞∑
n=1

A0n cos(
nπ

b
y)

+
∞∑
m=1

∞∑
n=1

Amn cos(
mπ

a
x) cos(

nπ

b
y),

where

A00 =
1

ab

∫ a

0

∫ b

0

f(x, y)dxdy

Am0 =
2

ab

∫ a

0

∫ b

0

f(x, y) cos(
mπ

a
x)dxdy

A0n =
2

ab

∫ a

0

∫ b

0

f(x, y) cos(
nπ

b
y)dxdy

Amn =
4

ab

∫ a

0

∫ b

0

f(x, y) cos(
mπ

a
x) cos(

nπ

b
y)dxdy.

4.8.3 Heat equation for temperatures in a plate
Consider the BVP

ut = k(uxx + uyy), t > 0, 0 < x < a, 0 < y < b

u(t, 0, y) = u(t, a, y) = u(t, x, 0) = u(t, x, b) = 0

u(0, x, y) = f(x, y).

u(t, x, y) describes the temperature on a rectangular plate whose initial temperature profile
is f(x, y) and whose temperature at all four sides are kept at 0.
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Using separation of variables, we make the ansatz

u(t, x, y) = A(t)B(x)C(y).

Plugging this form in the PDE we have

AtBC = kA(CBxx +BCyy).

That is

At
kA

=
Bxx

B
+
Cyy
C
.

The only way for an equation of the form

f(t) = g(x) + h(y)

to hold is when f(t) = g(x) + h(y) = −λ. Furthermore, it also must be that g(x) = −µ
and h(y) = −λ + µ for some constants λ, µ. However, from our experience with one
dimensional heat equation, we note thatB(x) andC(y) will solve a regular Sturm-Liouville
problem. Thus, to make it convenient for us, we will actually write

Bxx

B
= −λ,

Cyy
C

= −µ,
At
kA

= −(λ+ µ).

Thus B,C solve the regular Sturm-Liouville problems

Bxx + λB = 0, B(0) = B(a) = 0

Cyy + µC = 0, C(0) = C(b) = 0

and A solves the DE

At + k(λ+ µ)A = 0.

Using the same argumetn as the one dimensional heat equation case, the general solutions
for A,B,C are

A(t) = C0e−k(n
2π2

a2
+n2π2

b2
)t,

Bn(x) = C1
n sin(

nπx

a
),

Cn(y) = C2
n sin(

nπy

b
).
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The general solution for the BVP is

u(t, x, y) =
∞∑
m=1

∞∑
n=1

AmnA(t)Bn(x)Cn(y)

=
∞∑
m=1

∞∑
n=1

Amne
−k(n

2π2

a2
+n2π2

b2
)t sin(

nπx

a
) sin(

nπy

b
).

We use the initial condition to solve for Cn :

u(0, x, y) =
∞∑
m=1

∞∑
n=1

Amn sin(
nπx

a
) sin(

nπy

b
) = f(x, y).

Using the two dimensional sine series we have

Amn =
4

ab

∫ a

0

∫ b

0

f(x, y) sin(
mπ

a
x) sin(

nπ

b
y)dxdy.
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