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1 Introduction

In Chapter 7, we consider the risk neutral price for various exotic options:

(i) Knock out Barrier option:

VT = (ST −K)+1{max[0,T ] St≤b}.

(ii) Lookback option:

VT = max
[0,T ]

St − S(T ).

(iii) Asian option:

VT =
( 1

T

∫ T

0

Stdt−K
)+

The risk-neutral price V (t) in all of these cases can be expressed as

V (t) = EQ
[
e−r(T−t)VT |F(t)

]
.

To analyze Vt further, it is tempting to write V (t) = v(t, S(t)) for some function

v(t, x) and start deriving what equation v(t, x) has to satisfy. However, this is

incorrect.

Recall that the basis for us to say there exists such a function v(t, x) is because of

the Indepndence lemma, which in turns rely on the fact that we can write

ST = St × ( something independent of F(t))

and we were working with European option, which only depends on ST .
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That is not the case here: all these three exotic options are path dependent, i.e. the

expression for VT involves the values of St, 0 ≤ t ≤ T , not just ST . So apriori, it is

not clear that we can find such a v(t, x). Indeed, for the Lookback and Asian

option, we will see that the correct function to deal with is v(t, x, y), not v(t, x),

where we need to add another component Y (t) to S(t) so that the joint process

S(t), Y (t) have the necessary Markov property.

For the Knockout Barrier option, the key idea is to analyze the behavior of St upto

the first time it hits the barrier. This time, as you may have known, is a stopping

time with respect to the filtration generated by St. So we will begin by reviewing

stopping time and its properties. We will then show how we can derive the PDE for

the price Vt of a Knockout Barrier option using stopping time.

2 Stopping times

2.1 Motivation

In financial math, very often and quite naturally, we study random decisions, such

as when to exercise your right to buy an option (American call option), or when to

accept an offer for the house you are selling (imagine you’re putting your house on a

market and offer comes in for how much the buyer is willing to pay for the house,

which is random). These decisions involve a random time (the time you decide to

take action). The time is random because obviously it depends on the path of the

stock’s price, or of the offers, which are random.

However, there is a common important feature in both cases here: your decision of

when to take action cannot depend on future information. Mathematically, if we

denote F(t) as the stream of information available to you at time t, and the random

time when you take action is τ , then we require:

{τ ≤ t} ∈ F(t).

The event {τ ≤ t} means you have taken action on or before time t. The event

being ∈ F(t) then means your decision of taking action on or before time t entirely

depends on the information up to time t, i.e. it does not involve future information.

Such τ is called a stopping time and it is an important concept to study.
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2.2 Some preliminary

2.2.1 Discrete vs continuous time

We can model time in 2 ways. Discrete: consider time n = 0, 1, 2, ..., N where N is

our terminal time. Continuous: consider time t ∈ [0, T ], where T is our terminal

time. Stopping times are defined in both contexts. Generally speaking, discrete time

is “easier” to analyze (don’t take this statement too literally). The models we will

study in Chapter 7,8 are in continuous time. Generally, most of the statements

about stopping times have similar versions in both discrete and continuous times.

But when one works in continuous time, it is good to pay attention because there

will be subtleties that are not present in discrete time.

2.2.2 Filtration, sigma-algebra and the flow of information

We denote F(t), t ∈ [0, T ] to be the filtration in the time interval [0, T ], which

represents the information we have available up to time t. We require:

(i) Each F(t) is a sigma-algebra.

(ii) If s < t then F(s) ⊆ F(t).

Condition (i) is about the closure property of F(t): if Ai, i = 1, 2, ... is a countable

sequence of events (meaning the number of events can potentially be infinite) in

F(t), then Aci (not Ai), ∪∞i=1Ai (some of Ai has happened), ∩∞i=1Ai (all of Ai have

happened) are also in F(t). We also require Ø,Ω ∈ F(t).

Condition (ii) is about the flow of information, intuitively at the present time t we

must also have knowledge of the information of the past up to time s as well.

Sometimes we have F(0) = {Ø,Ω}. This means any event at time 0 is deterministic.

In terms of a random process, this means the process starts out at a deterministic

point x, instead of having a random initial distribution.

We can also consider F(n), n = 0, 1, ..., N as the discrete analog of continuous time

filtration. The requirements are the same.

2.2.3 Stopping time definition

Definition 2.1. Let τ be a random variable taking values in [0, T ] (resp.

{0, 1, ..., N}). We say τ is a stopping time with respect to F(t) (resp. F(n)) if for
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all t ∈ [0, T ] (resp. for all n = 0, 1, ..., N)

{τ ≤ t} ∈ F(t)

( resp. {τ ≤ n} ∈ F(n)).

Remark 2.2. Note that the notion of a stopping time is tied to a filtration (similar

to the notion of a martingale). It could happen that τ is a stopping time with respect

to a filtration F(t) but not a stopping time with respect to another, smaller filtration

G(t) ⊆ F(t).

2.2.4 First important difference between discrete and continuous time

Consider the discrete time. Since if τ is a F(n) stopping time then

{τ < n} = {τ ≤ n− 1} ∈ F(n− 1) ⊆ F(n), we have

{τ ≥ n} = {τ < n}c ∈ F(n)

Hence

{τ = n} = {τ ≤ n} ∩ {τ ≥ n} ∈ F(n).

Conversely if {τ = n} ∈ F(n) for all n then {τ ≤ n} = ∪ni=0{τ = i} ∈ F(n), for all

n as well. So we can use either conditions: {τ = n} ∈ F(n) or {τ ≤ n} ∈ F(n) as

definition for stopping time in discrete time.

Now consider the continuous time. By the property of stopping time listed below, it

is also true that {τ < t} ∈ F(t). So {τ ≥ t} = {τ < t}c ∈ F(t). Therefore, if τ is a

stopping time then

{τ = t} = {τ ≤ t} ∩ {τ ≥ t} ∈ F(t).

However, it is NOT true that if {τ = t} ∈ F(t) for all t then {τ ≤ t} ∈ F(t). The

reason is because in continuous time, we need to write

{τ ≤ t} = ∪0≤s≤t{τ = s},

and the RHS involves an uncountable union of events, which doesn’t have to be

contained in the sigma algebra. This explains the choice of using {τ ≤ t} ∈ F(t) as

the definition for continuous time.
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2.2.5 Some properties of stopping time

Lemma 2.3. Let τ1, τ2 be stopping times with respect to F(t). Then

(i) {τ1 < t} ∈ F(t),∀0 ≤ t ≤ T ;

(ii) min(τ1, τ2) and max(τ1, τ2) are stopping times with respect to F(t).

Property (i) follows from the fact that

{τ1 < t} = ∪∞n=1{τ1 ≤ t− 1

n
},

and {τ1 ≤ t− 1
n
} ∈ F(t− 1

n
) ⊆ F(t), ∀n. Property ii is left as homework exercise.

2.3 Some important examples

Example 2.4. Jump time of a Poisson process

Let N(t) be a Poisson process. Then

τk := inf{t ≥ 0 : N(t) = k}

are stopping times with respect to FN(t).

Reason: {τk ≤ t} means the kth jump happened at or before t. But that is the same

as at time t, N(t) ≥ k. Thus

{τk ≤ t} = {N(t) ≥ k} ∈ F(t).

Example 2.5. First hitting time to a point of Brownian motion

Let b > 0 be fixed. Define

Tb := inf{t ≥ 0 : W (t) = b}

to be the first time W (t) hits the level b. Note also the convention that inf Ø =∞,

that is if W (t) never hits b then we set Tb =∞. Then Tb is a stopping time with

respect to FW (t).

The reasoning here is more complicated. Note that {Tb ≤ t} means W (.) has hit b

at or before time t. But we cannot infer any property of W (t) (say W (t) ≥ b based

on this information) because W is not monotone.

It is better to look at the complement: {Tb > t} which means W (.) has NOT hit b

at or before t, which since W (.) starts at 0 at time 0 is equivalent to

5



W (s) < b, 0 < s < t, the information of which intuitively belongs to F(t). But this

is not rigorous, since again there are uncountably many points s in [0, t].

To fix this, we note that a continuous function is uniquely determined by its values

on the rationals, which is countable. Combine these facts we can write

{Tb > t} = {W (s) < b, 0 ≤ s ≤ t} = ∪ni=1{W (s) ≤ b− 1

n
, 0 ≤ s ≤ t}

= ∪ni=1{W (s) ≤ b− 1

n
, s ∈ [0, t] ∩Q}

= ∪ni=1 ∩s∈Q {W (s) ≤ b− 1

n
},

and it follows that {Tb > t} ∈ F(t). Note the subtle fact here that we need to

transition from W (s) < b to W (s) ≤ b− 1
n

for some n. The reason is this: if

W (s) < b for all s rationals, we can only conclude that W (s) ≤ b for all s. But

W (s) ≤ b for all s rational if and only if W (s) ≤ b for all s.

We did not use any special property of Brownian motion besides the fact that it has

continuous paths. So

Example 2.6. First hitting time to a point of a continuous process

Let b > 0 be fixed. Let X(t) be a process starting at 0 with continuous paths. Define

Tb := inf{t ≥ 0 : X(t) = b}

to be the first time X(t) hits the level b. Then Tb is a stopping time with respect to

FX(t).

Example 2.7. Non example: last hitting time

Let b > 0 be fixed. Let X(t) be a process starting at 0 with continuous paths. Define

Tb := sup{t ≥ 0 : X(t) = b}

to be the last time X(t) hits the level b. Then Tb may NOT be a stopping time with

respect to FX(t).

The reason is this: {Tb ≤ t} means the last time X(t) hits b is at or before time t.

But it is impossible to know whether X(t) will hit b again unless we observe the

future paths of X(t), which is forbidden for a stopping time definition. There is an

exception: if we know that X(t) is monotone, then once it hits b it will not hit b

again. But this is probably the only exception.
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Example 2.8. First hitting time to an open set of a continuous process

Let b > 0 be fixed. Let X(t) be a process starting at 0 with continuous paths. Define

Sb := inf{t ≥ 0 : X(t) > b}

to be the first time X(t) hits the open set (b,∞). Then Sb may NOT be a stopping

time with respect to FX(t).

The reason is very subtle here. It is tempting to write

{Sb > t} = {Xs ≤ b, 0 ≤ s ≤ t} = {Xs ≤ b, s ∈ Q}
= ∩s∈Q{Xs ≤ b},

therefore {Sb > t} ∈ F(t) and Sb is a stopping time. What happens is the first

equality is incorrect, and it is because of the definition of infimum. It could be the

case that at time t, X(t) = b and immediately after t, X crosses over b. Then in this

case Sb = t and the event we describe is still in the RHS of the above equation. In

other words,

{Sb ≥ t} = {Xs ≤ b, 0 ≤ s ≤ t}

and we don’t have the right inequality to work with here. But note the fact that S

is almost a stopping time. We call it an optional time here.

Remark 2.9. Another useful way to think of the above situation is to imagine 2

possible paths of X(s): one path ω hits b at time t and crosses over. The other ω′

follows the exact same path up to time t, hits b at time t and immediately

reflects down, and let’s say never comes back to level b. Then Sb(ω) = t and

Sb(ω
′) =∞. Since the two paths are the same up to time t, it is impossible to tell

the event Sb = t by observing F(t). So Sb cannot be a stopping time. This can be

used as a useful, even though non-rigorous criterion to determine whether a random

time is a stopping time.

2.4 Strong Markov property of Brownian motion

It is a well-known fact of Brownian motion that it has independent and stationary

increment: if t > s then W (t)−W (s) is independent of F(s) and has distribution

N(0, t− s). In particular, this implies that W (t)−W (s) is a Brownian motion

independent of F(s).
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What is interesting is if we replace s by a stopping time, all of these results still

hold, except for the technical issue of defining what F(τ) means. For our purpose, it

is enough to think of F(τ) as the sigma algebra containing all information before

time τ and we have the following:

Theorem 2.10. Strong Markov property

Let W be a Brownian motion and F(t) a filtration for W . Let τ be a F(t) stopping

time. Then W (τ + u)−W (τ), u ≥ 0 is a Brownian motion independent of all the

information in the filtration F(t) before time τ .

This theorem is called the Strong Markov property because it implies that the

Markov property of Brownian motion can be applied to a stopping time as well.

Indeed, if we accept, in addition to the strong Markov property, the fact that

W (τ) ∈ F(τ) then by the Independence Lemma:

E[f
(
W (τ + u)

)
|F(τ)] = g(W (τ)),

where

g(x) = E[f
(
x+Wu

)
].

2.5 An important result in the case of Brownian motion

Let Wt be a Brownian motion starting at 0. Let b > 0 and define

Tb := inf{t ≥ 0 : W (t) = b}
Sb := inf{t ≥ 0 : W (t) > b}.

Then it is clear that Tb ≤ Sb. We have also remarked above that Tb is a stopping

time with respect to the Brownian filtration while Sb is only an optional time. A

very interesting result here is that even though these times are different in nature,

the probability of the event that they differ is 0. That is

Lemma 2.11. Let W (t) be a Brownian motion, then

P(Tb = Sb) = 1.

Remark 2.12. The above Lemma says that Sb is equal to Tb up to sets of measure

0. Therefore, if we include sets of measure 0 in F(t), for all t, a procedure called

augmentation of filtration, then Sb is a stopping time with respect to the augmented

filtration.
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Proof. We present the idea of the proof of this result here. For complete details,

see e.g. [1] problem 7.19.

The proof of the Lemma (2.11) depends on two other important results about the

path of Brownian and the Brownian filtration. They are as followed:

a. Blumenthal 0-1 law : Let Ft be a filtration generated by a Brownian motion.

Let E be an event in the sigma algebra F0+. Then P (E) = 0 or P (E) = 1.

Remark: E ∈ F0+ means that we can have the information of E by observing

infinitesimally into the future beyond the time 0, but not necessarily exactly at time

0.

b. Infinite crossing property: Let Wt be a Brownian motion starting at 0. Then for

any ε > 0,

P (Wt crosses 0 infinitely often in the time interval [0, ε]) = 1.

We will take the 0-1 law as a fact. The infinite crossing property can be explained

using the 0-1 law as followed. Define

T+
0 := inf{t ≥ 0 : Wt > 0}
T−0 := inf{t ≥ 0 : Wt < 0}.

Then arguing as we did before, we can show the events {T+
0 = 0} and {T−0 = 0} are

in F0+. Then by Blumenthal 0-1 law, P (T+
0 = 0) = 0 or P (T+

0 = 0) = 1, similarly

for T−0 . By symmetry of the distribution of Brownian motion (−Wt is a Brownian

motion iff Wt is a Brownian motion) we also have

P (T+
0 = 0) = P (T−0 = 0).

Therefore, they must both be 0 or both be 1. Now suppose that both

P (T+
0 = 0) = P (T−0 = 0) = 0. That must mean with positive probability we can

find an ε > 0 so that Wt = 0 identically on [0, ε]. But this is impossible since this

implies that with positive probability, the quadratic variation of Wt on [0, ε] is equal

to 0. Thus we must conclude

P (T+
0 = 0) = P (T−0 = 0) = 1.

That is with probability 1, Wt crosses 0 infinitely often in the time interval [0, ε].

We will now show P(Tb = Sb) = 1 using these two facts and the strong Markov

property of Wt. Since Tb is a stopping time, W̃ b
t := Wt −WTb is a Brownian motion

for t ≥ Tb.
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Suppose that in contrary to the conclusion of the Lemma, P (Sb > Tb) > 0. Then

with positive probability, there is a time interval (namely on [Tb, Sb]) so that W̃ b
t ≤ 0

on [Tb, Sb]. That is W̃ b does not cross 0 on the time interval [Tb, Sb]. But this

contradicts fact b) we mentioned above. This establishes the Lemma.

2.6 Stopped processes

Definition 2.13. Given a stochastic X and a random time τ , we define the stopped

process X at time τ as

X(t ∧ τ(ω))(ω) := X(t)(ω), t ≤ τ(ω)

:= Xτ(ω)(ω), t ≥ T (ω).

When τ is a stopping time and X is a martingale then the stopped process is also a

martingale via the following theorem:

Theorem 2.14. Let M(t) be a martingale with respect to F(t) with càdlàg paths.

Let τ be a stopping time with respect to F(t). Then M(t ∧ τ) is also a martingale

with respect to F(t).

This theorem has a discrete time analog:

Theorem 2.15. Let M(n) be a martingale with respect to F(n) and τ a F(n)

stopping time. Then X(t ∧ n) is also a martingale with respect to F(n).

In particular, in the continuous time, when M is a stochastic integral against

Brownian motion, then the stopped processed M(t ∧ τ) is also a martingale when τ

is a stopping time. But in this case, we also have an interesting representation of

the stopped stochastic integral via the following theorem.

Theorem 2.16. Let F(t) be a filtration and W (t) a F(t) Brownian motion. Let α

be an adapted process to F(t) such that
∫ t
0
α(s)dW (s) is well-defined. Let τ be a

F(t) stopping time. Denote M(t) :=
∫ t
0
α(s)dW (s). Then M(t ∧ τ) is a F(t)

martingale. Moreover,

M(t ∧ τ) =

∫ t∧τ

0

α(s)dW (s) =

∫ t

0

1[0,τ)(s)dW (s).

The following corollary is an immediate consequence of the above theorem:
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Corollary 2.17. Let St have the dynamics:

dSt = αtdt+ σtdWt.

Then for a stopping time τ

St∧τ = S0 +

∫ t∧τ

0

α(s)ds+

∫ t∧τ

0

σsdW (s)

= S0 +

∫ t

0

1[0,τ)(s)αsds+

∫ t

0

1[0,τ)(s)σsdW (s).

2.7 Generalization of Lemma (2.11) to Ito processes

Lemma (2.11) can be generalized to general Ito process: process that can be written

as a Rieman integral plus an Ito integral. The intuition here is that the Ito integral

has path property similar to that of Brownian motion: very irregular. On the other

hand, the Rieman integral has a differentiable (“regular”) path. So when the

process X(t) hits b, the effect of the stochastic integral part would win out and

cause the process to enter b as in the presence of only a Brownian motion.

Theorem 2.18. Let

X(t) = X(0) +

∫ t

0

α(s)ds+

∫ t

0

σ(s)dW (s),

and suppose that P(σ(t) 6= 0) = 1 for all t.

Define

Tb := inf{t : X(t) = b}
Sb := inf{t : X(t) > b}.

Then P(Tb = Sb) = 1.

3 Knock-out Barrier option

3.1 The goal

Let S(t) satisfies

dSt = rStdt+ σStdWt.
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Consider the Knock-out Barrier option with barrier b and strike price K:

VT = (ST −K)+1{max[0,T ] St≤b}.

Note: Necessarily we require K < b and S(0) < b so that P(VT > 0) > 0.

The risk neutral price V (t) can be written as:

V (t) = E
[
e−r(T−t)(ST −K)+1{max[0,T ] St≤b}|F(t)

]
.

Our goal is to find a function v(t, x) so that Vt = v(t, St) and then apply Ito’s

formula to e−rtv(t, St) to find a PDE that v(t, x) satisfies. It is not immediately

clear that this can be achieved, as the expression of Vt above involves the term

1{max[0,T ] St≤b}. Indeed as we shall see there is no such function v(t, x) so that the

equality

Vt = v(t, St)

holds true for all 0 ≤ t ≤ T .

However, we observe that before St hits b, it is believable that the option value Vt

should be just a function of (t, St) (think about the factors that you would use to

value Vt in a real life situation before the stock hits the barrier). After St hits b, the

option value Vt stays constant, namely it takes value 0. That is, the option value Vt

should be a function of (t, St) upto the random time Tb, the first time St hits b. In

other words, we are looking to find a function v(t, x) so that

Vt = v(t ∧ Tb, St∧Tb), t ∈ [0, T ].

This is what we will establish rigorously in several steps in the following section.

This equality will also help us establish a PDE for v(t, x) since by the result of the

section (2.6), we can apply Ito’s formula to v(t ∧ Tb, St∧Tb). Note, however, that here

we are investigating the dynamics of v(t, St) on the time interval [0, Tb]. Thus our

PDE will not have the usual domain as the one in classical Black-Scholes PDE.

3.2 The steps

We proceed to establish

Vt = v(t ∧ Tb, St∧Tb),

for some function v(t, x) through several steps.

(i) Write 1{max[0,T ] St≤b} in terms of Su, 0 ≤ u ≤ t and Su, t ≤ u ≤ T .
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The reason is we want to apply the Independence Lemma (or quote the Markov

property of S(t)), so heuristically we want to “separate the past and the future”.

We already know how to do this with ST . So we apply the same principle to the

new term 1{max[0,T ] St≤b}.

This is accomplished as followed:

1{max[0,T ] St≤b} = 1{max[0,t] Su≤b}1{max[t,T ] Su≤b}.

It is easy to see why the equality is true: the maximum of the whole path does not

exceed b if and only if its maximum on each time interval does not exceed b.

(ii) Recognizing that 1{max[0,t] Su≤b} ∈ F(t), so it can be factored out of E(.|F(t)).

(iii) Define

τb := inf{t ≥ 0 : S(t) > b} ∧ T
Tb := inf{t ≥ 0 : S(t) = b} ∧ T

Recall that P (Tb = τb) = 1. And so with probability 1:

{max
[0,t]

Su ≤ b} = {τb ≥ t} = {Tb ≥ t}.

The change from τb to Tb might seem unimportant and non-intuitive. But it is to

apply the optinal stopping theorem for martingale, see the section on the derivation

of the PDE below.

(iv) Combine (ii) and (iii) we get

V (t) = 1Tb≥tE
[
e−r(T−t)(ST −K)+1{max[t,T ] Su≤b}|F(t)

]
.

(v) Since

S(T ) = S(t)e(r−
1
2
σ2)(T−t)+σ(W (T )−W (t))

and

max
[t,T ]

Su = St max
[t,T ]

e(r−
1
2
σ2)(u−t)+σ(W (u)−W (t)),

note that max[t,T ] e
(r− 1

2
σ2)(u−t)+σ(W (u)−W (t)) is independent of F(t), by the

Independence Lemma, we get

E
[
e−r(T−t)(ST −K)+1{max[t,T ] Su≤b}|F(t)

]
= v(t, S(t)).
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where

v(t, x) := E
[
e−r(T−t)

(
xe(r−

1
2
σ2)(T−t)+σ(W (T )−W (t)) −K

)+
×1
{xmax[t,T ] e

(r− 1
2σ

2)(u−t)+σ(W (u)−W (t))≤b}

]
.

(vi) (Crucial point)

V (t) = 1Tb≥tv(t, S(t)) = v(t, S(t ∧ Tb)).

Indeed if Tb ≥ t then LHS = v(t, S(t)) and t ∧ Tb = t so the RHS = v(t, S(t)) and

the equality is true.

If Tb < t then LHS = 0. t ∧ Tb = Tb so that S(t ∧ Tb) = b. Moreover, with

probability 1:

bmax
[t,T ]

er(u−t)+σ(W (u)−W (t)) > b

Indeed, if we denote X(u) := r(u− t) + σ(W (u)−W (t)), u ∈ [t, T ] then X(t) = 0

and by property of Brownian motion,

P (X(u) ≤ 0,∀u ∈ [t, T ]) = 0.

So there must exist u ∈ (t, T ], X(u) > 0 and at that point u, beX(u) > b. Thus

v(t, S(t ∧ Tb)) = v(t, b) =
[
e−r(T−t)

(
be(r−

1
2
σ2)(T−t)+σ(W (T )−W (t)) −K

)+
1
{bmax[t,T ] e

(r− 1
2σ

2)(u−t)+σ(W (u)−W (t))≤b}

]
= 0,

and so the RHS = 0 as well.

(vii) From the above, we see that the function v(t, x) satisfies v(t, b) = 0 for all t.

Therefore, it follows that

v(τ, b) = 0,

for all stopping time τ taking values in [0, T ]. From which we derive that

v(t ∧ Tb, St∧Tb) = v(t, St∧Tb).

Indeed, for t < Tb the equalities are clear. For t > Tb, then

v(Tb, STb) = v(Tb, b) = 0 = v(t, b) so the equalities are also true in this case.

Therefore,

Vt = v(t, S(t ∧ Tb)) = v(t ∧ Tb, S(t ∧ Tb)).
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3.3 Derivation of the PDE

3.3.1 Derivation

We have

S(t ∧ Tb) = S(0) +

∫ t∧Tb

0

rS(u)du+

∫ t∧Tb

0

σS(u)dW (u)

= S(0) +

∫ t

0

1[0,Tb)rS(u)du+

∫ t

0

1[0,Tb)σS(u)dW (u).

Apply Ito’s formula to e−rtv(t, St∧Tb) (where we look at v(t, St∧Tb) as a deterministic

function of t and the stopped process St∧Tb), we have

e−rtVt = e−rtv(t, St∧Tb) = v(0, S0) +

∫ t

0

e−ru
[
− rv + vt + 1[0,Tb)(u)rSuvx

+
1

2
1[0,Tb)(u)σ2S2

uvxx
]
du+

∫ t

0

1[0,Tb)(u)e−ruσS(u)vxdWu,

where for all functions v we understood as v(t, St), similarly for vt, vx, vxx.

Note that this is where the importance of using Tb instead of τb is. The stochastic

integral ∫ t

0

e−ru1[0,Tb)σS(u)vxdWu =

∫ t∧Tb

0

e−ruσS(u)vxdWu

is a martingale since Tb is a stopping time. If we use τb here we cannot make the

same conclusion for τb is not a stopping time.

We do not want to set the dt term equal to 0 yet, because in the dt integral above,

some terms include 1[0,Tb) (from the stopped process St) and some don’t.

But this is easy to fix, since e−rtVt being a martingale implies e−r(t∧Tb)Vt∧Tb is also a

martingale. And it’s easily seen that

e−r(t∧Tb)Vt∧Tb = v(0, S0) +

∫ t

0

1[0,Tb)(u)e−ru
[
− rv + vt + rSuvx

+
1

2
σ2S2

uvxx
]
du+

∫ t

0

1[0,Tb)e
−ruσS(u)vxdWu,

Therefore we conclude

1[0,Tb)(u)
[
− rv(u, Su) + vt(u, Su) + rSuvx(u, Su) +

1

2
σ2S2

uvxx(u, Su)
]

= 0.
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3.3.2 Domain of the PDE

The equality

1[0,Tb)(u)
[
− rv(u, Su) + vt(u, Su) + rSuvx(u, Su) +

1

2
σ2S2

uvxx(u, Su)
]

= 0

does NOT permit us to conclude

−rv(t, x) + vt(t, x) + rSuvx(t, x) +
1

2
σ2S2

uvxx(t, x)
]

= 0,

for all t, x.

The reason is we can only cancel out the term 1[0,Tb)(u) when it is NOT zero, which

is the same as when 0 < Su ≤ b.

Thus the domain for our PDE is [0, T ]× [0, b], which is different from the domain we

used to work on for European call option: [0, T ]× [0,∞). One of the effect is that

we will have boundary conditions for our PDE at x = 0 and x = b.

Moreover, note that v(t, 0) = 0 since if S(t) ever hits 0 it will stay there. v(t, B) = 0

was explaind in step (vi). These are the boundary conditions for v. We also have

the terminal condition v(T, x) = (x−K)+ as usual.

Thus, the PDE that v must satisfy is:

vt − rv + rxvx +
1

2
x2σ2vxx = 0, 0 ≤ t < T, 0 < x < b

v(t, 0) = v(t, b) = 0

v(T, x) = (x−K)+.
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