Homework 10

Math 622

April 21, 2016

1. Suppose the risk-neutral model for a risky asset $S(t), t \leq 2$, and a zero-coupon bond $B(t, 2)$ maturing at $T=2$ is

$$
\begin{align*}
d S(t) & =R(t) S(t) d t+[5-t] S(t) d \widetilde{W}(t), \quad t \leq 2 \tag{1}\\
d B(t, 2) & =R(t) B(t, 2) d t+(2-t) B(t, 2) d \widetilde{W}(t), \quad t \leq 2 \tag{2}
\end{align*}
$$

Let $S^{(2)}(t)=\frac{S(t)}{B(t, 2)}$ be the price of the risky asset denominated in the zerocoupon bond price. This is the $\{T=2\}$-forward price of $S(t)$, which is denoted by For $_{S}(\mathrm{t}, 2)$ in Shreve, but the notation $S^{(2)}$ is simpler to write!

Let $\widetilde{\mathbf{P}}^{(2)}$ denote the risk-neutral measure for the numéraire $B(t, 2)$.
(a) Show how to define $\widetilde{W}^{(2)}$ so that it is a Brownian motion under $\widetilde{\mathbf{P}}^{(2)}$. Write down a stochastic differential equation for $S^{(2)}$ under the measure $\widetilde{\mathbf{P}}^{(2)}$ using $\widetilde{W}^{(2)}$.

Ans: The change of measure to the $\widetilde{\mathbf{P}}^{(2)}$ measure is defined by

$$
\frac{d \widetilde{\mathbf{P}}^{(2)}}{d \widetilde{\mathbf{P}}}=\frac{D(2) B(2,2)}{B(0,2)}=e^{\int_{0}^{2}(2-s) d \widetilde{W}(s)-(1 / 2) \int_{0}^{2}(2-s)^{2} d s} .
$$

Therefore, by Girsanov's theorem,

$$
\widetilde{W}^{(2)}(t)=\widetilde{W}(t)-\int_{0}^{t}(2-s) d s
$$

is a martingale under $\widetilde{\mathbf{P}}^{(2)}$.
By Theorem 9.2,

$$
d S^{(2)}(t)=S^{(2)}(t)[(5-t)-(2-t)] d \widetilde{W}^{(2)}(t)=3 S^{(2)}(t) d \widetilde{W}^{(2)}(t)
$$

(b) Find an explicit formula for $V(0)=\tilde{E}\left[D(2)(S(2)-K)^{+} \mid S(0)=s_{0}\right]$, in terms of s_{0} and $B(0,2)$.

Ans:
$\frac{V(0)}{B(0,2)}=V^{(2)}(0)=\tilde{E}^{(2)}\left[\left.\frac{(S(2)-K)^{+}}{B(2,2)} \right\rvert\, S(0)=s_{0}\right]=\tilde{E}^{(2)}\left[\left(S^{(2)}(2)-K\right)^{+} \mid S^{(2)}(0)=s_{0} / B(0,2)\right]$,
because $B(2,2)=1$ and hence $S(2)=S^{(2)}(2)$. But from part (a), $S^{(2)}$ follows a standard Black-Scholes model with $r=0$ and $\sigma=3$. Thus by using the BlackScholes formula,

$$
V(0)=B(0,2)\left[\frac{s_{0}}{B(0,2)} N\left(d_{+}\left(s_{0} / B(0,2), K\right)\right)-K N\left(d_{-}\left(s_{0} / B(0,2), K\right)\right)\right],
$$

where

$$
d_{ \pm}(x, K)=\frac{1}{3 \sqrt{2}}\left[\ln \frac{x}{K} \pm 9\right]
$$

2. In section 9.4.3, Shreve derives a formula for the price of a call option when the risk-free rate is random by assuming that the T-forward price of the underlying has constant volatility σ. This model is written as equation (9.4.8).

Assume that under the original risk neutral model, the zero-coupon bond price satisfies equation (9.4.4). Derive the stochastic differential equation for $S(t)$ valid under the original risk-neutral measure implied by the model (9.4.8), and determine how the volatility of $S(t)$ is related to the volatility of the zero-coupon bond price. (You might ponder whether this is a realistic scenario or not!)
(This is another exercise on Theorem 9.2.2 - you have to use it in reverse.)
Ans: Suppose $d S(t)=R(t) S(t) d t+\bar{\sigma}(t) S(t) d \widetilde{W}(t)$ under the original risk-neutral measure. According to Theorem 9.2, if the zero-coupon bond price satisfies (9.4.4), namely $d[D(t) B(t, T)]=-D(t) B(t, T) \sigma^{*}(t, T) d \widetilde{W}(t)$, then $-\sigma^{*}(t, T)$ is playing the role of ν in Theorem 9.2 and

$$
d \operatorname{For}_{S}(t, T)=\operatorname{For}_{S}(t, T)\left[\bar{\sigma}(t)+\sigma^{*}\right] d \widetilde{W}^{T}(t)
$$

Here \widetilde{W}^{T} is the Brownian motion under the T-forward measure as define in section 9.4; $\widetilde{W}^{T}(t)=\widetilde{W}(t)+\int_{0}^{t} \sigma^{*}(u, T) d u$, for $0 \leq t \leq T$. But we are requiring that

$$
d \operatorname{For}_{S}(t, T)=\sigma_{T} \operatorname{For}_{S}(t, T) d \widetilde{W}^{T}(t)
$$

for some constant σ. (We have put a subscript T on σ because the model depends on T. It follows that, $\overline{\sigma(t)}=\sigma_{T}-\sigma^{*}(t, T)$, that is

$$
d S(t)=R(t) S(t) d t+\left[\sigma_{T}-\sigma^{*}(t, T)\right] S(t) d \widetilde{W}(t)
$$

This says that the volatility of the asset price is a constant translate of the volatility of the zero-coupon bond price. This seems very unrealistic. For example, if true, it should for different T, which would then imply that the volatilities of zero-coupon bonds of different maturities are all translates of one another, which also seems unlikely.
3. Shreve, Exercise 9.3. (Yet another exercise using Theorems 9.2.1 and 9.2.2.)

Ans: (i) By Itô's rule,

$$
d \frac{1}{N(t)}=\left(\nu^{2}-r\right) \frac{1}{N(t)} d t-\nu \frac{1}{N(t)} d \widetilde{W}_{3}(t) .
$$

Thus $d S(t) d[1 / N(t)]=-\sigma \nu[S(t) / N(t)] d \widetilde{W}_{1}(t) d \widetilde{W}_{3}(t)=-\sigma \nu \rho S^{(N)}(t) d t$. Then, using Ito's rule,

$$
\begin{aligned}
d S^{(N)}(t) & =\frac{1}{N(t)} d S(t)+S(t) d \frac{1}{N(t)}+d S(t) d[1 / N(t)] \\
& =\left(\nu^{2}-\sigma \nu \rho\right) S^{(N)} d t+\sigma S^{(N)}(t) d \widetilde{W}_{1}(t)-\nu S^{(N)}(t) d \widetilde{W}_{3}(t)
\end{aligned}
$$

Define $\gamma=\sqrt{\sigma^{2}-2 \rho \sigma \nu+\nu^{2}}$ and

$$
\widetilde{W}_{4}(t)=\frac{1}{\gamma}\left[\sigma d \widetilde{W}_{1}(t)-\nu d \widetilde{W}_{3}(t)\right]
$$

Then $\left(d W_{4}(t)\right)^{2}=\frac{1}{\gamma^{2}}\left[\sigma^{2}\left(d W_{1}(t)\right)^{2}-2 \sigma \nu d \widetilde{W}_{1}(t) d \widetilde{W}_{3}(t)+\nu^{2}\left(d \widetilde{W}_{3}(t)\right)^{2}\right]=\frac{\sigma^{2}-2 \sigma \nu \rho+\nu^{2}}{\gamma^{2}} d t=$ $d t$. By Lévy's theorem \widetilde{W}_{4} is a Brownian motion. Using this in the equation given above for $S^{(N)}(t)$ leads to

$$
d S^{(N)}(t)=\left(\nu^{2}-\sigma \nu \rho\right) S^{(N)} d t+\gamma S^{(N)(t)} d \widetilde{W}_{4}(t)
$$

(ii) Define $\widetilde{W}_{2}=\frac{1}{\sqrt{1-\rho^{2}}}\left[\widetilde{W}_{3}-\rho \widetilde{W}_{1}(t)\right]$. Then one can verify easily that $\left(d \widetilde{W}_{2}(t)\right)^{2}=$ $d t$, so that $\widetilde{W}_{2}(t)$ is a Brownian motion, and $d \widetilde{W}_{1}(t) d \widetilde{W}_{2}(t)=0$, so that \widetilde{W}_{1} and \widetilde{W}_{2} are independent. Then $d \widetilde{W}_{3}(t)=\rho d \widetilde{W}_{1}(t)+\sqrt{1-\rho^{2}} d \widetilde{W}_{2}(t)$, and

$$
\begin{equation*}
d N(t)=r N(t) d t+\nu N(t)\left[\rho d \widetilde{W}_{2}(t)+\sqrt{1-\rho^{2}} d \widetilde{W}_{2}(t)\right] \tag{3}
\end{equation*}
$$

Let $\mathbf{v}=\left(\nu \rho, \nu \sqrt{1-\rho^{2}}\right)$ for all t, and let $\widetilde{W}(t)=\left(\widetilde{W}_{1}(t), \widetilde{W}_{2}(t)\right)$. Then it follows from equation (3) that

$$
d(D(t) N(t))=D(t) N(t) \mathbf{v} \cdot d \widetilde{W}(t)
$$

Similarly $d(D(t) S(t))=D(t) S(t)(\sigma, 0) \cdot d \widetilde{W}(t)$. Thus, by equation (9.2.9) in Theorem 9.2.2,

$$
\begin{aligned}
d S^{(N)}(t) & =S^{(N)}(t)\left[(\sigma, 0)-\left(\nu \rho, \nu \sqrt{1-\rho^{2}}\right)\right] \cdot d \widetilde{W}(t) \\
& =S^{(N)}(t)\left[(\sigma-\nu \rho) d \widetilde{W}_{1}(t)-\nu \sqrt{1-\rho^{2}} d \widetilde{W}_{2}(t)\right]
\end{aligned}
$$

Let $v_{1}=\sigma-\nu \rho$ and $v_{2}=-\nu \sqrt{1-\rho^{2}}$. Then

$$
v_{1}^{2}+v_{2}^{2}=\sigma^{2}-2 \nu \sigma \rho+\nu^{2} \rho^{2}+\nu^{2}\left(1-\rho^{2}\right)=\sigma^{2}-2 \rho \sigma \nu+\nu^{2} .
$$

4. Shreve, Exercise 9.5.

Ans: (i) The price S satisfies $d S(t)=r S(t) d t+\sigma_{1} S(t) d \widetilde{W}_{1}(t)$, and the solution to this is $S(t)=S(0) \exp \left\{\sigma_{1} \widetilde{W}_{1}(t)+\left(r-\frac{1}{2} \sigma_{1}^{2}\right) t\right\}$.
(ii) The equation for Q is $d Q(t)=\left(r-r^{r}\right) Q(t) d t+\sigma_{2}\left[\rho d \widetilde{W}_{1}(t)+\sqrt{1-\rho^{2}} d \widetilde{W}_{2}\right]$. We know (see equations (11), (12), and (13) in Lecture Notes 7) that this solution to this is

$$
Q(t)=Q(0) \exp \left\{\int_{0}^{t} \nu \cdot d \widetilde{W}(t)+\int_{0}^{t}\left(r-r^{f}-\frac{1}{2}\|\nu\|^{2}\right) d u\right\}
$$

where $\nu=\left(\sigma_{2} \rho, \sigma_{2} \sqrt{1-\rho^{2}}\right)$. One easily computes that $\|\nu\|^{2}=\sigma_{2}^{2}$. Because ν is constant,

$$
Q(t)=Q(0) \exp \left\{\sigma_{2} \rho \widetilde{W}_{1}(t)+\sigma_{2} \sqrt{1-\rho^{2}} \widetilde{W}_{2}(t)+\left(r-r^{f}-\frac{1}{2} \sigma_{2}^{2}\right) t\right\}
$$

(iii) Define $\widetilde{W}_{4}(t)=\frac{\sigma_{1}-\sigma_{2} \rho}{\sigma_{4}} \widetilde{W}_{1}(t)-\frac{\sigma_{2} \sqrt{1-\rho^{2}}}{\sigma_{4}} \widetilde{W}_{2}(t)$, where $\sigma_{4}^{2}=\sigma_{1}^{2}-2 \rho \sigma_{1} \sigma_{2}+\sigma_{2}^{2}$. It is easily verified that $\left[d \widetilde{W}_{4}(t)\right]^{2}=d t$ and hence that \widetilde{W}_{4} is a Brownian motion. Clearly,

$$
\sigma_{4} d \widetilde{W}_{4}(t)=\left(\sigma_{1}-\sigma_{2} \rho\right) d \widetilde{W}_{1}(t)-\sigma_{2} \sqrt{1-\rho^{2}} d \widetilde{W}_{2}(t)
$$

From parts (i) and (ii),

$$
\frac{S(t)}{Q(t)}=\frac{S(0)}{Q(0)} \exp \left\{\left(\sigma_{1}-\sigma_{2} \rho\right) d \widetilde{W}_{1}(t)-\sigma_{2} \sqrt{1-\rho^{2}} d \widetilde{W}_{2}(t)+\left(r^{f}+\frac{1}{2}\left(\sigma_{2}^{2}-\sigma_{1}^{2}\right) t\right\}\right.
$$

Define a so that

$$
r-a-\frac{1}{2} \sigma_{4}^{2}=-r^{f}+\frac{1}{2}\left(\sigma_{2}^{2}-\sigma_{1}^{2}\right)
$$

A calculation shows that $a=r-r^{f}-\sigma_{2}^{2}+\rho \sigma_{1} \sigma_{2}$. The purpose of this definition is to write

$$
\frac{S(t)}{Q(t)}=\frac{S(0)}{Q(0)} \exp \left\{\sigma_{4} \widetilde{W}_{4}(t)+\left(r-a-\frac{1}{2} \sigma_{4}^{2}\right) t\right\}
$$

This is the solution to the Black-Scholes price equation with initial price $S(0) / Q(0)$, driving Brownian motion \widetilde{W}_{4}, volatility σ_{4}, and interest rate $r-a$.
(iv) Let $C(T-t, x, K, r, \sigma)$ be the price of a call option with strike K, interest rate r, and volatility σ. The formula for C, with different notation, is given in (4.5.22). As just pointed out $S(t) / Q(t)$ has the form of a Black-Scholes price. The value of a quanto at strike K is

$$
V(t)=e^{-r(T-t)} \tilde{E}\left[\left.\left(\frac{S(T)}{Q(T)}-K\right)^{+} \right\rvert\, \mathcal{F}(t)\right]
$$

Adjust this to $V(t)=e^{-a t} e^{-(r-a) t} \tilde{E}\left[\left.\left(\frac{S(T)}{Q(T)}-K\right)^{+} \right\rvert\, \mathcal{F}(t)\right]$. Aside from the factor $e^{-a t}$ this is the price of a call with risk-free rate $r-a$ and volatitility σ_{4}. Hence,

$$
V(t)=e^{-a t} C\left(T-t, \frac{S(t)}{Q(t)}, K, r-a, \sigma_{4}\right),
$$

and substituting this into (4.5.22) gives the formula shown in the problem statement.

