Homework 10 (Sol)

Math 622
April 28, 2016
2. Shreve, 10.2.

Let Y_{1} and Y_{2} solve (10.2.59)-(10.2.60). By the Markov property of $\left(Y_{1}, Y_{2}\right)$, we know that there is a function $f\left(t, y_{1}, y_{2}\right)$ such that $B(t, T)=f\left(t, Y_{1}(t), Y_{2}(t)\right)$. It must satsify $f\left(t, y_{1}, y_{2}\right) \equiv 1$. If it is twice continuously differentiable, Itô's rule implies

$$
\begin{aligned}
& d\left[D(t) f\left(t, Y_{1}(t), Y_{2}(t)\right)\right] \\
& \begin{aligned}
&=D(t)\left\{\begin{array}{l}
-R(t) f\left(t, Y_{1}(t), Y_{2}(t)\right)+f_{t}\left(t, Y_{1}(t), Y_{2}(t)\right)
\end{array}\right. \\
& \quad+\left(\mu-\lambda_{1} Y_{1}(t)\right) f_{y_{1}}\left(t, Y_{1}(t), Y_{2}(t)\right)-\lambda_{2} Y_{2}(t) f_{y_{2}}\left(t, Y_{1}(t), Y_{2}(t)\right) \\
& \quad+\frac{1}{2} Y_{1}(t) f_{y_{1} y_{1}}\left(t, Y_{1}(t), Y_{2}(t)\right)+\sigma_{21} Y_{1}(t) f_{y_{1} y_{2}}\left(t, Y_{1}(t), Y_{2}(t)\right) \\
&\left.+\frac{1}{2}\left(\alpha+\beta Y_{1}(t)+\sigma_{21}^{2} Y_{1}(t)\right) f_{y_{2} y_{2}}\left(t, Y_{1}(t), Y_{2}(t)\right)\right\} d t \\
&+D(t) f_{y_{1}}\left(t, Y_{1}(t), Y_{2}(t)\right) \sqrt{Y_{1}(t)} d \widetilde{W}_{1}(t)
\end{aligned} \\
& \quad+D(t) f_{y_{2}}\left(t, Y_{1}(t), Y_{2}(t)\right)\left[\sigma_{21} \sqrt{Y_{1}(t)} d \widetilde{W}_{1}(t)+\sqrt{\alpha+\left(\beta+\sigma_{21}^{2}\right) Y_{1}(t)} d \widetilde{W}_{2}(t)\right]
\end{aligned}
$$

We know $D(t) B(t, T)=D(t) f\left(t, Y_{1}(t), y_{2}(t)\right)$ must be a martingale; by assumption $R(t)=\delta_{0}+\delta_{1} Y_{1}(t)+\delta_{2} Y_{2}(t)$. Assuming the stochastic integral terms in the above formula are martingales, $D(t) f\left(t, Y_{1}(t), Y_{2}(t)\right)$ will be a martingale if

$$
\begin{aligned}
& -\left(\delta_{0}+\delta_{1} y_{1}+\delta_{2} y_{2}\right) f+f_{t}+\left(\mu-\lambda_{1} y_{1}\right) f_{y_{1}}-\lambda_{2} y_{2} f_{y_{2}} \\
& \quad+\frac{1}{2} y_{1} f_{y_{1} y_{1}}+\sigma_{21} y_{1} f_{y_{1} y_{2}}+\frac{1}{2}\left(\alpha+\left(\beta+\sigma_{21}^{2}\right) y_{1}\right) f_{y_{2} y_{2}}=0
\end{aligned}
$$

The boundary condition is $f\left(T, y_{1}, y_{2}\right)=1$ for all y_{1}, y_{2}.
The idea is to look for a solution of the form $f\left(t, y_{1}, y_{2}\right)=e^{-y_{1} C_{1}(T-t)-y_{2} C_{2}(T-t)-A(T-t)}$, where $C_{1}(0)=C_{2}(0)=A(0)=0$. Let $\tau=T-t$. Calculation yields $f_{\tau}=$ $\left(y_{1} C_{1}^{\prime}(\tau)+y_{2} C_{2}^{\prime}(\tau)+A^{\prime}(\tau)\right) f, f_{y_{1}}=-C_{1}(\tau), f_{y_{1} y_{1}}=C_{1}^{2}(\tau) g, f_{y_{2}}=-C_{2}(\tau) f$,
$f_{y_{2} y_{2}}=C_{2}^{2}(\tau) f$, and $f_{y_{1} y_{2}}=C_{1}(\tau) C_{2}(\tau) f$. By substituting these into the previous equation and collecting terms,

$$
\begin{aligned}
0=f & \left\{y_{1}\left[C_{1}^{\prime}+\lambda_{1} C_{1}+\frac{1}{2} C_{1}^{2}+\sigma_{21} C_{1} C_{2}+\frac{1}{2}\left(\sigma_{21}^{2}+\beta\right) C_{2}^{2}-\delta_{1}\right]\right. \\
& +y_{2}\left[C_{2}^{\prime}+\lambda_{2} C_{2}-\delta_{2}\right] \\
& \left.+\left[-\delta_{0}+A^{\prime}-\mu C_{1}+\frac{1}{2} \alpha C_{2}^{2}\right]\right\}
\end{aligned}
$$

We can satisfy this equation by setting the coefficients of y_{1} and y_{2} equal to zero, as well as the final term:

$$
\begin{aligned}
C_{1}^{\prime} & =-\lambda_{1} C_{1}-\frac{1}{2} C_{1}^{2}-\sigma_{21} C_{1} C_{2}-\frac{1}{2}\left(\sigma_{21}^{2}+\beta\right) C_{2}^{2}+\delta_{1} \\
C_{2}^{\prime} & =-\lambda_{2} C_{2}+\delta_{2} \\
A^{\prime} & =\mu C_{1}-\frac{1}{2} \alpha C_{2}^{2}+\delta=0
\end{aligned}
$$

3. Exercise 10.3 The derivation of a p.d.e. for $f\left(t, T, Y_{1}(t), Y_{2}(t)\right)=B(t, T)$ follows the derivation of (10.2.18) exactly, and leads again to this equation for f, except that now $\delta_{0}(t)$ is a function of t.
(i) Assume $f\left(t, T, y_{1}, y_{2}\right)=\exp \left\{-y_{1} C_{1}(t, T)-y_{2} C_{2}(t, T)-A(t, T)\right\}$ with $C(T, T)=$ $C_{2}(T, T)=A(T, T)=0$, in order that $f(t, T, \cdot, \cdot) \equiv 1$. Then,

$$
\begin{aligned}
f_{t}\left(t, y_{1}, y_{2}\right)= & {\left[-y_{1} \frac{\partial C_{1}(t, T)}{\partial t}-y_{2} \frac{\partial C_{2}(t, T)}{\partial t}-\frac{\partial A(t, T)}{\partial t}\right] f\left(t, y_{1}, y_{2}\right) } \\
f_{y_{1}}\left(t, y_{1}, y_{2}\right)= & -C_{1}(t, T) f\left(t, y_{1}, y_{2}\right), \quad f_{y_{2}}\left(t, y_{1}, y_{2}\right)=-C_{2}(t, T) f\left(t, y_{1}, y_{2}\right) \\
f_{y_{1} y_{1}}\left(t, y_{1}, y_{2}\right)= & C_{1}^{2}(t, T) f\left(t, y_{1}, y_{2}\right), \quad f_{y_{2} y_{2}}\left(t, y_{1}, y_{2}\right)=C_{2}^{2}(t, T) f\left(t, y_{1}, y_{2}\right) \\
& f_{y_{1} y_{2}}\left(t, y_{1}, y_{2}\right)=C_{1}(, T) C_{2}(t, T) f\left(t, y_{1}, y_{2}\right)
\end{aligned}
$$

By plugging this into equation (10.2.18) (similar to the derivation of (10.2.22))

$$
\begin{aligned}
& {\left[\left(-\frac{\partial C_{1}}{\partial t}+\right.\right.} \\
& \left.\quad+\lambda_{1} C_{1}+\lambda_{21} C_{2}-\delta_{1}\right) y_{1} \\
& \quad+\left(-\frac{\partial C_{2}}{\partial t}+\lambda_{2} C_{2}-\delta_{2}\right) y_{2} \\
& \left.\quad+\left(-\frac{\partial A}{\partial t}+\frac{1}{2} C_{1}^{2}+\frac{1}{2} C_{2}^{2}-\delta_{0}(t)\right)\right] f=0
\end{aligned}
$$

The coefficients of y_{1}, y_{2} must be zero for this to be true for all y_{1} and y_{2}, and hence the last term must be zero also. Thus

$$
\frac{\partial C_{1}}{\partial t}(t, T)=\lambda_{1} C_{1}(t, T)+\lambda_{21} C_{2}(t, T)-\delta_{1}
$$

$$
\begin{aligned}
\frac{\partial C_{2}}{\partial t}(t, T) & =\lambda_{2} C_{2}(t, T)-\delta_{2} \\
\frac{\partial A}{\partial t}(t, T) & =\frac{1}{2} C_{1}^{2}(t, T)+\frac{1}{2} C_{2}^{2}(t, T)-\delta_{0}(t)
\end{aligned}
$$

(ii) If we look for solutions to the first two equations above in the form $C_{1}(t, T)=$ $\bar{C}_{1}(T-t)$ and $C_{2}(t, T)=\bar{C}_{2}(T-t)$, then \bar{C}_{1} and \bar{C}_{2} satisfy (10.2.23) and (10.2.24) with the same initial condition, and hence their solutions are given as in (10.2.26) and (10.2.7). For example, $C_{2}(t, T)=\left(\delta_{2} / \lambda_{2}\right)\left(1-e^{-\lambda_{2}(T-t)}\right)$.
(iii) By integrating the equation in part (i) for A in the variable t and noting $A(T, T)=0$,

$$
-A(t, T)=\int_{t}^{T}\left[\frac{1}{2} C_{1}^{2}(s, T)+\frac{1}{2} C_{2}^{2}(s, T)-\delta_{0}(s)\right] d s
$$

(iv) Since $C_{1}(t, T)=\bar{C}_{1}(T-t), \partial_{T} C_{1}(t, T)=-\partial_{t} C_{1}(t, T)$, and similarly for C_{2}. Using this and the result of (iii),

$$
\begin{aligned}
\frac{\partial A}{\partial T}(0, T)= & \int_{0}^{T}\left[C_{1}(s, T) \frac{\partial C_{1}}{\partial T}(s, T)+C_{2}(s, T) \frac{\partial C_{2}}{\partial T}(s, T)\right] d s \\
& \quad-(1 / 2) C^{1}(T, T)-(1 / 2) C_{2}(T, T)+\delta_{0}(T) \\
= & \int_{0}^{T}\left[-C_{1}(s, T) \frac{\partial C_{1}}{\partial s}(s, T)-C_{2}(s, T) \frac{\partial C_{2}}{\partial s}(s, T)\right] d s+\delta_{0}(T) \\
= & -\frac{1}{2} \int_{0}^{T} \frac{\partial}{\partial s}\left[C_{1}^{2}(s, T)+C_{2}^{2}(s, T)\right] d s+\delta(T) \\
= & \frac{1}{2}\left[C_{1}^{2}(T, T)+C_{2}^{2}(t, T)-C_{1}^{2}(0, T)-C_{2}^{2}(0, T)\right]+\delta_{0}(T) \\
= & \delta_{0}(T)-\frac{1}{2}\left[C_{1}^{2}(0, T)+C_{2}^{2}(0, T)\right]
\end{aligned}
$$

On the other hand, if $Y_{1}(0)$ and $Y_{2}(0)$ are the initial values of the factors in the Vasicek model,

$$
\frac{\partial}{\partial T} \ln B(0, T)=-Y_{1}(0) \frac{\partial}{\partial T} C_{1}(0, T)-Y_{2}(0) \frac{\partial}{\partial T} C_{2}(t, T)-\frac{\partial}{\partial T} A(0, T)
$$

Since $\frac{\partial}{\partial T} C_{1}(0, T)=-\frac{\partial}{\partial t} C_{1}(0, T)=-\lambda_{1} C_{1}(0, T)-\lambda_{21} C_{2}(0, T)+\delta_{1}$ (see (ii)), and $\frac{\partial}{\partial T} C_{2}(0, T)=-\frac{\partial}{\partial t} C_{2}(0, T)=-\lambda_{2} C_{2}(0, T)+\delta_{1}$ (see (ii)), we find by rearranging terms that

$$
\frac{\partial}{\partial T} A(0, T)=Y_{1}(0)\left[\lambda_{1} C_{1}(0, T)+\lambda_{21} C_{2}(0, T)-\delta_{1}\right]+Y_{2}(0)\left[\lambda_{2} C_{2}(0, T)-\delta_{1}\right]-\frac{\partial}{\partial T} \ln B(0, T) .
$$

By comparing the two expressions for $\frac{\partial}{\partial T} A(0, T)$, it follows

$$
\begin{aligned}
& \delta_{0}(T)=Y_{1}(0)\left[\lambda_{1} C_{1}(0, T)+\lambda_{21} C_{2}(0, T)-\delta_{1}\right]+Y_{2}(0)\left[\lambda_{2} C_{2}(0, T)-\delta_{1}\right]-\frac{\partial}{\partial T} \ln B(0, T) \\
&+\frac{1}{2}\left[C_{1}^{2}(0, T)+C_{2}^{2}(0, T)\right]
\end{aligned}
$$

Since there are explicit formulae for $C_{1}(0, T)$ and $C_{2}(0, T)$, this last equation yields an explicit formula for $\delta_{0}(T)$ in terms of the model parameters and $\frac{\partial}{\partial T} \ln B(0, T)$, which can be estimated from bond prices.
4. (Shreve, Exercise 10.7) (a) We have $B(t, T)=e^{-Y_{1}(t) C_{1}(T-t)-Y_{2}(t) C_{2}(T-t)-A(T-t)}$, where C_{1}, C_{2}, A solve (10.2.23)-(10.2.25). Recall that, then,
$f\left(t, y_{1}, y_{2}\right)=e^{-y_{1} C_{1}(T-t)-y_{2} C_{2}(T-t)-A(T-t)}$ solves (10.2.18). Thus, by the discussion in Shreve leading up to (10.2.18),

$$
\begin{aligned}
& d[D(t) B(t, T)]=D(t) f_{y_{1}}\left(t, Y_{1}(t), Y_{2}(t)\right) d \widetilde{W}_{1}(t)+D(t) f_{y_{2}}\left(t, Y_{1}(t), Y_{2}(t)\right) d \widetilde{W}_{2}(t) \\
& \quad=D(t)\left[-C_{1}(T-t) f\left(t, Y_{1}(t), Y_{2}(t)\right) d \widetilde{W}_{1}(t)-C_{2}(T-t) f\left(t, Y_{1}(t), Y_{2}(t)\right) d \widetilde{W}_{2}(t)\right] \\
& \quad=-D(t) B(t, T)\left(C_{1}(T-t), C_{2}(T-t)\right) \cdot\left(d \widetilde{W}_{1}(t), d \widetilde{W}_{2}(t)\right)
\end{aligned}
$$

We deduce from (9.2.5) in Chapter 9 -see also page 393-that

$$
\left(\widetilde{W}_{1}^{T}(t), \widetilde{W}_{2}^{T}(t)\right)=\left(\widetilde{W}_{1}(t)+\int_{0}^{t} C_{1}(T-u) d u, \widetilde{W}_{2}(t)+\int_{0}^{t} C_{2}(T-u) d u\right)
$$

(ii) The T-forward price of the call option is

$$
\begin{aligned}
V(0) & =B(0, T) V^{(T)}(0, T)=B(0, T) \tilde{E}^{T}\left[\frac{(B(T, \bar{T})-K)^{+}}{B(T, T)}\right] \\
& =B(0, T) \tilde{E}^{T}\left[(B(T, \bar{T})-K)^{+}\right] \\
& =B(0, T) \tilde{E}^{T}\left[\left(e^{-Y_{1}(T) C_{1}(\bar{T}-T)-Y_{2}(T) C_{2}(\bar{T}-T)-A(\bar{T}-T)}-K\right)^{+}\right]
\end{aligned}
$$

(iii) Let $X=-Y_{1}(T) C_{1}(\bar{T}-T)-Y_{2}(T) C_{2}(\bar{T}-T)-A(\bar{T}-T)$. We know that

$$
d\binom{Y_{1}(t)}{Y_{2}(t)}=\left[\begin{array}{cc}
-\lambda_{1} & 0 \\
-\lambda_{21} & -\lambda_{2}
\end{array}\right]\binom{Y_{1}(t)}{Y_{2}(t)} d t+\binom{d \widetilde{W}_{1}(t)}{d \widetilde{W}_{2}(t)}
$$

We can rewrite this in terms of \widetilde{W}_{1}^{T} and \widetilde{W}_{2}^{T} using the result of part (i):

$$
d\binom{Y_{1}(t)}{Y_{2}(t)}=\left[\begin{array}{cc}
-\lambda_{1} & 0 \\
-\lambda_{21} & -\lambda_{2}
\end{array}\right]\binom{Y_{1}(t)}{Y_{2}(t)} d t-\binom{C_{1}(T-t)}{C_{2}(T-t)} d t+\binom{d \widetilde{W}_{1}^{T}(t)}{d \widetilde{W}_{2}^{T}(t)}
$$

This is a linear system of stochastic differential equations for $Y_{1}(t)$ and $Y_{2}(t)$. Under $\widetilde{\mathbf{P}}^{T},\left(\widetilde{W}_{1}^{T}(t), \widetilde{W}_{2}^{T}(t)\right)$ is a Brownian motion for $t \leq T$. We know that the solution to this equation is a Gaussian process if the initial conditions are deterministic, and so $\left(Y_{1}(t), Y_{2}(t)\right)$ is jointly normal under $\widetilde{\mathbf{P}}^{T}$. Since linear combinations of jointly normal random variables is normal, X is a normal random variable under $\widetilde{\mathbf{P}}^{T}$.
(iv) The random variable X of part (iii) can be written $X=-\sigma Z+\left(\mu-(1 / 2) \sigma^{2}\right)$, where Z is standard normal and μ is chosen so that $\mu-\sigma^{2} / 2$ is the means of X. The general formula behind the Black-Scholes formula is given in Theorem 2 of the class Notes to Lecture 12. Because

$$
V(0)=B(0, T) \tilde{E}^{T}\left[\left(e^{-X}-K\right)^{+}\right]
$$

where, as we have shown, X is normal under $\widetilde{\mathbf{P}}^{T}$, we are precisely in the context of this Theorem. By applying it

$$
\begin{aligned}
V(0) & =B(0, T)\left[e^{\mu} N\left(\frac{\ln \left(e^{\mu} / K\right)+\sigma^{2} / 2}{\sigma}\right)-K N\left(\frac{\ln \left(e^{\mu} / K\right)-\sigma^{2} / 2}{\sigma}\right)\right] \\
& =B(0, T)\left[e^{\mu} N\left(\frac{\mu-\ln (K)+\sigma^{2} / 2}{\sigma}\right)-K N\left(\frac{\mu-\ln (K)-\sigma^{2} / 2}{\sigma}\right)\right]
\end{aligned}
$$

