# Homework 3 (Sol) 

Math 622

February 25, 2016

1. (i) $Q$ is a Levy process so

$$
m=\mathbb{E}(Q(1))=b 1 \lambda_{1}+b_{2} \lambda_{2} .
$$

(ii) Consider the price model

$$
\begin{gathered}
d S(t)=\alpha S(t) d t+S(t-) d M(t), S(0)=1 \\
S(t)=\exp \left((\alpha-m) t+\log \left(1+b_{1}\right) N_{1}(t)+\log \left(1+b_{2}\right) N_{2}(t)\right) \\
\text { So } K=1, a_{0}=\alpha-m, a_{i}=\log \left(1+b_{i}\right), i=1,2 \text {. }
\end{gathered}
$$

(iii) We have $V(t)=c(t, S(t))$ where

$$
\begin{aligned}
c(t, x) & :=e^{-r(T-t)} \mathbb{E}\left[\left(x e^{a_{0}(T-t)+a_{1}\left[N_{1}(T)-N_{1}(t)\right]+a_{2}\left[N_{2}(T)-N_{2}(t)\right]}-K\right)^{+}\right] \\
& =e^{-r(T-t)} \sum_{i, j=0}^{\infty}\left(x e^{a_{0}(T-t)+a_{1} i+a_{2} j}-K\right)^{+} e^{-\left(\lambda_{1}+\lambda_{2}\right)(T-t)} \frac{\lambda_{1}^{i} \lambda_{2}^{j}(T-t)^{i+j}}{i!j!}
\end{aligned}
$$

where the second equality comes from the independence of $N_{1}(T)-N_{1}(t), N_{2}(T)-$ $N_{2}(t)$ so that their joint distribution is the product of their individual distributions.
(iv) We have

$$
d S(t)=r S(t) d t+S(t-) d[Q(t)-(m+r-\alpha) t]
$$

so we want $Q(t)$ to be a Levy process under $\mathbb{Q}$ and

$$
\mathbb{E}^{\mathbb{Q}}(Q(1))=m+r-\alpha .
$$

From problem 3 of homework 2, we can choose $\mathbb{Q}$ such that $N_{i}$ are Poisson processes under $\mathbb{Q}$ with rates $\tilde{\lambda}_{i}, i=1,2$. Thus the requirement about $Q(t)$ being Levy is fulfilled. Moreover we want

$$
\mathbb{E}^{\mathbb{Q}}(Q(1))=\sum_{i=1}^{2} b_{i} \mathbb{E}^{\mathbb{Q}}\left(N_{i}(1)\right)=\sum_{i=1}^{2} b_{i} \tilde{\lambda}_{i}=m+r-\alpha .
$$

This sets up an equation for $\tilde{\lambda}_{i}, i=1,2$. If we can find $\tilde{\lambda}_{i}>0$ such that the equation is satisfied, then we can define the change of measure in the manner similar to 3(ii).
(v) Recalling that $m=b_{1} \lambda_{1}+b_{2} \lambda_{2}$, we can re-write the above equation as

$$
b_{1} \tilde{\lambda}_{1}=b_{1} \lambda_{1}+r-\alpha+b_{2}\left(\lambda_{2}-\tilde{\lambda}_{2}\right) .
$$

This is to exploit the fact that $b_{1}>0>b_{2}$. The idea is to choose, if possible, $\tilde{\lambda}_{2}>0$ so that the RHS $>0$. Then since $b_{1}>0$ we can solve for $\tilde{\lambda}_{1}>0$. But this is indeed always possible since $b_{2}<0$, it is clear that $\lim _{x \rightarrow \infty} b_{2}\left(\lambda_{2}-x\right)=\infty$ so we just have to choose $\tilde{\lambda}_{2}$ positive and large enough. It follows that indeed there are infinitely many values of such pairs $\tilde{\lambda}_{1}, \tilde{\lambda}_{2}$.
(vi) From a similar reasoning to part (v), we need to choose $\mathbb{Q}$ such that $N_{i}$ are Poisson processes under $\mathbb{Q}$ with rates $\tilde{\lambda}_{i}, i=1,2$, where $\tilde{\lambda}_{i}$ satisfies

$$
\begin{aligned}
b_{1} \tilde{\lambda}_{1}+b_{2} \widetilde{\lambda}_{2} & =b_{1} \lambda_{1}+b_{2} \lambda_{2}+r-\alpha_{1} \\
\widetilde{\lambda}_{1} & =\frac{r-\alpha_{2}}{\sigma_{2}}
\end{aligned}
$$

Then it is clear that

$$
\begin{aligned}
& \tilde{\lambda}_{2}=\frac{b_{1} \lambda_{1}+b_{2} \lambda_{2}+r-\alpha_{1}-b_{1} \frac{r-\alpha_{2}}{\sigma_{2}}}{b_{2}} \\
& \tilde{\lambda}_{1}=\frac{r-\alpha_{2}}{\sigma_{2}}
\end{aligned}
$$

And we require

$$
\begin{aligned}
r-\alpha_{2} & >0 \\
b_{1} \lambda_{1}+b_{2} \lambda_{2}+r-\alpha_{1}-b_{2} \frac{r-\alpha_{2}}{\sigma_{2}} & >0
\end{aligned}
$$

If these conditions are satisfied, then the risk neutral measure $\mathbb{Q}$ is unique, since by the above solution, $\widetilde{\lambda}_{1}, \widetilde{\lambda}_{2}$ are unique.
2.
a) Explicitly identify a constant $\theta$ and a compound Poisson process $\bar{Q}$ such that

$$
S(t)=S(0) \exp \{\sigma W(t)+\theta t+\bar{Q}(t)\}
$$

At the ith jump of $Q$ :

$$
1+\Delta Q\left(t_{i}\right)=1+e^{Z_{i}}-1=e^{Z_{i}}
$$

Thus

$$
\prod_{i=1}^{N(t)}\left(1+\Delta Q\left(t_{i}\right)\right)=e^{\sum_{i=1}^{N(t)} Z_{i}}:=e^{\bar{Q}(t)}
$$

where $\bar{Q}(t)$ is compound Poisson with jump distribution $Z_{i}$ and rate $\lambda$. Thus

$$
\begin{aligned}
S(t) & =S(0) \exp \left[\left(\alpha-\frac{1}{2} \sigma^{2}\right) t+\sigma W(t)\right] \prod_{i=1}^{N(t)}\left(1+\Delta Q\left(t_{i}\right)\right) \\
& =\exp \left[\left(\alpha-\frac{1}{2} \sigma^{2}\right) t+\sigma W(t)+\bar{Q}(t)\right]
\end{aligned}
$$

and $\theta=\alpha-\frac{1}{2} \sigma^{2}, \bar{Q}(t)=\sum_{i=1}^{N(t)} Z_{i}$.
b) Since

$$
m:=E(Q(1))=\lambda E\left(e^{Z_{i}}-1\right)=\lambda\left(e^{\frac{1}{2}}-1\right),
$$

and

$$
d S(t)=r S(t) d t+\sigma S(t) d W t+S(t-)[d Q(t)-(r-\alpha) d t]
$$

it follows that we need $r-\alpha=m$ or $\alpha=r-m$ for the model to be risk neutral.
c) We have

$$
S(T)=S(t) \exp [\theta(T-t)+\sigma(W(T)-W(t))+\bar{Q}(T)-\bar{Q}(t)]
$$

Thus by the Independence lemma,

$$
\begin{aligned}
V(t) & =e^{-r(T-t)} E\left[(S(t) \exp [\theta(T-t)+\sigma(W(T)-W(t))+\bar{Q}(T)-\bar{Q}(t)]-K)^{+} \mid \mathcal{F}(t)\right] \\
& =c(t, S(t))
\end{aligned}
$$

where

$$
c(t, x)=e^{-r(T-t)} E[H(x, Y(T-t))]
$$

and

$$
\begin{aligned}
H(x, y) & =\left(x e^{y}-K\right)^{+} \\
Y(s) & =\sigma W(s)+\theta s+\bar{Q}(s) \\
\theta & =\alpha-\frac{1}{2} \sigma^{2}=r-m-\frac{1}{2} \sigma^{2}
\end{aligned}
$$

$m$ is given in part b).
Note that here we use the fact that both Brownian motion $W(t)$ and compound Poisson $\bar{Q}(t)$ has stationary distribution. So $W(T)-W(t)=W(T-t)$ and $\bar{Q}(T)-$ $\bar{Q}(t)=\bar{Q}(T-t)$ (in distribution).
d) Note that

$$
\bar{Q}(T-t)=\sum_{i=1}^{N(T-t)} Z_{i},
$$

and $N(T-t)$ has Poisson $\lambda(T-t)$ distribution. Recall from problem 2, conditioning on $N(T-t)=n, \bar{Q}(T-t)$ has Normal $(0, n)$ distribution.

Also because $\bar{Q}(t)$ and $W(t)$ are independent $\bar{Q}(T-t)+\sigma W(T-t)$ has $N(0, n+$ $\sigma^{2}(T-t)$ distribution.

Thus we see that conditioning on $N(T-t)=n$, we can write (as far as distribution is concerned)

$$
\left(x e^{Y(T-t)}-K\right)^{+}=\left(a x e^{\nu_{n} U}-K\right)^{+},
$$

where $U$ has standard normal distribution, $a=e^{\theta(T-t)}, \nu_{n}=\sqrt{n+\sigma^{2}(T-t)}$.
Thus if we let

$$
\bar{\kappa}(\tau, x, \nu):=e^{-r \tau} E\left[\left(x e^{\nu U}-K\right)^{+}\right]
$$

then by the Independence Lemma (Since $N(T-t)$ is independent of the rest of the random variables in the expression of $Y(T-t)$, also see problem 2c)

$$
c(t, x)=\sum_{n=0}^{\infty} \bar{\kappa}\left(T-t, a x, \nu_{n}\right) \frac{(\lambda(T-t))^{n}}{n!} e^{-\lambda(T-t)} .
$$

where

$$
\begin{aligned}
a & =e^{\theta(T-t)} ; \\
\nu_{n} & =\sqrt{n+\sigma^{2}(T-t)} .
\end{aligned}
$$

3. 

(a)

We have

$$
m:=E(Q(1))=\lambda E\left(Y_{1}\right)=2 \frac{3}{20}=\frac{3}{10} .
$$

thus

$$
d S(t)=S(t-) d(Q(t)-m t)
$$

so $S(t)$ is a martingale.
(b) Denote $m=\frac{3}{10}, a_{1}=\frac{3}{4}, a_{2}=\frac{-3}{4}, \lambda_{1}=\frac{6}{5}, \lambda_{2}=\frac{4}{5}$ then

$$
Q(t)=a_{1} N_{1}(t)+a_{2} N_{2}(t),
$$

where $N_{1}, N_{2}$ are indendent Poisson processes with rates $\lambda_{1}, \lambda_{2}$ and

$$
S(t)=e^{-m t+\log \left(1+a_{1}\right) N_{1}(t)+\log \left(1+a_{2}\right) N_{2}(t)} .
$$

So

$$
S(T)=S(t) e^{-m(T-t)+\log \left(1+a_{1}\right)\left[N_{1}(T)-N_{1}(t)\right]+\log \left(1+a_{2}\right)\left[N_{2}(T)-N_{2}(t)\right]} .
$$

Thus by the Independence Lemma,

$$
E\left[(K-S(T))^{+} \mid \mathcal{F}(t)\right]=c(t, S(t))
$$

where

$$
\begin{aligned}
c(t, x) & =E\left[\left(x e^{-m(T-t)+\log \left(1+a_{1}\right) N_{1}(T-t)+\log \left(1+a_{2}\right) N_{2}(T-t)}-K\right)^{+}\right] \\
& =\sum_{i, j=1}^{\infty}\left(x e^{-m(T-t)+\log \left(1+a_{1}\right) i+\log \left(1+a_{2}\right) j}-K\right)^{+} e^{-\left(\lambda_{1}+\lambda_{2}\right)(T-t)} \frac{\lambda_{1}^{i} \lambda_{2}^{j}(T-t)^{i+j}}{i!j!} .
\end{aligned}
$$

4. a) From the dynamics of $S(t)$ :

$$
\Delta S(t)=: S(t)-S(t-)=\sqrt{S(t-)} S(t-) \Delta Q(t)
$$

Thus

$$
S(t)=S(t-)[1+\sqrt{S(t-)} \Delta Q(t)]
$$

So it is clear that

$$
S(t)= \begin{cases}S(t-), & \text { if } \triangle Q(t)=0 \\ S(t-)(1+\sqrt{S(t-)}), & \text { if } \Delta N_{1}(t)=1 \\ S(t-)(1-(1 / 2) \sqrt{S(t-)}), & \text { if } \Delta N_{2}(t)=1\end{cases}
$$

Also since

$$
\begin{aligned}
\Delta c(t, S(t)) & =c(t, S(t))-c(t, S(t-)) \\
& =c(t, S(t-)[1+\sqrt{S(t-)} \Delta Q(t)])-c(t, S(t-)),
\end{aligned}
$$

coupled with the fact that $N_{1}, N_{2}$ do not jump at the same time, we have

$$
\begin{aligned}
\triangle c(t, S(t))=[ & c(t, S(t-)(1+\sqrt{S(t-)})-c(t, S(t-))] \triangle N_{1}(t) \\
& +[c(t, S(t-)(1-\sqrt{S(t-)} / 2))-c(t, S(t-))] \triangle N_{2}(t)
\end{aligned}
$$

b) Apply Ito's formula, noting the fact that we need to compensate $-1 d t$ for both processes $N_{1}, N_{2}$ to make them martingales, the equation for $c(t, x)$ is

$$
\begin{aligned}
-r c(t, x) & +\frac{\partial}{\partial t} c(t, x)+\left(r-\frac{1}{2} \sqrt{x}\right) x \frac{\partial}{\partial x} c(t, x)+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} c(t, x) x^{2} \\
& +[c(t, x(1+\sqrt{x}))-c(t, x)]+\left[c\left(t, x\left(1-\frac{\sqrt{x}}{2}\right)\right)-c(t, x)\right]=0,0 \leq t<T, x>0 \\
c(T, x) & =(x-K)^{+}, x>0 .
\end{aligned}
$$

6. Let

$$
\begin{aligned}
d S(t) & =\alpha(t) S_{t} d_{t}+\sigma S(t) d W(t)+S(t-) d Q(t) \\
S(0) & =1
\end{aligned}
$$

where $Q(t)=\sum_{i=1}^{N}(t) Y_{i}$ is a compound Poisson process,

$$
\begin{aligned}
Y_{i} & =\frac{1}{4} \text { with probability } p \\
& =-\frac{1}{3} \text { with probability } 1-p
\end{aligned}
$$

We require $p>1-p$ so that the positive jump arrives faster on average than the negative jumps. This implies $p>\frac{1}{2}$.

Let $U_{1}, U_{2}, \ldots$ be independent, identically distributed random variables satisfying $\mathbf{P}\left(U_{i}>0\right)=1$ and $E\left[U_{i}\right]=1 / 4$. These represent the random jolts causing positive price jumps. Let $N_{1}(t)$ denote the process counting the positive jumps. Assume it is a Poisson process with rate $\lambda_{1}$, independent of $U_{1}, U_{2}, \ldots$.

Let $V_{1}, V_{2}, \ldots$ be independent, identically distributed random variables with $\mathbf{P}(-1<$ $\left.V_{i}<0\right)=1$ and $E\left[V_{i}\right]=-1 / 3$. These represent the jolts causing negative price jumps. We assume they arrive as a Poisson process with rate $\lambda_{2}$, independent of all random variables and processes previously defined. By criterion (iv) of the model specification, one should assume $\lambda_{1}>\lambda_{2}$. Let

$$
Q(t)=\sum_{j=1}^{N_{1}(t)} U_{i}+\sum_{k=1}^{N_{2}(t)} V_{i}
$$

This is a compound Poisson process with mean $E[Q(t)]=\lambda_{1} / 4-\lambda_{2} / 3$.
Let $\alpha$ denote the instantaneous mean rate of return, and assume it is constant and deterministic. Criterion (i) says that between jumps $d S(t)=\alpha S(t) d t+\sigma S(t) d W(t)$ where $W$ is a Brownian motion. In keeping with the general form of a Lévy process, assume that $W$ is independent of $N_{1}, N_{2}, U_{1}, U_{2}, \ldots$ and $V_{1}, V_{2}, \ldots$.

The model we propose is

$$
d S(t)=\alpha S(t) d t+\sigma S(t) d W(t)+S(t-) d\left[Q(t)-\left(\lambda_{1} / 4-\lambda_{2} / 3\right) t\right]
$$

