
Homework 11 (Sol)
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May 4, 2016

1.
The solution follows the method in class for deriving the Black-Scholes-Merton

formula with random interest rate (see Theorem 9.4.2 in Shreve).
According to Theorem 9.2 (here the role of ν(t) is played by 3−t),

W̃ T3(t) = W̃ (t)−
∫ t

0
(3− s) ds = W̃ (t) + (1/2)[(3− t)2 − 9]

is a Brownian motion under P̃
(3)

, for t ≤ 3, and

dtForS(t) = ForS(t)[σ − (3− t)] dW̃ T3(t) = ForS(t)[t+σ−3] dW̃ T3(t).

Then ForS(3) =
s0

B(0, 3)
eX−ν2/2, where

X =
∫ 3

0
[s+σ−3] dW̃ T3(s),

is, under the measure P̃(3), a Gaussian random variable with mean 0 and variance

ν2 =
∫ 3

0
[s+σ−3]2 ds = (1/3)[σ3 − (σ+3)3]. Therefore, using Theorem 2 in Lecture

Notes 12, the forward price of the call at t = 0 is

V (0)

B(0, 3)
= ẼT3

[
(S(3)−K)+

]
=

s0
B(0, 3)

N

(
ln(s0/B(0, 3)K) + ν2/2

ν

)
−KN

(
ln(s0/B(0, 3)K)− ν2/2

ν

)

As a result,

V (0) = s0N

(
ln(s0/B(0, 3)K) + ν2/2

ν

)
−KB(0, 3)N

(
ln(s0/B(0, 3)K)− ν2/2

ν

)
.
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2. (Shreve, 10.9). By equation (5) in Lecture Notes 12,

f(t, T ) = f(0, T ) +
∫ t

0
α(u, T ) du+

∫ t

0

d∑
j=1

σj(u, T ) dWj(u). (1)

Following the derivation of section 10.3.2, show that

dt

(
−
∫ T

t
f(t, v) dv

)
= R(t) dt− α∗(t, T ) dt−

d∑
j=1

σ∗
j (t, T ) dWj(t)

By applying Itô’s rule to B(t, T ) = e−
∫ T

t
f(t,v) dv, it follows that

dB(t, T ) = B(t, T )
[
R(t)− α∗(t, T ) +

1

2

d∑
j=1

(σ∗
j (t, T ))2

]
dt

−B(t, T )
d∑
j=1

σ∗
j (t, T ) dWj(t)

Write

dB(t, T ) = B(t, T )
[
R(t)− α∗(t, T ) +

1

2

d∑
j=1

(σ∗
j (t, T ))2 +

∑
j=1

σ∗
j (t, T )Θj(t)

]
dt

−B(t, T )
d∑
j=1

σ∗
j (t, T ) dW̃j(t)

where W̃j(t) = Wj(t) +
∫ t
0 Θj(s) ds. When we change measure to make W̃ (t) =

(W̃1(t), . . . , W̃d(t)) a Brownian motion, the model will be risk-neutral if

α∗(t, T ) =
1

2

d∑
j=1

(σ∗
j (t, T ))2 +

d∑
j=1

σ∗
j (t, T )Θj(t).

Take derivatives on both sides with respect to T to obtain,

α(t, T ) =
d∑
j=1

σ∗
j (t, T )σj(t, T ) +

d∑
j=1

σj(t, T )Θj(t).

(ii) Suppose there is a solution Θ(t) = (Θ1(t), . . . ,Θd(t)). If T1, . . . , Td is a set of
distinct times then

α(t, Ti) =
d∑
j=1

σ∗
j (t, Ti)σj(t, Ti) +

d∑
j=1

σj(t, Ti)Θj(t)
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for 1 ≤ i ≤ d. If the matrix [σj(t, Ti)]1≤i,j≤d is invertible, this system has a unique
solution Θ(t) for all t ≤ mink Tk.

3. a) In this case σ∗(t, T ) =
∫ T
t tv dv = (1/2)t(T 2 − t2). In order that the model be

arbitrage-free, there must exist a solution θ(t) to α(t, T ) = σ(t, T )[σ∗(t, T ) + θ(t)], or

T 3t2

2
+ 5Tt− Tt4

2
= tT [(1/2)t(T 2 − t2) + θ(t)].

Subtracting
T 3t2

2
− Tt4

2
from both sides leaves 5Tt = tTθ(t). Therefore there is a

solution with θ(t) ≡ 5, and so the model is arbitrage-free.
b) Let σ1(t, T ) = 1 and σ2(t, T ) = 2T . Then σ∗

1(t, T ) = T − t and σ∗
2(t, T ) =∫ T

t 2udu = T 2 − t2.
From Exercise 10.9, for the model to be arbitrage-free there must be a solution

θ1(t), θ2(t), independent of T , to

α(t, T ) = T − t− 2Tt2 = [T − t+ θ1(t)] + 2T [T 2 − t2 + θ2(t)].

By cancellation of terms common to both sides, (θ1(t), θ2(t)) must solve

0 = θ1(t) + 2Tθ2(t) + 2T 3

for all 0 ≤ t ≤ T ≤ T̄ . If this were true, then taking partial derivatives with respect
to T on both sides implies 2θ2(t) + 6T 2 = 0. But this contradicts the condition that
θ2(t) is independent of T , and hence there can be no solution of the required form.
Therefore, we conclude that the given model is not arbitrage-free.

4. (Shreve, Exercise 10.11) The value at t = 0 of a payment of δK at T is δKB(0, T ).
The value at t = 0 of a series of payments of δK at time T1, . . . , Tn+1 is thus

δK
n+1∑
j=1

B(0, Tj). By Theorem 10.4.1, the value at t = 0 of a payment of amount

δL(Tj−1, Tj−1) at Tj is δB(0, Tj)L(0, Tj−1)—see equation (10.4.5). The value of a
contract at t = 0 promising fixed legs in return for paying floating legs is therefore

δK
n+1∑
j=1

B(0, Tj)− δ
n+1∑
j=1

B(0, Tj)L(0, Tj−1) (2)

5. For the one-factor Vasicek model, dR(t) = (a−bR(t)) dt+σR(t) dW̃ (t), the results
of section 10.3.5 show that

d[D(t)B(t, T )] = −σ∗(t, T )[D(t)B(t, T )] dW̃ (t),
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where σ∗(t, T ) =
σ

b

(
1− e−b(T−t)

)
. By (10.4.9) and (10.4.15),

dL(t, T ) =
1 + δL(t, T )

δL(t, T )

[
σ∗(t, T + δ)− σ∗(t, T )

]
L(t, T ) dW̃ T+δ(t)

= [1 + δL(t, T )]
σe−b(T−t)(1− e−bδ)

δb
dW̃ T+δ(t).

Let Y (t) = 1 + δL(t, T ). Then it follows that

dY (t) = δdL(t, T ) = Y (t)β(t, T ) dW̃ T+δ(t),

where β(t, T ) =
σe−b(T−t)(1− e−bδ)

b
. This has the solution

Y (t) = [1 + δL(0, T )] exp{
∫ t

0
β(u, T ) dW̃ T+δ(u)− 1

2

∫ t

0
β2(u, T ) du}.

Let B =
∫ T
0 β(u, T ) dW̃ T+δ(u). This is a normal random variable with mean 0 and

variance
∫ T
0 β2(u, T ) du. Then

L(T, T ) = δ−1[Y (T )− 1] = δ−1
[
(1 + δL(0, T ))eB−(1/2)

∫ T

0
β2(u,T ) du − 1

]
.

Let V (0) denote the price of a caplet at strike K for [T, T + δ]. The T + δ-forward
price is thus

V (0)

B(0, T + δ)
= ẼT+δ

[
(L(t, T )−K)+

]
= ẼT+δ

[(
δ−1(1 + δL(0, T ))eB−(1/2)

∫ T

0
β2(u,T ) du − δ−1 −K

)+]

The Black-Scholes formula tells us how to price this. It is the same as the price of
a call at strike δ−1 + K, when σ2T =

∫ T
0 β2(u, T ) du, r = 0 and the initial price is

δ−1 + L(0, T ). This is

(δ−1 + L(0, T ))N(d̄+)− (δ−1 +K)N(d̄−),

where

d± =
1√∫ T

0 β2(u, T ) du

[
log

1 + δL(0, T )

1 + δK
± 1

2

∫ T

0
β2(u, T ) du

]
.

We could compute
∫ T
0 β2(u, T ) du explicitly, but have not done so here. Finally,

V (0) = B(0, T + δ)

[
(δ−1 + L(0, T ))N(d̄+)− (δ−1 +K)N(d̄−)

]
.
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