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1 Overview

In this lecture, we’ll see how we can evaluate the expression

Vt = EQ(e−r(T−t)VT

∣∣∣Ft),
where

VT = (ST −K)+1{max[0,T ] St≤B}

for knock-out barrier option, or

VT = max
[0,T ]

St − ST ,

for look-back option.

It is clear that to compute Vt in these expressions, we need to know the distribution

of max[0,T ] St. But since

St = S0e
(r− 1

2
σ2)t+σWt ,

the distribution of max[0,T ] St is closely related to the distribution of Mt, the

running max of the Brownian motion:

Mt := max
u∈[0,t]

Wu.

Instead of computing the distribution of Mt by it self, we will see that it is easier to

compute the joint distribution of Mt,Wt. The key for us to derive this joint
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distribution is via the reflection principle, which says a reflected Brownian motion is

also a Brownian motion. Using this principle and a probability identity, we will

derive the joint distribution of Mt,Wt. From that, we can derive the distribution of

Mt as a marginal distribution. Finally, we’ll see how we can apply this knowledge to

evaluate Vt in the two expressions above.

2 The reflection principle

2.1 Definition

Let Wt be a Brownian motion w.r.t a filtration F(t) and τ a F(t) stopping time.

We define

Bτ := Wt, t ≤ τ

:= W (τ)− [Wt −W (τ)], t > τ.

That is Bτ is the same as Wt up to the random time τ and after time τ is obtained

by reflecting Wt around the horizontal line y = W (τ). We say Bτ is a reflected

Brownian motion at τ .

2.2 The reflection principle

Theorem 2.1. The Bτ defined above is a F(t) Brownian motion.

In words, the reflection principel says a refleted Brownian motion is a Brownian

motion.

The heuristics of why the Theorem is true is

(i) The strong Markov property: Wt −W (τ) is a Brownian motion independent of

F(τ)

and

(ii) The negative of a Brownian motion is also a Brownian motion. Thus before t,

Bτ is a Brownian motion, after τ it is also a Brownian motion (although starting at

W (τ) instead of at 0). The key is how to show when we go across τ the Brownian

motion property is still preserved and we achieve that by Levy’s characterization of

Brownian motion.
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Proof. Define

a(t) = 1, t ≤ τ

= −1, t > τ.

That is

a(t) = 1t≤τ − 1t>τ

= 1t≤τ − (1− 1t≤τ )

= 21t≤τ − 1.

It is easy then to see a(t) ∈ F(t),∀t since τ is a stopping time. It is also bounded,

hence is in L2. Thus we can consider
∫ t
0
a(s)dWs. We have∫ t

0

a(s)dWs =

∫ t

0

21s≤τdWs −Wt

=

∫ t

0

21[0,τ)(s)dWs −Wt

= 2W (t ∧ τ)−Wt = Bτ (t).

(Just consider what happens when τ ≤ t and τ > t.)

Thus Bτ (t) is a martingale. Moreover, its quadratic variation is:

〈Bτ 〉t =

∫ t

0

α2(s)ds = t,

since α(s) is either 1 or -1. Thus by Levy’s characterization, Bτ is a Brownian

motion.

2.3 An important identity

Let Wt be a Brownian motion and Mt := max[0,t]Ws its running maximum. The

reflection principle helps us obtain the joint density between Wt and Mt through the

following important identity: for w ≤ m,m ≥ 0{
Mt > m,Wt < w

}
=
{
Bt > 2m− w

}
,

where Bt := Bτm(t) is the Brownian motion obtained by reflecting Wt at time τm,

the first hitting time of Wt to level m:

τm := inf{t ≥ 0 : Wt = m}.
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Remark 2.2. Our goal with the identity is to use it to derive the joint density

ft(m,w) of Mt,Wt, therefore we are only interested in considering m ≥ w and

m ≥ 0 because we always have Mt ≥ Wt and Mt ≥ W (0) = 0.

Proof. Proof of the identity

(i) Suppose Mt > m and Wt < w. Then Mt > m implies τm < t and hence

Bt = 2W (τm)−Wt

= 2m−Wt > 2m− w.

(ii) Suppose Bt > 2m− w. Then Bt > m because w ≤ m. So it cannot be the case

that Bt = Wt since that would imply Wt > m and thus τm < t, a contradiction to

Bt = Wt only when t < τm. Thus Bt = 2m−Wt and τm < t which implies Mt > m.

Moreover,

Bt = 2m−Wt > 2m− w

implies Wt < w and we are done.
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2.4 Joint distribution of Wt and Mt

From the identiy above and the reflection principle (which implies Bt is a Brownian

motion) we have

P (Mt > m,Wt < w) = P (Bt > 2m− w) =

∫ ∞
2m−w

e
−x2
2t

√
2πt

dx.

If ft(m,w) is the joint density of (Mt,Wt) then

P (Mt > m,Wt < w) =

∫ w

−∞

∫ ∞
m

ft(z, x)dzdx =

∫ ∞
2m−w

e
−x2
2t

√
2πt

dx.

Thus by the Fundamental Theorem of Calculus, we get

ft(m,w) = − ∂2

∂m∂w
P (Mt > m,Wt < w)

=
2(2m− w)

t
√

2πt
e−

(2m−w)2

2t 1m≥0,w≤m.

This has the following useful consequence: let Zt = 2Mt −Wt. Then the joint

density of (Mt, Zt) is

gt(m, z) =
2z

t
√

2πt
e−z

2/2t1{m>0,z>m} = −2
d

dz

e−z
2/2t

√
2πt

1{m>0,z>m}. (1)

3 A useful function in evaluation of Barrier and

Lookback options

3.1 Introduction

When computing the price of Knockout Barrier and Lookback Options, you’ll see

that because of the structure of the stock price, we’ll usually end up computing an

expression of the form

E
[
1{Ws≥k}1{Ms>b}e

αWs+βMs

]
,

where α, β, k, b are general parameters that we can plug in depending on the option

we’re dealing with. Since this expression appears often in this context, we’ll denote

it by Hs(α, β, k, b), as a function of the unspecified parameters at a time s. That is

Hs(α, β, k, b) := E
[
1{Ws≥k}1{Ms>b}e

αWs+βMs

]
.

In the following sub-sections, we’ll see how we can compute explicitly Hs(α, β, k, b)

in some special case.
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3.2 Hs(α, 0, k, b) when 0 ≤ b ≤ k

Since Ms ≥ Ws we have if Ws ≥ k then Ms ≥ Ws ≥ k ≥ b.

Thus {
Ws ≥ k

}
∩
{
Ms ≥ b

}
=
{
Ws ≥ k

}
.

In other words,

1{Ws≥k}1{Ms>b} = 1{Ws≥k}.

So

Hs(α, 0, k, b) = E
[
1{Ws≥k}e

αWs

]
= es

α2

2 N
(sα− k√

s

)
. (2)

3.3 Hs(α, 0, k, b) when k < b

Theorem 3.1. If k < b,

Hs(α, 0, k, b) = es
α2

2

{
N
(sα− b√

s

)
+ e2αb

[
N
(−sα− b√

s

)
−N

(−sα− 2b+ k√
s

)]}
.

Proof. Since k < b,

E
[
1{Ws≥k}1{Ms>b}e

αWs

]
= E

[
1{Ws≥b}1{Ms>b}e

αWs

]
+E
[
1{k≤Ws<b}1{Ms>b}e

αWs

]
.

Now

E
[
1{Ws≥b}1{Ms>b}e

αWs

]
= Hs(α, 0, b, b),

and we have found the expression for Hs(α, 0, b, b) in Section 2.1. As for the 2nd

term, observe that{
k < Ws < b,Ms > b

}
=
{
Ws < b,Ms > b

}
∩
{
k < Ws,Ms > b

}
.

We have showed that {
Ws < b,Ms > b

}
=
{
Bτb(s) > b

}
,

where Bτb is again Wt reflected at τb, the first hitting time of Wt to level b.
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We claim that {
k < Ws,Ms > b

}
=
{
Ms > b,Bτb(s) < 2b− k

}
.

(This is left as part of the homework).

Thus noting that Bτb(s) > b implies Ms > b we get{
k < Ws < b,Ms > b

}
=

{
Bτb(s) > b

}
∩
{
Ms > b,Bτb(s) < 2b− k

}
=

{
b < Bτb(s) < 2b− k

}
.

We leave it as the other part of the homework to use this and (2) to complete the

proof.

3.4 Hs(α, β,−∞, b)

Theorem 3.2.

Hs(α, β,−∞, b) =
β + α

β + 2α
2e

(α+β)2

2
sN
((α + β)s− b√

s

)
+

2α

β + 2α
e
α2

2
seb(β+2α)N

(
− αs+ b√

s

)
.

Proof.

Let Zs = 2Ms −Ws, so that Ws = 2Ms − Zs. We will rewrite the expectation in the

definition of Hs(α, β,−∞, b) in terms of Z(s) and Ms and use the joint density for

these two random variables, which we stated above in (1). Thus,

Hs(α, β,−∞, b) = E

[
1{Ms≥b}e

αW (s)+βMs

]
= E

[
1{Ms≥b}e

−αZ(s)+(β+2α)Ms

]

=

∫ ∞
b

e(β+2α)m

∫ ∞
m

e−αz
[
− 2

d

dz

e−z
2/2s

√
2πs

]
dz dm. (3)

By integration by parts, and then application of the formula

E
[
eaX1{X≥c}

]
=

∫ ∞
c

eaxe−x
2/(2s) dx√

2πs
= e(a

2/2)sN

(
as− c√

s

)
, (4)

where X has Normal(0, s) distribution, the inner integral is

2e−αm
e−m

2/2s

√
2πs

− 2α

∫ ∞
m

e−αz
e−z

2/2s

√
2πs

dz = 2e−αm
e−m

2/2s

√
2πs

− 2αe
α2

2
sN

(
−αs−m√

s

)
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Thus,

E

[
1{Ms≥b}e

αW (s)+βMs

]
= 2

∫ ∞
b

e(β+α)m
e−m

2/2s

√
2πs

dm

−2αe
α2

2
s

∫ ∞
b

e(β+2α)mN

(
−αs−m√

s

)
dm (5)

By applying (4) again, the first term is 2e
(β+2α)2

2
sN
(

(β+2α)s−b√
s

)
. By integrating by

parts and applying (4) yet again, the second term is

2α

β + 2α

[
e((α+β)

2/2)sN

(
(α + β)s− b√

s

)
− e(α2/2)seb(2α+β)N

(
−αs− b√

s

)]
By substituting these results in (5) one obtains the result.

4 Pricing Knock-out Barrier option via

expectation

Let St satisfies

dSt = rStdt+ σStdWt.

Consider the Knock-out Barrier option with barrier b and strike price K:

VT = (ST −K)+1{max[0,T ] St≤B}.

The risk-neutral price Vt can be expressed as

Vt = EQ
[
e−r(T−t)VT

∣∣∣F(t)
]

= 1{maxu∈[0,t] Su≤B}E
Q
[
e−r(T−t)(ST −K)+1{maxu∈[t,T ] Su≤B}

∣∣∣St].
To obtain an explicit formula for Vt, we need to evaluate

EQ
[
e−r(T−t)(ST −K)+1{maxu∈[t,T ] Su≤B}

∣∣∣St]
= EQ

[
e−r(T−t)(ST −K)+

∣∣∣St]− EQ
[
e−r(T−t)(ST −K)+1{maxu∈[t,T ] Su>B}

∣∣∣St].(6)

Since EQ
[
e−r(T−t)(ST −K)+

∣∣∣St] is already given by Black-Scholes formula, we only

need to evaluate

w(t, x) := EQ
[
e−r(T−t)(ST −K)+1{maxu∈[t,T ] Su>B}

∣∣∣St = x
]

:= EQ
[
e−r(T−t)(ST −K)1{ST≥K}1{maxu∈[t,T ] Su>B}

∣∣∣St = x
]

(7)
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Remark 4.1. The split in Equation (6) is to allow us to write w(t, x) in the form of

Hs(α, β, k, b) as we will see later.

4.1 Step 1: A first rewrite of w(t, x)

Denote

α :=
r − 1

2
σ2

σ
.

Then for s ≥ t

S(s) = St exp
[
σ
{
Ws −Wt + α(s− t)

}]
.

The term inside the exponential (modulo the σ ) is just a Brownian motion with

drift starting at time t. So we denote it by a new name to reflect this fact:

Ŵ (u) := W (t+ u)−Wt + αu, u ≥ 0

M̂(u) := max
s∈[0,u]

Ŵs.

Note that for s ≥ t

max
u∈[t,s]

Su = Ste
σM̂(s−t).

Then for s ≥ t we have

S(s) = Ste
σŴs−t

1S(s)≥K = 1
Ŵs−t≥ log(K/St)

σ

1maxu∈[t,s] Su>B = 1
M̂(s−t)> log(B/St)

σ

Then substituting this into Equation (7), replacing St = x gives

w(t, x) = e−r(T−t)EQ
[(
xeσŴT−t −K

)
1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}

]
= xe−r(T−t)EQ

[
eσŴT−t1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}

]
−Ke−r(T−t)EQ

[
1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}

]
. (8)

Remark 4.2. Note that the expression in (8) involves the distribution of a

Brownian motion with drift and its running maximum. Studying Brownian motion

with drift is inconvenient. But by applying a change of measure (via Girsanov’s

theorem), we can find a different measure such that under it, Ŵ is a Brownian

motion. So that’s our next step.
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4.2 Apply Girsanov’s Theorem to transform Ŵ into a

Brownian motion

Observe that there exists a Brownian motion W̃ (u), 0 ≤ u ≤ T − t, namely

W̃u = Wt+u −Wt, such that

Ŵ (u) = W̃ (u) + αu, u ∈ [0, T − t].

Since Ŵ has drift term αt, our change of measure kernel is

ZT−t = exp[−αW̃ (T − t)− α2

2
(T − t)].

Denoting our original measure as Q and define

dP̂ := ZT−tdQ,

then note that

dQ = Z−1T−tdP̂

= exp[αŴT−t −
α2

2
(T − t)],

So that

w(t, x) = xe−r(T−t)Ê
[
eσŴT−t1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}e
αŴT−t−α

2

2
(T−t)

]
−Ke−r(T−t)Ê

[
1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}e
αŴT−t−α

2

2
(T−t)

]
= xe−(r+

α2

2
)(T−t)Ê

[
e(α+σ)ŴT−t1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}

]
−Ke−(r+

α2

2
)(T−t)Ê

[
eαŴT−t1{ŴT−t≥ log(K/x)

σ
}1{M̂T−t>

log(B/x)
σ

}

]
, (9)

where now what we have gained is Ŵ is a Brownian motion under P̂.

4.3 Writing w(t, x) in terms of Hs(α, β, k, b)

Let Wt be a Brownian motion and Mt := max[0,t]Ws its running maximum. Recall

that we defined

Hs(α, β, k, b) := E
[
1{Ws≥k}1{Ms>b}e

αWs+βMs

]
.
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Then we have

w(t, x) = e−(r+
α2

2
)(T−t)

[
xHT−t

(
α + σ, 0,

log(K/x)

σ
,
log(B/x)

σ

)
−KHT−t

(
α, 0,

log(K/x)

σ
,
log(B/x)

σ

)]
.

and the original Knockout Barrier option price is:

Vt = 1{max[0,t] St≤B}
[
c(t, St)− w(t, St)

]
,

where

c(t, x) = xN(d+(T − t, x))−Ke−r(T−t)N(d−(T − t, x))

is given by Black-Scholes formula.

5 Pricing Lookback Option via expectation

5.1 Preliminary discussion

Let St satisfies

dSt = rStdt+ σStdWt.

Consider the Knock-out Barrier option with barrier b and strike price K:

VT = max
[0,T ]

St − ST .

The risk-neutral price Vt can be expressed as

Vt = EQ
[
e−r(T−t)VT

∣∣∣F(t)
]

= EQ
[
e−r(T−t) max

[0,T ]
{St} − ST

∣∣∣F(t)
]

= EQ
[
e−r(T−t) max

[0,T ]
{St}

∣∣∣F(t)
]
− St.

Now to do further analysis (to reduce Conditional Expectation to an Expectation

via the Independence Lemma) we may want to separate the term max[0,T ]{St} into

some expression involving Su, u ∈ [0, t] and Su, u ∈ [t, T ]. One way to do this is

max
t∈[0,T ]

{St} = max
u∈[0,t]

{Su} ∨ max
u∈[t,T ]

{Su}.
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So far so good, but we need to do more work here, since the operator ∨ does not

”factor out” of the conditional expectation (we cannot factor max[0,t]{St} out of

E(.
∣∣∣F(t)) ). Looking at this in another way, the running max of St:

Yt = max
u∈[0,t]

Su

is not a Markov process.

However, there is a usual approach in studying Markov process like this: If X(t) is

not a Markov process, by increasing the components of X(t), we may still yet obtain

a Markov process.

In this case, we consider the two-component process (St, Yt) instead of just Yt. Then

for s > t

Y (s) = max{Yt,max
[t,s]

Su} = max{Yt, SteσM̂(s−t)},

where recall that we defined in Section 1

α :=
r − 1

2
σ2

σ

Ŵ (u) := W (t+ u)−Wt + αu, u ≥ 0

M̂(u) := max
s∈[0,u]

Ŵs.

Then since M̂ and Ŵ are independent of F(t) under the risk neutral measure, we

get that (St, Yt) is a Markov process under this measure as well (how to reach this

conclusion is left as a homework exercise).

We then have

Vt = EQ
[
e−r(T−t)VT

∣∣∣F(t)
]

= EQ
[
e−r(T−t) max

[0,T ]
{St}

∣∣∣F(t)
]
− St

= EQ
[
e−r(T−t) max{Yt, SteσM̂T−t}

∣∣∣F(t)
]
− St

= v(t, St, Yt),

where

v(t, x, y) = e−r(T−t)EQ
[

max(y, xeσM̂T−t)
]
− x.
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5.2 Apply Girsanov

Similar to the discussion in section 1, v(t, x, y) involves the distribution of the

running max of a Brownian motion with drift, so we want to apply Girsanov’s

theorem to transform it to a Brownian motion. The result is

v(t, x, y) = e−r(T−t)Ê
[
eαŴT−t−α

2

2
(T−t) max(y, xeσM̂T−t)

]
− x,

where Ŵ now is a Brownian motion under P̂.

Note that the expression inside expectation is not (yet) of the form provided by the

function Hs(α, β, k, b). Noting the fact that x > 0 since it is the stock price St, we

have

max(y, xeσM̂T−t) = y if M̂T−t <
1

σ
log(y/x)

max(y, xeσM̂T−t) = xeσM̂T−t if M̂T−t ≥
1

σ
log(y/x).

Denoting

b :=
1

σ
log(y/x),

and note that the domain of interest for v(t, x, y) is y ≥ x > 0 thus b ≥ 0. Then

max(y, xeσM̂T−t) = y1M̂T−t<b
+ xeσM̂T−t1M̂T−t≥b

= y +
[
xeσM̂T−t − y

]
1M̂T−t≥b.

Plug this back into the expectation, coupled with the fact that

Ê
[
yeαŴT−t−α

2

2
(T−t)

]
= y,

after simplification we have

v(t, x, y) = e−r(T−t)y − x+ xe−(r+
α2

2
)(T−t)Ê

[
1{M̂T−t≥b}e

αŴT−t+σM̂T−t
]

−ye−(r+
α2

2
)(T−t)Ê

[
1{M̂T−t≥b}e

αŴT−t
]

= e−r(T−t)y − x+ xe−(r+
α2

2
)(T−t)HT−t

(
α, σ,−∞, b

)
−ye−(r+

α2

2
)(T−t)HT−t

(
α, 0,−∞, b

)
. (10)
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Remark 5.1. You may question why we go into such length to derive the closed

form expression for the value of the Barrier or Lookback Option via expectation. An

alternative, as you may have already known, is ti simulate the paths of St and take

the average over the simulated paths to obtain an approximation for the expectation.

However, the work that we have done, for example, in expressing v(t, x, y) in the

form of (10) can be very helpful in increasing the efficiency of the computation. We

have “simplified” the computation (not in the expression, of course, but in the actual

computation time). The reason is the function Hs(α, β, k, b) is found explicitly via

the cumulative distribution of the standard normal, which we have very efficient

algorithms to compute. On the other hand, as you can already imagine, the

efficiency of simulating the paths of St, also taking into account its running max or

when it reaches the barrier and then take the average might not be as good as just

computing the probability of a Normal distribution.
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