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1.

(i) Since 1(0,b](t) = 1(0,a](t) + 1(a,b](t),∫
1(a,b](s)dG(s) =

∫
1(0,b](s)dG(s)−

∫
1(0,a](s)dG(s)

= G(b)−G(0)− (G(a)−G(0)) = G(b)−G(a).

(ii) 1(a,b+ 1
n
](t) − 1(a,b](t) = 1(b,b+ 1

n
](t). Fix t > 0. If t ≤ b then or t > b + 1 then

1(b,b+ 1
n
](t) = 0 for all n = 1, 2, .... If t ∈ (b, b+ 1] then there is always N large enough

such that t > b+ 1
N

or 1(b,b+ 1
N
](t) = 0. That is for all t,1(b,b+ 1

n
](t)→ 0 as n→∞. So

1(a,b+ 1
n
](t)→ 1(a,b](t). The other statement can be showed similarly.

(iii) ∫
1(a,b+ 1

n
](s)dG(s) = G(b+

1

n
)−G(a).

Since G is right continuous, G(b + 1
n
) − G(a) → G(b) − G(a) =

∫
1(a,b](s)dG(s) as

n→∞.

∫
1(a+ 1

n
,b](s)dG(s) = G(b)−G(a+

1

n
).

Again, sinceG is right continuous, G(b)−G(a+ 1
n
)→ G(b)−G(a) =

∫
1(a,b](s)dG(s)

as n→∞.

(iv) ∫
1(a,b− 1

n
](s)dG(s) = G(b− 1

n
)−G(a).

Since G is not necessarily left continuous at b, we only can conclude that G(b −
1
n
)−G(a)→ G(b−)−G(a), which is not G(b)−G(a) =

∫
1(a,b]dG(s). So the statement

may not be true.
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Similarly,∫
1(a− 1

n
,b](s)dG(s) = G(b)−G(a− 1

n
)→ G(b)−G(a−),

which may not be the same as G(b)−G(a).

(v) We have 1(a,b)(t) = limn→∞ 1(a,b− 1
n
](t). It is also clear that |1(a,b− 1

n
](t)| ≤ 1.

So by the Dominated Convergence Theorem,∫
1(a,b)(s)dG(s) = lim

n→∞

∫
1(a,b− 1

n
](s)dG(s) = lim

n→∞
G(b− 1

n
)−G(a) = G(b−)−G(a).

Similarly, since 1[a,b)(s) = limn→∞ 1(a− 1
n
,b− 1

n
](s),

∫
1[a,b)(s)dG(s) = G(b−) − G(a−).

Since 1[a,b](s) = limn→∞ 1(a− 1
n
,b+ 1

n
](s),

∫
1[a,b)(s)dG(s) = G(b)−G(a−).

2.∫ 3

0

sdG(s) =

∫ 1

0

s(2ds) + 1(G(1)−G(1−)) +

∫ 2

1

s(2sds) + 2(G(2)−G(2−)) +

∫ 3

2

sds

= 1 + (−2− 2) +
2

3
(8− 1) + 2(3− 1) +

5

2
=

49

6
.

3. (i) Observe that Z(t) satisfies a similar equation to equation (3) in Section 9 of

Lecture note 1 with α(s) = µ(s) = γ(s) = 0 and J(t) = σG(t). Also clearly Z(0) = 1.

So we can use the formula provided for S(t) (equation (4) )to conclude that

Z(t) =
∏
s≤t

(1 + σ∆G(s)).

More specifically,

Z(t) =


1 , 0 ≤ t < t1

(1 + σa1) , t1 ≤ t < t2

(1 + σa1)(1 + σa2) , t2 ≤ t.

Alternatively, we can observe that Z(t) is also a pure jump function, Z(t) jumps

at the same point as G(t) (that is t1, t2) and the jump size of Z(t) at these points

is ∆Z(t) = Z(t−)σ∆G(t). For example, Z(0) = 1. At t1, we get Z(t1) − Z(t1−) =

Z(t1−)σa1, and Z(t1−) = 1, since Z jumps at t1. Using this we arrive at the same

answer for Z.

(ii) Also using equation (4) we get

Z(t) = et
∏
s≤t

(1 + σ(s)∆G(s)).
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Thus,

Z(t) =


et , 0 ≤ t < t1

et(1 + σ(t1)a1) , t1 ≤ t < t2

et(1 + σ(t1)a1)(1 + σ(t2)a2) , t2 ≤ t.

4.(i) Note that

(X(t)− µt)2 = (X(t)−X(s) +X(s)− µt)2

= (X(t)−X(s))2 + 2(X(t)−X(s))(X(s)− µt) + (X(s)− µt)2.

Thus,

E[(X(t)− µt)2|F(t)] = σ2(t− s) + [µ(t− s)]2 + 2µ(t− s)(X(s)− µt) + (X(s)− µt)2

= σ2(t− s) + (X(s)− µt+ µ(t− s))2 = σ2(t− s) + (X(s)− µs)2.

The result follows.

(ii) Here we need to use the fact that if X is Poisson(λ) then the characteristic

function of X is

E(eiuX) = exp(λ(eiu − 1)).

See for example Wikipedia on Characteristic functions. Then

E(eiuN(t)|F (s)) = eiuN(s)E(eiu(N(t)−N(s))|F (s))

= exp(iuN(s)) exp(λ(t− s)(eiu − 1)).

The result follows.

(iii) Observe that (1 + σ)N(t) = exp
(
N(t) log(1 + σ)

)
. Hence

E((1 + σ)N(t)|F(s)) = exp(N(s) log(1 + σ))E
[

exp
(
(N(t)−N(s)) log(1 + σ)

)
|F(s)

]
= (1 + σ)N(s) exp

(
λ(t− s)(elog(1+σ) − 1)

)
= (1 + σ)N(s) exp

(
σλ(t− s)

)
.

where we used the result for the characteristic function of Poisson above with u =

−i log(1 + σ)). The result follows.

5. Let f be a Borel measurable function. For 0 < s < t and x a real number,

define

g(x) = E[f(X(t)−X(s) + x)].
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Then by Lemma 2.3.6 in Shreve we have

E[f(X(t))|F(s)] = E[f(X(t)−X(s) +X(s))|F(s)]

= g(X(s)).

Thus by definition 2.3.6, X(t) is a Markov process.

6. (i) Observe the followings: J(s)− J(s−) = 1 at any jump point of J ; for any

t, the number of jumps of J on [0, t] is J(t); if si denotes the time of the ith jump of

J then J(si) = i. Putting these together, we have∫ t

0

J(u)dJ(u) =
∑
s≤t

J(s)(J(s)− J(s−))

=

J(t)∑
i=1

J(si) =

J(t)∑
i=1

i =
J(t)(J(t) + 1)

2
.

∫ t

0

J(u−)dJ(u) =
∑
s≤t

J(s−)(J(s)− J(s−))

=

J(t)∑
i=1

J(si−) =

J(t)∑
i=1

(i− 1)

=

J(t)−1∑
i=1

i =
J(t)(J(t)− 1)

2
.

(ii)∫ t

0

(N(s)−N(s−))d(N(s)− λs) =

∫ t

0

(N(s)−N(s−))dN(s)

=
∑
s≤t

(N(s)−N(s−))(N(s)−N(s−))

=
∑
s≤t

N(s)−N(s−) = N(t),

where we used the fact that N(s) − N(s−) = 1 so that (N(s) − N(s−))(N(s) −
N(s−)) = N(s)−N(s−). Since E(N(t)) = λt, not a constant, it is not a martingale.

(iii)

Y (t) =

∫ t

0

N(s−)dN(s)− λ
∫ t

0

N(s)ds

=
N(t)(N(t)− 1)

2
− λ

∫ t

0

N(s)ds.
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Since N(t)2 = (N(t)−N(s) +N(s))2 = (N(t)−N(s))2 + 2(N(t)−N(s))N(s) +

N2(s),

E(N(t)2|F(s)) = λ(t− s) + [λ(t− s)]2 + 2λ(t− s)N(s) +N2(s).

Also

E(N(t)|F(s)) = λ(t− s) +N(s).

So that

E(
N(t)(N(t)− 1)

2
|F(s)) =

1

2

(
[λ(t− s)]2 +N2(s)−N(s)

)
+ λ(t− s)N(s).

Now

λ

∫ t

s

E(N(u)|F(s))du = λ

∫ t

s

N(s) + λ(u− s)du = λ(t− s)N(s) +
1

2
[λ(t− s)]2.

So putting all these calculations together we have

E(Y (t)|F(s)) =
1

2
(N2(s)−N(s)) + λ

∫ s

0

N(u)du

=
N(s)(N(s)− 1)

2
+ λ

∫ s

0

N(u)du = Y (s),

so Y is a martingale.

(iv) Since Z(t)−Y (t) = X(t), Z(t) cannot be a martingale (otherwise this equation

forces X(t) to be a martingale, which we have showed is not the case).

7. (i) Since A is increasing, for ti < ti+1, |A(ti+1)−A(ti)| = A(ti+1)−A(ti). Thus

for all partitions 0 = t0 < t1 < ... < tn = T :

n−1∑
i=0

|A(ti+1)− A(ti)| = A(T )− A(0).

It follows that TVA(T ) = A(T )− A(0).

(ii) Since

|(A1 − A2)(ti+1)− (A1 − A2)(ti)| = |A1(ti+1)− A1(ti)− (A2(ti+1)− A2(ti))|
≤ |A1(ti+1)− A1(ti)|+ |A2(ti+1)− A2(ti)|,

we have

n−1∑
i=0

|(A1 − A2)(ti+1)− (A1 − A2)(ti)| ≤
n−1∑
i=0

|A1(ti+1)− A1(ti)|+
n−1∑
i=0

|A2(ti+1)− A2(ti)|

≤ TVA1(T ) + TVA2(T ).
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Thus by definition of TVA1−A2(T ), we have TVA1−A2(T ) ≤ TVA1(T ) + TVA2(T ).

(iii)

n−1∑
i=0

(G(ti+1)−G(ti))
2 =

n−1∑
i=0

|G(ti+1)−G(ti)||G(ti+1)−G(ti)|

≤
n−1∑
i=0

max
i

(|G(ti+1)−G(ti)|)|G(ti+1)−G(ti)|

= max
i

(|G(ti+1)−G(ti)|)
n−1∑
i=0

|G(ti+1)−G(ti)|.

(iv) From part (iii)

n−1∑
i=0

(G(ti+1)−G(ti))
2 ≤ max

i
(|G(ti+1)−G(ti)|)

n−1∑
i=0

|G(ti+1)−G(ti)|

≤ ρ(max
i

(|ti+1 − ti|))TVG(T ).

As maxi(|ti+1 − ti|) → 0, since TVG(T ) < ∞, the RHS of the above inequality goes

to 0. Thus the quadratic variatio of G is 0.

(v) Since [W (t),W (t)] = t with probability 1, W (t) cannot be of bounded varia-

tion.
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