
Homework 10 (Sol)

Math 622

April 28, 2016

2. Shreve, 10.2.
Let Y1 and Y2 solve (10.2.59)-(10.2.60). By the Markov property of (Y1, Y2), we

know that there is a function f(t, y1, y2) such that B(t, T ) = f(t, Y1(t), Y2(t)). It must
satsify f(t, y1, y2) ≡ 1. If it is twice continuously differentiable, Itô’s rule implies

d[D(t)f(t, Y1(t), Y2(t))]

= D(t)
{
−R(t)f(t, Y1(t), Y2(t)) + ft(t, Y1(t), Y2(t))

+ (µ− λ1Y1(t))fy1(t, Y1(t), Y2(t))− λ2Y2(t)fy2(t, Y1(t), Y2(t))

+
1

2
Y1(t)fy1y1(t, Y1(t), Y2(t)) + σ21Y1(t)fy1y2(t, Y1(t), Y2(t))

+
1

2
(α + βY1(t) + σ2

21Y1(t))fy2y2(t, Y1(t), Y2(t))
}
dt

+D(t)fy1(t, Y1(t), Y2(t))
√
Y1(t) dW̃1(t)

+D(t)fy2(t, Y1(t), Y2(t))
[
σ21

√
Y1(t) dW̃1(t) +

√
α + (β + σ2

21)Y1(t) dW̃2(t)
]

We know D(t)B(t, T ) = D(t)f(t, Y1(t), y2(t)) must be a martingale; by assumption
R(t) = δ0 + δ1Y1(t) + δ2Y2(t). Assuming the stochastic integral terms in the above
formula are martingales, D(t)f(t, Y1(t), Y2(t)) will be a martingale if

−(δ0+δ1y1+δ2y2)f + ft + (µ− λ1y1)fy1 − λ2y2fy2

+
1

2
y1fy1y1 + σ21y1fy1y2 +

1

2
(α + (β + σ2

21)y1)fy2y2 = 0

The boundary condition is f(T, y1, y2) = 1 for all y1, y2.
The idea is to look for a solution of the form f(t, y1, y2) = e−y1C1(T−t)−y2C2(T−t)−A(T−t),

where C1(0) = C2(0) = A(0) = 0. Let τ = T − t. Calculation yields fτ =
(y1C

′
1(τ) + y2C

′
2(τ) + A′(τ))f , fy1 = −C1(τ), fy1y1 = C2

1(τ)g, fy2 = −C2(τ)f ,
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fy2y2 = C2
2(τ)f , and fy1y2 = C1(τ)C2(τ)f . By substituting these into the previous

equation and collecting terms,

0 = f
{
y1

[
C ′1 + λ1C1 +

1

2
C2

1 + σ21C1C2 +
1

2
(σ2

21 + β)C2
2 − δ1

]
+ y2 [C ′2 + λ2C2 − δ2]

+
[
− δ0 + A′ − µC1 +

1

2
αC2

2

]}
We can satisfy this equation by setting the coefficients of y1 and y2 equal to zero, as
well as the final term:

C ′1 = −λ1C1 −
1

2
C2

1 − σ21C1C2 −
1

2
(σ2

21 + β)C2
2 + δ1

C ′2 = −λ2C2 + δ2

A′ = µC1 −
1

2
αC2

2 + δ = 0

3. Exercise 10.3 The derivation of a p.d.e. for f(t, T, Y1(t), Y2(t)) = B(t, T ) follows
the derivation of (10.2.18) exactly, and leads again to this equation for f , except that
now δ0(t) is a function of t.

(i) Assume f(t, T, y1, y2) = exp{−y1C1(t, T )−y2C2(t, T )−A(t, T )} with C(T, T ) =
C2(T, T ) = A(T, T ) = 0, in order that f(t, T, ·, ·) ≡ 1. Then,

ft(t, y1, y2) =
[
− y1

∂C1(t, T )

∂t
− y2

∂C2(t, T )

∂t
− ∂A(t, T )

∂t

]
f(t, y1, y2)

fy1(t, y1, y2) = −C1(t, T )f(t, y1, y2), fy2(t, y1, y2) = −C2(t, T )f(t, y1, y2)

fy1y1(t, y1, y2) = C2
1(t, T )f(t, y1, y2), fy2y2(t, y1, y2) = C2

2(t, T )f(t, y1, y2)

fy1y2(t, y1, y2) = C1(, T )C2(t, T )f(t, y1, y2)

By plugging this into equation (10.2.18) (similar to the derivation of (10.2.22))[ (
−∂C1

∂t
+ λ1C1 + λ21C2 − δ1

)
y1

+

(
−∂C2

∂t
+ λ2C2 − δ2

)
y2

+

(
−∂A
∂t

+
1

2
C2

1 +
1

2
C2

2 − δ0(t)

) ]
f = 0

The coefficients of y1, y2 must be zero for this to be true for all y1 and y2, and hence
the last term must be zero also. Thus

∂C1

∂t
(t, T ) = λ1C1(t, T ) + λ21C2(t, T )− δ1
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∂C2

∂t
(t, T ) = λ2C2(t, T )− δ2

∂A

∂t
(t, T ) =

1

2
C2

1(t, T ) +
1

2
C2

2(t, T )− δ0(t)

(ii) If we look for solutions to the first two equations above in the form C1(t, T ) =
C̄1(T − t) and C2(t, T ) = C̄2(T − t), then C̄1 and C̄2 satisfy (10.2.23) and (10.2.24)
with the same initial condition, and hence their solutions are given as in (10.2.26)
and (10.2.7). For example, C2(t, T ) = (δ2/λ2)(1− e−λ2(T−t)).

(iii) By integrating the equation in part (i) for A in the variable t and noting
A(T, T ) = 0,

−A(t, T ) =
∫ T

t

[1
2
C2

1(s, T ) +
1

2
C2

2(s, T )− δ0(s)
]
ds.

(iv) Since C1(t, T ) = C̄1(T − t), ∂TC1(t, T ) = −∂tC1(t, T ), and similarly for C2.
Using this and the result of (iii),

∂A

∂T
(0, T ) =

∫ T

0

[
C1(s, T )

∂C1

∂T
(s, T ) + C2(s, T )

∂C2

∂T
(s, T )

]
ds

− (1/2)C1(T, T )− (1/2)C2(T, T ) + δ0(T )

=
∫ T

0

[
− C1(s, T )

∂C1

∂s
(s, T )− C2(s, T )

∂C2

∂s
(s, T )

]
ds+ δ0(T )

= −1

2

∫ T

0

∂

∂s

[
C2

1(s, T ) + C2
2(s, T )

]
ds+ δ(T )

=
1

2

[
C2

1(T, T ) + C2
2(t, T )− C2

1(0, T )− C2
2(0, T )

]
+ δ0(T )

= δ0(T )− 1

2

[
C2

1(0, T ) + C2
2(0, T )

]
On the other hand, if Y1(0) and Y2(0) are the initial values of the factors in the

Vasicek model,

∂

∂T
lnB(0, T ) = −Y1(0)

∂

∂T
C1(0, T )− Y2(0)

∂

∂T
C2(t, T )− ∂

∂T
A(0, T ).

Since
∂

∂T
C1(0, T ) = − ∂

∂t
C1(0, T ) = −λ1C1(0, T )− λ21C2(0, T ) + δ1 (see (ii)), and

∂

∂T
C2(0, T ) = − ∂

∂t
C2(0, T ) = −λ2C2(0, T ) + δ1 (see (ii)), we find by rearranging terms

that

∂

∂T
A(0, T ) = Y1(0)

[
λ1C1(0, T )+λ21C2(0, T )−δ1

]
+Y2(0)

[
λ2C2(0, T )−δ1

]
− ∂

∂T
lnB(0, T ).
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By comparing the two expressions for ∂
∂T
A(0, T ), it follows

δ0(T ) = Y1(0)
[
λ1C1(0, T ) + λ21C2(0, T )− δ1

]
+ Y2(0)

[
λ2C2(0, T )− δ1

]
− ∂

∂T
lnB(0, T )

+
1

2

[
C2

1(0, T ) + C2
2(0, T )

]
Since there are explicit formulae for C1(0, T ) and C2(0, T ) , this last equation yields
an explicit formula for δ0(T ) in terms of the model parameters and ∂

∂T
lnB(0, T ),

which can be estimated from bond prices.

4. (Shreve, Exercise 10.7) (a) We have B(t, T ) = e−Y1(t)C1(T−t)−Y2(t)C2(T−t)−A(T−t),
where C1, C2, A solve (10.2.23)–(10.2.25). Recall that, then,
f(t, y1, y2) = e−y1C1(T−t)−y2C2(T−t)−A(T−t) solves (10.2.18). Thus, by the discussion in
Shreve leading up to (10.2.18),

d[D(t)B(t, T )] = D(t)fy1(t, Y1(t), Y2(t)) dW̃1(t) +D(t)fy2(t, Y1(t), Y2(t)) dW̃2(t)

= D(t)
[
− C1(T − t)f(t, Y1(t), Y2(t)) dW̃1(t)− C2(T − t)f(t, Y1(t), Y2(t)) dW̃2(t)

]
= −D(t)B(t, T )

(
C1(T − t), C2(T − t)

)
·
(
dW̃1(t), dW̃2(t)

)
We deduce from (9.2.5) in Chapter 9—see also page 393—that(

W̃ T
1 (t), W̃ T

2 (t)
)

=
(
W̃1(t) +

∫ t

0
C1(T−u) du, W̃2(t) +

∫ t

0
C2(T − u) du

)
(ii) The T -forward price of the call option is

V (0) = B(0, T )V (T )(0, T ) = B(0, T )ẼT
[(B(T, T̄ )−K)+

B(T, T )

]
= B(0, T )ẼT

[
(B(T, T̄ )−K)+

]
= B(0, T )ẼT

[(
e−Y1(T )C1(T̄−T )−Y2(T )C2(T̄−T )−A(T̄−T ) −K

)+
]

(iii) Let X = −Y1(T )C1(T̄ − T )− Y2(T )C2(T̄ − T )− A(T̄ − T ). We know that

d

(
Y1(t)
Y2(t)

)
=

[
−λ1 0
−λ21 −λ2

](
Y1(t)
Y2(t)

)
dt+

(
dW̃1(t)

dW̃2(t)

)

We can rewrite this in terms of W̃ T
1 and W̃ T

2 using the result of part (i):

d

(
Y1(t)
Y2(t)

)
=

[
−λ1 0
−λ21 −λ2

](
Y1(t)
Y2(t)

)
dt−

(
C1(T − t)
C2(T − t)

)
dt+

(
dW̃ T

1 (t)

dW̃ T
2 (t)

)
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This is a linear system of stochastic differential equations for Y1(t) and Y2(t). Under

P̃
T

, (W̃ T
1 (t), W̃ T

2 (t)) is a Brownian motion for t ≤ T . We know that the solution to
this equation is a Gaussian process if the initial conditions are deterministic, and so
(Y1(t), Y2(t)) is jointly normal under P̃T . Since linear combinations of jointly normal
random variables is normal, X is a normal random variable under P̃T .

(iv) The random variable X of part (iii) can be written X = −σZ+(µ− (1/2)σ2),
where Z is standard normal and µ is chosen so that µ−σ2/2 is the means of X. The
general formula behind the Black-Scholes formula is given in Theorem 2 of the class
Notes to Lecture 12. Because

V (0) = B(0, T )ẼT
[(
e−X −K

)+
]
.

where, as we have shown, X is normal under P̃T , we are precisely in the context of
this Theorem. By applying it

V (0) = B(0, T )
[
eµN

(
ln(eµ/K) + σ2/2

σ

)
−KN

(
ln(eµ/K)− σ2/2

σ

) ]

= B(0, T )
[
eµN

(
µ− ln(K) + σ2/2

σ

)
−KN

(
µ− ln(K)− σ2/2

σ

) ]
.
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