Solution to Homework 1

Math 622

February 11, 2016
1.
(i) Since $\mathbf{1}_{(0, b]}(t)=\mathbf{1}_{(0, a]}(t)+\mathbf{1}_{(a, b)}(t)$,

$$
\begin{aligned}
\int \mathbf{1}_{(a, b]}(s) d G(s) & =\int \mathbf{1}_{(0, b]}(s) d G(s)-\int \mathbf{1}_{(0, a]}(s) d G(s) \\
& =G(b)-G(0)-(G(a)-G(0))=G(b)-G(a) .
\end{aligned}
$$

(ii) $\mathbf{1}_{\left(a, b+\frac{1}{n}\right]}(t)-\mathbf{1}_{(a, b]}(t)=\mathbf{1}_{\left(b, b+\frac{1}{n}\right]}(t)$. Fix $t>0$. If $t \leq b$ then or $t>b+1$ then $\mathbf{1}_{\left(b, b+b+\frac{1}{n}\right]}(t)=0$ for all $n=1,2, \ldots$. If $t \in(b, b+1]$ then there is always N large enough such that $t>b+\frac{1}{N}$ or $\mathbf{1}_{\left(b, b+\frac{1}{N}\right\}}(t)=0$. That is for all $t, \mathbf{1}_{\left(b, b+\frac{1}{n}\right]}(t) \rightarrow 0$ as $n \rightarrow \infty$. So $\mathbf{1}_{\left(a, b+\frac{1}{n}\right]}(t) \rightarrow \mathbf{1}_{(a, b]}(t)$. The other statement can be showed similarly.
(iii)

$$
\int \mathbf{1}_{\left(a, b+\frac{1}{n}\right]}(s) d G(s)=G\left(b+\frac{1}{n}\right)-G(a) .
$$

Since G is right continuous, $G\left(b+\frac{1}{n}\right)-G(a) \rightarrow G(b)-G(a)=\int \mathbf{1}_{(a, b]}(s) d G(s)$ as $n \rightarrow \infty$.

$$
\int \mathbf{1}_{\left(a+\frac{1}{n}, b\right]}(s) d G(s)=G(b)-G\left(a+\frac{1}{n}\right) .
$$

Again, since G is right continuous, $G(b)-G\left(a+\frac{1}{n}\right) \rightarrow G(b)-G(a)=\int \mathbf{1}_{(a, b)}(s) d G(s)$ as $n \rightarrow \infty$.
(iv)

$$
\int \mathbf{1}_{\left(a, b-\frac{1}{n}\right]}(s) d G(s)=G\left(b-\frac{1}{n}\right)-G(a) .
$$

Since G is not necessarily left continuous at b, we only can conclude that $G(b-$ $\left.\frac{1}{n}\right)-G(a) \rightarrow G(b-)-G(a)$, which is not $G(b)-G(a)=\int \mathbf{1}_{(a, b]} d G(s)$. So the statement may not be true.

Similarly,

$$
\int \mathbf{1}_{\left(a-\frac{1}{n}, b\right]}(s) d G(s)=G(b)-G\left(a-\frac{1}{n}\right) \rightarrow G(b)-G(a-)
$$

which may not be the same as $G(b)-G(a)$.
(v) We have $\mathbf{1}_{(a, b)}(t)=\lim _{n \rightarrow \infty} \mathbf{1}_{\left(a, b-\frac{1}{n}\right]}(t)$. It is also clear that $\left|\mathbf{1}_{\left(a, b-\frac{1}{n}\right]}(t)\right| \leq 1$. So by the Dominated Convergence Theorem,

$$
\int \mathbf{1}_{(a, b)}(s) d G(s)=\lim _{n \rightarrow \infty} \int \mathbf{1}_{\left(a, b-\frac{1}{n}\right]}(s) d G(s)=\lim _{n \rightarrow \infty} G\left(b-\frac{1}{n}\right)-G(a)=G(b-)-G(a) .
$$

Similarly, since $\mathbf{1}_{[a, b)}(s)=\lim _{n \rightarrow \infty} \mathbf{1}_{\left(a-\frac{1}{n}, b-\frac{1}{n}\right]}(s), \int \mathbf{1}_{[a, b)}(s) d G(s)=G(b-)-G(a-)$.
Since $\mathbf{1}_{[a, b]}(s)=\lim _{n \rightarrow \infty} \mathbf{1}_{\left(a-\frac{1}{n}, b+\frac{1}{n}\right]}(s), \int \mathbf{1}_{[a, b)}(s) d G(s)=G(b)-G(a-)$.
2.

$$
\begin{aligned}
\int_{0}^{3} s d G(s) & =\int_{0}^{1} s(2 d s)+1(G(1)-G(1-))+\int_{1}^{2} s(2 s d s)+2(G(2)-G(2-))+\int_{2}^{3} s d s \\
& =1+(-2-2)+\frac{2}{3}(8-1)+2(3-1)+\frac{5}{2}=\frac{49}{6}
\end{aligned}
$$

3. (i) Observe that $Z(t)$ satisfies a similar equation to equation (3) in Section 9 of Lecture note 1 with $\alpha(s)=\mu(s)=\gamma(s)=0$ and $J(t)=\sigma G(t)$. Also clearly $Z(0)=1$. So we can use the formula provided for $S(t)$ (equation (4))to conclude that

$$
Z(t)=\prod_{s \leq t}(1+\sigma \Delta G(s))
$$

More specifically,

$$
Z(t)=\left\{\begin{array}{ccc}
1 & , & 0 \leq t<t_{1} \\
\left(1+\sigma a_{1}\right) & , & t_{1} \leq t<t_{2} \\
\left(1+\sigma a_{1}\right)\left(1+\sigma a_{2}\right) & , & t_{2} \leq t
\end{array}\right.
$$

Alternatively, we can observe that $Z(t)$ is also a pure jump function, $Z(t)$ jumps at the same point as $G(t)$ (that is $\left.t_{1}, t_{2}\right)$ and the jump size of $Z(t)$ at these points is $\Delta Z(t)=Z(t-) \sigma \Delta G(t)$. For example, $Z(0)=1$. At t_{1}, we get $Z\left(t_{1}\right)-Z\left(t_{1}-\right)=$ $Z\left(t_{1}-\right) \sigma a_{1}$, and $Z\left(t_{1}-\right)=1$, since Z jumps at t_{1}. Using this we arrive at the same answer for Z.
(ii) Also using equation (4) we get

$$
Z(t)=e^{t} \prod_{s \leq t}(1+\sigma(s) \Delta G(s))
$$

Thus,

$$
Z(t)=\left\{\begin{array}{ccc}
e^{t} & 0 \leq t<t_{1} \\
e^{t}\left(1+\sigma\left(t_{1}\right) a_{1}\right) & , & t_{1} \leq t<t_{2} \\
e^{t}\left(1+\sigma\left(t_{1}\right) a_{1}\right)\left(1+\sigma\left(t_{2}\right) a_{2}\right) & , & t_{2} \leq t
\end{array}\right.
$$

4.(i) Note that

$$
\begin{aligned}
(X(t)-\mu t)^{2} & =(X(t)-X(s)+X(s)-\mu t)^{2} \\
& =(X(t)-X(s))^{2}+2(X(t)-X(s))(X(s)-\mu t)+(X(s)-\mu t)^{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\mathbb{E}\left[(X(t)-\mu t)^{2} \mid \mathcal{F}(t)\right] & =\sigma^{2}(t-s)+[\mu(t-s)]^{2}+2 \mu(t-s)(X(s)-\mu t)+(X(s)-\mu t)^{2} \\
& =\sigma^{2}(t-s)+(X(s)-\mu t+\mu(t-s))^{2}=\sigma^{2}(t-s)+(X(s)-\mu s)^{2}
\end{aligned}
$$

The result follows.
(ii) Here we need to use the fact that if X is $\operatorname{Poisson}(\lambda)$ then the characteristic function of X is

$$
\mathbb{E}\left(e^{i u X}\right)=\exp \left(\lambda\left(e^{i u}-1\right)\right) .
$$

See for example Wikipedia on Characteristic functions. Then

$$
\begin{aligned}
\mathbb{E}\left(e^{i u N(t)} \mid F(s)\right) & =e^{i u N(s)} \mathbb{E}\left(e^{i u(N(t)-N(s))} \mid F(s)\right) \\
& =\exp (i u N(s)) \exp \left(\lambda(t-s)\left(e^{i u}-1\right)\right) .
\end{aligned}
$$

The result follows.
(iii) Observe that $(1+\sigma)^{N(t)}=\exp (N(t) \log (1+\sigma))$. Hence

$$
\begin{aligned}
\mathbb{E}\left((1+\sigma)^{N(t)} \mid \mathcal{F}(s)\right) & =\exp (N(s) \log (1+\sigma)) \mathbb{E}[\exp ((N(t)-N(s)) \log (1+\sigma)) \mid \mathcal{F}(s)] \\
& =(1+\sigma)^{N(s)} \exp \left(\lambda(t-s)\left(e^{\log (1+\sigma)}-1\right)\right) \\
& =(1+\sigma)^{N(s)} \exp (\sigma \lambda(t-s)) .
\end{aligned}
$$

where we used the result for the characteristic function of Poisson above with $u=$ $-i \log (1+\sigma))$. The result follows.
5. Let f be a Borel measurable function. For $0<s<t$ and x a real number, define

$$
g(x)=\mathbb{E}[f(X(t)-X(s)+x)] .
$$

Then by Lemma 2.3.6 in Shreve we have

$$
\begin{aligned}
\mathbb{E}[f(X(t)) \mid \mathcal{F}(s)] & =\mathbb{E}[f(X(t)-X(s)+X(s)) \mid \mathcal{F}(s)] \\
& =g(X(s)) .
\end{aligned}
$$

Thus by definition 2.3.6, $X(t)$ is a Markov process.
6. (i) Observe the followings: $J(s)-J(s-)=1$ at any jump point of J; for any t, the number of jumps of J on $[0, t]$ is $J(t)$; if s_{i} denotes the time of the $i t h$ jump of J then $J\left(s_{i}\right)=i$. Putting these together, we have

$$
\begin{aligned}
\int_{0}^{t} J(u) d J(u) & =\sum_{\substack{s \leq t \\
J(t)}} J(s)(J(s)-J(s-)) \\
& =\sum_{i=1} J\left(s_{i}\right)=\sum_{i=1}^{J(t)} i=\frac{J(t)(J(t)+1)}{2} . \\
\int_{0}^{t} J(u-) d J(u) & =\sum_{s \leq t} J(s-)(J(s)-J(s-)) \\
& =\sum_{i=1}^{J(t)} J\left(s_{i}-\right)=\sum_{i=1}^{J(t)}(i-1) \\
& =\sum_{i=1}^{J(t)-1} i=\frac{J(t)(J(t)-1)}{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{t}(N(s)-N(s-)) d(N(s)-\lambda s) & =\int_{0}^{t}(N(s)-N(s-)) d N(s) \\
& =\sum_{s \leq t}(N(s)-N(s-))(N(s)-N(s-)) \\
& =\sum_{s \leq t} N(s)-N(s-)=N(t)
\end{aligned}
$$

where we used the fact that $N(s)-N(s-)=1$ so that $(N(s)-N(s-))(N(s)-$ $N(s-))=N(s)-N(s-)$. Since $\mathbb{E}(N(t))=\lambda t$, not a constant, it is not a martingale.
(iii)

$$
\begin{aligned}
Y(t) & =\int_{0}^{t} N(s-) d N(s)-\lambda \int_{0}^{t} N(s) d s \\
& =\frac{N(t)(N(t)-1)}{2}-\lambda \int_{0}^{t} N(s) d s
\end{aligned}
$$

Since $N(t)^{2}=(N(t)-N(s)+N(s))^{2}=(N(t)-N(s))^{2}+2(N(t)-N(s)) N(s)+$ $N^{2}(s)$,

$$
\mathbb{E}\left(N(t)^{2} \mid \mathcal{F}(s)\right)=\lambda(t-s)+[\lambda(t-s)]^{2}+2 \lambda(t-s) N(s)+N^{2}(s)
$$

Also

$$
\mathbb{E}(N(t) \mid \mathcal{F}(s))=\lambda(t-s)+N(s)
$$

So that

$$
\mathbb{E}\left(\left.\frac{N(t)(N(t)-1)}{2} \right\rvert\, \mathcal{F}(s)\right)=\frac{1}{2}\left([\lambda(t-s)]^{2}+N^{2}(s)-N(s)\right)+\lambda(t-s) N(s) .
$$

Now
$\lambda \int_{s}^{t} \mathbb{E}(N(u) \mid \mathcal{F}(s)) d u=\lambda \int_{s}^{t} N(s)+\lambda(u-s) d u=\lambda(t-s) N(s)+\frac{1}{2}[\lambda(t-s)]^{2}$.
So putting all these calculations together we have

$$
\begin{aligned}
\mathbb{E}(Y(t) \mid \mathcal{F}(s)) & =\frac{1}{2}\left(N^{2}(s)-N(s)\right)+\lambda \int_{0}^{s} N(u) d u \\
& =\frac{N(s)(N(s)-1)}{2}+\lambda \int_{0}^{s} N(u) d u=Y(s)
\end{aligned}
$$

so Y is a martingale.
(iv) Since $Z(t)-Y(t)=X(t), Z(t)$ cannot be a martingale (otherwise this equation forces $X(t)$ to be a martingale, which we have showed is not the case).
7. (i) Since A is increasing, for $t_{i}<t_{i+1},\left|A\left(t_{i+1}\right)-A\left(t_{i}\right)\right|=A\left(t_{i+1}\right)-A\left(t_{i}\right)$. Thus for all partitions $0=t_{0}<t_{1}<\ldots<t_{n}=T$:

$$
\sum_{i=0}^{n-1}\left|A\left(t_{i+1}\right)-A\left(t_{i}\right)\right|=A(T)-A(0)
$$

It follows that $T V_{A}(T)=A(T)-A(0)$.
(ii) Since

$$
\begin{aligned}
\left|\left(A_{1}-A_{2}\right)\left(t_{i+1}\right)-\left(A_{1}-A_{2}\right)\left(t_{i}\right)\right| & =\left|A_{1}\left(t_{i+1}\right)-A_{1}\left(t_{i}\right)-\left(A_{2}\left(t_{i+1}\right)-A_{2}\left(t_{i}\right)\right)\right| \\
& \leq\left|A_{1}\left(t_{i+1}\right)-A_{1}\left(t_{i}\right)\right|+\left|A_{2}\left(t_{i+1}\right)-A_{2}\left(t_{i}\right)\right|
\end{aligned}
$$

we have

$$
\begin{aligned}
\sum_{i=0}^{n-1}\left|\left(A_{1}-A_{2}\right)\left(t_{i+1}\right)-\left(A_{1}-A_{2}\right)\left(t_{i}\right)\right| & \leq \sum_{i=0}^{n-1}\left|A_{1}\left(t_{i+1}\right)-A_{1}\left(t_{i}\right)\right|+\sum_{i=0}^{n-1}\left|A_{2}\left(t_{i+1}\right)-A_{2}\left(t_{i}\right)\right| \\
& \leq T V_{A_{1}}(T)+T V_{A_{2}}(T)
\end{aligned}
$$

Thus by definition of $T V_{A_{1}-A_{2}}(T)$, we have $T V_{A_{1}-A_{2}}(T) \leq T V_{A_{1}}(T)+T V_{A_{2}}(T)$.
(iii)

$$
\begin{aligned}
\sum_{i=0}^{n-1}\left(G\left(t_{i+1}\right)-G\left(t_{i}\right)\right)^{2} & =\sum_{i=0}^{n-1}\left|G\left(t_{i+1}\right)-G\left(t_{i}\right)\right|\left|G\left(t_{i+1}\right)-G\left(t_{i}\right)\right| \\
& \leq \sum_{i=0}^{n-1} \max _{i}\left(\left|G\left(t_{i+1}\right)-G\left(t_{i}\right)\right|\right)\left|G\left(t_{i+1}\right)-G\left(t_{i}\right)\right| \\
& =\max _{i}\left(\left|G\left(t_{i+1}\right)-G\left(t_{i}\right)\right|\right) \sum_{i=0}^{n-1}\left|G\left(t_{i+1}\right)-G\left(t_{i}\right)\right|
\end{aligned}
$$

(iv) From part (iii)

$$
\begin{aligned}
\sum_{i=0}^{n-1}\left(G\left(t_{i+1}\right)-G\left(t_{i}\right)\right)^{2} & \leq \max _{i}\left(\left|G\left(t_{i+1}\right)-G\left(t_{i}\right)\right|\right) \sum_{i=0}^{n-1}\left|G\left(t_{i+1}\right)-G\left(t_{i}\right)\right| \\
& \leq \rho\left(\max _{i}\left(\left|t_{i+1}-t_{i}\right|\right)\right) T V_{G}(T)
\end{aligned}
$$

As $\max _{i}\left(\left|t_{i+1}-t_{i}\right|\right) \rightarrow 0$, since $T V_{G}(T)<\infty$, the RHS of the above inequality goes to 0 . Thus the quadratic variatio of G is 0 .
(v) Since $[W(t), W(t)]=t$ with probability $1, W(t)$ cannot be of bounded variation.

