Homework 6 (Due 3/23/2016)

Math 622

March 24, 2016

1. Assume that S satisfies the risk-neutral, Black-Scholes model,

$$
d S_{t}=r S_{t} d t+\sigma S_{t} \mathrm{~d} \widetilde{W}(t)
$$

This problem is about analyzing the the average strike call with payoff

$$
V_{T}=\left(S_{T}-\frac{1}{T} \int_{0}^{T} S_{u} d u\right)^{+}
$$

Let $Y_{t}=\int_{0}^{t} S_{u} \mathrm{~d} u$.
a) Show that the price of the can be written as $V(t)=v\left(t, S_{t}, Y_{t}\right)$ and give an expression for $v(t, x, y)$ of the form $v(t, x, y)=\tilde{E}[L(t, x, y)]$ where L is a random variable, and give an explicit formula for $L(t, x, y)$ in terms of t, x, y and the process $\{W(u)-W(t) ; u \geq t\}$.

Ans: By the Markov property of $(S(t), Y(t))$

$$
V(t)=e^{-r(T-t)} \tilde{E}\left[(S(T)-(Y(T) / T))^{+} \mid \mathcal{F}(t)\right]=v(t, S(t), Y(t))
$$

where

$$
v(t, x, y)=e^{-r(T-t)} \tilde{E}\left[\left.\left(S(T)-\frac{1}{T} Y(T)\right)^{+} \right\rvert\, S(t)=x, Y(t)=y\right]
$$

Note $Y(T)=Y(t)+\int_{0}^{T} S(u) d u$, and $S(u)=S(t) e^{\sigma(\widetilde{W}(u)-\widetilde{W}(t))+\left(r-\sigma^{2} / 2\right)(u-t)}$ for $u>t$. For notational convenience, let $J(t, u)=e^{\sigma(\widetilde{W}(u)-\widetilde{W}(t))+\left(r-\sigma^{2} / 2\right)(u-t)}$, and observe it is independent of $\mathcal{F}(t)$. Thus

$$
\begin{aligned}
v(t, x, y) & =e^{-r(T-t)} \tilde{E}\left[\left.\left(S(t) J(t, T)-\frac{1}{T}\left[Y(t)+S(t) \int_{t}^{T} J(t, u) d u\right]\right)^{+} \right\rvert\, S(t)=x, Y(t)=y\right] \\
& =e^{-r(T-t)} \tilde{E}\left[\left(x J(t, T)-\frac{1}{T}\left[y+x \int_{t}^{T} J(t, u) d u\right]\right)^{+}\right]
\end{aligned}
$$

This formula makes sense for all y, positive and negative.
b) Find a p.d.e. for v. Be sure to specify the domain of (t, x, y)-space where the equation holds. Derive or write down all boundary and terminal conditions. You will have to specify a boundary condition that fixes the value of v, either as $y \rightarrow \infty$ or $y \rightarrow-\infty$.

Ans: Since $\lim _{y \rightarrow \infty}\left(x J(t, T)-\frac{1}{T}\left[y+x \int_{t}^{T} J(t, u) d u\right]\right)^{+}=0$ with probability one, it follows from the formula of the part a) that

$$
\lim _{y \rightarrow \infty} v(t, x, y)=0
$$

If $x=0$, then, from the formula of part a), $v(t, x)=e^{-r(T-t)} \tilde{E}\left[(-y / T)^{+}\right]=$ $e^{-r(T-t)}(-y / T)^{+}=T^{-1} e^{-r(T-t)}|y| \mathbf{1}_{\{y<0\}}$.

We shall consider the more general problem in which we allow $Y(t)$ to have any starting value y, not just $Y(0)=0$ as in the original formulation. Then $v(t, S(t), Y(t))$ is still the price of the option and $e^{-r(T-t)} v(t, S(t), Y(t))$ must be a martingale. We apply Itô's rule to this and set the ' $d t$ ' integrand to zero. The result is

$$
v_{t}(t, x, y)+r x v_{x}(t, x, y)+x v_{y}(t, x, y)+\frac{1}{2} \sigma^{2} x^{2} v_{x x}(t, x, y)=r v(t, x, y)
$$

on the domain $0 \leq t<T, x \geq 0,-\infty<y<\infty$. The boundary conditions we have derived already and are

$$
\begin{aligned}
\lim _{y \rightarrow \infty} v(t, x, y)=0, & \text { for } x \geq 0 \text { and } 0 \leq t<T \text { and } \\
v(t, 0, y)=T^{-1} e^{-r(T-t)}|y| \mathbf{1}_{\{y<0\}} & \text { for } 0 \leq t<T .
\end{aligned}
$$

The terminal condition is $v(T, x, y)=(x-(y / T))^{+}$.
2. Extra Credit (5 points) Let $C(t)$ be the price of a European call with strike K expiring at time T. Let $A(t)$ be the price of the corresponding American call. No particular model is put on the price process, except that we assume no dividends are paid on the asset. Use a no-arbitrage argument to show that $C(t)>\left(S_{t}-K\right)^{+}$for all $t<T$, as long as S_{T} can fall to either side of K with positive probability. Use this result to show that $A(t)=C(t)$ for all t and that early exercise is never optimal. (It is also helpful to keep this observation in mind: If $A(t)>\left(S_{t}-K\right)^{+}$then it is not optimal to exercise the American option at time t since trading the option itself gives higher pay off than exercising the option).

Ans: As long as $P(S(T)>K)>0$, the price $C(t)>0$, because the probability of a strictly positive payoff is greater than zero.

If $0<C(t) \leq(S(t)-K)^{+}$at some $t<T$, then $S(t)>K$ and $S(t) \geq C(t)+K$. This would create an arbitrage opportunity. Suppose you short one share of the underlying (that is you borrow $S(t)$ in cash from an agent and pay back one share of S at time T - Another way to think about it is you borrow 1 share of S now and pay it back at time T) and buy the European call for $C(t)$, this leaves you with at least $S(t)-C(t) \geq K$ to invest at the risk-free rate. Since you owe a share of the underlying, your return from this position at T is

$$
\begin{aligned}
(S(t)-C(t)) e^{r(T-t)}+(S(T)-K)^{+}-S(T) & =(S(t)-C(t)) e^{r(T-t)}-\min \{K, S(T)\} \\
& \geq K e^{r(T-t)}-\min \{K, S(T)\}
\end{aligned}
$$

If $r>0$, this is always positive, and so it yields an arbitrage. If $r=0$, this payoff is non-negative and strictly positive on the event $S(t)<K$, which we assume happens with positive probability, so again we have an arbitrage. It follows that $C(t)>$ $(S(t)-K)^{+}$, if $t \leq T$, in order that there is no arbitrage.

The price of the, $A(t)$ of the American call is always greater than or equal to $C(t)$. Thus $A(t) \geq C(t)>(S(t)-K)^{+}$when $t<T$. Since the value of the American call is thus always strictly greater than the value of immediate exercise if $t<T$, it is optimal to exercise the American call only at T. It follows then that the American and European call have the same value: $A(t)=C(t)$, for all $t \leq T$.

