
Homework 3 (Sol)

Math 622

February 25, 2016

1. (i) Q is a Levy process so

m = E(Q(1)) = b1λ1 + b2λ2.

(ii) Consider the price model

dS(t) = αS(t)dt+ S(t−)dM(t), S(0) = 1.

S(t) = exp
(

(α−m)t+ log(1 + b1)N1(t) + log(1 + b2)N2(t)
)
.

So K = 1, a0 = α−m, ai = log(1 + bi), i = 1, 2.

(iii) We have V (t) = c(t, S(t)) where

c(t, x) := e−r(T−t)E
[(
xea0(T−t)+a1[N1(T )−N1(t)]+a2[N2(T )−N2(t)] −K

)+]
= e−r(T−t)

∞∑
i,j=0

(
xea0(T−t)+a1i+a2j −K

)+

e−(λ1+λ2)(T−t)λ
i
1λ

j
2(T − t)i+j

i!j!
,

where the second equality comes from the independence of N1(T ) − N1(t), N2(T ) −
N2(t) so that their joint distribution is the product of their individual distributions.

(iv) We have

dS(t) = rS(t)dt+ S(t−)d[Q(t)− (m+ r − α)t],

so we want Q(t) to be a Levy process under Q and

EQ(Q(1)) = m+ r − α.
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From problem 3 of homework 2, we can choose Q such that Ni are Poisson pro-

cesses under Q with rates λ̃i, i = 1, 2. Thus the requirement about Q(t) being Levy

is fulfilled. Moreover we want

EQ(Q(1)) =
2∑
i=1

biEQ(Ni(1)) =
2∑
i=1

biλ̃i = m+ r − α.

This sets up an equation for λ̃i, i = 1, 2. If we can find λ̃i > 0 such that the equation

is satisfied, then we can define the change of measure in the manner similar to 3(ii).

(v) Recalling that m = b1λ1 + b2λ2, we can re-write the above equation as

b1λ̃1 = b1λ1 + r − α + b2(λ2 − λ̃2).

This is to exploit the fact that b1 > 0 > b2. The idea is to choose, if possible,

λ̃2 > 0 so that the RHS > 0. Then since b1 > 0 we can solve for λ̃1 > 0. But this

is indeed always possible since b2 < 0, it is clear that limx→∞ b2(λ2 − x) = ∞ so we

just have to choose λ̃2 positive and large enough. It follows that indeed there are

infinitely many values of such pairs λ̃1, λ̃2.

(vi) From a similar reasoning to part (v), we need to choose Q such that Ni are

Poisson processes under Q with rates λ̃i, i = 1, 2, where λ̃i satisfies

b1λ̃1 + b2λ̃2 = b1λ1 + b2λ2 + r − α1

λ̃1 =
r − α2

σ2

.

Then it is clear that

λ̃2 =
b1λ1 + b2λ2 + r − α1 − b1

r−α2

σ2

b2

λ̃1 =
r − α2

σ2

.

And we require

r − α2 > 0

b1λ1 + b2λ2 + r − α1 − b2
r − α2

σ2

> 0 .

If these conditions are satisfied, then the risk neutral measure Q is unique, since

by the above solution, λ̃1, λ̃2 are unique.

2.
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a) Explicitly identify a constant θ and a compound Poisson process Q̄ such that

S(t) = S(0) exp{σW (t) + θt+ Q̄(t)}.

At the ith jump of Q:

1 + ∆Q(ti) = 1 + eZi − 1 = eZi .

Thus

N(t)∏
i=1

(1 + ∆Q(ti)) = e
∑N(t)

i=1 Zi := eQ̄(t),

where Q̄(t) is compound Poisson with jump distribution Zi and rate λ. Thus

S(t) = S(0) exp
[
(α− 1

2
σ2)t+ σW (t)

]N(t)∏
i=1

(1 + ∆Q(ti))

= exp
[
(α− 1

2
σ2)t+ σW (t) + Q̄(t)

]
,

and θ = α− 1
2
σ2, Q̄(t) =

∑N(t)
i=1 Zi.

b) Since

m := E(Q(1)) = λE(eZi − 1) = λ(e
1
2 − 1),

and

dS(t) = rS(t)dt+ σS(t)dWt+ S(t−)[dQ(t)− (r − α)dt],

it follows that we need r − α = m or α = r −m for the model to be risk neutral.

c) We have

S(T ) = S(t) exp
[
θ(T − t) + σ(W (T )−W (t)) + Q̄(T )− Q̄(t)

]
.

Thus by the Independence lemma,

V (t) = e−r(T−t)E
[(
S(t) exp

[
θ(T − t) + σ(W (T )−W (t)) + Q̄(T )− Q̄(t)

]
−K

)+∣∣F(t)
]

= c(t, S(t)),

where
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c(t, x) = e−r(T−t)E
[
H(x, Y (T − t))

]
,

and

H(x, y) = (xey −K)+;

Y (s) = σW (s) + θs+ Q̄(s);

θ = α− 1

2
σ2 = r −m− 1

2
σ2,

m is given in part b).

Note that here we use the fact that both Brownian motion W (t) and compound

Poisson Q̄(t) has stationary distribution. So W (T )−W (t) = W (T − t) and Q̄(T )−
Q̄(t) = Q̄(T − t) (in distribution).

d) Note that

Q̄(T − t) =

N(T−t)∑
i=1

Zi,

and N(T − t) has Poisson λ(T − t) distribution. Recall from problem 2, conditioning

on N(T − t) = n, Q̄(T − t) has Normal (0, n) distribution.

Also because Q̄(t) and W (t) are independent Q̄(T − t) + σW (T − t) has N(0, n+

σ2(T − t) distribution.

Thus we see that conditioning on N(T−t) = n, we can write (as far as distribution

is concerned)

(xeY (T−t) −K)+ = (axeνnU −K)+,

where U has standard normal distribution, a = eθ(T−t), νn =
√
n+ σ2(T − t).

Thus if we let

κ̄(τ, x, ν) := e−rτE
[(
xeνU −K)+

]
,

then by the Independence Lemma (Since N(T − t) is independent of the rest of the

random variables in the expression of Y (T − t), also see problem 2c)

c(t, x) =
∞∑
n=0

κ̄(T − t, ax, νn)
(λ(T − t))n

n!
e−λ(T−t).
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where

a = eθ(T−t);

νn =
√
n+ σ2(T − t).

3.

(a)

We have

m := E(Q(1)) = λE(Y1) = 2
3

20
=

3

10
.

thus

dS(t) = S(t−)d(Q(t)−mt),

so S(t) is a martingale.

(b) Denote m = 3
10
, a1 = 3

4
, a2 = −3

4
, λ1 = 6

5
, λ2 = 4

5
then

Q(t) = a1N1(t) + a2N2(t),

where N1, N2 are indendent Poisson processes with rates λ1, λ2 and

S(t) = e−mt+log(1+a1)N1(t)+log(1+a2)N2(t).

So

S(T ) = S(t)e−m(T−t)+log(1+a1)[N1(T )−N1(t)]+log(1+a2)[N2(T )−N2(t)].

Thus by the Independence Lemma,

E
[
(K − S(T ))+

∣∣F(t)
]

= c(t, S(t)),

where

c(t, x) = E
[
(xe−m(T−t)+log(1+a1)N1(T−t)+log(1+a2)N2(T−t) −K)+

]
=

∞∑
i,j=1

(xe−m(T−t)+log(1+a1)i+log(1+a2)j −K)+e−(λ1+λ2)(T−t)λ
i
1λ

j
2(T − t)i+j

i!j!
.

4. a) From the dynamics of S(t):

∆S(t) =: S(t)− S(t−) =
√
S(t−)S(t−)∆Q(t).
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Thus

S(t) = S(t−)[1 +
√
S(t−)∆Q(t)].

So it is clear that

S(t) =


S(t−), if 4Q(t) = 0;

S(t−)
(

1 +
√
S(t−)

)
, if 4N1(t) = 1;

S(t−)
(

1− (1/2)
√
S(t−)

)
, if 4N2(t) = 1.

Also since

∆c(t, S(t)) = c(t, S(t))− c(t, S(t−))

= c(t, S(t−)[1 +
√
S(t−)∆Q(t)])− c(t, S(t−)),

coupled with the fact that N1, N2 do not jump at the same time, we have

4c(t, S(t)) =
[
c
(
t, S(t−)(1 +

√
S(t−)

)
− c(t, S(t−))

]
4N1(t)

+
[
c
(
t, S(t−)(1−

√
S(t−)/2)

)
− c(t, S(t−))

]
4N2(t)

b) Apply Ito’s formula, noting the fact that we need to compensate −1dt for both

processes N1, N2 to make them martingales, the equation for c(t, x) is

−rc(t, x) +
∂

∂t
c(t, x) + (r − 1

2

√
x)x

∂

∂x
c(t, x) +

1

2

∂2

∂x2
c(t, x)x2

+ [c(t, x(1 +
√
x))− c(t, x)] + [c(t, x(1−

√
x

2
))− c(t, x)] = 0, 0 ≤ t < T, x > 0;

c(T, x) = (x−K)+, x > 0.

6. Let

dS(t) = α(t)Stdt + σS(t)dW (t) + S(t−)dQ(t),

S(0) = 1.

where Q(t) =
∑N

i=1(t)Yi is a compound Poisson process,

Yi =
1

4
with probability p

= −1

3
with probability 1− p.
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We require p > 1− p so that the positive jump arrives faster on average than the

negative jumps. This implies p > 1
2
.

Let U1, U2, . . . be independent, identically distributed random variables satisfying

P(Ui > 0) = 1 and E[Ui] = 1/4. These represent the random jolts causing positive

price jumps. Let N1(t) denote the process counting the positive jumps. Assume it is

a Poisson process with rate λ1, independent of U1, U2, . . . .

Let V1, V2, . . . be independent, identically distributed random variables with P(−1 <

Vi < 0) = 1 and E[Vi] = −1/3. These represent the jolts causing negative price

jumps. We assume they arrive as a Poisson process with rate λ2, independent of all

random variables and processes previously defined. By criterion (iv) of the model

specification, one should assume λ1 > λ2. Let

Q(t) =

N1(t)∑
j=1

Ui +

N2(t)∑
k=1

Vi.

This is a compound Poisson process with mean E[Q(t)] = λ1/4− λ2/3.

Let α denote the instantaneous mean rate of return, and assume it is constant and

deterministic. Criterion (i) says that between jumps dS(t) = αS(t) dt+ σS(t) dW (t)

where W is a Brownian motion. In keeping with the general form of a Lévy process,

assume that W is independent of N1, N2, U1, U2, . . . and V1, V2, . . . .

The model we propose is

dS(t) = αS(t) dt+ σS(t) dW (t) + S(t−) d[Q(t)− (λ1/4− λ2/3)t].
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