Homework 5 (Sol)

March 10, 2016

1. Let W be a Brownian motion and let $\{\mathcal{F}(t); t \geq 0\}$ be filtration for W. We claimed in class that if $Y(t) = \int_0^t \alpha(s) \, dW(s)$, and if τ is a stopping time with respect to $\{\mathcal{F}(t); t \geq 0\}$, then $Y(t \wedge \tau) = \int_0^t \mathbf{1}_{[0,\tau)}(s)\alpha(s) \, dW(s)$.

In this problem we want to show a special case of this. Assume that $\tau(\omega) \leq T$ for all ω where T is positive constant. We want to show

$$W(\tau) = \int_0^T \mathbf{1}_{[0,\tau)}(s) \, dW(s)$$
 (1)

a) Case (i): The stopping time τ takes values in a discrete set $t_0 = 0 < t_1 < t_2 < \cdots < t_n = T$. In this case, identify random variables $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}$ such that α_k is $\mathcal{F}(t_k)$ -measurable for each k, and

$$\mathbf{1}_{[0,\tau)}(s) = \sum_{k=0}^{n-1} \alpha_k \mathbf{1}_{[t_k, t_{k+1})}(s).$$

This shows that $\mathbf{1}_{[0,\tau)}(s)$ is a simple process as defined in Shreve, section 4.2.1. (What we call α_k here is what is denoted by $\Delta(t_k)$

Ans:

Note that

$$\{0 \le s < \tau\} = \bigcup_{k=0}^{n-1} \{0 \le s < \tau, t_k \le s < t_{k+1}\} \\ = \bigcup_{k=0}^{n-1} \{\tau > t_k, t_k \le s < t_{k+1}\}.$$

Indeed, if $t_k \leq s < t_{k+1}$ and $s < \tau$ then it must be the case that $\tau > t_k$. Conversely, if $t_k \leq s < t_{k+1}$ and $\tau > t_k$ then since τ takes values only in t_k 's, it must be that $\tau \geq t_{k+1}$ and thus $s < \tau$. So $\alpha_k = \mathbf{1}_{\tau > t_k}$. Note that $\alpha_k \in \mathcal{F}(t_k)$ as the requirement for simple function for definition of stochastic integral as well. Thus

$$\int_{0}^{T} \mathbf{1}_{[0,\tau)}(s) dW(s) = \sum_{k=0}^{n-1} \mathbf{1}_{\tau > t_{k}} \mathbf{1}_{[t_{k},t_{k+1})}(s) dW(s)$$
$$= \sum_{k=0}^{n-1} \mathbf{1}_{\tau > t_{k}} W(t_{k+1}) - W(t_{k})$$
$$= \sum_{k=0}^{\tau-1} \mathbf{1}_{\tau > t_{k}} W(t_{k+1}) - W(t_{k})$$
$$= \sum_{k=0}^{\tau-1} W(t_{k+1}) - W(t_{k})$$
$$= W(\tau).$$

b) Case (ii). The general case. Let τ be any stopping time with $\tau(\omega) \leq T$ for all ω . Let $\tau^{(n)}$ be the approximation to τ constructed in part (a) of exercise 3. Since $\tau^{(n)}$ takes values in a discrete set, equation (1) is true when τ is replace by $\tau^{(n)}$, for each n. Argue that $\lim_{n\to\infty} \tau_n(\omega) = \tau(\omega)$ for all ω , and conclude that (1) is true for τ .

Ans:

It is clear that

$$|\tau_n - \tau| \le \frac{1}{n}.$$

Thus $\tau_n \to \tau$ as $n \to \infty$. Because W(t) is continuous, it follows that

$$W(\tau_n) \to W(\tau).$$

Also

$$E(\int_0^T |\mathbf{1}_{[0,\tau_n)}(s) - \mathbf{1}_{[0,\tau)}(s)|^2 ds) \to 0 \text{ as } n \to \infty.$$

Thus

$$\int_0^T \mathbf{1}_{[0,\tau_n)}(s) dW(s) \to \int_0^T \mathbf{1}_{[0,\tau)}(s) dW(s).$$

By identifying the limits, it follows that

$$W(\tau) = \int_0^T \mathbf{1}_{[0,\tau)}(s) dW(s).$$

2. Consider the two asset, risk-neutral model

$$dS_1(t) = rS_1(t) dt + \sigma_1(S_1(t), S_2(t))S_1(t) d\widetilde{W}_1(t)$$

$$dS_2(t) = rS_2(t) dt + \sigma_2(S_1(t), S_2(t))S_2(t) d\widetilde{W}_2(t)$$

where \widetilde{W}_1 and \widetilde{W}_2 are independent Brownian motions and $\sigma_1(x_1, x_2)$ and $\sigma_2(x_1, x_2)$ are strictly positive, bounded, differentiable functions. You may take as known that, given $S_1(0)$ and $S_2(0)$, this system has a unique solution which is a Markov process. Let τ be the first time that $S_1(t)$ hits the level B > 0, and let ρ be the first time $S_2(t)$ hits B. Consider an option which knocks out if either $S_1(t)$ hits B or $S_2(t)$ hits B, and otherwise pays $(S_1(T)S_2(T) - K)^+$ at time T. Denote its price by V(t).

a) Show that $V(t) = \mathbf{1}_{\{\tau \land \rho > t\}} v(t, S_1(t), S_2(t))$, where $v(t, x_1, x_2) = 0$ if $x_1 \ge B$ or $x_2 \ge B$, and otherwise,

$$v(t, x_1, x_2) = e^{-r(T-t)} \tilde{E} \Big[\mathbf{1}_{\max_{[t,T]} S_1(u) < B} \mathbf{1}_{\max_{[t,T]} S_2(u) < B} \Big(S_1(T) S_2(T) - K \Big)^+ \Big| S_1(t) = x_1, S_2(t) = x_2 \Big].$$

Ans: We have

$$V(T) = \mathbf{1}_{\max_{[0,T]} S_1(u) < B} \mathbf{1}_{\max_{[0,T]} S_2(u) < B} \left(S_1(T) S_2(T) - K \right)^+.$$

Thus

$$V(t) = \mathbf{1}_{\max_{[0,t]} S_1(u) < B} \mathbf{1}_{\max_{[0,t]} S_2(u) < B} \tilde{E} \quad \left(\begin{array}{c} \mathbf{1}_{\max_{[t,T]} S_1(u) < B} \mathbf{1}_{\max_{[t,T]} S_2(u) < B} \\ \left(S_1(T) S_2(T) - K \right)^+ |\mathcal{F}(t) \right)$$

or

$$V(t) = \mathbf{1}_{\max_{[0,t]} S_1(u) < B} \mathbf{1}_{\max_{[0,t]} S_2(u) < B} E \quad \left(\begin{array}{c} \mathbf{1}_{\max_{[t,T]} S_1(u) < B} \mathbf{1}_{\max_{[t,T]} S_2(u) < B} \\ \left(S_1(T) S_2(T) - K \right)^+ |S_1(t), S_2(t) \rangle, \end{array} \right)$$

by Markov property of S_1, S_2 . Note that

$$\mathbf{1}_{\max_{[0,t]}S_1(u) < B} \mathbf{1}_{\max_{[0,t]}S_2(u) < B} = \mathbf{1}_{\{\tau \land \rho > t\}}.$$

Indeed, if the LHS = 1 then neither S_1 nor S_2 has hit *B* before or at time *t*. Thus the minimum of the hitting time to *b* of S_1 , S_2 must be > *t* and so the RHS = 1. On the other hand, if LHS = 0, then either S_1 or S_2 has hit *B* before or at time *t*. But then either ρ or τ is $\leq t$ thus the RHS is also 0. b) Show that $e^{-r(t\wedge\tau\wedge\rho)}v(t, S_1(t\wedge\tau\wedge\rho), S_2(t\wedge\tau\wedge\rho))$ is a martingale and derive a partial differential equation for $v(t, x_1, x_2)$. Specify the domain in (x_1, x_2) -space on which this equation is valid and all boundary and terminal conditions.

Ans: We need to show

$$v(t, S_1(t \wedge \tau \wedge \rho), S_2(t \wedge \tau \wedge \rho)) = \mathbf{1}_{\{\tau \wedge \rho > t\}} v(t, S_1(t), S_2(t))$$

If $\tau \wedge \rho > t$ then RHS = $v(t, S_1(t), S_2(t))$ and it is clear that the LHS = $v(t, S_1(t), S_2(t))$ as well.

If $\tau \wedge \rho < t$ then RHS = 0 and either

$$S_1(t \wedge \tau \wedge \rho) = S_1(\tau \wedge \rho) = B$$

or

$$S_2(t \wedge \tau \wedge \rho) = S_2(\tau \wedge \rho) = B.$$

Suppose the first case is true. By the immediate crossing property of S_1 we have

$$v(t, S_{1}(t \wedge \tau \wedge \rho), S_{2}(t \wedge \tau \wedge \rho)) = e^{-r(T-t)} \tilde{E} \Big[\mathbf{1}_{\max_{[t,T]} S_{1}(u) < B} \mathbf{1}_{\max_{[t,T]} S_{2}(u) < B} \Big(S_{1}(T) S_{2}(T) - K \Big)^{+} \\ \Big| S_{1}(t) = B, S_{2}(t) = x_{2} \Big] \Big|_{x_{2} = S_{2}(\tau \wedge \rho)} \\ = 0.$$

The other case is similar. So we also have the LHS = 0.

Now denote $\rho \wedge \tau := \overline{\tau}$ to simplify notation and apply Itos' formula, we have

$$\begin{split} e^{-r(t\wedge\bar{\tau})}v(t\wedge\bar{\tau},S_{1}(t\wedge\bar{\tau}),S_{2}(t\wedge\bar{\tau})) &= v(t,S_{1}(0),S_{2}(0)) \\ &+ \int_{0}^{t\wedge\bar{\tau}} e^{-ru}v_{x_{1}}(u,S_{1}(u),S_{2}(u))\,\sigma_{1}(S_{1}(u),S_{2}(u))S_{1}(u)\,d\widetilde{W}_{1}(u) \\ &+ \int_{0}^{t\wedge\bar{\tau}} e^{-ru}v_{x_{1}}(u,S_{1}(u),S_{2}(u))\,\sigma_{1}(S_{1}(u),S_{2}(u))S_{1}(u)\,d\widetilde{W}_{2}(u) \\ &+ \int_{0}^{t\wedge\bar{\tau}} e^{-ru}\mathcal{L}v(u,S_{1}(u),S_{2}(u))\,du, \end{split}$$

where

$$\mathcal{L}v(t,x_1,x_2) = -rv(t,x_1,x_2) + v_t(t,x_1,x_2) + rx_1v_{x_1}(t,x_1,x_2) + rx_2v_{x_2}(t,x_1,x_2) + [\sigma_1^2(x_1,x_2)x_1^2/2]v_{x_1x_1}(t,x_1,x_2) + [\sigma_2^2(x_1,x_2)x_2^2/2]v_{x_2x_2}(t,x_1,x_2).$$

In order that the previous expression be a martingale, the ordinary integral should be identically 0, and this can be achieved by setting

$$\mathcal{L}v(t, x_1, x_2) = 0$$
 for $0 \le t < T, \ 0 \le x_1 < B, \ 0 \le x_2 < B$.

The domain is important. In the integral $\int_0^{t\wedge\bar{\tau}} \mathcal{L}v(u, S_1(u), S_2(u)) du$, the process $(S_1(u), S_2(u))$ remains in $\{0 < x_1 < B, 0 < x_2 < B\}$ until $t \wedge \bar{\tau}$, so we want and only need to assume the existence and continuity of first and second derivatives of v in this region.

The boundary and terminal conditions are $v(t, 0, x_2) = v(t, x_1, 0) = 0$ for $0 \le t < T$; $v(t, x_1, B) = v(t, B, x_2) = 0$ for $0 \le x_1, x_2 \le B$ and $t \le T$, and $v(T, x_1, x_2) = (x_1x_2 - K)^+$ for $0 \le x_1, x_2 < B$.