
Homework 9

Math 622

April 7, 2016

1. A submartingale is defined on page 74, of the text. Jensen’s inequality is stated

on page 18 and the conditional Jensen inequality is stated on page 70.

a) Show: if X(t), t ≥ 0, is a martingale, and if f is a convex function such that

E[|f(X(t))|] <∞ for all t, then f(X(t)) is a submartingale.

Ans: Let {X(t); t ≥ 0} be a martingale, let f be a convex function and let

Y (t) = f(X(t)). Let 0 ≤ s < t. Then, by Jensen’s inequality for conditional

expectation,

Y (s) = f(X(s)) = f
(
E[X(t)

∣∣F(s)]
)
≤ E

[
f(X(t))

∣∣F(s)
]

= E[Y (t)
∣∣F(s)].

This shows that {Y (t); t ≥ 0} is a submartingale.

b) Let S denote an asset price process. If the risk-free interest rate in a risk-

neutral model is r = 0, and h is a convex payoff function, show that h(S(t)) is a

submartingale. Show that the value of an American and European option expiring

at T are the same, if the payoff function is h.

Ans: If the risk-free rate is 0, then {S(t); t ≥ 0} is itself a submartingale, and the

value of an option with payoff h is V (t) = Ẽ[h(S(T )
∣∣F(t)]. If h is convex, it follows

from a) that h(S(t)) is a martingale. Then,

h(S(t)) ≤ Ẽ[h(S(T ))
∣∣F(t)].

This says the the value of exercising at the terminal time is always at least as great

as the value of immediate exercise. Hence, even if one has the option to exercise at

any time, one can always do just as well by exercising at T . Therefore the values of

the American and European option with payoff h are the same.
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2. Let r be the risk-free rate, and consider a risk-neutral model,

dS1(t) = rS1(t) dt+ σ1S1(t) dW̃1(t)

dS2(t) = rS2(t) dt+ σ2S2(t)
[
dW̃1(t) + 2 dW̃2(t)

]
,

where W̃1 and W̃2 are independent Brownian motions. Let g(x1, x2) be a bounded

payoff function. Consider the American option with payoff function g and expiration

T <∞. Define,

v(t, x1, x2)

= sup
{
Ẽ[e−rτg(S1(τ), S2(τ))

∣∣∣S1(t)=x1, S2(t)=x2

]
; τ is a stopping time, t ≤ τ ≤ T .

}
Thus v(t, S1(t), S2(t)) is the price of the American option at time t, assuming it has

not been exercised yet.

Find the linear complementarity equations for v(t, x1, x2). (Note, the time param-

eter t is a factor, as in the American option with finite expiration.) Hint: first set up

the martingale and supermartingale conditions for characterizing v, by generalizing

Theorem 3 of the Notes to Lecture 8.

Ans: Let r be the risk-free rate, and consider a risk-neutral model,

dS1(t) = rS1(t) dt+ σ1S1(t) dW̃1(t)

dS2(t) = rS2(t) dt+ σ2S2(t)
[
dW̃1(t) + 2 dW̃2(t)

]
,

where W̃1 and W̃2 are independent Brownian motions. Let g(x1, x2) be a bounded

payoff function. Consider the American option with payoff function g and expiration

T <∞. Define,

v(t, x1, x2)

= sup
{
Ẽ[e−rτg(S1(τ), S2(τ))

∣∣∣S1(t)=x1, S2(t)=x2

]
; τ is a stopping time, t ≤ τ ≤ T .

}
We shall derive the linear complimentarity conditions for v.

v must be a bounded function satisfying v(t, x1, x2) ≥ g(x1, x2) for all x1, x2 ≥ 0,

and 0 ≤ t ≤ T . We want v also to satisfy the properties: e−rtv(t, S1(t), S2(t)), is

a supermartingale for 0 ≤ t ≤ T ; and e−r(t∧τ
∗)v(t ∧ τ∗, S1(t ∧ τ ∗), S2(t ∧ τ ∗)), is a

martingale for 0 ≤ t ≤ T , where τ ∗ = min{t; v(t, S1(t), S2(t)) = g(t, S1(t), s2(t))}.

2



Let

Lv(t, x1, x2) = rv(t, x1, x2)− vt(t, x1, x2)− rx1vx1(t, x1, x2)− rx1vx1(t, x1, x2)

−1

2
σ2
1x

2
1vx1x1(t, x1, x2)− σ1σ2x1x2vx1x2(t, x1, x2)−

5

2
σ2
2x

2
2vx2x2(t, x1, x2)

Assume v(t, x1, s2) is sufficiently smooth so that Itô’s rule may be applied to e−rtv(t, S1(t), S2(t));

this will require at least that v, vt, vx1 , vx2 exist and are continuous and that the second

partials exists and are continuous except possibly along isolated boundaries between

regions. Then

e−rtv(t, S1(t), S2(t)) = v(0, S1(0), S2(0))−
∫ t

0

e−ru
[
Lv
]
(u, s1(u), s2(u)) du

+

∫ t

0

e−ru
[
vx1(u, S1(u), s2(u))σ1S1(u) + vx2(u, S1(u), s2(u))σ2S2(u)

]
dW̃1(t)

+

∫ t

0

e−ruvx2(u, S1(u), s2(u))2σ2S2(u) dW̃2(t) (1)

Then the linear complimentarity conditions are

v(t, x1, x2) ≥ g(t, x1, x2), if 0 ≤ t ≤ T , x1, x2 ≥ 0; (2)

Lv(t, x1, x2) ≥ 0, for 0 ≤ t < T , and x1, x2 > 0; (3)

Lv(t, x1, x2) = 0, when v(t, x1, x2) > g(x1, x2) and 0 ≤ t < T , x1, x2 > 0. (4)

This works because, by equation (1), equation (3) implies that e−rtv(t, S1(t), S2(t)),

0 ≤ t ≤ T , is a supermartingale, and equation (4) implies that e−r(t∧τ
∗)v(t∧τ∗, S1(t∧

τ ∗), S2(t ∧ τ ∗)), 0 ≤ t ≤ T , is a martingale.

3. For background on this problem, which is a review of multidimensional market

modeling as summarized in section 5.4.2 of Shreve, see section 2 of the Notes to

Lectures 9. For part (b), review the multi-dimensional Girsanov theorem, section

5.4.1 of Shreve. This is also reviewed on Section 4 of the Notes to Lectures 9.

(a) Consider a market with three risky assets, whose prices in dollars are S1(t)

and S2(t) and Q(t).

Let µ1, µ2, γ, σ1, σ2, and σ3 be given constants. Write down a model in the form

of (5.4.6) in Shreve using a 3-dimensional Brownian motion W (d = 3) so that the

model satisfies the following informally given conditions

E[
dS1(t)

S1(t)

∣∣∣ F(t)] = µ1 dt E[
dS2(t)

S2(t)

∣∣∣ F(t)] = µ2 dt, E[
dQ(t)

Q(t)

∣∣∣ F(t)] = γ dt
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Var

(
dS1(t)

S1(t)

∣∣∣ F(t)

)
= σ2

1 dt, Var

(
dS2(t)

S2(t)

∣∣∣ F(t)

)
= σ2

2 dt, Var

(
dQ(t)

Q(t)

∣∣∣ F(t)

)
= σ2

3 dt

Cov

(
dS1(t)

S1(t)
,
dS2(t)

S2(t)

∣∣∣ F(t)

)
=

1

4
σ1σ2 dt, Cov

(
dS1(t)

S1(t)
,
dQ(t)

Q(t)

∣∣∣ F(t)

)
=

1

2
σ1σ3 dt,

Cov

(
dS2(t)

S2(t)
,
dQ(t)

Q(t)

∣∣∣ F(t)

)
=

1

8
σ2σ3 dt,

Hint: In the notation of (5.4.6), start with σij = 0 for j > i.

Ans: The idea is to look for a system of the form

dS1(t) = µ1S1(t) dt+ σ1S1(t) dW1(t)

dS2(t) = µ2S2(t) dt+ σ2S2(t)
[
ρ dW1(t) +

√
1− ρ2 dW2(t)

]
dQ(t) = γQ(t) dt+ σ3Q(t)

[
η1 dW1(t) + η2 dW2(t) +

√
1− η21 − η22 dW3(t)

]
,

where |ρ| ≤ 1 and η21 + η22 + η23 = 1. In this form, all the requirements about meAns

and variances are automatically satisfied. It remains to choose the other parameters

to fit the prescribed covariances. Since [dS1(t)/S1(t)][dS2(t)/S2(t)] = ρσ1σ2, we want,

σ1σ2
4

= Cov(dS1(t)/S1(t), dS2(t)/S2(t)
∣∣∣ F(t)) = ρσ1σ2.

Thus ρ = 1/4.

Since
1

2
σ1σ3 = Cov(dS1(t)/S1(t), dQ(t)/Q(t)

∣∣∣ F(t)) = η1σ1σ3,

we find η1 = 1/2. Finally,

1

8
σ2σ3 =

dS2(t)

S2(t)

dQ(t)

Q(t)
= σ2σ3

[
ρη1 + η2

√
1− ρ2

]
dt = σ2σ3

[
1

8
+ η2

√
15

16

]

Thus, η2 = 0.

In summary,

dS1(t) = µ1S1(t) dt+ σ1S1(t) dW1(t)

dS2(t) = µ2S2(t) dt+ σ2S2(t)

[
1

4
dW1(t) +

√
15

4
dW2(t)

]

dQ(t) = γQ(t) dt+ σ3Q(t)

[
1

2
dW1(t) +

√
3

2
dW3(t)

]
,
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(b) Assume that σ1, σ2 and σ3 are stricly positive. Assume there is a unique risk-

neutral measure P̃ where the risk free rate is R(t), an adapted process. Find Θ(t) =

(θ1(t), θ2(t), θ3(t)) such that W̃ (t) = W (t) +
∫ t
0
(θ1(u), θ2(u), θ3(u)) du is a Brownian

motion under P̃.

(See page 228 for a review of the background to this problem.) Let R(t) be the

short rate. The risk-neutral measure is defined by

P̃(A) = E[1A exp{−
∫ T

0

Θ(u) dW (u)− 1

2

∫ T

0

‖Θ(u)‖2 du}]

where Θ(u) = (θ1(u), θ2(u), θ3(u)) satisfies the market price of risk equations: σ1 0 0
σ2
4

σ2
√
15
4

0
σ3
2

0 σ3
√
3
2

 ·
 θ1(u)

θ2(u)

θ3(u)

 =

 µ1 −R(t)

µ2 −R(t)

γ −R(t)

 .

Thus

θ1(u) =
µ1 −R(t)

σ1
,

θ2(u) =
4

σ2
√

15

(
µ2 −R(t)− σ2

4

µ1(t)−R(t)

σ1

)
θ3(u) =

2

σ3
√

3

(
γ −R(t)− σ3

2

µ1 −R(t)

σ1

)
Under the risk-neutral measure,

W̃1(t) = (W1(t) +

∫ t

0

θ1(u) du,W2(t) +

∫ t

0

θ2(u) du,W3(t) +

∫ t

0

θ3(u) du)

is a Brownian motion under P̃.

4. Shreve, Exercise 5.8. This exercise should help you understand Theorem 9.2.1

on page 377 when you get to it.

Ans: (i) D(t)V (t) is a martingale and so by the martingale representation theorem

there is an {F(t); t ≥ 0}-adapted process Γ̃(t) such that

D(t)V (t) = D(0)V (0) +

∫ t

0

Γ̃(u) dW̃ (u) = V (0) +

∫ t

0

Γ̃(u) dW̃ (u).

By calculating d[D(t)V (t)] using d[D(t)] = −R(t)D(t) dt,

−R(t)D(t)V (t) dt+D(t) dV (t) = d[D(t)V (t)] = Γ̃(t) dW̃ (t).
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By solving for dV (t),

dV (t) = R(t)V (t) dt+
Γ̃(t)

D(t)
dW̃ (t).

(ii) It is a general fact that if X is a random variable for which P(X > 0) = 1 and

G is a σ-algebra, E[X
∣∣∣ G] > 0 with probability one also. To see why this must be

true, first observe that if P(A) > 0 it must be true that E[X1A] > 0 if P(X > 0) = 1;

thus, if for some event A, E[X1A] = 0 it must be true that P(A) = 0. Now let A

be the set {ω;E[X
∣∣∣ G](ω) = 0}. We want to show P(A) = 0. Since A is an G-

measurable event, because it is defined as the set where the G-measurable random

variable E[X
∣∣∣ G] equals zero, E[1AX] = E[1AE[X

∣∣∣ G]]. But this expectation is zero

because E[X
∣∣∣ G] = 0 on A by definition. Thus E[1AX] = 0 and hence P(A) = 0.

Applying the principle we just proved to V (t) = Ẽ[D(t)V (T )
∣∣ F(t)], if P̃(V (T ) >

0) = 1, then P̃(V (t) > 0) = 1 also.

(iii) Because of the result of (ii), it is possible to define σ(t) = Γ̃(t)/[D(t)V (t)] for all

t ≤ T . By substituting this into the stochastic differential of dV (t) obtained in part

(i),

dV (t) = R(t)V (t) dt+ σ(t)V (t) dW̃ (t).
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