Homework 5 (Sol)

March 10, 2016

1. Let W be a Brownian motion and let $\{\mathcal{F}(t) ; t \geq 0\}$ be filtration for W. We claimed in class that if $Y(t)=\int_{0}^{t} \alpha(s) d W(s)$, and if τ is a stopping time with respect to $\{\mathcal{F}(t) ; t \geq 0\}$, then $Y(t \wedge \tau)=\int_{0}^{t} \mathbf{1}_{[0, \tau)}(s) \alpha(s) d W(s)$.

In this problem we want to show a special case of this. Assume that $\tau(\omega) \leq T$ for all ω where T is positive constant. We want to show

$$
\begin{equation*}
W(\tau)=\int_{0}^{T} \mathbf{1}_{[0, \tau)}(s) d W(s) \tag{1}
\end{equation*}
$$

a) Case (i): The stopping time τ takes values in a discrete set $t_{0}=0<t_{1}<t_{2}<$ $\cdots<t_{n}=T$. In this case, identify random variables $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}$ such that α_{k} is $\mathcal{F}\left(t_{k}\right)$-measurable for each k, and

$$
\mathbf{1}_{[0, \tau)}(s)=\sum_{k=0}^{n-1} \alpha_{k} \mathbf{1}_{\left[t_{k}, t_{k+1}\right)}(s) .
$$

This shows that $\mathbf{1}_{[0, \tau)}(s)$ is a simple process as defined in Shreve, section 4.2.1. (What we call α_{k} here is what is denoted by $\triangle\left(t_{k}\right)$

Ans:
Note that

$$
\begin{aligned}
\{0 \leq s<\tau\} & =\cup_{k=0}^{n-1}\left\{0 \leq s<\tau, t_{k} \leq s<t_{k+1}\right\} \\
& =\cup_{k=0}^{n-1}\left\{\tau>t_{k}, t_{k} \leq s<t_{k+1}\right\} .
\end{aligned}
$$

Indeed, if $t_{k} \leq s<t_{k+1}$ and $s<\tau$ then it must be the case that $\tau>t_{k}$. Conversely, if $t_{k} \leq s<t_{k+1}$ and $\tau>t_{k}$ then since τ takes values only in t_{k} 's, it must be that $\tau \geq t_{k+1}$ and thus $s<\tau$. So $\alpha_{k}=\mathbf{1}_{\tau>t_{k}}$. Note that $\alpha_{k} \in \mathcal{F}\left(t_{k}\right)$ as the requirement for simple function for definition of stochastic integral as well.

Thus

$$
\begin{aligned}
\int_{0}^{T} \mathbf{1}_{[0, \tau)}(s) d W(s) & =\sum_{k=0}^{n-1} \mathbf{1}_{\tau>t_{k}} \mathbf{1}_{\left[t_{k}, t_{k+1}\right)}(s) d W(s) \\
& =\sum_{k=0}^{n-1} \mathbf{1}_{\tau>t_{k}} W\left(t_{k+1}\right)-W\left(t_{k}\right) \\
& =\sum_{k=0}^{\tau-1} \mathbf{1}_{\tau>t_{k}} W\left(t_{k+1}\right)-W\left(t_{k}\right) \\
& =\sum_{k=0}^{\tau-1} W\left(t_{k+1}\right)-W\left(t_{k}\right) \\
& =W(\tau) .
\end{aligned}
$$

b) Case (ii). The general case. Let τ be any stopping time with $\tau(\omega) \leq T$ for all ω. Let $\tau^{(n)}$ be the approximation to τ constructed in part (a) of exercise 3. Since $\tau^{(n)}$ takes values in a discrete set, equation (1) is true when τ is replace by $\tau^{(n)}$, for each n. Argue that $\lim _{n \rightarrow \infty} \tau_{n}(\omega)=\tau(\omega)$ for all ω, and conclude that (1) is true for τ.

Ans:
It is clear that

$$
\left|\tau_{n}-\tau\right| \leq \frac{1}{n}
$$

Thus $\tau_{n} \rightarrow \tau$ as $n \rightarrow \infty$. Because $W(t)$ is continuous, it follows that

$$
W\left(\tau_{n}\right) \rightarrow W(\tau)
$$

Also

$$
E\left(\int_{0}^{T}\left|\mathbf{1}_{\left[0, \tau_{n}\right)}(s)-\mathbf{1}_{[0, \tau)}(s)\right|^{2} d s\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus

$$
\int_{0}^{T} \mathbf{1}_{\left[0, \tau_{n}\right)}(s) d W(s) \rightarrow \int_{0}^{T} \mathbf{1}_{[0, \tau)}(s) d W(s)
$$

By identifying the limits, it follows that

$$
W(\tau)=\int_{0}^{T} \mathbf{1}_{[0, \tau)}(s) d W(s)
$$

2. Consider the two asset, risk-neutral model

$$
\begin{aligned}
d S_{1}(t) & =r S_{1}(t) d t+\sigma_{1}\left(S_{1}(t), S_{2}(t)\right) S_{1}(t) d \widetilde{W}_{1}(t) \\
d S_{2}(t) & =r S_{2}(t) d t+\sigma_{2}\left(S_{1}(t), S_{2}(t)\right) S_{2}(t) d \widetilde{W}_{2}(t)
\end{aligned}
$$

where \widetilde{W}_{1} and \widetilde{W}_{2} are independent Brownian motions and $\sigma_{1}\left(x_{1}, x_{2}\right)$ and $\sigma_{2}\left(x_{1}, x_{2}\right)$ are strictly positive, bounded, differentiable functions. You may take as known that, given $S_{1}(0)$ and $S_{2}(0)$, this system has a unique solution which is a Markov process. Let τ be the first time that $S_{1}(t)$ hits the level $B>0$, and let ρ be the first time $S_{2}(t)$ hits B. Consider an option which knocks out if either $S_{1}(t)$ hits B or $S_{2}(t)$ hits B, and otherwise pays $\left(S_{1}(T) S_{2}(T)-K\right)^{+}$at time T. Denote its price by $V(t)$.
a) Show that $V(t)=\mathbf{1}_{\{\tau \wedge \rho>t\}} v\left(t, S_{1}(t), S_{2}(t)\right)$, where $v\left(t, x_{1}, x_{2}\right)=0$ if $x_{1} \geq B$ or $x_{2} \geq B$, and otherwise,
$v\left(t, x_{1}, x_{2}\right)=e^{-r(T-t)} \tilde{E}\left[\mathbf{1}_{\max _{[t, T]} S_{1}(u)<B} \mathbf{1}_{\max _{[t, T]} S_{2}(u)<B}\left(S_{1}(T) S_{2}(T)-K\right)^{+} \mid S_{1}(t)=x_{1}, S_{2}(t)=x_{2}\right]$.
Ans: We have

$$
V(T)=\mathbf{1}_{\max _{[0, T]} S_{1}(u)<B} \mathbf{1}_{\max _{[0, T]} S_{2}(u)<B}\left(S_{1}(T) S_{2}(T)-K\right)^{+}
$$

Thus

$$
V(t)=\mathbf{1}_{\max _{[0, t]} S_{1}(u)<B} \mathbf{1}_{\max _{[0, t]} S_{2}(u)<B} \tilde{E} \quad\left(\begin{array}{l}
\mathbf{1}_{\max _{[t, T]} S_{1}(u)<B} \mathbf{1}_{\max _{[t, T]} S_{2}(u)<B} \\
\\
\\
\left.\left(S_{1}(T) S_{2}(T)-K\right)^{+} \mid \mathcal{F}(t)\right)
\end{array}\right.
$$

or

$$
\begin{aligned}
& V(t)=\mathbf{1}_{\max _{[0, t]} S_{1}(u)<B} \mathbf{1}_{\max _{[0, t]} S_{2}(u)<B} E \quad\left(\mathbf{1}_{\max _{[t, T]} S_{1}(u)<B} \mathbf{1}_{\max _{[t, T]} S_{2}(u)<B}\right. \\
&\left.\left(S_{1}(T) S_{2}(T)-K\right)^{+} \mid S_{1}(t), S_{2}(t)\right),
\end{aligned}
$$

by Markov property of S_{1}, S_{2}. Note that

$$
\mathbf{1}_{\max _{[0, t]} S_{1}(u)<B} \mathbf{1}_{\max _{[0, t]} S_{2}(u)<B}=\mathbf{1}_{\{\tau \wedge \rho>t\}} .
$$

Indeed, if the LHS $=1$ then neither S_{1} nor S_{2} has hit B before or at time t. Thus the minimum of the hitting time to b of S_{1}, S_{2} must be $>t$ and so the RHS $=1$. On the other hand, if LHS $=0$, then either S_{1} or S_{2} has hit B before or at time t. But then either ρ or τ is $<=t$ thus the RHS is also 0 .
b) Show that $e^{-r(t \wedge \tau \wedge \rho)} v\left(t, S_{1}(t \wedge \tau \wedge \rho), S_{2}(t \wedge \tau \wedge \rho)\right)$ is a martingale and derive a partial differential equation for $v\left(t, x_{1}, x_{2}\right)$. Specify the domain in (x_{1}, x_{2})-space on which this equation is valid and all boundary and terminal conditions.

Ans: We need to show

$$
v\left(t, S_{1}(t \wedge \tau \wedge \rho), S_{2}(t \wedge \tau \wedge \rho)\right)=\mathbf{1}_{\{\tau \wedge \rho>t\}} v\left(t, S_{1}(t), S_{2}(t)\right)
$$

If $\tau \wedge \rho>t$ then RHS $=v\left(t, S_{1}(t), S_{2}(t)\right)$ and it is clear that the LHS $=v\left(t, S_{1}(t), S_{2}(t)\right)$ as well.

If $\tau \wedge \rho<t$ then RHS $=0$ and either

$$
S_{1}(t \wedge \tau \wedge \rho)=S_{1}(\tau \wedge \rho)=B
$$

or

$$
S_{2}(t \wedge \tau \wedge \rho)=S_{2}(\tau \wedge \rho)=B
$$

Suppose the first case is true. By the immediate crossing property of S_{1} we have

$$
\begin{aligned}
v\left(t, S_{1}(t \wedge \tau \wedge \rho), S_{2}(t \wedge \tau \wedge \rho)\right)= & e^{-r(T-t)} \tilde{E}\left[\mathbf{1}_{\max _{[t, T]} S_{1}(u)<B} \mathbf{1}_{\max _{[t, T]} S_{2}(u)<B}\left(S_{1}(T) S_{2}(T)-K\right)^{+}\right. \\
& \left.\mid S_{1}(t)=B, S_{2}(t)=x_{2}\right]\left.\right|_{x_{2}=S_{2}(\tau \wedge \rho)} \\
= & 0 .
\end{aligned}
$$

The other case is similar. So we also have the $\mathrm{LHS}=0$.
Now denote $\rho \wedge \tau:=\bar{\tau}$ to simplify notation and apply Itos' formula, we have

$$
\begin{aligned}
& e^{-r(t \wedge \bar{\tau})} v(t \wedge \bar{\tau}, S_{1}(t \wedge \\
& \quad+\int_{0}^{t \wedge \bar{\tau})},\left.S_{2}(t \wedge \bar{\tau})\right)=v\left(t, S_{1}(0), S_{2}(0)\right) \\
& e^{-r u} v_{x_{1}}\left(u, S_{1}(u), S_{2}(u)\right) \sigma_{1}\left(S_{1}(u), S_{2}(u)\right) S_{1}(u) d \widetilde{W}_{1}(u) \\
&+\int_{0}^{t \wedge \bar{\tau}} e^{-r u} v_{x_{1}}\left(u, S_{1}(u), S_{2}(u)\right) \sigma_{1}\left(S_{1}(u), S_{2}(u)\right) S_{1}(u) d \widetilde{W}_{2}(u) \\
&+\int_{0}^{t \wedge \bar{\tau}} e^{-r u} \mathcal{L} v\left(u, S_{1}(u), S_{2}(u)\right) d u
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{L} v\left(t, x_{1}, x_{2}\right)= & -r v\left(t, x_{1}, x_{2}\right)+v_{t}\left(t, x_{1}, x_{2}\right)+r x_{1} v_{x_{1}}\left(t, x_{1}, x_{2}\right)+r x_{2} v_{x_{2}}\left(t, x_{1}, x_{2}\right) \\
& +\left[\sigma_{1}^{2}\left(x_{1}, x_{2}\right) x_{1}^{2} / 2\right] v_{x_{1} x_{1}}\left(t, x_{1}, x_{2}\right)+\left[\sigma_{2}^{2}\left(x_{1}, x_{2}\right) x_{2}^{2} / 2\right] v_{x_{2} x_{2}}\left(t, x_{1}, x_{2}\right) .
\end{aligned}
$$

In order that the previous expression be a martingale, the ordinary integral should be identically 0 , and this can be achieved by setting

$$
\mathcal{L} v\left(t, x_{1}, x_{2}\right)=0 \quad \text { for } 0 \leq t<T, 0 \leq x_{1}<B, 0 \leq x_{2}<B .
$$

The domain is important. In the integral $\int_{0}^{t \wedge \bar{\tau}} \mathcal{L} v\left(u, S_{1}(u), S_{2}(u)\right) d u$, the process $\left(S_{1}(u), S_{2}(u)\right)$ remains in $\left\{0<x_{1}<B, 0<x_{2}<B\right\}$ until $t \wedge \bar{\tau}$, so we want and only need to assume the existence and continuity of first and second derivatives of v in this region.

The boundary and terminal conditions are $v\left(t, 0, x_{2}\right)=v\left(t, x_{1}, 0\right)=0$ for $0 \leq t<$ $T ; v\left(t, x_{1}, B\right)=v\left(t, B, x_{2}\right)=0$ for $0 \leq x_{1}, x_{2} \leq B$ and $t \leq T$, and $v\left(T, x_{1}, x_{2}\right)=$ $\left(x_{1} x_{2}-K\right)^{+}$for $0 \leq x_{1}, x_{2}<B$.

