
Pricing European call option in jump diffusion

models

Math 622 - Spring 2015

March 5, 2015

1 Pricing via risk neutral expectation

1.1 Model with Poisson noise

1.1.1 Change of measure

Let Nt be a Poisson process with rate λ. Supose we model the stock price as

dSt = αStdt+ σSt−dM(t),

where M(t) = Nt − λt is a P-martingale. Note that here the only random source of

St is from the jump process Nt.

From section 9 of lecture note 1, we also have

St = S(0) exp[(α− λσ)t+ log(1 + σ)Nt].

Let r > 0 be the interest rate. We want to find Q such that e−rtSt is a Q
martingale. If that is the case, since

dSt = rStdt+ σSt−(dNt − [λ− α− r
σ

]dt)

clearly we need Nt to be a Poisson process with rate λ̃ = λ − α−r
σ

. Since λ̃ must be

positive, a necessary condition (which implies no arbitrage for the model of St) is

λ− α− r
σ

> 0.
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We then define

dQ = Z(T )dP;

Z(t) = exp[log

(
λ̃

λ

)
Nt − (λ̃− λ)t)].

Note that under Q, we write the dynamics of St as

dSt = rStdt+ σSt−dM̃(t),

where M̃(t) = Nt − λ̃t is a Q-martingale, which is equivalent to

St = S(0) exp[(r − λ̃σ)t+ log(1 + σ)Nt].

1.1.2 Pricing of European call

Let V (t) denote the risk-neutral price of a European Call paying V (T ) = (ST −K)+

at time T . Then by the risk neutral pricing formula, we have

V (t) = EQ[e−r(T−t)(ST −K)+|F(t)
]
.

It remains to find an expression for V (t). Clearly

ST = St exp[(r − λ̃σ)(T − t) + log(1 + σ)(NT −Nt)].

So by the Independence Lemma, (Shreve’s Lemma (2.3.4)), we only need to eval-

uate

c(t, x) = e−r(T−t)EQ
[(
xe(r−λ̃σ)(T−t)+log(1+σ)(NT−Nt) −K

)+
]
,

then we have V (t) = c(t, St).

Since NT−Nt has distribution Poisson(λ̃(T−t)) under Q, c(t, x) has the expression

as an infinite sum, see Shreve’s formula (11.7.3). We won’t reproduce it here.

1.2 Model with compound Poisson noise

1.2.1 Change of measure

Suppose now that

dSt = αStdt+ σSt−dM(t),
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where M(t) = Q(t)−mt is a compensated compound Poisson process under P. Under

the risk neutral probability Q,

dSt = rStdt+ σSt−dM̃(t)

= (r − σm̃)Stdt+ σSt−dQt.

So clearly we need

(i) Q(t) to be a compound Poisson process under Q with EQ(Q(1)) = m̃.

(ii) r − σm̃ = α− σm.

Note that (ii) gives an equation for m̃. If Q(t) =
∑Nt

i=1 Yi and under Q, Nt is a

Poisson process with rate λ̃ and E(Yi) = µ̃ then

m̃ = λ̃µ̃.

So (ii) also gives an equation for λ̃ and f̃ , the distribution of Yi under Q. From the

change of measure sections, we have seen how to choose Z(T ) such that the conditions

(i) and (ii) are satisfied. Note that this choice may not be unique, as generally equation

(ii) has more than 1 unknowns. However, there is also a restriction on the solution

λ̃ > 0. So a simple application of linear algebra result to conclude that there are

infinitely many choices of risk neutral measures is not correct.

1.2.2 Pricing of European call option

Observe that

dSt = (r − σm̃)Stdt+ σSt−dQt

has the solution

St = S(0)e(r−σm̃)t
∏

0<s≤t

(1 + σ∆Q(s))

= S(0)e(r−σm̃)t

Nt∏
i=1

(1 + σYi).

Also for t < T

ST = Ste
(r−σm̃)(T−t)

NT∏
i=Nt+1

(1 + σYi).

Observe the important fact that
∏NT

i=Nt+1(1 + σYi) is independent of F(t), where

F(t) is a filtration for Q(t). We give an explanation in the next subsection.
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Thus V (t), the risk-neutral price of a European Call paying V (T ) = (ST −K)+

at time T for this model is

V (t) = EQ[e−r(T−t)(ST −K)+|F(t)
]

= c(t, St),

where

c(t, x) := e−r(T−t)EQ
[
[xe(r−σm̃)(T−t)

NT∏
i=Nt+1

(1 + σYi)−K]+
]
.

Since Yi are independent of NT −Nt, again we can condition on NT −Nt = j, j =

1, 2, ... to get

c(t, x) = e−r(T−t)
∞∑
j=0

κ(j, x)e−λ̃(T−t) [λ̃(T − t)]j

j!
,

where

κ(j, x) = EQ
[(
xe(r−σm̃)(T−t)

j∏
i=1

(1 + σYi)−K
)+
]
.

1.2.3 The independence of
∏NT

i=Nt+1(1 + σYi) from F(t)

In the derivation above, we claim that
∏NT

i=Nt+1(1+σYi) from F(t). This is not totally

obvious since the terms involve Nt, which is in F(t). However, intuitively you can see

that this is believable because there are NT −Nt terms in the product, which consists

of Yi’s. Both NT −Nt and Yi’s are independent of F(t).

Rigorously, we use the result mentioned in Lecture 2. That is if E(euX |F) =

E(euX) for all u ∈ R then X is independent of F . We verify that this is the case

here. That is we want to show

E
(
eu

∏NT
i=Nt+1(1+σYi)|Ft

)
= E

(
eu

∏NT
i=Nt+1(1+σYi)

)
,∀u ∈ R.

Observe that the above expression would be complicated to handle. But we can

simplify it by noting that we can instead show the independence of

log
( NT∏
i=Nt+1

(1 + σYi)
)

=

NT∑
i=Nt+1

log(1 + σYi)
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with Ft. Moreover,

eu
∑NT

i=Nt+1 log(1+σYi) =

NT∏
i=Nt+1

eu log(1+σYi).

Thus we see that we can just prove this general claim for our purpose: let

X1, X2, · · · be i.i.d and be independent of Nt, t > 0. Then

E
( NT∏
i=Nt+1

Xi|Ft
)

= E
( NT∏
i=Nt+1

Xi

)
= E

(NT−Nt∏
i=1

Xi

)
.

This indeed will be the statement we’ll prove for the rest of this proof. We have

E
( NT∏
i=Nt+1

Xi|F(t)
)

= E
(NT−Nt∏

i=1

Xi+Nt |F(t)
)
.

Since NT −Nt is independent of F(t), by the Independence lemma,

E
[NT−Nt∏

i=1

Xi+Nt |F(t)
]

= f(Nt),

where

f(k) = E
[NT−Nt∏

i=1

Xi+k

]
.

We’ll be done if we can show

f(k) = f(0) = E
[NT−Nt∏

i=1

Xi

]
.

Note that

E
[NT−Nt∏

i=1

Xi+k

]
=

∑
j

E
[NT−Nt∏

i=1

Xi+k|NT −Nt = j
]
P (NT −Nt = j)

=
∑
j

E
[ j∏
i=1

Xi+k|NT −Nt = j
]
P (NT −Nt = j)

=
∑
j

E
[ j∏
i=1

Xi+k

]
P (NT −Nt = j)

=
∑
j

{
E
[
X1

]}j
P (NT −Nt = j),
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where the third equality is because of the independence of Xi’s and NT −Nt and the

fourth equality is because of the identical distribution of Xi’s.

Using the same conditioning technique, we can also show

E
[NT−Nt∏

i=1

Xi

]
=
∑
j

{
E
[
X1

]}j
P (NT −Nt = j).

Thus f(k) = f(0) as required.

1.3 Model with Brownian motion and compound Poisson

noise

1.3.1 Change of measure

Suppose now that

dSt = αStdt+ σSt−dW (t) + St−dM(t),

where M(t) = Q(t)−mt is a compensated compound Poisson process under P. Under

the risk neutral probability Q,

dSt = rStdt+ σSt−dW̃ (t) + St−dM̃(t)

= (r − m̃)Stdt+ σSt−dW̃ (t) + St−dQt,

where W̃ (t) := W (t) + θt is a Q Brownian motion and Q(t) is compound Poisson

with EQ(Q(1)) = m̃.

Thus the equation that θ and m̃ have to satisfy is

r + σθ − m̃ = α−m.

Solving this equation for θ and m̃ and use the change of measure result discussed

above, we can find Q such that e−rtSt is a Q - martingale.

1.3.2 Pricing of European call

Observe that

dSt = (r − m̃)Stdt+ σSt−dW̃ (t) + St−dQt,
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has the solution

St = S(0) exp
[
(r − m̃− 1

2
σ2)t+ σW̃ (t)

] Nt∏
i=1

(1 + Yi).

Hence for t < T ,

ST = St exp
[
(r − m̃− 1

2
σ2)(T − t) + σ(W̃ (T )− W̃ (t))

] NT∏
i=Nt+1

(1 + Yi),

where we have the independence of W̃ (T ) − W̃ (t) and
∏NT

i=Nt+1(1 + Yi) with respect

to F(t) and also with respect to each other.

Thus V (t), the risk-neutral price of a European Call paying V (T ) = (ST −K)+

at time T for this model is

V (t) = EQ[e−r(T−t)(ST −K)+|F(t)
]

= c(t, St),

where

c(t, x) := e−r(T−t)EQ[(xe(r−m̃− 1
2
σ2)(T−t)+σ(W̃ (T )−W̃ (t))

NT∏
i=Nt+1

(1 + Yi)−K
)+]

.

To find an expression for c(t, x), we first condition on
∏NT

i=Nt+1(1 +Yi) and use the

independence lemma to define a function κ(t, x) as

κ(t, x) := e−rtEQ
[(
xe(r− 1

2
σ2)t+σ

√
tY −K

)+]
,

where Y has standard normal distribution. Note that we have an explicit expression

for κ(t, x) from the Black-Scholes formula. Then

c(t, x) = EQ[κ(T − t, xe−m̃(T−t)
NT∏

i=Nt+1

(1 + Yi))
]
.

Now again conditioning on NT − Nt = j and using the independence between Y ′i s

and NT −Nt we have

c(t, x) =
∞∑
j=0

e−λ̃(T−t) (λ̃(T − t))j

j!
EQ[κ(T − t, xe−m̃(T−t)

j∏
i=1

(1 + Yi))
]
.
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2 Pricing via partial differential difference equa-

tions

2.1 Heuristic

Suppose St satisfies

dSt = αStdt+ σStdM(t),

where M(t) = Nt − λt is a compensated Poisson process under P.

From the change of measure section, we learned that under the risk neutral mea-

sure Q, St has the dynamic:

dSt = (r − λ̃σ)Stdt+ σSt−dNt,

where λ̃ = λ− α−r
σ

and N is a Poisson process with rate λ̃ under Q.

The call option price V (t), where V (T ) = (ST −K)+ can be written as

V (t) = EQ
[
e−r(T−t)(ST −K)+|F(t)

]
= c(t, St),

where

c(t, x) := e−r(T−t)EQ
[
(xe(r−λ̃σ)(T−t)+log(1+σ)(NT−Nt) −K)+

]
.

As in the Black-Scholes model, we want to derive an equation that c(t, x) satisfies.

The key principle here is to apply Ito’s formula to e−rtc(t, St) to achieve

de−rtc(t, St) = f(t, c(t, St))dt+ something dM(t),

where M(t) is a Q-martingale. Then the equation that we look for is

f(t, c(t, St)) = 0.

The reason is that e−rtc(t, St) is a Q-martingale by definition. Therefore, its drift

has to be 0.
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2.2 Model with Poisson noise

Suppose St satisfies

dSt = αStdt+ σStdM(t),

where M(t) = Nt − λt is a compensated Poisson process under P.

Apply Ito’s formula to e−rtc(t, St), recognizing there is no Brownian motion com-

ponent, we have

e−rtc(t, St) =

∫ t

0

−re−ruc(u, Su)du+ e−ru
∂

∂t
c(u, Su)du+ e−ru

∂

∂x
c(u, Su)dS

c(u)

+
∑

0<u≤t

e−ru[c(u, Su)− c(u−, Su−)]

=

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − λ̃σ)Su

]
du

+
∑

0<u≤t

e−ru[c(u, Su)− c(u, Su−)].

We need to rewrite
∑

0<u≤t e
−ru[c(u, Su) − c(u, Su−)] as it is not in differential

form. Two key observations will help us here:

(i) Su = (1 + σ∆N(u))Su− = (1 + σ)Su−.

(ii) c(u, Su) jumps at the same points as Su, which in turn jumps at the same

points as N(u). Again keep in mind that ∆N(u) = 1.

Thus ∑
0<u≤t

e−ru[c(u, Su)− c(u, Su−)] =
∑

0<u≤t

e−ru[c(u, Su−(1 + σ))− c(u, Su−)]

=

∫ t

0

e−ru[c(u, Su−(1 + σ))− c(u, Su−)]dN(u),

where the first equality uses observations (i) and second equality uses observation (ii).

Putting all these together gives

e−rtc(t, St) =

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − λ̃σ)Su

]
du

+

∫ t

0

e−ru[c(u, Su−(1 + σ))− c(u, Su−)]dN(u).

The last thing to do is to change dN(u) to dM(u) for some martingale M . This
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is easy: we only need to subtract and add λ̃du to dN(u). So finally

e−rtc(t, St) =

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − λ̃σ)Su

+[c(u, Su−(1 + σ))− c(u, Su−)]λ̃
]
du

+

∫ t

0

e−ru[c(u, Su−(1 + σ))− c(u, Su−)]dM(u)

=

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − λ̃σ)Su

+[c(u, Su(1 + σ))− c(u, Su)]λ̃
]
du

+

∫ t

0

e−ru[c(u, Su−(1 + σ))− c(u−, Su−)]dM(u),

where in the second equality we uses the fact that we are integrating with respect to

du so using Su− or Su gives the same result.

Now apply the principle in Section (2.1) we get

Theorem 2.1. The call option price c(t, x) in the model of this section satisfies the

differential difference equation

−rc(t, x) +
∂

∂t
c(t, x) + (r − λ̃σ)x

∂

∂x
c(t, x)

+ λ̃[c(t, x(1 + σ))− c(t, x)] = 0, 0 ≤ t < T, x > 0

c(T, x) = (x−K)+, x > 0.

2.3 Model with compound Poisson noise

Suppose St has the dynamic:

dSt = (r − m̃σ)Stdt+ σSt−dQt,

where Q(t) is a compound Poisson process with rate EQ(Q(1)) = 1. We also assume

that Q(t) =
∑Nt

i=1 Yi where each Yi takes discrete distribution with values y1, y2, ..., ym.

Following the same procedure as the above section, apply Ito’s formula to e−rtc(t, St)
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gives

e−rtc(t, St) =

∫ t

0

−re−ruc(u, Su)du+ e−ru
∂

∂t
c(u, Su)du+ e−ru

∂

∂x
c(u, Su)dS

c(u)

+
∑

0<u≤t

e−ru[c(u, Su)− c(u−, Su−)]

=

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃σ)Su

]
du

+
∑

0<u≤t

e−ru[c(u, Su)− c(u, Su−)].

Now by the Poisson process decomposition, we can write

Q(t) =
m∑
i=1

yiNi(t),

where each Ni(t) is a Poisson process with rate λ̃i, i = 1, ...,m under Q. An important

fact here is that since Ni’s are independent, they do not jump at the same time. So

at all jump point of Q:

1 + σ∆Q(t) = 1 + σyi∆Ni(t), for some i.

Thus we have,∑
0<u≤t

e−ru[c(u, Su)− c(u, Su−)] =
∑

0<u≤Nt

e−ru[c(u, Su−(1 + σ∆Qu))− c(u, Su−)]

=
m∑
i=1

[ ∑
0<u≤t

e−ru[c(u, Su−(1 + σyi))− c(u, Su−)]∆Ni(u)
]

=
m∑
i=1

[ ∫ t

0

e−ru[c(u, Su−(1 + σyi))− c(u, Su−)]dNi(u)
]
.

So

e−rtc(t, St) =

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃σ)Su

+
m∑
i=1

[c(u, Su(1 + σyi))− c(u, Su)]λ̃i
]
du

+

∫ t

0

e−ru[c(u, Su)− c(u, Su−)]dM(u),
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where

M(t) =
m∑
i=1

Ni(t)− λ̃it

is a Q-martingale.

Setting the dt part to be 0 gives the following:

Theorem 2.2. The call option price c(t, x) in the model of this section satisfies the

differential difference equation

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃σ)x

∂

∂x
c(t, x)

+
m∑
i=1

[c(t, x(1 + σyi))− c(t, x)]λ̃i = 0, 0 ≤ t < T, x > 0

c(T, x) = (x−K)+, x > 0.

2.4 Model with Brownian motion and compound Poisson

noise

Suppose St has the dynamic:

dSt = (r − m̃)Stdt+ St−dQt + σStdW̃ (t),

where Q(t) is a compound Poisson process with rate EQ(Q(1)) = 1 and W̃ (t) is a Q
Brownian motion. We also assume that Q(t) =

∑Nt

i=1 Yi where each Yi takes discrete

distribution with values y1, y2, ..., ym.

Following the same procedure as the above section, apply Ito’s formula to e−rtc(t, St)

gives

e−rtc(t, St) =

∫ t

0

−re−ruc(u, Su)du+ e−ru
∂

∂t
c(u, Su)du+ e−ru

∂

∂x
c(u, Su)dS

c(u)

+
1

2
e−ru

∂2

∂x2
c(u, Su)σ

2S2(u)du+
∑

0<u≤t

e−ru[c(u, Su)− c(u−, Su−)]

=

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃)Su

+
1

2

∂2

∂x2
c(u, Su)σ

2S2(u)
]
du

+

∫ t

0

e−ru
∂

∂x
c(t, Su)SudW̃ (u) +

∑
0<u≤t

e−ru[c(u, Su)− c(u, Su−)].
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Follow the same exact analysis for
∑

0<u≤t e
−ru[c(u, Su)− c(u, Su−)] as in section

(2.3) we have

e−rtc(t, St) =

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃)Su

+
1

2

∂2

∂x2
c(u, Su)σ

2S2(u) +
m∑
i=1

[c(u, Su(1 + yi))− c(u, Su)]λ̃i
]
du

+

∫ t

0

e−ru
∂

∂x
c(t, Su)SudW̃ (u) +

∫ t

0

e−ru[c(u, Su)− c(u, Su−)]dM(u),

where

M(t) =
m∑
i=1

Ni(t)− λ̃it

is a Q-martingale.

Setting the dt part to be 0 gives the following:

Theorem 2.3. The call option price c(t, x) in the model of this section satisfies the

differential difference equation

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃)x

∂

∂x
c(t, x) +

1

2

∂2

∂x2
c(t, x)σ2x2

+
m∑
i=1

[c(t, x(1 + yi))− c(t, x)]λ̃i = 0, 0 ≤ t < T, x > 0;

c(T, x) = (x−K)+, x > 0.

2.5 A unifying approach via Levy measure

Note that all of the above derivations rely on the decomposition of a compound

Poisson process with discrete jumps into sums of individual Poisson processes. This

technique obviously does not work when we have a compound Poisson process with

continuous jump distribution. The way to handle this situation is via the concept of

the Levy measure. It will also help us write one single type of equation, called Partial

Integro-Differential Equation (PIDE), for all types of our noise, as long as they are

compound Poisson process plus a Brownian motion. For a more detailed treament of

Levy process with application to finance, see e.g. [2].
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2.5.1 The Levy measure

Definition 2.4. Let Lt be a Levy process and A ∈ B(R) be a Borel measurable subset

of the real line. Define

µLt (A) :=
∑

0<s≤t

1∆Ls∈A;

that is, µLt (A) counts the number of jumps of L, up to time t, that have size in the set

A. We call µLt (·) the Poisson random measure associated with the Levy process Lt .

Note that for a fixed A, µLt (A) is a counting process. Also define

ν(A) := E(µL1 (A)).

We say ν is the Levy measure associated with the Levy process Lt .

Remark 2.5. In the above definition, usually one would require that the point 0 is

“far away” from the set A, that is 0 /∈ A. This is because a Levy process Lt can have

infinitely many small jumps close to 0, which in turn may make µLt (A) to be infinite

if 0 ∈ A. However, in the cases we’re dealing with, namely upto compound Poisson

process, this will not happen. The number of jumps of compound Poisson process in

any finite time interval [0, t] will always remain finite. So we do not have to include

this restriction in the set A, for ease of introduction to the material.

Observe that for a fixed A, µLt has independent and stationary increment, which

is inherited from the Levy process Lt. Therefore, µLt (A) is a Poisson process with

rate

λA = ν(A) = E(µL1 (A)).

In other words, the Levy measure ν measures the expected number of jumps of Lt

of a certain height in a time interval of length 1. The height is determined by what

values of the set A you plug in to the measure ν. We list what ν is for the processes

we were familiar with in this chapter.

1. Poisson process with rate λ:

ν(dx) = λδ1(dx).

2. Compound Poisson process with rate λ and discrete jumps y1, · · · , yM :

ν(dx) = λ
M∑
m=1

pmδym(dx).
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3. Compound Poisson process with rate λ and continuous jump distribution fY (x):

ν(dx) = λfY (dx).

Remark 2.6. Note that in all of the above examples,

λ =

∫
R
ν(dx) = ν(R).

This indeed will be the case for all compound Poisson processes: they have finite

Levy measure and the rate is equal to the Levy measure of the real line.

2.5.2 Integrating with respect to the random Poisson measure

For a Levy process Lt with Levy measure ν, adapted to a filtration Ft. We define∫ t

0

∫
A

f(s, x)µL(ds, dx) :=
∑

0<s≤t

f(s,∆Ls)1∆Ls∈A.

That is, the integral
∫ t

0

∫
A
f(s, x)µL(ds, dx) is a pure jump process that jumps at

the same time as L, with the jump size f(s,∆Ls) if the jump of L happens at time s.

What will be important for us is the following martingale result:

Theorem 2.7. Let f(s, x, ω) be a process with left continuous with right limit paths

adapted to the filtration Ft satisfying certain integrability conditions. Then∫ t

0

∫
A

f(s, x, ω)[µL(ds, dx)− ν(dx)ds]

is a Ft-martingale.

Proof. The proof starts by approximating f(t, x, ω) by simple processes of the form∑m
k=1 ξk(t)φk(x), where ξk(t) are Ft measurable processes and φk are deterministic

functions of x. We prove the martingale property for these simple processes and prove

the general result by a convergence argument. For details see [1].

2.5.3 Ito’s formula for jump processes, random Poisson measure version

Let Xt be a process of the form

X(t) = X0 +

∫ t

0

α(s)ds+

∫ t

0

γ(s)dWs+ J(t),
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where J(t) is a compound Poisson process. Let f be a C1,2 function. Then

f(t,X(t)) = f(0, X0) +

∫ t

0

ft(s,Xs)ds

+

∫ t

0

fx(s,Xs)dX
c(s) +

∫ t

0

1

2
fxx(s,Xs)γ

2(s)ds

+
∑

0<s≤t

f(s,Xs)− f(s,Xs−)

= f(0, X0) +

∫ t

0

ft(s,Xs)ds

+

∫ t

0

fx(s,Xs)dX
c(s) +

∫ t

0

1

2
fxx(s,Xs)γ

2(s)ds

+

∫ t

0

∫
R

[
f(s,Xs− + x)− f(s,Xs−)

]
µJ(ds, dx).

The reason for the re-writing in the random Poisson measure version is clear: we

want to use the martingale result mentioned in the previous section. The equality∑
0<s≤t

f(s,Xs)− f(s,Xs−) =

∫ t

0

∫
R

[
f(s,Xs− + x)− f(s,Xs−)

]
µJ(ds, dx)

comes from the fact that the jumps of X comes from the jumps of J , and ∆Xs = ∆Js

at all jump times s.

2.5.4 PIDE for Euro call option with compound Poisson process and

Brownian motion noise

Now suppose St has the dynamic:

dSt = rStdt+ σStdW̃ (t) + γSt−d(Qt − µ̃t),

where we added a volatility component γ in the compound Poisson part for generality,

even though this is not strictly necessary as it can be incoporated into the jumps of

Q. This is the parameter σ in the previous sections (2.2), (2.3).

Recall that applying the Ito’s formula, we have

e−rtc(t, St) =

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃)Su

+
1

2

∂2

∂x2
c(u, Su)σ

2S2(u)
]
du

+

∫ t

0

e−ru
∂

∂x
c(t, Su)SudW̃ (u) +

∑
0<u≤t

e−ru[c(u, Su)− c(u, Su−)].
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Rewriting the term
∑

0<u≤t e
−ru[c(u, Su)−c(u, Su−) using random Poisson measure

we have∑
0<u≤t

e−ru[c(u, Su)− c(u, Su−) =
∑

0<u≤t

e−ru[c(u, Su−(1 + γ∆Qt))− c(u, Su−)]

=

∫ t

0

∫
R
e−ru[c(u, Su−(1 + γx))− c(u, Su−)]µQ(du, dx).

Thus applying the martingale result, we have

e−rtc(t, St) =

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃)Su

+
1

2

∂2

∂x2
c(u, Su)σ

2S2(u)
]
du+

∫ t

0

e−ru

∂

∂x
c(t, Su)SudW̃ (u) +

∫ t

0

∫
R
e−ru[c(u, Su−(1 + γx))− c(u, Su−)]µQ(du, dx)

=

∫ t

0

e−ru
[
− rc(u, Su) +

∂

∂t
c(u, Su) +

∂

∂x
c(t, Su)(r − m̃)Su

+
1

2

∂2

∂x2
c(u, Su)σ

2S2(u) +

∫
R
[c(u, Su−(1 + γx))− c(u, Su−)]ν(dx)

]
du

+

∫ t

0

e−ru
∂

∂x
c(t, Su)SudW̃ (u)

+

∫ t

0

∫
R
e−ru[c(u, Su−(1 + γx))− c(u, Su−)](µQ(du, dx)− ν(dx)du).

Therefore, c(t, x) satisfies the PIDE

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃)x

∂

∂x
c(t, x) +

1

2

∂2

∂x2
c(t, x)σ2x2

+

∫
R
[c(t, x(1 + γz))− c(t, x)]ν(dz) = 0, 0 ≤ t < T, x > 0;

c(T, x) = (x−K)+, x > 0.

In particular we have:

(i) If Q is a Poisson (λ̃) process then ν(dz) = λ̃δ1(dz). Thus the PIDE becomes

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃)x

∂

∂x
c(t, x) +

1

2

∂2

∂x2
c(t, x)σ2x2

+ λ̃[c(t, x(1 + γ))− c(t, x)] = 0.
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(ii) IfQ is a compound Poisson with discrete jumps then ν(dz) =
∑M

m=1 λ̃mδym(dz).

Thus the PIDE becomes

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃)x

∂

∂x
c(t, x) +

1

2

∂2

∂x2
c(t, x)σ2x2

+
M∑
m=1

λ̃m[c(t, x(1 + γym))− c(t, x)] = 0.

(iii) If Q is a compound Poisson with continuous jump then ν(dz) = λf(z)dz.

Thus the PIDE becomes

−rc(t, x) +
∂

∂t
c(t, x) + (r − m̃)x

∂

∂x
c(t, x) +

1

2

∂2

∂x2
c(t, x)σ2x2

+

∫
R
[c(t, x(1 + γz)− c(t, x)]λf(z)dz = 0.

You should verify that for cases (i) and (ii) the results are exactly as what we got

before in sections (2.2), (2.3).
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finance. arXiv preprint arXiv:0804.0482 (2008).

18


