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1 Introduction

1.1 Another look at the Black-Scholes risk neutral model

Let r > 0 be the constant risk free rate. So far, we’ve considered the following

Black-Scholes model of a stock:

dSt = αStdt+ σStdWt,

where α is a constant and Wt a Brownian motion.

To price any financial derivative based on S, the first question we have to answer is:

what is the risk neutral probability measure? In other words, we want to find a

probability measure P̃ such that e−rtSt is a martingale under P̃ .

We’re used to looking at e−rtSt as the discounted stock price. And the risk neutral

measure is interpreted as the probability such that the discounted stock price is a

martingale.

There is yet a slightly different way of looking at this. If we denote

dNt = rNtdt

N0 = 1,

that is Nt = ert; then Nt is the price of one unit of the money market account. Then

e−rtSt is nothing but the price of the stock expressed in the unit of the money

market account. The risk neutral measure above can be looked at as the probability

such that the price of the stock, expressed in the unit of the money market account,

is a martingale.

Note that there is another asset, which is also a martingale (albeit a trivial one),

when expressed in the unit of the money market account: the money market price
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process itself. It is clear that the price of the money market is 1 when expressed

under its own unit, thus it is a (trivial) martingale.

1.2 Main questions of this chapter

The process Nt in the above is a numéraire, and the risk neutral measure we’ve

studied in the Black-Scholes model is the risk neutral measure associated to the

(domestic) money market numéraire. To re-emphasize, it is the probability measure

such that the price of all non-dividend paying assets are martingales when expressed

in the unit of the domestic money market account.

It is clear that the domestic money market is not the only choice for a numéraire. In

a world where there is a foreign currency, then the foreign money market is also a

possible choice of numéraire. The obvious question is, how do we determine the risk

neutral probability associated with the foreign money market numéraire? More

generally, how do we decide a risk neutral probability associated with any

numéraire, as long as we have a model for that particular numéraire?

Specifically, letting

Dt := e−
∫ t
0 Rudu,

be the discount process, and suppose we have two underlying assets St, Nt so that

both DtNt and DtSt are martingales under the risk neutral measure P̃ . Denoting

S
(N)
t :=

St
Nt

as the “price” of St under the numéraire Nt, we will address the following questions:

a. Does there exist a measure P̃ (N) so that S
(N)
t is a martingale under P̃ (N)? If yes,

we will call P̃ (N) the risk neutral measure associated with the numéraire Nt.

b. What is the dynamics of S
(N)
t under P̃ (N)?

c. How can we relate the pricing of a derivative Vt based on St and Nt under the

risk neutral measure P̃ with the pricing of

V
(N)
t :=

Vt
Nt

under the measure P̃ (N)?

One important thing to note about the choice of numéraire: we shall take only

non-dividend paying assets as numéraire. Another way to put it is that we will only

use asset Nt that satisfies DtNt is a martingale under the risk neutral measure as a
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numéraire. Using this criterion, the domestic currency itself cannot be used as a

numéraire because its value stays constant for all time t.

1.3 New set up of this chapter

Since in this chapter, we will introduce the foreign exchange rate and foreign money

market, it is natural that we are into a multiple risky assets setting. Moreover, the

risk free rate will no longer be a constant r. We will consider a risk-free rate process

R(t) that can be stochastic. The associated discount process is

Dt = exp
{
−
∫ t

0

R(u)du
}
,

and for the domestic money market risk neutral measure P̃ , we will require that

DtSt be a martingale under P̃ . Also, as we use different numéraires, there will be

different risk-neutral measures corresponding to these numéraires. It is important to

clarify which risk-neutral probability we are discussing. For example, we will call

the risk neutral measure associated with the domestic money market the domestic

risk neutral measure. Similarly, we will call the risk neutral measure associated with

the foreign money market the foreign risk neutral measure. In this note, by dollars

we also mean the domestic currency and vice versa.

To prepare for these new set ups, we will review a few details on stochastic calculus

and multi-asset model in the next couple sections.

1.4 Why study change of numéraire

(i) A risk neutral pricing formula when the financial product is quoted in foreign

currency:

Suppose we have a Euro style derivative that pays VT (in foreign currency) at time

T . We want to find the no-arbitrage price V0 of this derivative at time 0. Let Rf (t)

be the foreign interest rate, which is an adapted process. Intuitively, the pricing

formula would be

V0 = Ẽf
[
e−

∫ T
0 Rf (u)duVT

]
,

where Ẽf is a foreign risk neutral measure. How to define this Ẽf so that the above

formula holds is a question that we will address in this chapter.
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(ii) Modeling when the interest rate is random:

When the interest rate is random, the pricing formula for a Euro-style derivative on

a stock St becomes complicated (See formula 9.4.6 in Shreve and the discussion

after). However, when we use a suitable numéraire, which is the zero-coupon bond

in this case, the pricing formula becomes much simpler (formula 9.4.7 in Shreve).

Thus this suggests one should model St under the risk-neutral measure associated

with the zero-coupond bond (called the T-forward measure). Indeed, it turns out

that the correct object to model is the forward price of the stock St ( Section 9.4.3

in Shreve). The point is that our usual choice of numéraire (the domestic money

market) may not be the best choice in all situations. Studying the change of

numéraire suggests other choice of numéraire that would simplify the problem, both

in terms of pricing and in terms of modeling.

2 Markets with multiple risky assets

Itô process models for markets with multiple risky assets are treated in Chapter 5 of

Shreve. This is a brief review.

Consider a market with m risky assets. Prices are given in a domestic currency,

which, for convenience, we will assume to be US dollars. A price model consists of a

probability space (Ω,F ,P), a filtration {F(t); t ≥ 0}, and an m-vector-valued

stochastic process S(t) = (S1(t), . . . , Sm(t)) that represents the asset prices and that

is adapted to the filtration. The goal of modeling is to construct S so that its

statistical behavior approximately matches what is actually observed in the market.

The return of asset i over the small interval of time [t, t+ dt] is given by
dSi(t)

Si(t)
.

From analysis of the historical data or from structural models for the market, the

modeler can generate estimates for all assets of

(i) the mean rate, local of change of asset i: µi(t) dt = E

[
dSi(t)

Si(t)

∣∣∣ F(t)

]
;

(ii) the local (square) volatility of asset i: σ2
i (t) dt = Var

(
dSi(t)

Si(t)

∣∣∣ F(t)

)
; and

(iii) the correlation between the returns of asset i and j, i 6= j;

ρij(t), dt =
Cov

(
dSi(t)
Si(t)

,
dSj(t)

Sj(t)

∣∣∣ F(t)
)

σi(t)σj(t)
.

A nice way to construct models that can fit these informally described parameters,

and for which the price processes are continuous, is to use stochastic differential
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equations driven by a multi-dimensional Brownian motion

W (t) = (W1(t), . . . ,Wd(t)). Suppose we set

dSi(t)

Si(t)
= µi(t) dt+

d∑
k=1

σik(t) dWk(t), 1 ≤ i ≤ m. (1)

Let {F(t); t ≥ 0} be a filtration for W and assume µi(t) and σij(t), t ≥ 0 are

adapted to {F(t); t ≥ 0}. Recall that, by definition, W1, . . . ,Wd are independent

Brownian motions. Then, formally, E[dWi(t)
∣∣ F(t)] = 0, E[(dWi(t))

2
∣∣∣ F(t)] = dt

and E[dWi(t)) dWj(t)
∣∣∣ F(t)] = 0. Thus, for each asset,

E

[
dSi(t)

Si(t)

∣∣∣ F(t)

]
= µi(t) dt+

d∑
k=1

σik(t)E[dWk(t)
∣∣∣ F(t)] = µi(t) dt,

in conformity with (i). On the other hand,

Var

(
dSi(t)

Si(t)

∣∣∣ F(t)

)
= E

[( d∑
k=1

σik(t) dWk(t)

)2 ∣∣∣ F(t)

]

=

[ d∑
k=1

σ2
ik(t)

]
dt. (2)

By a similar calculation

Cov

(
dSi(t)

Si(t)
,
dSj(t)

Sj(t)

∣∣∣ F(t)

)
= E

[ d∑
k=1

σik(t) dWk(t) ·
d∑
l=1

σjl(t) dWl(t)
∣∣∣ F(t)

]

=

[ d∑
k=1

σik(t)σjk(t)

]
dt. (3)

Therefore, we can match the model (1) to the variances and correlations prescribed

in (ii) and (iii) by choosing d and σij(t), 1 ≤ i, j ≤ m, so that

d∑
k=1

σ2
ik(t) = σ2

i (t)

d∑
k=1

σik(t)σjk(t) = ρij(t)σi(t)σj(t)

Because model (1) is flexible enough to capture price means, volatilities, and

correlations in this manner, it is a standard model for multi-asset markets. Usually,
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it is expressed in the more familiar form

dSi(t) = µi(t)Si(t) dt+ Si(t)
d∑

k=1

σik(t) dWk(t). (4)

Example 1. Given σ1(t), σ2(t), and ρ(t) satisfying −1 ≤ ρ(t) ≤ 1, we want to

construct a model with two risky assets so that the volatility process of S1 is σ1(t),

that of S2 is σ2(t) and

ρ(t) =
Cov

(
dS1(t)
S1(t)

, dS2(t)
S2(t)

)
σ1(t)σ2(t)

.

This can be achieved with the model

dS1(t) = µ1(t)S1(t) dt+ σ1(t)S1(t) dW1(t), (5)

dS2(t) = µ2(t)S2(t) dt+ σ2(t)S2(t)

[
ρ(t) dW1(t) +

√
1− ρ2(t) dW2(t)

]
. (6)

Indeed, equation (5) is by itself just the usual model for an asset with volatility

process σ1(t). As for S2,

Var

(
dS2(t)

S2(t)

∣∣∣ F(t)

)
= E

[(
σ2(t)

[
ρ(t) dW1(t) +

√
1− ρ2(t) dW2(t)

])2 ∣∣∣ F(t)

]
= σ2

2(t)
[
ρ2(t)E[(dW1(t))

2] + (1− ρ2(t))E[(dW2(t))
2] + 2ρ(t)

√
1− ρ2(t)E[dW1(t) dW2(t)]

]
= σ2

2(t)
[
ρ2(t) dt+ (1− ρ2(t)) dt

]
= σ2

2(t) dt

Also,

Cov

(
dS1(t)

S1(t)
,
dS2(t)

S2(t)

∣∣∣ F(t)

)
= E

[
σ1(t) dW1(t) ·

(
σ2(t)ρ(t) dW1(t) +

√
1− ρ2(t) dW2(t)

) ∣∣∣ F(t)

]
= σ1(t)σ2(t)

[
ρ(t)E[(dW1(t))

2] +
√

1− ρ2(t)E[dW1(t)dW2(t)]
]

= σ1(t)σ2(t)ρ(t) dt

2.1 Market with foreign currency

Example 1 can be translated into a model for a market with one risky asset and a

tradable foreign currency, which is the important setting we want to discuss in this

chapter.
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Let S(t) be the price in dollars of the risky asset.

Let Q(t) denote the price (in dollars) of one unit of the foreign currency at time t.

Thus Q(t) is the exchange rate. Q can be thought of as a second risky asset; it

fluctuates randomly and these fluctuations may be correlated with those of S (if we

have reason to believe there is no correlation between S and Q we just have to set

ρ(t) = 0 in the model below). Hence the model of Example 1 is appropriate.

Following the notation in Shreve, (9.3.1)-(9.3.2), it shall be written:

dS(t) dt = α(t)S(t) dt+ σ1(t)S(t) dW1(t), (7)

dQ(t) dt = γ(t)Q(t) dt+ σ2(t)Q(t)

[
ρ(t) dW1(t) +

√
1− ρ2(t) dW2(t)

]
. (8)

Suppose that in this market one can purchase a foreign money market account

earning the risk-free rate with one’s foreign cash.

Let Rf (t), t ≥ 0, be the risk-free foreign rate. We will say that one unit of this

money market is an account in which one unit of foreign currency is deposited at

time t = 0 and never withdrawn.

Thus the price at time t in foreign currency of one foreign money market unit is

M f (t) = exp{
∫ t

0

Rf (u) du}.

The price at time t of one foreign money market unit in dollars is

N f (t) = M f (t)Q(t).

If we are investing in this market, we will certainly deposit any idle foreign cash in

the foreign money market; otherwise, we forego the interest we could earn at rate

Rf . Thus it is really more appropriate to write the model for the above market in

terms of S(t) and N f (t). An easy calculation shows that this model is:

dS(t) dt = α(t)S(t) dt+ σ1(t)S(t) dW1(t), (9)

dN f (t) dt =
[
γ(t) +Rf (t)

]
N f (t) dt

+ σ2(t)N
f (t)

[
ρ(t) dW1(t) +

√
1− ρ2(t) dW2(t)

]
. (10)

Remarks:
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(i) Both equations (9), (10) are expressed in terms of dollars, not the foreign

currency; and N f is, again, the price of the foreign money market in dollars.

(ii) Both equations (9), (10) are not written in risk neutral measure setting.

(iii) Important: Even though Q(t) and N f (t) are closely related, there is one crucial

difference between them: under the domestic risk neutral measure P̃ , D(t)Q(t) is

not a martingale while D(t)N f (t) is a martingale. The reason is because a unit of

foreign currency (without being invested into the foreign money market) loses its

value over time at the rate Rf (t). See also section (4.1) for more discussion.

3 A review of multi-dimensional stochastic

calculus

This is more review material, collected for convenience of reference.

3.1 Multi-dimensional stochastic integration

Let W (t) = (W1(t), . . . ,Wd(t)) be a d-dimensional Brownian motion, and let

{F(t); t ≥ 0} be a filtration for W . Let the vector-valued process

Θ(t) = (θ1(t), . . . , θ(t)) be adapted to {F(t); t ≥ 0}. For d-dimensional vectors, we

use x · y =
∑d

k=1 xiyi to denote the inner product and ‖x‖ =

√√√√ d∑
k=1

x2k =
√
x · x to

denote the norm of a vector. Accordingly, we use the following convenient notation:∫ t

0

Θ(u) · dW (u) =
d∑

k=1

∫ t

0

θk(u) dWk(u).

For example, if we define σi(t) = (σi1(t), . . . , σid(t)), the equation for Si(t) in (4) can

be written

dSi(t) = µi(t)Si(t) dt+ Si(t)
[
σi(t) · dW (t)

]
.
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3.2 Linear stochastic differential equations

The following general fact is useful. The solution to the stochastic differential

equation dX(t) = µ(t)X(t) dt+X(t)[Θ(t) · dW (t)] is

X(t) = X(0) exp{
∫ t

0

Θ(u) · dW (u)− 1

2

∫ t

0

‖Θ(u)‖2 du+

∫ t

0

µ(u) du}. (11)

To show this expression is a solution requires just an application of the

multi-dimensional Itô rule. We will not show it is the unique solution; this is done

in the theory of stochastic differential equations.

A simple calculation also shows that X solves

dX(t) = µ(t)X(t) dt+X(t)[Θ(t) · dW (t)] (12)

if and only if

d
[
e−

∫ t
0 µ(u) duX(t)

]
=
[
e−

∫ t
0 µ(u) duX(t)

]
[Θ(t) · dW (t)] (13)

We will pass between these two equivalent equations frequently and without

comment.

3.3 Girsanov’s theorem

Let

Z(t) exp{−
∫ t

0

Θ(u) · dW (u)− 1

2

∫ t

0

‖Θ(u)‖2 du}.

If it is assumed that E[Z(T )] = 1, then

PZ(A) = E[1AZ(T )], A ∈ F ,

defines a new probability measure. The multi-dimensional Girsanov theorem says

that

WZ(t) = W (t) +

∫ t

0

Θ(u) du =

(
W1(t) +

∫ t

0

θ1(u) du, . . . ,Wd(t) +

∫ t

0

θd(u) du

)
is a Brownian motion up to time T under PZ .
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3.4 What happens when we use a general FW
t martingale Zt

in the change of measure fomula

Suppose that Z(t) is a F(t) martingale and Z(0) = 1. It follows that

E[Z(T )] = Z(0) = 1. We can still define a new measure

PZ(A) = E[1AZ(T )], A ∈ F ,

as above (the measure PZ is well-defined). However, this is a bit abstract. We did

not impose any dynamics on Zt. But we still want to learn, for example, the

distribution of W (t) under PZ . It turns out that when the filtration is generated by

the Brownian motion, then the martingale representation will give us information

about the dynamics of Zt and the Girsanov’s theorem will tell us about the behavior

of Wt under PZ .

(i) Martingale representation:

Assume now that the filtration {F(t); t ≥ 0} is generated by W . Under this

important assumption, if Z(t) is a martingale with respect to {F(t); t ≥ 0} under

measure P, then the martingale representation theorem says there exists an

adapted, vector valued process Γ(t) = (γ1(t), . . . , γd(t)) such that

Z(t) = Z(0) +

∫ t

0

Γ(u) · dW (t).

Suppose that Z(0) = 1 and that Z(t) > 0 for all 0 ≤ t ≤ T almost surely. By

defining ν(t) = (ν1(t), . . . , νd(t)) =
1

Z(t)
Γ(t), one can write

Z(t) = 1 +

∫ t

0

Z(u)
1

Z(u)
Γ(u) · dW (u) = 1 +

∫ t

0

Z(u)[ν(u) · dW (u)].

It then follows from equation (11) that

Z(t) = exp{
∫ t

0

ν(u) · dW (u)− 1

2

∫ t

0

‖ν(u)‖2 du}. (14)

(ii) Girsanov’s theorem:

By applying Girsanov’s theorem to this expression we obtain:

Theorem 1. Suppose that {F(t); t ≥ 0} is generated by W and that Z(t) is an

{F(t); t ≥ 0}-martingale under P such that E[Z(t)] = 1 for all t. Define

PZ(A) = E[1AZ(T )], A ∈ F .
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Suppose in addition that Z(T ) > 0 almost surely. Then there is an

{F(t); t ≥ 0}-adapted process ν(t) = (ν1(t), . . . , νd(t)) so that equation (14) holds,

and for this process,

WZ(t) = W (t)−
∫ t

0

ν(u) du is a Brownian motion up to time T under PZ.

The only point we have not justified (and will not) is that if Z(T ) > 0 almost surely,

then Z(t) > 0 for all t ≤ T almost surely.

This theorem is essentially Theorem 9.2.1 in Shreve; we have just stated it more

generally. It is one of the important theorems in this Chapter. Later on, we will

replace Zt with DtNt, where Dt is the discounted process mentioned above and Nt

the actual numéraire we want to study (for example, the domestic or foreign money

market). Then PZ is the risk neutral measure associated with that numéraire. And

this theorem tells us how the distribution of the Brownian motion changes under

this risk neutral measure. Note that at this level, the Theorem is a bit abstract: it

only tells us that the process ν exists—it does not say how to find ν. In

applications, one can often determine ν from other assumptions, as we shall see in

studying numéraires.

4 The domestic risk-neutral measure

Consider the model for S(t) = (S1(t), . . . , Sm(t)) given in equation (4). Assume

henceforth that {F(t); t ≥ 0} is the filtration generated by W . This allows us to

employ the martingale representation theorem.

Add also to the model a risk-free rate process R(t), t ≥ 0, which is assumed to be

non-negative and adapted to {F(t); t ≥ 0}. The associated discount process is

denoted by D(t) = exp{−
∫ t
0
R(u) du}.

The price of Si, in terms of the domesitc money market, is DtSi(t). We have the

following important definition:

Definition 4.1. The domestic risk-neutral measure for the model (4) is the

probability measure P̃ such that DtSi(t) is a martingale under P̃ , for all i.

The model (4) is equivalent to

d [D(t)Si(t)] = (µi(t)−R(t))D(t)Si(t) dt+D(t)Si(t)
d∑

k=1

σik(t) dWk(t), 1 ≤ i ≤ m,

(15)
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as an easy calculation shows; (compare to equations (12) and (13)). We are

interested in finding a domestic risk-neutral measure, assuming one exists. The

essential ingredient is provided in the following theorem, which reviews material

from Chapter 5 of Shreve. This review is useful because the procedure of finding the

risk-neutral measure is a template for changing measure for numéraires.

Theorem 2. Assume that there is a risk-neutral measure P̃ for model (15) given by

P̃(A) = E[1AZ], where Z is an F(T ) measurable random variable for which

E[Z] = 1 and P(Z > 0) = 1. Then

Z = exp

{
−
∫ T

0

Θ(u) · dW (u)− 1

2

∫ T

0

‖Θ(u)‖2 du
}
, (16)

where Θ(t) = (θ1(t), . . . , θd(t)) is an {F(t); t ≥ 0}-adapted process that is a solution

of the market price of risk equation
σ11(t) σ12(t) · · · σ1d(t)

σ21(t) σ22(t) · · · σ2d(t)
...

...
...

σm1(t) σm2(t) · · · σmd(t)

 ·


θ1(t)

θ2(t)
...

θd(t)

 =


µ1(t)−R(t)

µ2(t)−R(t)
...

µm(t)−R(t)

 , 0 ≤ t ≤ T.

(17)

If this equation has a unique solution, the risk-neutral measure is unique. Under P̃,

W̃ (t) =

(
W1(t) +

∫ t

0

θ1(u) du, . . . ,Wd(t) +

∫ t

0

θd(u) du

)
(18)

is a Brownian motion up to time t.

Proof: The process Z(t) = E[Z
∣∣ F(t)] is a martingale and since Z is

F(T )-measurable, Z(T ) = Z. By Theorem 1, there is an adapted process ν such

that Z(t) = exp{
∫ t
0
ν(u) · dW (u)− 1

2

∫ t
0
‖ν(u)‖2 du}. Equation (16) then follows if

we set Θ(t) = −ν(t). By Girsanov, the process W̃ defined in equation (18) is a

Brownian motion up to time T under P̃. From (18), dWi(t) = dW̃i(t)− θi(t) dt. By

using this substitution in the equation (15) for D(t)si(t),

d [D(t)Si(t)] =

(
µi(t)−R(t)−

d∑
k=1

σik(t)θk(t)

)
D(t)Si(t) dt+D(t)Si(t)

d∑
k=1

σik(t) dW̃k(t).

(19)

This must be a martingale under the risk-neutral measure P̃ for all i; that is what it

means for P̃ to be a risk-neutral measure. Thus the ‘dt’ term in (19) must be 0 for
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each i:
d∑

k=1

σik(t)θk(t) = µi(t)−R(t), 1 ≤ i ≤ m.

The matrix form of these equations is just equation (17) of the theorem statement.

This completes the proof. �

As a consequence of the proof, the stochastic differential equation model for the

discounted prices under the risk-neutral measure is

d [D(t)Si(t)] = D(t)Si(t)
d∑

k=1

σik(t) dW̃k(t), 1 ≤ i ≤ m.

Remarks:

1) The equations summarized by (17) are called the market price of risk equations.

The difference µi(t)−R(t) can be regarded as a risk premium; it is the amount by

which the expected rate of gain of the asset is larger than the risk-free rate.

Investors typically demand µi(t)−R(t) to be positive before investing in i, to make

up for the fact that the investment carries risk. The expression

µi(t)−R(t) =
∑d

k=1 σik(t)θk(t) may be thought of as a decomposition of

µi(t)−R(t) into a sum contributions from each source of random fluctations of

Si(t); θk(t) is effectively a price per unit of volatility of the contribution σik(t)θk(t).

2. Theorem 2 implies that a necessary condition for the existence of a risk-neutral

measure is that (17) must have a solution Θ(t). However, having a solution to (17)

is not by itself a sufficient condition for the existence of a risk neutral measure. If

Θ(t) is a solution and Z = exp
{
−
∫ T
0

Θ(u) · dW (u)− 1
2

∫ T
0
‖Θ(u)‖2 du

}
, one must

check in addition that E[Z] = 1, in order that P̃Z define a probability measure.

4.1 Model with foreign money market under the domestic

risk-neutral measure

Consider the model for a risky asset, a foreign currency and a foreign money market

introduced above in Section (2.1). Now add a domestic money market, with

risk-free rate R(t), t ≥ 0.
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Recall that the price at time t in foreign currency of one foreign money market unit

is

M f (t) = exp{
∫ t

0

Rf (u) du}.

Given the exchange rate Q(t), the price in dollars of a unit of the foreign money

market is

N f (t) = M f (t)Q(t).

So there are 2 risky assets in this model:

dS(t) dt = α(t)S(t) dt+ σ1(t)S(t) dW1(t),

dN f (t) dt =
[
γ(t) +Rf (t)

]
N f (t) dt

+N f (t)σ2(t)

[
ρ(t) dW1(t) +

√
1− ρ2(t) dW2(t)

]
.

As definition (4.1) states, a domestic risk-neutral measure for this model must make

D(t)S(t) and D(t)N f (t) = D(t)M f (t)Q(t) into martingales.

Equation (17) in this case is(
σ1(t) 0

σ2(t)ρ(t) σ2(t)
√

1− ρ2(t)

)(
θ1(t)

θ2(t)

)
=

(
α(t)−R(t)

γ(t) +Rf (t)−R(t)

)
(20)

Assume there is a unique, risk-neutral measure for (9)–(10). By Theorem 2 equation

(20) must then have a unique solution. Indeed it will, if σ1(t) > 0, σ2(t) > 0, and

−1 < ρ(t) < 1 for all t with probability one. This solution is

θ1(t) =
α(t)−R(t)

σ1(t)
, θ2(t) =

1

σ2(t)
√

1− ρ2(t)

[
γ(t)+Rf (t)−R(t)−σ2(t)ρ(t)θ1(t)

]
.

Let W̃ (t) = (W1(t) +
∫ t
0
θ1(u) du,W2(t) +

∫ t
0
θ2(u) du). Then one easily derives

dS(t) = R(t)S(t) dt+ σ1(t)S(t) dW̃1(t)

dN f (t) = R(t)N f (t) dt+N f (t)σ2(t)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
.

Remark 4.2. This is similar to the situation in the classical Black-Scholes model,

in which we consider 2 assets: the (domestic) money market and the stock St. The

only difference is in the Black-Scholes model, the dynamics of the domestic money

market does not have a Brownian motion component:

dN(t) = R(t)N(t)dt.

Also note that the Brownian motion component of the foreign money market comes

from the dynamics of the exchange rate Q(t), not from the dynamics of M f (t) itself.
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Remark 4.3. We cannot require the foreign exchange rate Q(t) to satisfy the

condition D(t)Q(t) being a martingale under the domestic risk neutral measure P̃ .

This is because Q(t) is the price of the foreign currency, which loses value over time

if not invested into the foreign money market. In fact if D(t)Q(t) were a martingale

under the domestic risk neutral measure and the foreign interest rate is not

identically 0 then we would have an arbitrage opportunity, as the following lemma

shows.

Lemma 4.4. Suppose that D(t)Q(t) is a martingale under P̃ and Rf (t) is not

identically 0. Then an arbitrage opportunity exists.

Proof. Consider a contract that pays 1 unit of foreign currency at time T . The

value of this contract at time 0 is

V0 = Ẽ(D(T )Q(T )).

By the assumption that D(t)Q(t) is a martingale under P̃ , we have V0 = Q0. But

this implies an arbitrage opportunity since at time 0, we can sell such a contract for

Q(0), use Q(0) to buy 1 unit of foreign currency and invest in the foreign money

market. At time T we would have eR
f (t)dt in units of foreign currency which is larger

than 1 since Rf (t) is not identically 0. We can then use 1 foreign currency to close

out the contract and make a riskless profit.

5 Numéraires

Up to now, we have always assumed that prices were given in units of a fixed,

domestic currency, which for concreteness we take to be US dollars. One could

choose other units to measure prices, and it is often convenient, even necessary, to

do so.

Let the price in dollars of some given asset or financial instrument be denoted N(t).

Let S(t) be the price in dollars of any other asset. Then the ratio

S(N) =
S(t)

N(t)

is the price of the asset corresponding to S in units of the asset corresponding to N .

In this situation, N is referred as the numéraire. The asset used for the numéraire

could in principle be almost anything— a risky asset in the market, a foreign
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currency, a money market account, an index based on the market, or the price of a

derivative.

Example 5.1. Let R(t) denote the (domestic) risk-free rate. It is common to think

of R(t) as the rate available from a money market account which can be added to or

withdrawn from at will. One unit of a money market account is defined to be the

value of $1 invested at time t = 0 and left in the account. This value in dollars at

time t is M(t) = exp{
∫ t
0
R(u) du}. If S(t) is the price in dollars of an asset at time

t, its price in units of the money market is

S(t)

exp{
∫ t
0
R(u) du}

= e−
∫ t
0 R(u) duS(t).

This is just the discounted price, or present value, of S(t). So we can think of

discounting as an example of pricing in money market account units.

Example 5.2. (Non-example) Consider the market model studied in Examples 2

and 3. This consists of an asset with price (in dollars) S(t), an exchange rate Q(t)

(dollars per unit of foreign currency), a domestic risk-free rate R(t), and a foreign

risk-free rate Rf (t). Let M(t) = exp{
∫ t
0
R(u) du}.

There are many choices for denominating prices. A tempting example is to use the

foreign currency as the numéraire. In this case, S(Q)(t) = S(t)/Q(t) is the price of

the asset in units of the foreign currency, while a unit of the domestic money market

in the foreign currency is M (Q)(t) = M(t)/Q(t). However, this should not be done,

because under the domestic risk neutral measure, Q(t) is NOT a martingale (See the

discussion in section (4.1) and in section (5.1)). This is also consistent with our

remark at the beginning of this note that we will only use non-dividend paying asset

as numéraire. Q(t), as denoting the price of the foreign currency, is a dividend

paying asset with dividend rate Rf .

Example 5.3. One could also use as numéraire the value in dollars

N f (t) = M f (t)Q(t) of a unit of the foreign money market. Then, in this unit

S(Nf )(t) =
S(t)

M f (t)Q(t)
= e−

∫ t
0 R

f (u) duS(Q)(t).

is the price of the asset, and

Q(t)

M f (t)Q(t)
= e−

∫ t
0 R

f (u) du

is the value of a unit of foreign currency.
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5.1 Change of measure for change of numéraire

Risk-neutral pricing theory should not depend on the unit of price. If there is a

risk-neutral measure when the price is in dollars, then there ought to be a

risk-neutral measure P̃N for pricing with respect to N , for any numéraire N . This

section addresses how to find P̃N .

We will always start out with a risk-neutral model for S(t) = (S1(t), . . . , Sd(t)),

given on a probability space (Ω,F , P̃), with filtration {F(t); t ≥ 0}, and a risk-free

(domestic) rate R(t), t ≥ 0. As usual, D(t) = exp{−
∫ t
0
R(u) , du} denotes the

discount factor. Thus we can also see this as starting out with our default

probability measure as the domestic risk neutral measure.

Let N(t), t ≥ 0, be a strictly positive, numéraire process. Since N(t) represents a

price and the model is risk-neutral, D(t)N(t), t ≥ 0, is a martingale. In particular,

Ẽ [D(T )N(T )] = N(0), for any T ≥ 0. (21)

Let T be the time horizon for which we want to study the market. It follows that

P̃(N)(A) = Ẽ

[
1A
D(T )N(T )

N(0)

]
defines a new probability measure.

Theorem 3. P̃(N) is a risk-neutral measure for pricing with respect to N in the

following sense: for each i, 1 ≤ i ≤ m, S
(N)
i (t) is a martingale with respect to

{F(t); t ≥ 0} up to time T under P̃(N).

Proof: The proof is an application of the formula for computing conditional

expectations under a change of measure. Shreve states a special case in Lemma

5.2.2. The formula implies that for any sub-σ-algebra G,

Ẽ(N)
[
X
∣∣∣ G] =

Ẽ
[
X D(T )N(T )

N(0)

∣∣∣ G]
Ẽ
[
D(T )N(T )
N(0)

∣∣∣ G] . (22)

In this formula Ẽ(N) represents expectation with respect to P̃(N). Apply equation

(22) with X = S
(N)
i (T ) and G = F(t). The result is

Ẽ(N)
[
S
(N)
i (T )

∣∣∣ F(t)
]

=
Ẽ
[
Si(T )
N(T )

D(T )N(T )
N(0)

∣∣∣ F(t)
]

Ẽ
[
D(T )N(T )
N(0)

∣∣∣ F(t)
] =

Ẽ
[
D(T )Si(T )

∣∣∣ F(t)
]

Ẽ
[
D(T )N(T )

∣∣∣ F(t)
] .
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But D(u)Si(u) and D(u)N(u) are both martingales under P̃, and so

Ẽ
[
D(T )Si(T )

∣∣∣ F(t)
]

= D(t)Si(t) and Ẽ
[
D(T )N(T )

∣∣∣ F(t)
]

= D(t)N(t). Hence

Ẽ(N)
[
S
(N)
i (T )

∣∣∣ F(t)
]

=
D(t)Si(t)

D(t)N(t)
=
Si(t)

N(t)
= S

(N)
i (t).

This shows that S
(N)
i (u), 0 ≤ u ≤ T , is a martingale under P̃(N). �

Remark 5.4. Intuitively, the foreign risk neutral measure P̃Nf
should satisfy the

condition that the discounted (under the foreign interest rate) risky asset price

quoted in the foreign currency is a martingale under P̃Nf . This is indeed true in our

framework: Let St be the dynamics of the risky asset quoted in dollars. Then St

Qt
is

the price of the risky asset quoted in foreign currency. By our construction,

Df (t)
St
Qt

=
St

N f (t)
= S(Nf )(t)

is a martingale under P̃Nf .

5.2 Pricing under a change of numéraire

Suppose we have a financial product that pays V (T ) dollars at time T . Then the

(domestic) risk neutral price of this product at time t is

V (t) = Ẽ
[D(T )

D(t)
V (T )|F(t)

]
( since D(t)V (t) is a martingale under P̃ ).

What is the corresponding pricing formula when V (t) is denoted under the unit of a

numéraire N(t)? Arguing similar to the proof of Theorem (3) we will see that

V (t)

N(t)
= Ẽ(N)

[V (T )

N(T )
|F(t)

]
.

Thus denoting V (N)(t) := V (t)
N(t)

we have

V (N)(t) = Ẽ(N)
[
V (N)(T )|F(t)

]
.

This equation is meaningful by itself. It says that the price in the unit of numéraire

N(t) of the financial product is the conditional expectation under the corresponding
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risk neutral measure of the terminal value, also expressed in the same unit of

numéraire. Note that the domestic risk neutral pricing formula is a special case of

this when we use N(t) = 1
D(t)

, the domestic money market account.

It is also important to remember that here V (t) is again in dollars, or the domestic

currency, and N(t) is the price in dollars of the numéraire of interest. To see a

consequence of this, see the below section on pricing a financial product quoted in

foreign currency.

5.3 Effect of change of numéraire

In section V , no assumptions were made on the nature of the price model. In this

section, we specialize to the multi-asset model stated above and written under the

risk-neutral measure as

d [D(t)Si(t)] = D(t)Si(t)
d∑

k=1

σik(t) dW̃k(t), 1 ≤ i ≤ m. (23)

In addition, we impose the assumption that {F(t); t ≥ 0} is generated by W̃ .

Let N be a numéraire process and P̃(N) the risk-neutral measure for N . W̃ is no

longer a Brownian motion under P̃(N). The object of this section is use Theorem 1

and Girsanov’s theorem to identify an appropriate Brownian motion W̃ (N)(t) under

P̃(N) and to rewrite equation (23) using it.

Now D(t)N(t) is a martingale under P̃, and N(t), as a numéraire, is strictly positive

for all t. So Theorem 1 implies there is a process ν so that

D(t)N(t)

N(0)
= exp{

∫ t

0

ν(u) · dW̃ (u)− 1

2

∫ t

0

‖ν(u)‖2 du} (24)

Since P̃(N)(A) = Ẽ[1A
D(T )N(T )
N(0)

], it also follows from Theorem 1 that

W̃ (n)(t) = W̃ (t)−
∫ t
0
ν(u) du is a Brownian motion under P̃(N) up to time T .

Define σi(t) = (σi1(t), . . . , σid(t)), so that (23) may be written compactly as

dD(t)Si(t) = D(t)Si(t)
[
σi(t) · dW̃ (t)

]
.

By (11), the solution to this equation is

D(t)Si(t) = Si(0) exp{
∫ t

0

σi(u) · dW̃ (u)− 1

2

∫ t

0

‖σi(u)‖2 du}.
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Thus, using the representation (24) for D(t)N(t),

S
(N)
i (t) =

Si(t)

N(t)
=
D(t)Si(t)

D(t)N(t)

=
Si(0)

N(0)
exp{

∫ t

0

[σi(u)− ν(u)] · dW̃ (u)− 1

2

∫ t

0

(‖σi(u)‖2 − ‖ν(u)‖2) du}

Replace dW̃ in this expression by dW̃ (N)(t) + ν(t) dt. Note first that

exp{
∫ t

0

[σi(u)− ν(u)] · [dW̃ (N)(u) + ν(u) du]

=

∫ t

0

[σi(u)− ν(u)] · dW̃ (N)(u) +

∫ t

0

σi(u) · ν(u) du−
∫ t

0

ν(u) · ν(u) du

=

∫ t

0

[σi(u)− ν(u)] · dW̃ (N)(u) +

∫ t

0

σi(u) · ν(u) du−
∫ t

0

‖ν(u)‖2 du

It follows that

S
(N)
i (t)

=
Si(0)

N(0)
exp{

∫ t

0

[σi(u)− ν(u)] · dW̃ (N)(u)− 1

2

∫ t

0

(‖σi(u)‖2 − 2σi(u) · ν(u) + ‖ν(u)‖2) du}.

But

‖σi(u)− ν(u)‖2 = [σi(u)− ν(u)] · [σi(u)− ν(u)]

= ‖σi(u)‖2 − 2σi(u) · ν(u) + ‖ν(u)‖2)

Thus

S
(N)
i (t) =

Si(0)

N(0)
exp{

∫ t

0

[σi(u)− ν(u)] · dW̃ (N)(u)− 1

2

∫ t

0

‖σi(u)− ν(u)‖2 du}

It follows from equation (11) that

dS
(N)
i (t) = S

(N)
i (t)[σi(t)−ν(t)]·dW̃ (N)(t) = S

(N)
i (t)

d∑
k=1

(σik(t)−νk(t)) dW̃ (N)
k (t) (25)

This is an interesting equation because it shows exactly how the volatility of S
(N)
i

differs from that of Si. Of course, we expect them to differ because N itself has

volatility and S
(N)
i (t) = Si(t)/N(t). In fact, from the expression (24) and from (11)

one finds that

dN(t) = R(t)N(t) dt+
d∑

k=1

νk(t) dW̃k(t),

so νk(t) is the component of the volatility of N at time t due to W̃k.
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6 Foreign risk-neutral measure

The discussion of the previous section established the existence of ν, but not a

formula for it. In examples it can be found explicitly if the numéraire is defined

explicitly.

Consider the example of a market with an asset and foreign currency formulated

above. Its risk neutral version was derived in Example 3 and is

dS(t) = R(t)S(t) dt+ σ1(t)S(t) dW̃1(t) (26)

dN f (t) = R(t)N f (t) dt+N f (t)σ2(t)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
. (27)

Recall that N f (t) = exp{
∫ t
0
Rf (u) du}Q(t) is the dollar value of one unit of the

foreign money market account. We shall use it as the numéraire in this section.

The domestic discount factor is D(t) = exp{−
∫ t
0
R(u) du}.

From (27),

d[D(t)N f (t)] = D(t)N f (t)σ2(t)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
= D(t)N f (t)

(
σ2(t)ρ(t), σ2(t)

√
1− ρ2(t)

)
· dW̃ (t).

Note: D(0)N f (0) = Q(0). It follows from (11) that

D(t)N f (t) = Q(0) exp{
∫ t

0

ν(u) · dW̃ (t)− 1

2

∫ t

0

‖ν(u)‖2 du},

where ν(t) =
(
σ2(t)ρ(t), σ2(t)

√
1− ρ2(t)

)
.

The risk-neutral measure for denominating prices in units of the foreign money

market up to time T , or the foreign risk neutral measure in short, is therefore

defined by

P̃(Nf )(A) = Ẽ

[
1A
D(T )N f (T )

Q(0)

]
= Ẽ

[
1A exp{

∫ t

0

ν(u) · dW̃ (t)− 1

2

∫ t

0

‖ν(u)‖2 du}
]
,

and

W̃ (Nf )(t) =

(
W̃1(t)−

∫ t

0

σ2(u)ρ(u) du, W̃2(t)−
∫ t

0

σ2(u)
√

1− ρ2(u) du

)
is a Brownian motion up to time T under P̃(Nf ).

The price of the asset with respect to numéraire N f (t) is S(Nf )(t) = S(t)/N f (t). It

is the present value of the asset price in units of the foreign currency (or just simply
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the value of the asset price at time t in units of the foreign money market). It is a

martingale with respect to P̃(Nf ). By applying (25),

dS(Nf )(t) = S(Nf )(t)
[
(σ1(t)− σ2(t)ρ(t)) dW̃

(Nf )
1 (t)− σ2(t)

√
1− ρ2(t) dW̃ (Nf )

2 (t)
]
, t ≤ T.

Because W̃2 contributes to the volatility of N f (t), dW̃
(Nf )
2 (t) contributes to the

volatility of S(Nf )(t).

6.1 Pricing a financial product quoted in foreign currency

Suppose we have a financial product that pays V (T ) := Φ(S·, Q·) units of foreign

currency at time T . Then we have the following lemma

Lemma 6.1. The risk neutral price (in foreign currency) of the above product is

V (t) = Ẽ(Nf )
(
e−

∫ T
t Rf (u)duV (T )

∣∣∣F(t)
)
.

Note that the result is very intuitive: to price a financial product quoted in foreign

currency, we take conditional expectation under the foreign risk neutral measure,

discounted under the foreign interest rate.

Proof. The proof of this Lemma relies on the result of Section (5.2). Using the

foreign money market N f (t) as numéraire, the value of V (T ) denoted in the units of

N f (T ) is

V (T )Q(T )

N f (T )
.

To price V (T ) using N f (T ) as numéraire we need to use P̃ (Nf ). Thus we have

V (Nf )(t) = Ẽ(Nf )
[V (T )Q(T )

N f (T )

∣∣∣F(t)
]
.

Note that N f (T ) = M f (T )Q(T ), and V (Nf )(t) = V (t)
Mf (t)

(be careful to distinguish

V (t) here and the V (t) in Section (5.2). The V (t) here is the risk neutral price in

foreign currency. The V (t) in Section (5.2) is the risk neutral price in domestic

currency. They are unrelated).

After simplifying, we get

V (t)

M f (t)
= Ẽ(Nf )

[ V (T )

M f (T )

∣∣∣F(t)
]
.
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Since M f (t) = e
∫ t
0 R

f (u)du the conclusion follows.

Remark: Alternatively, the risk neutral price (in dollars) of this financial product is

Ṽt = Ẽ
[D(T )V (T )Q(T )

D(t)

∣∣∣F(t)
]
.

But we have

Ẽ
[D(T )V (T )Q(T )

D(t)

∣∣∣F(t)
]

= Ẽ(Nf )
[D(T )V (T )Q(T )

D(t)

Q(t)M f (t)D(t)

Q(T )M f (T )D(T )

∣∣∣F(t)
]

= Ẽ(Nf )
[Df (T )V (T )Q(t)

Df (t)

∣∣∣F(t)
]
.

Thus dividing by Q(t) on both sides gives

Df (t)V (t) = Ẽ(Nf )
[
Df (T )V (T )

∣∣∣F(t)
]
.

7 The exchange rate

Recall the exchange rate model. There is asset price S(t), foreign exchange rate

Q(t), domestic money market rate R(t) and foreign money market rate Rf (t). Recall

N f (t) = exp{
∫ t

0

Rf (u) du}Q(t) (28)

is the dollar value of one unit of the foreign money market account. The risk-neutral

model when prices are in dollars is

dS(t) = R(t)S(t) dt+ σ1(t)S(t) dW̃1(t)

dN f (t) = R(t)N f (t) dt+N f (t)σ2(t)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
(29)

The risk-neutral measure P̃(Nf ) when prices are denominated using N f as numéraire

is given in Shreve, page 386, equation (9.3.17) and in the previous set of lecture

notes. Here, we make some remarks concerning the exchange rate process Q(t).

7.1 The exchange rate under the domestic risk-neutral

measure

It follows from equations (28), (29) that

dQ(t) = [R(t)−Rf (t)]Q(t) dt+Q(t)σ2(t)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
(30)
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When dealing with Q alone it is convenient to write this in a simpler form. Define

W̃3(t) =

∫ t

0

[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
.

Observe that

[dW̃3(t)]
2 =

[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]2
= ρ2(t) dt+ (1− ρ2(t)) dt = dt.

Then by Itô’s rule,

W̃ 2
3 (t) =

∫ t

0

W̃3(u)
[
ρ(t) dW̃1(t) +

√
1− ρ2(t) dW̃2(t)

]
+ t.

Hence W̃ 2
3 (t)− t is a martingale. W̃3(t) is also a continuous martingale starting at 0,

and so Lévy’s theorem implies that W̃3(t) is itself a Brownian motion. Using W̃3,

dQ(t) = [R(t)−Rf (t)]Q(t) dt+ σ2(t)Q(t) dW̃3(t). (31)

Remark: The foreign exchange rate behaves exactly like a risky asset that pays

dividents at rate Rf (t). Equation (31) is the same as equation (5.5.6) in Shreve for

a dividend-paying asset if A(t) in that equation is replaced by Rf (t).

7.2 Black-Scholes formula for a Call option on the exchange

rate

Let σ2(t) = σ2 be constant, and also let R(t) = r and Rf (t) = rf be constant. Then

equation (31) becomes

dQ(t) =
[
r − rf

]
Q(t) dt+ σ2Q(t) dW̃3(t). (32)

The solution to this equation is

Q(t) = Q(0) exp{σ2W̃3(t) + (r − rf − 1

2
σ2)t}. (33)

We can look at Q(t) (from a computational point of view) as the Black-Scholes price

of an asset following the geometric Brownian motion model, when the volatility is

σ2 and the risk free rate is rf − r.
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The fact that Q(t) is a classical Black-Scholes price gives immediate formulas for

options on the exchange rate in the constant coefficient case, which we will develop

below.

Suppose that the risk free rate is r and under P̃ , a stock St has dynamics:

dSt = rStdt+ σStdW̃t.

Let C(T − t, x,K, r, σ) the price of at time t of a European call on S with strike K,

conditioned on St = x. That is

C(T − t, x,K, r, σ) = Ẽ
(
e−r(T−t)(ST −K)+

∣∣∣St = x
)
.

Then the Black-Scholes formula for C(T − t, x,K, r, σ) is

C(T − t, x,K, r, σ) = e−r(T−t)Ẽ

[(
xeσW̃ (T−t))+(r−σ2/2)(T−t) −K

)+]
= xN

(
ln(x/K) + (r + σ2

2
)(T − t)

σ
√
T − t

)

−Ke−r(T−t)N

(
ln(x/K) + (r − σ2

2
)(T − t)

σ
√
T − t

)
Consider now a European call option on Q(T ) at strike K, for the model of (33).

This can also be looked at as a call option with strike K on a unit of foreign

currency, quoted in domestic currency.

According to risk-neutral pricing, the value of this option at time t is

V (t) = e−r(T−t)Ẽ
[
(Q(T )−K)+

∣∣ F(t)
]

= e−r
f (T−t)e−(r−rf )(T−t)Ẽ

[
(Q(T )−K)+

∣∣ Q(t)
]
.

But evaluating e−(r−rf )(T−t)Ẽ
[
(Q(T )−K)+

∣∣ Q(t)
]

is exactly the same as

evaluating the price of a European call when the risk free rate is r − rf and the

volatility is σ2. Therefore,

V (t) = e−r
f (T−t)C(T − t, Q(t), K, r − rf , σ2).

This is called the Garman-Kohlhagen formula. You can also recover this formula

from the formula (5.5.12) in Shreve for the price of a call on dividend-paying asset.

Just replace a in this formula by rf .
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7.3 The exchange rate from the foreign currency viewpoint

Starting with the model (28)-(29), suppose we use the foreign currency money

market N f (t) as the numéraire. In the previous lecture we found that

W̃ (Nf )(t) = (W̃1(t)−
∫ t

0

σ2(u)ρ(u) du, W̃2(t)−
∫ t

0

σ2(u)
√

1− ρ2(u) du)

is a Brownian motion under P̃(Nf ) and we showed

dS(Nf )(t) = S(Nf )(t)
[
(σ1(t)− σ2(u)ρ(u)) dW̃

(Nf )
1 (t)− σ2(t)

√
1− ρ2(t) dW̃ (Nf )

2 (t)
]

To completely describe the model from the viewpoint of the foreign currency we

should also look at the dollar to foreign currency exchange rate 1/Q(t), which is the

value of one dollar in units of the foreign currency. The equation for this should have

a form symmetrical to the equation (32) for Q(t) when units are in dollars. Indeed,

d

[
1

Q(t)

]
= [Rf (t)−R(t)]

1

Q(t)
dt−σ2(t)

1

Q(t)

[
ρ(u) dW̃

(Nf )
1 (t) +

√
1− ρ2(t) dW̃ (Nf )

2 (t)
]
.

(34)

This may be verified from Itô’s rule, but one can see why it must be correct by the

following reasoning. From the perspective of numéraire N f , Rf (t) is the domestic

risk free rate and R(t) is the domestic rate, so, where R(t)−Rf (t) appears in (31),

Rf (t)−R(t) appears in (34). The volatility terms are essentially the same because

the same stochastic fluctuation is obviously driving both Q(t) and 1/Q(t). To

explain why σ2 appears in (31) but −σ2 appears in (34) just note that 1/Q(t) goes

down when Q goes up and vice-versa.

Concerning this topic, the student should read section 9.3.4 on Siegel’s paradox

(which is not really a paradox, but arises from a misunderstanding of the correct

numéraire to use in interpreting a model.)

8 Zero coupon bonds as numéraire

In this section we assume given a risk-neutral model with a stochastic interest rate

process R(t), t ≥ 0.
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8.1 Zero-coupon bonds

Bonds are financial instruments that promise fixed payoffs. Most bonds provide

periodic payments called coupons and then a final payment consisting of a coupon

and a lump sum called the principal or face value. A zero-coupon bond pays out

only at the terminal time. We let B(t, T ) denote the price at time t ≤ T of a

zero-coupon bond that pays $1 at time T .

Given a risk-neutral model defined by a probability measure P̃, the no-arbitrage

principle demands that D(t)B(t, T ) be a martingale in t up to time T . Since

B(T, T ) = 1, it follows that

B(t, T ) =
Ẽ[D(T )B(T, T )

∣∣∣ F(t)]

D(t)
=
Ẽ[D(T )

∣∣∣ F(t)]

D(t)
=
Ẽ
[
e−

∫ T
0 R(u) du

∣∣∣ F(t)
]

e
∫ t
0 R(u) du

.

(35)

Hence,

B(t, T ) = Ẽ
[
e−

∫ T
t R(u) du

∣∣∣ F(t)
]

(36)

This is an interesting formula. If R(·) is a random process, and we are at time t, we

do not know what R will be exactly after time t. On the other hand, the market

tells us what all zero-coupon bond prices are. Any model we create for R must be

consistent with (in quant lingo, must be calibrated to) the zero-coupon bond prices

via (36).

8.2 Forward prices

Suppose at time t, where t < T , Alice contracts to buy a unit of an asset from Bob

at price F at time T . This is called a forward contract. No money changes hands at

time t. Let S(u) denote the price of the asset as a function of time u. From Alice’s

perspective she is getting an option that pays off S(T )− F , because she is

purchasing something worth S(T ) dollars for F dollars at time T . The value of this

option at t is D−1(t)Ẽ[D(T )(S(T )− F )
∣∣∣ F(t)] = S(t)− FB(t, T ); remember,

D(t)S(t) is a martingale with respect to P̃! If she is paying or receiving no money

for the contract at time t this value should be zero. Hence

F =
S(t)

B(t, T )

is the fair price for this contract. It is called the T -forward price and denoted by

ForS(t, T ). Really, it is the price of S(t) obtained using B(t, T ) as a numéraire.
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A trivial but important observation is that the forward price and the market price

concur at time T :

ForS(T, T ) =
S(T )

B(T, T )
= S(T ). (37)

8.3 The risk-neutral measure associated with the

zero-coupon bond

Under the domestic risk neutral measure P̃ , DtB(t, T ) is a martingale. Therefore,

B(t, T ) can be used as a numéraire. Indeed, the risk-neutral measure corresponding

to numéraire B(t, T ), according to Theorem 3 of Lecture 9, is

P̃T (A) = Ẽ[1A
D(T )B(T, T )

B(0, T )
] =

1

B(0, T )
Ẽ[1AD(T )]

We will call P T , following Shreve (Definition 9.4.1), the T-forward measure.

Consider the special case in which the filtration in the risk neutral market is

generated by a single Brownian motion W̃ . Then in this case we know from

Theorem 9.1 of Shreve that there is a process νT (u) such that

D(T )

B(0, T )
= e

∫ T
0 νT (u) dW̃ (u)− 1

2

∫ T
0 ν2T (u) du

and that W̃ T (t) = W̃ (t)−
∫ t

0

νt(u) du is a Brownian motion under P̃T . (In Shreve,

9.4.2, the notation −σ∗(t, T ) stands for our νT (t).

8.4 Pricing under the T-forward measure

8.4.1 Pricing under the domestic risk neutral measure with random

interest rate

Suppose the interest rate is Rt, an adapted process. Then the risk neutral price Vt

of a Euro style financial product that pays VT at time T is

Vt = Ẽ
(
e−

∫ T
t RuduVT

∣∣∣Ft).
Since all we know about Rt is that it is an adapted process, we cannot go further

with this pricing formula, unless we make some assumption on Rt (which is about

modeling the interest rate, the topic of next Chapter). This is certainly a complex
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topic. Moreover, even if we have a model for Rt, it doesn’t mean the pricing formula

will be simple, if
∫ T
t
Rudu has non zero correlation with VT , for example. However, a

nice observation here is that we do not have to compute this equation under Ẽ.

Indeed, recall from the section 5.2 result, we have:

V T
t = ẼT

(
V T
T

∣∣∣Ft).
where V T

t := Vt
B(t,T )

is the price of the product denoted in the unit of zero-coupon

bond. Note that since B(T, T ) = 1, we have V T
T = VT .

The nice thing about the pricing formula under P̃ T is that it is only a conditional

expectation of the terminal value, not involving other quantities like the interest

rate (this is not a pure gain, since the interest rate was absorbed into ẼT ).

However, this suggests a new approach to the entire problem: we may directly

model the assets under P̃ T , rather than under domestic measure P̃ . Note that if we

model the asset under P̃ T , then the unit of denomination ( or the numéraire) is the

price of zero coupon bond B(t, T ). In particular, if our objective is to model the

stock price St (under P̃ ) then under P̃ T , we model

STt :=
St

B(t, T )
= ForS(t, T ).

Pricing a call option on S(t) under the domestic risk neutral measure is equivalent

to pricing a call option on the forward price ForS(t, T ) under the T-forward

measure. The advantage here is again about modeling. If we model under P̃ then

necessarily we need to involve the model of Rt and need to know how to handle the

expectation Ẽ
(
e−

∫ T
t RuduVT

∣∣∣Ft). If we model under P̃ T then we only need to model

the forward price of St (which potentially maybe easier to calibrate to market

parameters than modeling Rt) and then the expectation ẼT
(
V T
T

∣∣∣Ft) is straight

forward. The detailed computation is done in the following section.

8.4.2 Pricing a Call option under the T-forward measure

Here one assumes that the forward price of asset S, is given by the simple formula

dForS(t, T ) = σForS(t, T ) dW̃ T (t), t ≤ T.

The point is that this is the Black-Scholes price model with r = 0, and if one looked

at S(t) under the original risk-neutral measure, it would not follow a Black-Scholes

model with constant volatility. However it is possible to explicitly price a call.
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Indeed, let C(T − t, x,K, r, σ) denote the Black-Scholes price of a European call

when the price is x, the risk-free interest rate is r and the volatility is σ. Let V (t)

be the dollar price of the call. Then its forward price is V T (t) = V (t)/B(t, T ). But,

recalling from (37) that ForS(T, T ) = S(T ), we know from risk-neutral pricing that

V T (t) = ẼT

[
(S(T )−K)+

B(T, T )

∣∣∣ F(t)

]
= ẼT

[
(ForS(T, T )−K)+

∣∣∣ F(t)
]

= ẼT
[
(ForS(T, T )−K)+

∣∣∣ ForS(t, T )
]
.

But since ForS(t, T ) follows the Black-Scholes price model with r = 0 and volatility

σ,

V T (t) = C(T − t,ForS(t, T ), K, 0, σ).

Hence,

V (t) = B(t, T )C(T − t,ForS(t, T ), K, 0, σ).

By substitution into the explicit formula for C (given above on page 2),

V (t) = B(t, T )ForS(t, T )N

(
ln(ForS(t,T )

K
) + σ2

2
(T − t)

σ
√
T − t

)

−KB(t, T )N

(
ln(ForS(t,T )

K
)− σ2

2
(T − t)

σ
√
T − t

)

This is essentially formula (9.4.9) in Shreve.

Clearly, this procedure could be applied to other cases where explicit pricing

formulae are known for the Black-Scholes price model.
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