Homework 11 (Sol)

Math 622
May 4, 2016

1.

The solution follows the method in class for deriving the Black-Scholes-Merton
formula with random interest rate (see Theorem 9.4.2 in Shreve).

According to Theorem 9.2 (here the role of v(t) is played by 3—t),
. . t .
Wh(t) = W(t) —/ (3—s)ds=W(t)+ (1/2)[(3 —t)* = 9]
0
is a Brownian motion under f’(S), for t < 3, and
diForg(t) = Forg(t)[o — (3 — )] dW™(t) = Forg(t)[t+0—3] dW(t).

Then Forg(3) = B(f)o 3)€X7V2/2, where

X = /03[8+J—3] AW (s),

is, under the measure P®, a Gaussian random variable with mean 0 and variance
3
2

v = | [s+0—3%ds = (1/3)[0® — (¢+3)*]. Therefore, using Theorem 2 in Lecture
0
Notes 12, the forward price of the call at ¢t = 0 is
V(o) ST
= EB|(SB3)-K)"
50.3) (53) - K]

_ S )N <1n(30/B(0,3)K) + 1/2/2> . <ln(30/B(0,3)K) — 1/2/2>

B(0,3 v

As a result,
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V(0) = 5o (ln(so/B(O, 3)K) + 1/2/2> _ KB(0.3)N (ln(so/B(O, 3)K) — V2/2> '



2. (Shreve, 10.9). By equation (5) in Lecture Notes 12,
t t d
£(6,T) = £(0,T) +/0 o(u, T) du +/O S o (u, T) AW (w). (1)
=1

Following the derivation of section 10.3.2, show that

T d

dt( — / f(t,v) dv) = R(t)dt —o*(t,T)dt =Y o;(t,T) dW;(t)
t st
g d
By applying It6’s rule to B(t,T) = e~ Ji F0) Y. it follows that
dB(t,T) = B(t, T)[R(t) — o*(t,T) + PG T))?| dt
j=1

— B(t,T) zd: oi(t,T) dW;(t)

Jj=1

Write

dB(t,T) = B(t,T)|R(t)—a*(t,T) + zd}a;(t,T))?+Za;(t,T)@j(t)] dt

j=1 j=1

N | —

d
— B(t,T)Y o (t,T) dW;(t)
j=1
where W;(t) = W;(t) + [1©;(s)ds. When we change measure to make W (t) =
(Wi(t),...,Wy(t)) a Brownian motion, the model will be risk-neutral if

d

o*(t,T) = ; > 036 T + 3 030, )6 ).

j=1
Take derivatives on both sides with respect to 1" to obtain,

d

at,T) =Y 0;(t, T)o;(t,T)+ > 0;(t, T)6;(t).

J=1 Jj=1

(ii) Suppose there is a solution O(t) = (O4(t),...,04(t)). If T1,..., Ty is a set of
distinct times then

a(t7 ,I'Z) - Z O';f(t, E)O-j(ta T’l) + Z 0j (tv 1—;)@](15)

=1 =1



for 1 < i < d. If the matrix [0;(t,T;)]1<i j<a is invertible, this system has a unique
solution O(t) for all ¢ < miny 7.

3. a) In this case o*(t,T) = [/ tvdv = (1/2)t(T? — ?). In order that the model be
arbitrage-free, there must exist a solution 6(¢t) to a(t,T) = o (¢, T)[c*(t,T) + 6(t)], or

T;tz + 5Tt — Tf = (T((1/2H(T* — %) + 6(t)).

3¢ Tt : i
—5 from both sides leaves 57t = tT0(t). Therefore there is a
solution with 6(t) = 5, and so the model is arbitrage-free.

b) Let o1(t,T) = 1 and o09(t,T) = 2T. Then of(¢t,T) = T —t and o5(t,T) =
[ 2udu = T? — 2.

From Exercise 10.9, for the model to be arbitrage-free there must be a solution
01(t),02(t), independent of T, to

Subtracting

at,T)=T —t—2Tt* = [T —t + 0,(t)] + 2T[T? — t* + 65(2)].
By cancellation of terms common to both sides, (6;(t), 02(t)) must solve

for all 0 <t < T < T. If this were true, then taking partial derivatives with respect
to T on both sides implies 205(t) + 67° = 0. But this contradicts the condition that
05(t) is independent of T', and hence there can be no solution of the required form.
Therefore, we conclude that the given model is not arbitrage-free.

4. (Shreve, Exercise 10.11) The value at t = 0 of a payment of 0K at T is K B(0,T).

The value at t = 0 of a series of payments of 0K at time Ti,...,T,.1 is thus
n+1
5KZB(O,Tj). By Theorem 10.4.1, the value at ¢ = 0 of a payment of amount

j=1
OL(Tj_1,T;—1) at T; is 6B(0,T;)L(0,T;_1)—see equation (10.4.5). The value of a
contract at ¢ = 0 promising fixed legs in return for paying floating legs is therefore

n+1 n+1
0K Y B(0,T;) =46 B(0,T;)L(0,T; 1) (2)
j=1 =1

5. For the one-factor Vasicek model, dR(t) = (a—bR(t)) dt+oR(t) dW (t), the results
of section 10.3.5 show that

d[D(t)B(t,T)] = —o* (t, T)[D(t) B(t.T)| dW (1),

3



where o*(t,T) = %(1 — 770, By (10.4.9) and (10.4.15),

dL(t,T) = W 0" (t, T +6) — o™ (t, )| L(t, T) dW" (t)
oe T — ey
= [1+4+0L(t,T)] AW T+ (t).

8b
Let Y(t) =1+ 6L(t,T). Then it follows that
dY (t) = 6dL(t,T) = Y (t)B(t, T) dW T (¢),

) (1— %)

) . This has the solution

where B(t,T) =

Y (t) = [+ 6L(0, )] exp ' Blu, T) AT () — ; J ' 82w, T) du).

Let B = [ B(u, T)dW"*%(x). This is a normal random variable with mean 0 and
variance [} 5%(u,T)du. Then
L(T,T) = 67 Y (T) = 1] = 67 [(1 + L0, T))eP~0/2 i Dt _q],

Let V(0) denote the price of a caplet at strike K for [T, T + 0]. The T + d-forward
price is thus

V(0)

BOT+5 - ET(L(t,T) - K)*]

— ET [(5—1(1 +OL(0,T))eB~ W2 Jy PuT)du _ -1 K)*]

The Black-Scholes formula tells us how to price this. It is the same as the price of
a call at strike 6! + K, when 0°T = [ 8%(u,T)du, r = 0 and the initial price is
61+ L(0,T). This is

(67" 4+ L(0,T))N(dy) — (67" + K)N(d_),

where

- 1 [ oe 14+ 6L(0,T
VIS 32, T) du LHoR

We could compute [ 5%(u,T) du explicitly, but have not done so here. Finally,

dy

)i;/oTBQ(u,T)du].

V(0) = B(0,T + ) l(él + L(0,T))N(d.) — (67" + K)N(J)] .



