Homework 11 (Sol)

Math 622
May 4, 2016

1.

The solution follows the method in class for deriving the Black-Scholes-Merton formula with random interest rate (see Theorem 9.4.2 in Shreve).

According to Theorem 9.2 (here the role of $\nu(t)$ is played by $3-t$),

$$
\widetilde{W}^{T_{3}}(t)=\widetilde{W}(t)-\int_{0}^{t}(3-s) d s=\widetilde{W}(t)+(1 / 2)\left[(3-t)^{2}-9\right]
$$

is a Brownian motion under $\widetilde{\mathbf{P}}^{(3)}$, for $t \leq 3$, and

$$
d_{t} \operatorname{For}_{S}(t)=\operatorname{For}_{S}(t)[\sigma-(3-t)] d \widetilde{W}^{T_{3}}(t)=\operatorname{For}_{S}(t)[t+\sigma-3] d \widetilde{W}^{T_{3}}(t)
$$

Then $\operatorname{For}_{S}(3)=\frac{s_{0}}{B(0,3)} e^{X-\nu^{2} / 2}$, where

$$
X=\int_{0}^{3}[s+\sigma-3] d \widetilde{W}^{T_{3}}(s),
$$

is, under the measure $\widetilde{\mathbf{P}}^{(3)}$, a Gaussian random variable with mean 0 and variance $\nu^{2}=\int_{0}^{3}[s+\sigma-3]^{2} d s=(1 / 3)\left[\sigma^{3}-(\sigma+3)^{3}\right]$. Therefore, using Theorem 2 in Lecture Notes 12, the forward price of the call at $t=0$ is

$$
\begin{aligned}
\frac{V(0)}{B(0,3)} & =\tilde{E}^{T_{3}}\left[(S(3)-K)^{+}\right] \\
& =\frac{s_{0}}{B(0,3)} N\left(\frac{\ln \left(s_{0} / B(0,3) K\right)+\nu^{2} / 2}{\nu}\right)-K N\left(\frac{\ln \left(s_{0} / B(0,3) K\right)-\nu^{2} / 2}{\nu}\right)
\end{aligned}
$$

As a result,

$$
V(0)=s_{0} N\left(\frac{\ln \left(s_{0} / B(0,3) K\right)+\nu^{2} / 2}{\nu}\right)-K B(0,3) N\left(\frac{\ln \left(s_{0} / B(0,3) K\right)-\nu^{2} / 2}{\nu}\right) .
$$

2. (Shreve, 10.9). By equation (5) in Lecture Notes 12,

$$
\begin{equation*}
f(t, T)=f(0, T)+\int_{0}^{t} \alpha(u, T) d u+\int_{0}^{t} \sum_{j=1}^{d} \sigma_{j}(u, T) d W_{j}(u) . \tag{1}
\end{equation*}
$$

Following the derivation of section 10.3 .2 , show that

$$
d_{t}\left(-\int_{t}^{T} f(t, v) d v\right)=R(t) d t-\alpha^{*}(t, T) d t-\sum_{j=1}^{d} \sigma_{j}^{*}(t, T) d W_{j}(t)
$$

By applying Itô's rule to $B(t, T)=e^{-\int_{t}^{T} f(t, v) d v}$, it follows that

$$
\begin{gathered}
d B(t, T)=B(t, T)\left[R(t)-\alpha^{*}(t, T)+\frac{1}{2} \sum_{j=1}^{d}\left(\sigma_{j}^{*}(t, T)\right)^{2}\right] d t \\
-B(t, T) \sum_{j=1}^{d} \sigma_{j}^{*}(t, T) d W_{j}(t)
\end{gathered}
$$

Write

$$
\begin{gathered}
d B(t, T)=B(t, T)\left[R(t)-\alpha^{*}(t, T)+\frac{1}{2} \sum_{j=1}^{d}\left(\sigma_{j}^{*}(t, T)\right)^{2}+\sum_{j=1} \sigma_{j}^{*}(t, T) \Theta_{j}(t)\right] d t \\
-B(t, T) \sum_{j=1}^{d} \sigma_{j}^{*}(t, T) d \widetilde{W}_{j}(t)
\end{gathered}
$$

where $\widetilde{W}_{j}(t)=W_{j}(t)+\int_{0}^{t} \Theta_{j}(s) d s$. When we change measure to make $\widetilde{W}(t)=$ $\left(\widetilde{W}_{1}(t), \ldots, \widetilde{W}_{d}(t)\right)$ a Brownian motion, the model will be risk-neutral if

$$
\alpha^{*}(t, T)=\frac{1}{2} \sum_{j=1}^{d}\left(\sigma_{j}^{*}(t, T)\right)^{2}+\sum_{j=1}^{d} \sigma_{j}^{*}(t, T) \Theta_{j}(t) .
$$

Take derivatives on both sides with respect to T to obtain,

$$
\alpha(t, T)=\sum_{j=1}^{d} \sigma_{j}^{*}(t, T) \sigma_{j}(t, T)+\sum_{j=1}^{d} \sigma_{j}(t, T) \Theta_{j}(t)
$$

(ii) Suppose there is a solution $\Theta(t)=\left(\Theta_{1}(t), \ldots, \Theta_{d}(t)\right)$. If T_{1}, \ldots, T_{d} is a set of distinct times then

$$
\alpha\left(t, T_{i}\right)=\sum_{j=1}^{d} \sigma_{j}^{*}\left(t, T_{i}\right) \sigma_{j}\left(t, T_{i}\right)+\sum_{j=1}^{d} \sigma_{j}\left(t, T_{i}\right) \Theta_{j}(t)
$$

for $1 \leq i \leq d$. If the matrix $\left[\sigma_{j}\left(t, T_{i}\right)\right]_{1 \leq i, j \leq d}$ is invertible, this system has a unique solution $\Theta(t)$ for all $t \leq \min _{k} T_{k}$.
3. a) In this case $\sigma^{*}(t, T)=\int_{t}^{T} t v d v=(1 / 2) t\left(T^{2}-t^{2}\right)$. In order that the model be arbitrage-free, there must exist a solution $\theta(t)$ to $\alpha(t, T)=\sigma(t, T)\left[\sigma^{*}(t, T)+\theta(t)\right]$, or

$$
\frac{T^{3} t^{2}}{2}+5 T t-\frac{T t^{4}}{2}=t T\left[(1 / 2) t\left(T^{2}-t^{2}\right)+\theta(t)\right]
$$

Subtracting $\frac{T^{3} t^{2}}{2}-\frac{T t^{4}}{2}$ from both sides leaves $5 T t=t T \theta(t)$. Therefore there is a solution with $\theta(t) \equiv 5$, and so the model is arbitrage-free.
b) Let $\sigma_{1}(t, T)=1$ and $\sigma_{2}(t, T)=2 T$. Then $\sigma_{1}^{*}(t, T)=T-t$ and $\sigma_{2}^{*}(t, T)=$ $\int_{t}^{T} 2 u d u=T^{2}-t^{2}$.

From Exercise 10.9, for the model to be arbitrage-free there must be a solution $\theta_{1}(t), \theta_{2}(t)$, independent of T, to

$$
\alpha(t, T)=T-t-2 T t^{2}=\left[T-t+\theta_{1}(t)\right]+2 T\left[T^{2}-t^{2}+\theta_{2}(t)\right] .
$$

By cancellation of terms common to both sides, $\left(\theta_{1}(t), \theta_{2}(t)\right)$ must solve

$$
0=\theta_{1}(t)+2 T \theta_{2}(t)+2 T^{3}
$$

for all $0 \leq t \leq T \leq \bar{T}$. If this were true, then taking partial derivatives with respect to T on both sides implies $2 \theta_{2}(t)+6 T^{2}=0$. But this contradicts the condition that $\theta_{2}(t)$ is independent of T, and hence there can be no solution of the required form. Therefore, we conclude that the given model is not arbitrage-free.
4. (Shreve, Exercise 10.11) The value at $t=0$ of a payment of δK at T is $\delta K B(0, T)$. The value at $t=0$ of a series of payments of δK at time T_{1}, \ldots, T_{n+1} is thus $\delta K \sum_{j=1}^{n+1} B\left(0, T_{j}\right)$. By Theorem 10.4.1, the value at $t=0$ of a payment of amount $\delta L\left(T_{j-1}, T_{j-1}\right)$ at T_{j} is $\delta B\left(0, T_{j}\right) L\left(0, T_{j-1}\right)$-see equation (10.4.5). The value of a contract at $t=0$ promising fixed legs in return for paying floating legs is therefore

$$
\begin{equation*}
\delta K \sum_{j=1}^{n+1} B\left(0, T_{j}\right)-\delta \sum_{j=1}^{n+1} B\left(0, T_{j}\right) L\left(0, T_{j-1}\right) \tag{2}
\end{equation*}
$$

5. For the one-factor Vasicek model, $d R(t)=(a-b R(t)) d t+\sigma R(t) d \widetilde{W}(t)$, the results of section 10.3.5 show that

$$
d[D(t) B(t, T)]=-\sigma^{*}(t, T)[D(t) B(t, T)] d \widetilde{W}(t)
$$

where $\sigma^{*}(t, T)=\frac{\sigma}{b}\left(1-e^{-b(T-t)}\right)$. By (10.4.9) and (10.4.15),

$$
\begin{aligned}
d L(t, T) & =\frac{1+\delta L(t, T)}{\delta L(t, T)}\left[\sigma^{*}(t, T+\delta)-\sigma^{*}(t, T)\right] L(t, T) d \widetilde{W}^{T+\delta}(t) \\
& =[1+\delta L(t, T)] \frac{\sigma e^{-b(T-t)}\left(1-e^{-b \delta}\right)}{\delta b} d \widetilde{W}^{T+\delta}(t)
\end{aligned}
$$

Let $Y(t)=1+\delta L(t, T)$. Then it follows that

$$
d Y(t)=\delta d L(t, T)=Y(t) \beta(t, T) d \widetilde{W}^{T+\delta}(t)
$$

where $\beta(t, T)=\frac{\sigma e^{-b(T-t)}\left(1-e^{-b \delta}\right)}{b}$. This has the solution

$$
Y(t)=[1+\delta L(0, T)] \exp \left\{\int_{0}^{t} \beta(u, T) d \widetilde{W}^{T+\delta}(u)-\frac{1}{2} \int_{0}^{t} \beta^{2}(u, T) d u\right\}
$$

Let $B=\int_{0}^{T} \beta(u, T) d \widetilde{W}^{T+\delta}(u)$. This is a normal random variable with mean 0 and variance $\int_{0}^{T} \beta^{2}(u, T) d u$. Then

$$
L(T, T)=\delta^{-1}[Y(T)-1]=\delta^{-1}\left[(1+\delta L(0, T)) e^{B-(1 / 2) \int_{0}^{T} \beta^{2}(u, T) d u}-1\right]
$$

Let $V(0)$ denote the price of a caplet at strike K for $[T, T+\delta]$. The $T+\delta$-forward price is thus

$$
\begin{aligned}
\frac{V(0)}{B(0, T+\delta)} & =\tilde{E}^{T+\delta}\left[(L(t, T)-K)^{+}\right] \\
& =\tilde{E}^{T+\delta}\left[\left(\delta^{-1}(1+\delta L(0, T)) e^{B-(1 / 2) \int_{0}^{T} \beta^{2}(u, T) d u}-\delta^{-1}-K\right)^{+}\right]
\end{aligned}
$$

The Black-Scholes formula tells us how to price this. It is the same as the price of a call at strike $\delta^{-1}+K$, when $\sigma^{2} T=\int_{0}^{T} \beta^{2}(u, T) d u, r=0$ and the initial price is $\delta^{-1}+L(0, T)$. This is

$$
\left(\delta^{-1}+L(0, T)\right) N\left(\bar{d}_{+}\right)-\left(\delta^{-1}+K\right) N\left(\bar{d}_{-}\right)
$$

where

$$
d_{ \pm}=\frac{1}{\sqrt{\int_{0}^{T} \beta^{2}(u, T) d u}}\left[\log \frac{1+\delta L(0, T)}{1+\delta K} \pm \frac{1}{2} \int_{0}^{T} \beta^{2}(u, T) d u\right]
$$

We could compute $\int_{0}^{T} \beta^{2}(u, T) d u$ explicitly, but have not done so here. Finally,

$$
V(0)=B(0, T+\delta)\left[\left(\delta^{-1}+L(0, T)\right) N\left(\bar{d}_{+}\right)-\left(\delta^{-1}+K\right) N\left(\bar{d}_{-}\right)\right]
$$

