Homework 10 (Sol)

Math 622
April 28, 2016

2. Shreve, 10.2.

Let Y7 and Y5 solve (10.2.59)-(10.2.60). By the Markov property of (Y1,Y3), we
know that there is a function f(¢, y;,y2) such that B(¢,T) = f(¢,Y1(t), Y2(t)). It must
satsify f(t,y1,y2) = 1. If it is twice continuously differentiable, 1t6’s rule implies
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We know D(t)B(t,T) = D(t)f(t,Y1(t),y2(t)) must be a martingale; by assumption
R(t) = 6o + 01Y1(t) + 02Y>(t). Assuming the stochastic integral terms in the above
formula are martingales, D(t) f(¢,Y1(t), Y2(t)) will be a martingale if
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The boundary condition is f(T,y1,y2) = 1 for all y;, ys.

The idea is to look for a solution of the form f(t, yy,y,) = e 1T —y2C(T—H)=A(T—1)
where C1(0) = C5(0) = A(0) = 0. Let 7 = T —t. Calculation yields f, =
W Ci(7) + 9205(7) + AN, S = =CT) Sy = CET)g, fie = —CaT),

)



foa, = C3(7)f, and f,,,, = C1(7)C2(7)f. By substituting these into the previous
equation and collecting terms,
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We can satisfy this equation by setting the coefficients of y; and ¥y, equal to zero, as
well as the final term:
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3. Exercise 10.3 The derivation of a p.d.e. for f(¢,7,Y1(t),Ya(t)) = B(t,T) follows
the derivation of (10.2.18) exactly, and leads again to this equation for f, except that
now Jy(t) is a function of t.

(i) Assume f(t,T,y1,y2) = exp{—11C1(t,T)—y.Co(t, T) - A(t, T)} with C(T,T) =
Co(T,T) = A(T,T) =0, in order that f(¢,T,-,-) = 1. Then,
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fyl(tJylayQ) = _Cl(t7T)f(tvylay2>a fy2<t7y17y2) - _02(t7T)f(t7y17y2>
fy1y1 (taylayQ) = 012<t7T)f(t7y17y2)7 nyyz(taylayQ) = Cg(taT)f(taybyQ)
fy1y2 (ta Y1, y2) = Cl(? T)CQ(tv T)f(ta Y1, y2)

By plugging this into equation (10.2.18) (similar to the derivation of (10.2.22))
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The coefficients of vy, y» must be zero for this to be true for all y; and 5, and hence
the last term must be zero also. Thus
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(ii) If we look for solutions to the first two equations above in the form Ci(¢,T) =
Cy(T —t) and Cy(t,T) = Co(T —t), then C; and C satisfy (10.2.23) and (10.2.24)
with the same initial condition, and hence their solutions are given as in (10.2.26)
and (10.2.7). For example, Cy(t, T') = (d/Xa)(1 — e~ 2(T=0).

(iii) By integrating the equation in part (i) for A in the variable ¢ and noting
A(T,T) =0,

Tl 1
CA(,T) = / [5O3, T) + 5C3(s,T) = b)) ds.
¢
(iv) Since C(t,T) = Ci(T —t), 0rC1(t,T) = —0,C,(t, T), and similarly for Cs.
Using this and the result of (iii),
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(CHT.T) + C3(8,T) = C}(0,T) = C5(0,T)] + 6o(T)

0
ds
= 50(T) ~ 3[C30.T) + C3(0.T)]

On the other hand, if Y;(0) and Y3(0) are the initial values of the factors in the
Vasicek model,

S B(0.T) = ~Yi(0) S Ci(0.T) = ¥3(0) - Co(t.T) — S -AD.T).
Since (;;Cl(o T) = gtCl(O’T> = —MC1(0,T) — X1 C5(0,T) + 91 (see (ii)), and
88T02(0’ T)= —;CQ(O, T) = —XC5(0,T) + 07 (see (ii)), we find by rearranging terms
that
0

S A0, T) = Y1(0) [\ Cy(0, T)+A21C5 (0, T) =51 +Y>(0) [A2Co(0, T) — 51}—;;1113(0 T).

3



By comparing the two expressions for %A(O, T), it follows
0
0o(T) = Yi(0)[MCi(0,T) + Xa1Ca(0, T) = 61] + Ya(0) [\aCa(0,T) — 61| — 5 mB(0.T)
1
+5 C3(0,7) + C3(0,T))]
Since there are explicit formulae for C7(0,7) and Cy(0,T) , this last equation yields

an explicit formula for 6y(7") in terms of the model parameters and 8%1n B(0,7),
which can be estimated from bond prices.

4. (Shreve, Exercise 10.7) (a) We have B(t,T) = ¢ 11T -Ya()Co(T=)—AT—1)
where C1, Cy, A solve (10.2.23)—(10.2.25). Recall that, then,
ft,yr,ys) = eI =0=0202(T=0=AT-1) g4lyeg (10.2.18). Thus, by the discussion in
Shreve leading up to (10.2.18),
d[D(t)B(tv T)] = D(t)fyl (t’ K(t)v }/Q(t)) dWl (t) + D<t)fy2 (ta Yi(t)’ YQ(t)) dWQ(t)
= D(0)| = Cu(T = )70, Ya(0), Ya(0)) dITs (1) — CalT = )72, Ya(0), Ya(0) dT (0]
= —D()B(t,T)(C1(T — 1), Co(T — 1)) - (dWi (1), dWs(t))

We deduce from (9.2.5) in Chapter 9—see also page 393—that
. N N ¢ . ¢
(W0, 75 ®) = (Wi + [ CuT—w) du, Wa(t) + [ CoT — w) )

(ii) The T-forward price of the call option is

(B(T,T)—K)W

V) = BO.TVOWO.T) = BODE [ g

= B(0,T)E"[(B(T,T) - K)*]|
— B(0,T)ET ( o~ Vi(D)CL(T=T)=Y(T)Co (T—T)— A(T-T) _ K)+

(iii) Let X = Y, (T)O(T —T) — Yo(T)Co(T — T) — A(T — T). We know that
i\ _[ M 0 Ya(t) AW, (t)
(o)=L (o (i)
We can rewrite this in terms of W and W/ using the result of part (i):
i)y [ -x 0 Y3 (t) Cy(T —t) AW (t)
d(n@)‘[—m —AJ(w)dt‘<02<T—t>>d”<dv”v5<t>>
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This is a linear system of stochastic differential equations for Y;(¢) and Y5(¢). Under

P’ (WT(t), W] (t)) is a Brownian motion for ¢t < T. We know that the solution to
this equation is a Gaussian process if the initial conditions are deterministic, and so
(Y1(t), Ya(t)) is jointly normal under P7. Since linear combinations of jointly normal
random variables is normal, X is a normal random variable under PZ.

(iv) The random variable X of part (iii) can be written X = —0Z + (u— (1/2)0?),
where Z is standard normal and p is chosen so that p —0?/2 is the means of X. The
general formula behind the Black-Scholes formula is given in Theorem 2 of the class
Notes to Lecture 12. Because

V(0) = BO,T)E"| (¢ — k)|,

where, as we have shown, X is normal under P, we are precisely in the context of
this Theorem. By applying it

V() = BO.T) [euN <1n(e“/K) +a2/2> _ KN (hl(e“/K . JQ/QN

— B(0,T) {e“N <“ - ln(i) +02/2> ~ KN <"“ - ln([? - ”2/2> }



