
Homework 2 (Due 02/17/2016)

Math 622

February 11, 2016

1. Let N be a Poisson process with rate λ and filtration F(t). Define

Y (t) := exp
(
uN(t)− λt(eu − 1)

)
,

that is Y is the exponential martingale associated with N . Use stochastic calculus

(Ito’s formula) for jump processes to show that

Y (t) = 1 +

∫ t

0

(eu − 1)Y (s−)dM(s),

where M(t) = N(t)− λt and conclude that Y (t) is a martingale w.r.t F(t).

2. Let N1(t), N2(t) be independent Poisson processes with rate λ1, λ2 and F(t) a

filtration for both N1, N2. Also define Mi(t) = Ni(t)− λit, i = 1, 2.

(i) Show that the probability that N1 and N2 have the same jump time is 0 (Hint:

Apply two dimensional Ito’s formula for processes with jumps to M1(t)M2(t) and take

expectations on both sides).

(ii) Let

Y (t) = exp
(
u1N1(t) + u2N2(t)− λ1t(eu1 − 1)− λ2t(eu2 − 1)

)
.

Use a similar technique like problem 1 (i.e do not use direct computation) to show

that Y (t) is a martingale with respect to F(t). (Part (i) may also be helpful here).

4. Let N(t) be a Poisson(λ) process and Wt a Brownian motion. Show that Nt,Wt

are independent.

5. Some probability theory and an application to compound Poisson processes. Let

Z be a random variable. Then by the averaging property of conditional expectation,
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E[U ] = E
[
E[U

∣∣Z]
]
. (For example, see equation (2.3.17) in Shreve with A = Ω and

G = σ(Z).)

Let Q(t) =
∑N(t)

j=1 Yi be a compound Poisson process, so that N is a Poisson process

with rate λ and Y1, Y2, . . . is a sequence of independent, identically distributed random

variables that are independent of N .

a) Consider evaluating E[G(Q(t))] for some function G. For every integer n ≥ 0, let

`(n) := E
[
G
(∑n

j=1 Yi
)]

(when n = 0, interpret this as `(0) = G(0)). By conditioning

on N(t)—that is, let N(t) play the role of Z above—show that

E[G(Q(t))] =
∞∑
n=0

`(n)
(λt)n

n!
e−λt

b) Assume that Y1, Y2 . . . are independent, normal random variables with mean µ

and variance σ2. Explain why the condition distribution of Q(t) given N(t) = n is

normal with mean nµ and variance nσ2. Using the technique of part a), show that,

E[Q2(t)] = (σ2 + µ2)λt+ (µλt)2,

and that,

E[euQ(t)] = eλt(e
uµ+σ2u2/2−1).

c) Prove as a general principle. Assume that Y is independent of X1, . . . , XM . Show

that E
[
H(Y,X1, . . . , XM)

]
= E

[
h(X1, . . . , XM)

]
, where h(x1, . . . , xM) = E

[
H(Y, x1, . . . , xM)

]
.

6. Let Ti, i = 1, ..., k be independent exponentially distributed random variables

with rate λi, i = 1, ..., k.

(i) Let U = mini=1,...,k Ti and V = maxi=1,...,k Ti . Find the density functions of U

and V .

(ii) Show that P (T1 < T2) = λ1
λ1+λ2

.

7.

(i) Suppose St satisfies

S(t) = 1 +

∫ t

0

αS(u)du+
∑

0<u≤t

∆J(u),

where J(u) is a pure jump function. Solve for an explicit formula for S(t).
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Explanation: So far we’ve studied the model of

S(t) = 1 +

∫ t

0

αS(u)du+

∫ t

0

S(u−)dJ(u)

= 1 +

∫ t

0

αS(u)du+
∑

0<u≤t

S(u−)∆J(u).

It is natural to ask how the solution changes if the term S(u−) disappears in the

equation. There are 2 ways to solve this question: a) let 0 < t1 < t2 < ... be the jump

times of J . Solve for S(t) on each interval ti < t < ti+1 (note the strict inequality)

and consider what happens at each ti. b) Note that we have a simpler way to write∑
0<u≤t ∆J(u). Apply Ito’s formula to e−αtSt and see what happens.

(ii) Now suppose St satisfies

S(t) = 1 +

∫ t

0

α(u)S(u)du+
∑

0<u≤t

σ∆J(u).

Solve for an explicit formula for S(t).
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