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1 Preliminary discussion

Let St satisfies

dSt = rStdt+ σ(t, St)StdWt

S(0) = x > 0.

Denote for t ∈ [0, T ]

Yt =

∫ t

0

S(u)du;

Save(t) =
Yt
t
.

Consider the Generalized Asian Option:

VT = G
(
S(T ), Save(T )

)
.

Depends on the specific form G takes, we have the following types of Asian options:

(i) Average price call: G(x, y) = (y −K)+;

(ii) Average price put: G(x, y) = (K − y)+;

(iii) Average strike call: G(x, y) = (x− y)+;

(iv) Average strike put: G(x, y) = (y − x)+.

By risk neutral pricing

Vt = E
{
e−r(T−t)G

(
ST , Save(T )

)∣∣∣F(t)
}

= E
{
e−r(T−t)G

(
ST ,

YT
T

)∣∣∣F(t)
}
.
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In the Lookback Option, we have discussed that the process (St, Yt) (where

Yt := max[0,t] Su) has Markov property. The same principle applies here

Principle: If St, t ≥ 0 is Markov with respect to F(t) and Yt =
∫ t

0
S(u)du then

{Yt, St} is also Markov with respect to F(t).

The intuitve reason why this principle is true is because we can write

Y (T ) = Yt +

∫ T

t

S(u)du.

Therefore, intuitively, to compute the conditional expectation of Y (T ) on F(t), we

only need the value of Yt plus the conditional expectation of S(u) given F(t), which

also only depends on St by the assumption on Markov property of S. In other

words, the conditional expectation of Y (T ) on F(t) only depends on St, Yt, thus the

process St, Yt is Markov.

Note here however that Yt by itself is generally NOT a Markov process (same as the

conclusion we draw for the running max of St in the Lookback option).

Thus there exists v(t, x, y) such that

V (t) = v(t, St, Yt)

where

v(t, x, y) = E
{
e−r(T−t)G

(
ST ,

YT
T

)∣∣∣St = x, Yt = y
}

= E
{
e−r(T−t)G

(
ST ,

y +
∫ T

t
Sudu

T

)∣∣∣St = x
}

To be able to proceed, one would need the knowledge of the joint distribution

between
∫ T

t
σ(u, Su)dWu and

∫ T

t
Sudu. So without further assumption on S, this is

the ultimate simplification that can be achieved to represent the option price as

conditional expectation.

Remark 1.1. If G is a linear function in x, y, however, then we can write down an

explicit formula for v(t, x, y). Do you see why? (Say for example, G(x, y) = y − x).

2 PDE for Asian options

An explicit formula for the price in terms of expectation for an option of Asian type

is not known, even if S follows the standard Black-Scholes (that is σ is a constant)
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model. To get an idea, observe that one will need to figure out the joint distribution

of (
∫ t

0
eWudu, eWt) to start investigating how to express v(t, x, y) above as an integral.

Therefore, it is important do drive a PDE with boundary conditions for v(t, x, y)

defined above.

Note that here, unlike the case of Lookback option, the process Yt is an absolutely

continuous process. Indeed, its dynamics is

dYt = Stdt

Y (0) = 0.

Therefore, applying Ito’s formula and setting the “dt” term to 0 is no problem:

de−rtv(t, St, Yt) = e−rtLv(t, St, Yt)dt+ e−rtvx(t, St, Yt)Stσ(t, St)dWt,

where

Lv(t, x, y) := −rv(t, x, y) + vt(t, x, y) + vx(t, x, y)rx+ vy(t, x, y)x+
1

2
vxx(t, x, y)σ2(t, x)x2.

Recall that from the discussion on the quadratic variation and covariation in

Lecture 6a, since Yt is a function of bounded variation, 〈Y 〉t = 0 and 〈S, Y 〉t = 0.

Thus since e−rtv(t, St, Yt) is a martingale, we set the dt term to 0 and get

−rv(t, x, y) + vt(t, x, y) + vx(t, x, y)rx+ vy(t, x, y)x+
1

2
vxx(t, x, y)σ2(t, x)x2 = 0,

0 < x, y <∞, 0 ≤ t < T.

But we also need to impose boundary conditions.

(i) At t = T this is clear:

v(T, x, y) = G(x,
y

T
). (1)

(ii) At x = 0: when the stock price hits 0, it stays there: S(u) = 0, u ≥ t , so Y (u)

remains a constant on [t, T ] as well. Thus

v(t, 0, Yt) = E(e−r(T−t)G(S(T ),
YT
T

)|F(t))

= E(e−r(T−t)G(0,
Yt
T

)|F(t)) = e−r(T−t)G(0,
Yt
T

).

This implies that

v(t, 0, y) = e−r(T−t)G(0,
y

T
). (2)
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(iii) It’s now natural to finish with the boundary condition at y = 0. However, note

that

v(t, x, 0) = E(e−r(T−t)G(S(T ),

∫ T

t
Sudu

T
)|St = x),

but in general we don’t know what this is.

(iv) We instead then tries to seek the “boundary condition” for y at ∞. Suppose

that

lim
y→∞

G(x, y) = 0.

Note that the average price put: G(x, y) = (K − y)+ and the average strike call:

G(x, y) = (x− y)+ satisfy this condition. Then we have

lim
y→∞

v(t, x, y) = E(e−r(T−t) lim
y→∞

G(S(T ),
y +

∫ T

t
Sudu

T
)|St = x) = 0.

Thus we can set the condition

lim
y→∞

v(t, x, y) = 0. (3)

Then we have the following PDE for the Asian option, assuming the condition

limy→∞G(x, y) = 0

−rv(t, x, y) + vt(t, x, y) + vx(t, x, y)rx+ vy(t, x, y)x+
1

2
vxx(t, x, y)σ2(t, x)x2 = 0,

0 < x, y <∞, 0 ≤ t < T ;

v(T, x, y) = G(x,
y

T
);

v(t, 0, y) = e−r(T−t)G(0,
y

T
);

lim
y→∞

v(t, x, y) = 0.

But then what about the average price call: G(x, y) = (y −K)+ and the average

strike put: G(x, y) = (y − x)+? Intuitively we want to take limy→−∞G(x, y) = 0.

However, with our current definition of Yt, this does not make sense, since Yt ≥ 0.

So we need to extend our model by defining:

Yt = Y (0) +

∫ t

0

S(u)du,
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where Y (0) is a valued specified by the option contract, which can be negative or

positive or zero.

The payoff function G becomes

G(S(T ), Save(T )) = G(S(T ),
1

T
[Y (0) +

∫ T

0

Sudu]).

and the option value at time t is

v(t, x, y) = E
{
e−r(T−t)G(S(T ), Y (T ))|St = x, Yt = y

}
,

as before. Adding a constant Y (0) at time t = 0 clearly does not change the Markov

property of Vt. Note that since Y (0) can take any value (positive, negative, zero), y

here also can take any value (positive, negative, zero).

In words, what we did here is just allow flexibility for dicussing our function

v(t, x, y) as y → −∞. But then arguing exactly as before, under the assumption

that limy→−∞G(x, y) = 0 we have

lim
y→−∞

v(t, x, y) = E
{
e−r(T−t) lim

−y→∞
G(S(T ),

y +
∫ T

t
Sudu

T
)|St = x

}
= 0.

Then we have the following PDE for the Asian option, assuming the condition

limy→−∞G(x, y) = 0

−rv(t, x, y) + vt(t, x, y) + vx(t, x, y)rx+ vy(t, x, y)x+
1

2
vxx(t, x, y)σ2(t, x)x2 = 0,

0 < x <∞,−∞ < y <∞, 0 ≤ t < T ;

v(T, x, y) = G(x,
y

T
);

v(t, 0, y) = e−r(T−t)G(0,
y

T
);

lim
y→∞

v(t, x, y) = 0.

Note the change of domain for y on the first equation. Now y is defined on

(−∞,∞), not just [0,∞).
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