Homework 5 (Due 3/9/16)

March 5, 2016

1. Let W be a Brownian motion and let $\{\mathcal{F}(t) ; t \geq 0\}$ be filtration for W. We claimed in the lecture note (Theorem 4.2.16) that if $Y(t)=\int_{0}^{t} \alpha(s) d W(s)$, and if τ is a stopping time with respect to $\{\mathcal{F}(t) ; t \geq 0\}$, then $Y(t \wedge \tau)=\int_{0}^{t} \mathbf{1}_{[0, \tau)}(s) \alpha(s) d W(s)$.

In this problem we want to show a special case of this. Assume that $\tau(\omega) \leq T$ for all ω where T is positive constant. We want to show

$$
\begin{equation*}
W(\tau)=\int_{0}^{T} \mathbf{1}_{[0, \tau)}(s) d W(s) \tag{1}
\end{equation*}
$$

a) Case (i): The stopping time τ takes values in a discrete set $t_{0}=0<t_{1}<t_{2}<$ $\cdots<t_{n}=T$. In this case, identify random variables $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}$ such that α_{k} is $\mathcal{F}\left(t_{k}\right)$-measurable for each k, and

$$
\mathbf{1}_{[0, \tau)}(s)=\sum_{k=0}^{n-1} \alpha_{k} \mathbf{1}_{\left[t_{k}, t_{k+1}\right)}(s) .
$$

This shows that $\mathbf{1}_{[0, \tau)}(s)$ is a simple process as defined in Shreve, section 4.2.1. (What we call α_{k} here is what is denoted by $\triangle\left(t_{k}\right)$ in $\S 4.2 .1$.) Now apply the definition of the stochastic integral for simple processes in equation (4.2.2) to prove (1).
b) Case (ii). The general case. Let τ be any stopping time with $\tau(\omega) \leq T$ for all ω. Let $\tau^{(n)}$ be the approximation to τ constructed in part (a) of exercise 3. Since $\tau^{(n)}$ takes values in a discrete set, equation (1) is true when τ is replace by $\tau^{(n)}$, for each n. Argue that $\lim _{n \rightarrow \infty} \tau_{n}(\omega)=\tau(\omega)$ for all ω, and conclude that (1) is true for τ.
2. Consider the two asset, risk-neutral model

$$
\begin{aligned}
d S_{1}(t) & =r S_{1}(t) d t+\sigma_{1}\left(S_{1}(t), S_{2}(t)\right) S_{1}(t) d \widetilde{W}_{1}(t) \\
d S_{2}(t) & =r S_{2}(t) d t+\sigma_{2}\left(S_{1}(t), S_{2}(t)\right) S_{2}(t) d \widetilde{W}_{2}(t)
\end{aligned}
$$

where \widetilde{W}_{1} and \widetilde{W}_{2} are independent Brownian motions and $\sigma_{1}\left(x_{1}, x_{2}\right)$ and $\sigma_{2}\left(x_{1}, x_{2}\right)$ are strictly positive, bounded, differentiable functions. You may take as known that, given $S_{1}(0)$ and $S_{2}(0)$, this system has a unique solution which is a Markov process. Let τ be the first time that $S_{1}(t)$ hits the level $B>0$, and let ρ be the first time $S_{2}(t)$ hits B. Consider an option which knocks out if either $S_{1}(t)$ hits B or $S_{2}(t)$ hits B, and otherwise pays $\left(S_{1}(T) S_{2}(T)-K\right)^{+}$at time T. Denote its price by $V(t)$.
a) Show that $V(t)=\mathbf{1}_{\{\tau \wedge \rho>t\}} v\left(t, S_{1}(t), S_{2}(t)\right)$, where $v\left(t, x_{1}, x_{2}\right)=0$ if $x_{1} \geq B$ or $x_{2} \geq B$, and otherwise,

$$
\begin{aligned}
v\left(t, x_{1}, x_{2}\right)=e^{-r(T-t)} \tilde{E}[\quad & \mathbf{1}_{\max _{[t, T]} S_{1}(u)<B} \mathbf{1}_{\max _{[t, T]} S_{2}(u)<B}\left(S_{1}(T) S_{2}(T)-K\right)^{+} \\
& \left.\mid S_{1}(t)=x_{1}, S_{2}(t)=x_{2}\right] .
\end{aligned}
$$

b) Show that $e^{-r(t \wedge \tau \wedge \rho)} v\left(t, S_{1}(t \wedge \tau \wedge \rho), S_{2}(t \wedge \tau \wedge \rho)\right)$ is a martingale and derive a partial differential equation for $v\left(t, x_{1}, x_{2}\right)$. Specify the domain in $\left(x_{1}, x_{2}\right)$-space on which this equation is valid and all boundary and terminal conditions.

