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1.
(i) Since 1(0,b} (t) = 1(0@} (t) + 1(a,b] (Zf),

/l(a’b](s)dG(S) = /1(07b](8)dG(S) — / 1(07a}(8)dG(8)
= G() - G(0) - (G(a) = G(0)) = G(b) — G(a).
(i) T(ppra)(t) = Lap(t) = Lgppp1y(t). Fix t > 0. If ¢ < b then or ¢ > b+ 1 then
Lppea)(t) =0foralln =1,2,.... If t € (b,b+ 1] then there is always N large enough

such that ¢t > b+ + or 1<b,b+%}(t) = 0. That is for all ¢, l(b,bJr%](t) — 0 asn — 00. So
Lop+11(t) = Lap(t). The other statement can be showed similarly.

(i)
/ Loy 21(5)dG(s) = G(b+ %) ~ Gla).

Since G is right continuous, G(b+ +) — G(a) — G(b) — G(a) = [ 14y (s)dG(s) as

n — oQ.

/ L2 y(5)dG(s) = Gb) — Gla + %).

Again, since G is right continuous, G(b)—G(a+1) — G(b)—G(a) = [ 1(44(s)dG(s)
as m — 00.

(iv)
/1(a,b_i](s)da(s) — G- %) _ Gla).

Since G is not necessarily left continuous at b, we only can conclude that G(b —
1)—G(a) - G(b—)—G(a), which is not G(b)—G(a) = [ 1(4ydG(s). So the statement

may not be true.



Similarly,

[ 1 1(66(5) = G(b) = Gla— 1) = Glb) - Gla-),

which may not be the same as G(b) — G(a).
(v) We have 1,3 (t) = lim, o 1(a7b_%](t). It is also clear that |1(a’b_%](t)| < 1.
So by the Dominated Convergence Theorem,

/ L (8)4G() = lim [ 140, 1)(5)dG(s) = lim G(b— 2) - G(a) = G(b-) - G(a).

n— oo n—oo n
Similarly, since 1jp)(s) = limy, o0 1(o1 5 11(5), [ Lap)(s)dG(s) = G(b—) — G(a—).

Since 1o (s) = limyyoo Liq_1 4 1)(5), [ Liap)(s)dG(s) = G(b) — G(a—).
2.

/0 sdG(s) = /O s(2ds) + 1(G(1) — G(1-)) +/1 s(2sds) + 2(G(2) — G(2—)) +/2 sds
= 1+(—2—2)+§(8—1)+2(3—1)+g2%9.

3. (i) Observe that Z(t) satisfies a similar equation to equation (3) in Section 9 of
Lecture note 1 with a(s) = u(s) = v(s) = 0 and J(t) = cG(t). Also clearly Z(0) = 1.

So we can use the formula provided for S(t) (equation (4) )to conclude that

Z(t) = [ [(1 + 0 AG(5)).

s<t
More specifically,
1 , 0<t<ty
Z(t): (1‘*’0‘&1) , 1 <t <t
(1+O’&1)(1+0’G2) s tQSt

Alternatively, we can observe that Z(t) is also a pure jump function, Z(t) jumps
at the same point as G(t) (that is t1, t2) and the jump size of Z(t) at these points
is AZ(t) = Z(t—)ocAG(t). For example, Z(0) = 1. At t1, we get Z(t1) — Z(t1—) =
Z(ty—)oay, and Z(t;—) = 1, since Z jumps at ¢;. Using this we arrive at the same
answer for Z.

(ii) Also using equation (4) we get

Z(t) = [[(1+ o(s)AG(s)).

s<t



Thus,

et , 0<t<ty
Z(t) = e'(1+ o(ty)ay) , <t <ty
et(l + a(tl)al)(l -+ O'(tz)(lg) s tg S t.

4.(i) Note that
(X(8) =t = (X(t) = X(s5) + X(5) — put)?
= (X(t) = X(5)* +2(X(t) — X (s))(X(s) — pt) + (X(s) — pat)*.
Thus,

E[(X(t) — ut)’|F(t)] = o*(t —s) + [t — s)]* +2u(t — s)(X(s) — pt) + (X (s) — put)?
= ot —s)+ (X(s) — put + p(t — s))* = a*(t — s)
The result follows.

(ii) Here we need to use the fact that if X is Poisson(A) then the characteristic

function of X is
E(e™X) = exp(A(e™ — 1)).
See for example Wikipedia on Characteristic functions. Then
E(e™NO|F(s)) = NOE(ENO-NO)| p(s))
= exp(iulN(s))exp(A(t — s)(e™ — 1)).

The result follows.
(iii) Observe that (1 + o)V = exp (N(t)log(1 + 0)). Hence

E((1+0)YO|F(s)) = exp(N(s)log(1 +0))E| exp (N (t) = N(s)) log(1 + 0)) | F(s)]
= (1+0)"®exp (At — s) (50 — 1))
= (14+0)"®exp (oAt = s)).
where we used the result for the characteristic function of Poisson above with u =
—ilog(1l + o)). The result follows.

5. Let f be a Borel measurable function. For 0 < s < t and x a real number,
define



Then by Lemma 2.3.6 in Shreve we have
E[f(X@0))F(s)] = E[f(X(t) = X(s) + X(s))|F(s)]
= 9(X(s))-
Thus by definition 2.3.6, X (¢) is a Markov process.
6. (i) Observe the followings: J(s) — J(s—) = 1 at any jump point of J ; for any

t, the number of jumps of J on [0,¢] is J(¢); if s; denotes the time of the ith jump of
J then J(s;) = i. Putting these together, we have

/OJ(u)dJ(u) = > J(s)(J(s) = J(s—))

/0 J(u=)dJ(u) = J(s=)(J(s) = J(s—))
J0) J)
= . J(si—) = (1—1)
&I —1)
_ 2 i — :

s<t

= DO N() = N(s—) = N(b),

s<t

where we used the fact that N(s) — N(s—) = 1 so that (N(s) — N(s—))(N(s) —
N(s—)) = N(s)— N(s—). Since E(N(t)) = At, not a constant, it is not a martingale.

(i)
Y(t) = /ON(S—)dN(s)—)\/O N(s)ds
= N(t)(]\;(t) - _ /\/O N(s)ds.




Since N (t)? = (N(t) — N(s) + N(s))? = (N(t) — N(s))? + 2(N(t) — N(s))N(s) +
N*(s),

E(N()*F(s)) = At —s)+ [\t —8)]> +2X(t — s)N(s) + N?(s).

Also
E(N(£)|F(s)) = At — ) + N(s).
So that
]E(N<t>(]\[2(t> ~U 7)) = S = )+ N¥(s) = N(5)) + Alt = 5)N ().
Now

t t
)\/ E(N(u)|F(s))du = )\/ N(s) 4+ Mu — s)du = At — s)N(s) + %[/\(t —5)]%.
So putting all these calculations together we have
E(Y ()| F(s)) — 2 N*(s) = N(s) + A/ N(u

= NZ(S_ +>\/N

so Y is a martingale.

(iv) Since Z(t)—Y (t) = X (t), Z(t) cannot be a martingale (otherwise this equation
forces X () to be a martingale, which we have showed is not the case).

7. (i) Since A is increasing, for t; < t;11, |A(tiv1) — A(t;)| = A(tiz1) — A(t;). Thus
for all partitions 0 =tg <t; < ... <t,=1T:

2 |A(tiy1) — A(t:)| = A(T) — A(0).
It follows that TV, (T) = A(T) — A(0).
(ii) Since

(A — Ag)(tir1) — (A — A2)(t)] |A1(tiv1) — Ar(ti) — (Aa(tiva) — A2(t))]

|As(tig1) — Au(t)] + [Az(tiv) — Aa(ti)],

IA

we have

IN

10 = A (tin) — (A= A S 3 [iltien) = i8]+ 3 [Aatin) — As(t)

TV, (T) + TV, (T).

IN

5



Thus by definition of TV, _4,(T"), we have TV, _4,(T) < TV (T) + TVa,(T).

(iii)

j_(j(G(tm)—G(ti))Q _ Z|G ) — GG ) — Gt
< Z max((Glt1) — G()DIG) — Gt
~ max((Glti) - G(t) Z Glti) — Gt
(iv) From part (iii)
:<G<tm>—G<ti>>2 < max((Gltin Z\G ) — G

< p(mgLX(ltm —TV(T).

As max;(|tiy1 — t;]) — 0, since TV(T') < oo, the RHS of the above inequality goes
to 0. Thus the quadratic variatio of G is 0.

(v) Since [W(t),W(t)] = t with probability 1, W (¢) cannot be of bounded varia-
tion.



