Homework 8 (Due 4/06/2016)

Math 622
March 31, 2016

1. A submartingale is defined on page 74 , of the text. Jensen's inequality is stated on page 18 and the conditional Jensen inequality is stated on page 70.
a) Show: if $X(t), t \geq 0$, is a martingale, and if f is a convex function such that $E[|f(X(t))|]<\infty$ for all t, then $f(X(t))$ is a submartingale.
b) Let S denote an asset price process. If the risk-free interest rate in a riskneutral model is $r=0$, and h is a convex payoff function, show that $h(S(t))$ is a submartingale. Show that the value of an American and European option expiring at T are the same, if the payoff function is h.
2. Let r be the risk-free rate, and consider a risk-neutral model,

$$
\begin{aligned}
d S_{1}(t) & =r S_{1}(t) d t+\sigma_{1} S_{1}(t) d \widetilde{W}_{1}(t) \\
d S_{2}(t) & =r S_{2}(t) d t+\sigma_{2} S_{2}(t)\left[d \widetilde{W}_{1}(t)+2 d \widetilde{W}_{2}(t)\right]
\end{aligned}
$$

where \widetilde{W}_{1} and \widetilde{W}_{2} are independent Brownian motions. Let $g\left(x_{1}, x_{2}\right)$ be a bounded payoff function. Consider the American option with payoff function g and expiration $T<\infty$. Define,

$$
\begin{aligned}
& v\left(t, x_{1}, x_{2}\right) \\
& \quad=\sup \left\{\tilde{E}\left[e^{-r \tau} g\left(S_{1}(\tau), S_{2}(\tau)\right) \mid S_{1}(t)=x_{1}, S_{2}(t)=x_{2}\right] ; \tau \text { is a stopping time, } t \leq \tau \leq T .\right\}
\end{aligned}
$$

Thus $v\left(t, S_{1}(t), S_{2}(t)\right)$ is the price of the American option at time t, assuming it has not been exercised yet.

Find the linear complementarity equations for $v\left(t, x_{1}, x_{2}\right)$. (Note, the time parameter t is a factor, as in the American option with finite expiration.) Hint: first set up the martingale and supermartingale conditions for characterizing v, by generalizing Theorem 5.2 of the Notes to Lecture 8.
3. For background on this problem, which is a review of multidimensional market modeling as summarized in section 5.4.2 of Shreve, see section 2 of the Notes to Lectures 9. For part (b), review the multi-dimensional Girsanov theorem, section 5.4.1 of Shreve. This is also reviewed on Section 4 of the Notes to Lectures 9.
(a) Consider a market with three risky assets, whose prices in dollars are $S_{1}(t)$ and $S_{2}(t)$ and $Q(t)$.

Let $\mu_{1}, \mu_{2}, \gamma, \sigma_{1}, \sigma_{2}$, and σ_{3} be given constants. Write down a model in the form of (5.4.6) in Shreve using a 3-dimensional Brownian motion $W(d=3)$ so that the model satisfies the following informally given conditions - see Lecture Notes 7:
$E\left[\left.\frac{d S_{1}(t)}{S_{1}(t)} \right\rvert\, \mathcal{F}(t)\right]=\mu_{1} d t \quad E\left[\left.\frac{d S_{2}(t)}{S_{2}(t)} \right\rvert\, \mathcal{F}(t)\right]=\mu_{2} d t, \quad E\left[\left.\frac{d Q(t)}{Q(t)} \right\rvert\, \mathcal{F}(t)\right]=\gamma d t$ $\operatorname{Var}\left(\left.\frac{d S_{1}(t)}{S_{1}(t)} \right\rvert\, \mathcal{F}(t)\right)=\sigma_{1}^{2} d t, \quad \operatorname{Var}\left(\left.\frac{d S_{2}(t)}{S_{2}(t)} \right\rvert\, \mathcal{F}(t)\right)=\sigma_{2}^{2} d t, \quad \operatorname{Var}\left(\left.\frac{d Q(t)}{Q(t)} \right\rvert\, \mathcal{F}(t)\right)=\sigma_{3}^{2} d t$ $\operatorname{Cov}\left(\frac{d S_{1}(t)}{S_{1}(t)}, \left.\frac{d S_{2}(t)}{S_{2}(t)} \right\rvert\, \mathcal{F}(t)\right)=\frac{1}{4} \sigma_{1} \sigma_{2} d t, \quad \operatorname{Cov}\left(\frac{d S_{1}(t)}{S_{1}(t)}, \left.\frac{d Q(t)}{Q(t)} \right\rvert\, \mathcal{F}(t)\right)=\frac{1}{2} \sigma_{1} \sigma_{3} d t$, $\operatorname{Cov}\left(\frac{d S_{2}(t)}{S_{2}(t)}, \left.\frac{d Q(t)}{Q(t)} \right\rvert\, \mathcal{F}(t)\right)=\frac{1}{8} \sigma_{2} \sigma_{3} d t$,
Hint: In the notation of (5.4.6), start with $\sigma_{i j}=0$ for $j>i$.
(b) Assume that σ_{1}, σ_{2} and σ_{3} are stricly positive. Assume there is a unique riskneutral measure $\widetilde{\mathbf{P}}$ where the risk free rate is $R(t)$, an adapted process. Find $\Theta(t)=$ $\left(\theta_{1}(t), \theta_{2}(t), \theta_{3}(t)\right)$ such that $\widetilde{W}(t)=W(t)+\int_{0}^{t}\left(\theta_{1}(u), \theta_{2}(u), \theta_{3}(u)\right) d u$ is a Brownian motion under $\widetilde{\mathbf{P}}$.
4. Shreve, Exercise 5.8. This exercise should help you understand Theorem 9.2.1 on page 377 when you get to it.

