Homework 1 (Due 02/10/2016)

Math 622

February 5, 2016

1. Let 0 < a < b. Let G be a cadlag function of bounded variation. In the
following, the notation [ H(s)dG(s) will mean f(opo)H(s)dG(s) as in the lecture
Note 1.

(i) Use the definition in Section 8.3.B Lecture 1 note to show that [ 1¢,,ndG(s) =

G(b) - Gla).

(ii) Show that limy, e 1 (444 1 ](t) = 1(a(t) and lim,_, Loty (1) = Ly (1).

(iii) Show that
lim 1(a7b+%](s)dG(s) = lim 1(a+%7b](s)dG(s) :/l(a,b](s)dG(s).
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(iv) Is it true that

n—oo

lim l(a’b_%}(s)dG(s) = /l(mb](s)dG(s)?

(iv) Is it true that

i [ 1y (6 = [ Lan(s)dG()?
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(v) Evaluate [ 1) (s)dG(s), [ Liap (s)dG(s), [ Ljay(s)dG(s) (Hint: Approximate

these integrands with left continuous functions, and use the Dominated Convergence

Theorem) .
2. Let
2, 0<t<l;
Git)y=q t* =3 |, 1<t<2;
t+1 , 2<t

Evaluate f03 sdG(s).



3. Let 0 < t; <ty and aq, as € R. Define

0 , 0<t <ty
G(t) = a o, St <ty
a1 + as 5 tQSt.

(i) Let o > 0. Solve for Z(t), where Z(t) satisfies

Z{t)=1+ /Ot 0Z(s—)dG(s).

(ii) Now let o(s) be a function of s. Solve for Z(t), where Z(t) satisfies

Z(t) :1+/0 Z(s)ds—l—/o o(s)Z(s—)dG(s).

4. (i) Let X(t) be a Levy process and F(t) be a filtration for X (¢). Let ut =
E(X(t)) and o* = Var(X(t)). Show that (X (t) — ut)> — 0%t is a martingale w.r.t.
F(t).

(ii) Let N(t) be a Poisson process and F(t) be a filtration for N(¢). Show
exp (tulN(t) — M(e™ — 1)) is a martingale w.r.t. F(t).
(iii) Show that the Geometric Poisson process discussed in Example 9.1 of Lecture

note 1 is a martingale (w.r.t its own filtration), without using Shreve’s Theorem 11.4.5.

5. Let X(t) be a Levy process and F(t) a filtration for X(¢). Use Lemma 2.3.4
and Definition 2.3.6 in Shreve to show that X (¢) is a Markov process.

6. (i) Let J be a counting process, that is J(0) = 0, J has finitely many jumps on
any finite intervals and AJ(¢) = 1 at any jump point of J. Show that

/J I = J(t)(J;t)Jrl)
/0 i) = J(t)(Jét)—l).

Let N(t) be a Poisson process with rate A\ and F(¢) a filtration for N(t).

(ii) Find an explicit formula for



and conclude that X (¢) is not a martingale (w.r.t F(¢)). (Hint: Using the fact that
if f( ) = 0 at all but finitely many points ¢, then f(s—) = 0 so that [, f(s)ds =
fo ds = 0, it should be almost immediate to guess what X (t) is).

(111) Show that
t
_ / N(s—)d(N(s) — As),
0
is a martingale (w.r.t F(t)).

Hint: Recall that fot N(s—=)d(N(s) — As) fo N(s) — fot AN (s—)ds and
part (i) of this problem. You can also use the fact that

/ N (u)dul F(s) / N(u du—l—/ E(N (w)| F(s))du
is not a martingale w.r.t F(t).

(iv) Show that
¢
= / N(s)d(N(s) — As)
0
7. Extra credit (5pts).

Let f(t) be defined on [0,00). Fix T" > 0. The total variation of f on [0, 7],
denoted as T'V;(T') is defined as the smallest (finite) number such that for all partitions
O=tiy<ti<ta<..<t,=T

n—1

D 1 f(tia) = f(t:)] < TVH(T).
i=0
If there is no such number, we define T'V;(T') = oo.

We also say f is a function of bounded variation (on [0,00)) if TV(T) < oo for
all T' > 0.

(i) Let A be an increasing function on [0, 00). Show that for all T' > 0, TV, (T) =
A(T) — A(0). Thus any increasing function is of bounded variation.

(ii) Let A, Ay be increasing functions on [0,00). Show that TV, _4,(T) <
TV (T) + TV4,(T). Thus the difference between two increasing functions is of
bounded variation. This is the reason for definition 4.1 in Lecture note 1.

(iii) Let G(t) be a function of bounded variation. Show that for any partition
O=tiy<ti<ta<..<t,=T,

—_
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(G(tiy1) = G(t:))* < max |G (ti1) — G(6:)|TVe(T).
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(iv) We say a function f is uniformly continuous on [0, 7] if there exists a non-
negative function p,lim; o p(t) = 0 = p(0) and for all 0 < ¢t,s < T, |f(t) — f(s)] <
p(|t —s|). Use the fact that a continuous function on [0, 7] is uniformly continuous to
show that if G is continuous, G is of bounded variation then its quadratic variation
|G, G|(T) =0 for any T" > 0 (See Sheve’s Definition 3.4.1)

(v) Show that the sample paths of Brownian motion is not of bounded variation
with probability 1.



