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1 Motivation

One of the fundamental concept in Math Finance I regarding the Black-Scholes model

is the following: Suppose S(t) satisfies

S(t) = S(0) +

∫ t

0

µ(u)S(u)du+

∫ t

0

S(u)dW (u),

under the objective probability P. Unless µ(u) = r, the interest rate, (which we

supposed to be a constant for simplicty) e−rtS(t) is not a martingale under P, and

thus we cannot price financial product under P. We need to find another measure Q,

the risk neutral measure, so that e−rtS(t) is a martingale udner Q. The key idea is

that under Q, it must be the case that W̃ (t) :=
∫ t
0
(µ(u)− r)du+W (t) is a Brownian

motion. So that

S(t) = S(0) +

∫ t

0

rS(u)du+

∫ t

0

S(u)dW̃ (u)

has the right distribution under Q.

Intuitively, the measure Q is chosen so that we can “modify the drift” of W (t) and

still have the new process W̃ (t) being a Brownian motion; which results in modifying

the drift of S(t) to the desirable drift( in this case, r ).

Now suppose S(t) satisfies

S(t) = S(0) +

∫ t

0

µS(u)du+

∫ t

0

S(u−)dM(u),

under some objective probability measure P, whereM(t) = N(t)−λt is a compensated

Poisson process with rate λ under P. Again, we would like that

S(t) = S(0) +

∫ t

0

rS(u)du+

∫ t

0

S(u−)dM̃(u),
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where M̃(t) := M(t)−(r−µ)t is a martingale under a probability measure Q. Again,

since M(t) = N(t) − λt, it is clear that M̃(t) is a martingale if N(t) becomes a

Poisson process with rate λ + (r − µ) under Q. This note discusses how to choose

such a measure Q for various choices of jump martingales M .

2 Review of change of measure, Girsanov’s theo-

rem

2.1 The change of measure kernel Z(t)

Let P be a probability measure on (Ω,F); F(t), 0 ≤ t ≤ T a filtration with F(T ) = F .

If we define another probability measure Q on (Ω,F(T )) via the relation

dQ = Z(T )dP,

for some random variable Z(T ), that is for all Y ∈ F(T )

EQ(Y ) := EP(Z(T )Y ),

it must be that P(Z(T ) ≥ 0) = 1 and EP(Z(T )) = 1.

2.2 Restriction of Q to a smaller sigma algebra F(t)

Let F(t), 0 ≤ t ≤ T be a filtration associated with a probability space (Ω,P,F(T )).

If Z(t) is a P martingale, Z(T ) satisfies the conditions in (i), then for all Y ∈ F(t)

EQ(Y ) = EP(Z(t)Y ).

(See Shreve’s Lemma 5.2.1.) Note that this is not a definition but a result that follows

from the definition in (i) and the fact that Z is a martingale.

2.3 Conditional expectation in change of measure

Let Y be FT measureable, we have for t ≤ T

EQ(Y |F(t)) =
EP(ZTY |Ft)
EP(ZT |Ft)

.

In particular, if Z(t) is a P-martingale then combining the results above we have

for s ≤ t and Y ∈ Ft

EQ(Y |Fs) =
EP(ZtY |Fs)

Zs
.
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2.4 Condition for a process to be a martingale under the new

measure

Theorem 2.1. Let X(t) be a F(t) adapted process, Z(t) a P-martingale then X(t)Z(t)

is a P martingale if and only if X(t) is a Q-martingale.

Application: Let X(t) be the “Brownian motion with drift” W̃ (t) or the process

M̃(t) in section I. Recall that we want W̃ (t) (or M̃(t)) be a martingale under Q. This

statement gives a sufficient condition for this to happen.

3 Some remarks about Girsanov theorem

3.1 Characterization of Brownian motion

We all know the Levy’s characterization of Brownian motion: continuous martingale

with quadratic variation on [0, t] equals to t. There is an equivalent characterization:

Theorem 3.1. Let X(t) be a continuous process such that X(0) = 0. Then X(t) is

a Brownian motion w.r.t a filtration F(t) if and only if for all u ∈ R,

Eu(X)(t) := euXt− 1
2
u2t

is a martingale w.r.t Ft.

Proof. Let X(t) be a Brownian motion. It is routine to show that

euX(t)− 1
2
u2t

is a martingale.

The converse can be argued heuristically as followed. Suppose that euXt− 1
2
u2t is a

martingale for all u ∈ R. Then by definition for s < t

E(eu(Xt−Xs)
∣∣∣Fs) = e

1
2
u2(t−s).

Since for all u ∈ R, the RHS is independent of F(s), X(t)−X(s) is independent of

F(s) (see explaination in the remark below). Hence it has independent increments.

Moreover, from the same calculation, the moment generating function of X(t) −
X(s) is that of a Normal(0, t − s). Hence it has stationary increments, and the

increments has Normal(0, t− s) distribution. Thus X(t) is a Brownian motion.
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Remark 3.2. We clarifiy the reason why X(t) −X(s) is independent of F(s). We

make the following claim: if E(euX |F) = E(euX) for all u ∈ R then X is independent

of F .

This claim is true in turn because of the following result, known as Kac’s theorem

for characteristic functions: if

E(euX+vY ) = E(euX)E(evY ),∀u, v ∈ R,

then X, Y are independent. A reference can be found in Thereom 1.1.16 of the textbook

Levy’s processes and Stochastic Calculus by David Applebaum.

If we accept this result, then we see that or all Y ∈ F ,

E(euX+vY ) = E
(
E(euX+vY |F)

)
= E

(
evYE(euX |F)

)
= E(euX)E(evY ).

Hence X is indepedent of Y for all Y ∈ F . Hence X is independent of F .

3.2 Choice of Z(t) in Girsanov Theorem

Suppose that W (t) is a P Brownian motion. We want to find Q via

dQ = Z(T )dP

so that

W̃ (t) := W (t) + αt

is a Q−Brownian motion. From the characterization of Brownian motion from the

exponential martingale above, we need

Eu(W̃ )(t) = euW̃t− 1
2
u2t

to be a Q martingale. Observe that

Eu(W̃ )(t) = euW̃ (t)− 1
2
u2t = euW (t)− 1

2

(
u2−2uα

)
t.

By Theorem (2.1), in order for Eu(W̃ )(t) to be a Q martingale, we need to

choose the change of measure kernel Z(t) so that both Z(t) and Eu(W̃ )(t)Z(t) are

P-martingales. Since

u2 − 2uα = (u− α)2 − α2,
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and clearly

e(u−α)W (t)− 1
2
(u−α)2t

is a P-martingale, we may guess the choice for Z(t) is

Z(t) = e−αW (t)− 1
2
α2t,

which is clearly also a P-martingale.

This intuition also suggests that if we want W̃ (t) = W (t) +
∫ t
0
α(u)du to be a Q

Brownian motion, the choice of Z(t) is

Z(t) = e−
∫ t
0 α(u)dW (u)− 1

2

∫ t
0 α(u)

2du,

even though the verification now is slightly more involved.

4 Change of measure for Poisson processes

4.1 Poisson process characterization

Theorem 4.1. A càdlàg process N(t), N(0) = 0, is a Poisson process with rate λ

w.r.t F(t) if and only if for all u ∈ R

exp
(
uN(t)− λt(eu − 1)

)
is a martingale w.r.t F(t).

The proof for this theorem is similar to the proof for the characterization of

Brownian motion.

4.2 Choice of Z(t)

Suppose N(t) is a Poisson process with rate λ under P. We want to find Q via the

change of measure formula

dQ = Z(T )dP

so that N(t) has rate λ̃ under Q. By the characterization of Poisson process, we want

exp
(
uN(t)− λ̃t(eu − 1)

)
to be a Q-martingale.
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Again, by Theorem (2.1), we need to choose Z(t) so that both

Z(t) and euN(t)−λ̃t(eu−1)Z(t)

are P-martingales.

Now the choice of such Z(t) may not be immediately obvious, even though we

can use the same reverse engineer idea as we did above with the Brownian motion.

Instead, a more natural idea here is to choose a general exponential martingale Z(t)

associated with N(t) with an undetermined coefficient. We perform the change of

measure with Z(t) and expect that N(t) will remain a Poisson process with different

rate under this change of measure. We then observe what rate N(t) will actually be

under the new measure using the exponential martingale characterization of a Poisson

process. Then we can determine the precise coefficient to achieve the desired rate of

N(t) under the new measure.

More specifically, we let

Z(t) = eaN(t)−λt(ea−1),

where a is our undetermined coefficient. Then clearly Z(t) is a P-martingale.

Suppose that N(t) remains a Poisson process under Q and its rate is λ̃. Then by

Theorem (2.1) and the exponential martingale characterization of Poisson processes

we must have

euN(t)−λ̃t(eu−1)eaN(t)−λt(ea−1) = e(u+a)N(t)−λ̃t(eu−1)−λt(ea−1)

is a P-martingale.

But since we know

e(u+a)N(t)−λt(eu+a−1)

is a P-martingale we must have

λ̃(eu − 1) + λ(ea − 1) = λ(eu+a − 1). (1)

Note that the above equation has to be true ∀u ∈ R. In particular if we choose

u = −a then the RHS equals 0. Thus

λ̃ = λ
1− ea

e−a − 1
= λ

ea(1− ea)
1− ea

= λea.

Plug this in we indeed verify the equation (1) for all u.
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Thus our conclusion is that if we choose

Z(t) = eaN(t)−λt(ea−1),

then N(t) is a Poisson process with rate λea under Q. Now if we desire

λea = λ̃,

for some pre-given λ̃ then clearly a = log
(
λ̃
λ

)
and also

Z(t) = exp
[

log

(
λ̃

λ

)
N(t) + (λ− λ̃)t

]
.

We have arrived at the following theorem

Theorem 4.2. Let N(t) be a Poisson process with rate λ under a probabilty P and

F(t) a filtration for N(t). Let λ̃ be given. Define

Z(t) := exp
[

log

(
λ̃

λ

)
N(t) + (λ− λ̃)t

]

= e(λ−λ̃)t

(
λ̃

λ

)N(t)

, 0 ≤ t ≤ T.

Also define

dQ = Z(T )dP on F(T ).

Then Z(t) is a P martingale and under Q, N(t) is a Poisson process with rate λ̃.

5 Change of measure for compound Poisson with

discrete jump distribution

Let Q(t) be a compound Poisson process with rate λ. That is

Q(t) =

N(t)∑
i=1

Yi,

N(t) has rate λ under a probabilty P and F(t) a filtration for Q(t). Recall that each

jump of Q(t) has identical distribution Yi.
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Here we assume that Y1 (hence all Yi’s) takes values y1, y2, ..., yM with probability

P(Y1 = ym) = pm, 1 ≤ m ≤M

that is Y1 has discrete distribution.

We want to change the intensity of Q(t) as well as the distribution of Yi (that is to

change pm) via the change of measure. For any λ̃ > 0 and p̃m ∈ (0, 1),
∑M

m=1 p̃m = 1

we find a probabilty Q so that under Q, Q(t) is a compound Poisson process with

rate λ̃ and Yi has distribution

Q(Y1 = ym) = p̃m, 1 ≤ m ≤M.

Before we proceed, we need to mention an important result about decomposing a

compound Poisson process with discrete jumps into a sum of Poisson processes.

5.1 Summing and Decomposing Compound Poisson processes

5.1.1 Summing compound Poisson processes

Compound Poisson processes can be combined and decomposed in fascinating ways.

Shreve treats these in Theorem 11.3.3, page 471, and Corollary 11.3.3, page 473,

for the special case when Y1, . . . are discrete random variables. We will state more

general versions of these properties here, but without a proof: Shreve gives a proof

for his special case.

Theorem 11.3.3 says in essence that one can build a compound Poisson process

by bringing in jumps of different sizes at different Poisson rates. For example let N1

and N2 be two independent, Poisson processes with respective rates λ1 and λ2. Then

y1N1(t) is a very simple compound Poisson process in which jumps of size y1 arrive in

a Poisson stream of rate λ1, and y2N1(t) is a very simple compound Poisson process

in which jumps of size y2 arrive in a Poisson stream of rate λ2.

Let

Q(t) = y1N1(t) + y2N2(t).

This is a pure jump process whose jumps are either of size y1 or y2. The total number

of jumps by time t is clearly N1(t) +N2(t). Let Yk denote the size of the kth jump of

Q. Then, by definition,

Q(t) =

N1(t)+N2(t)∑
k=1

Yk.

Then Theorem 11.3.3 says
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(i) N1 +N2 is a Poisson process with rate λ1 + λ2;

(ii) Y1, Y2, . . . are independent and identically distributed with

IP
(
Yi=y1

)
=

λ1
λ1 + λ2

and IP
(
Yi=y2

)
=

λ2
λ1 + λ2

.

As a consequence, Q is a compound Poisson process. Theorem 11.3.3 extends this

idea to summing Poisson streams of more than two possible jump sizes. Note that,

as a consequence of statement (i) above, the independent Poisson processes N1 and

N2 never jump at the same time.

Theorem 11.3.3 is actually a special case of a much more general theorem: the sum

of any finite number of compound Poisson processes is a compound Poisson process.

We give a heuristic reasoning about Theorem 11.3.3. First observe that if N(t) =

N1(t) +N2(t) then N(t) would jump at the jump time of N1 or N2, whichever arrives

first. That is N(t) jumps at the minimum of the jump times of N1 and N2. Now

let τi, i = 1, 2 are independent exponential(λi) random variables and τ = min(τ1, τ2)

then

P (τ ≥ t) = P (τ1 ≥ t)P (τ2 ≥ t) = e−(λ1+λ2)t.

That is τ is an exponential(λ1 + λ2) random variable. This gives the intuition about

N1 +N2 being a Poisson process with rate λ1 + λ2. The rigorous proof would use the

exponential martingale characterization of Poisson processes mentioned above.

Second, N(t) would jump with size y1 if the jump time of N1 arrives before the

jump time of N2 and vice versa. We have

P (τ1 < τ2) =

∫ ∞
0

P (τ1 < τ2|τ2 = t)λ2e
−λ2tdt

=

∫ ∞
0

(1− e−λ1t)λ2e−λ2tdt

=
λ1

λ1 + λ2
.

Similarly

P (τ1 < τ2) =
λ2

λ1 + λ2
.

This explains the distribution of Yi, the jump size of Nt.
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5.1.2 Decomposing compound Poisson processes

One can also go in the opposite direction and decompose a compound Poisson process

into a sum of independent Poisson processes bringing different sized jumps at different

rates. We shall state this very generally. In fact, we will start not with a compound

Poisson process, but just with some Lévy process.

Let X be a Lévy process. Let A be a subset of IR that avoids a neighborhood of

0 in the sense that for some ε > 0, A
⋂

(−ε, ε) = ∅. Let

NA(t) :=
∑
s≤t

1{4X(s)∈A}

be the number of jumps of X with values in A that occur by time t. Let

XA(t) :=
∑
s≤t

4X(s)1{4X(s)∈A},

XA(t) will be well defined wheneverNA(t) is finite. The processXA is the accumulated

sum of all the jumps of X with values in the set A. It might be that X never has a

jump with values in A (that is, NA(t) = 0 for all t ≥ 0). But if it does, let Y A
1 , Y

A
2 , . . . ,

be the first, second, third, etc. jump values of {XA(t); t ≥ 0}. By definition of the

terms so far,

XA(t) =

NA(t)∑
k=1

Y A
k .

Theorem 1. (a) Let X(t) be a Lévy process. Then {XA(t); t ≥ 0} is a compound

Poisson process; in other words, NA is a Poisson process and Y A
1 , Y

A
2 , . . . is a se-

quence of independent, identically distributed random variables independent of NA.

In addition, X(t) − XA(t) is a Lévy process and is independent of XA(t). Thus,

X(t) = X(t)−XA(t) +XA(t) represents X as the sum of two independent Lévy pro-

cesses, the first of which has no jumps with values in A, and the second of which only

has jumps with values in A.

(b) Let ε > 0 and let A1, . . . , An be disjoint subsets of (−∞,∞) − (−ε, ε). Then

XA1(·), . . . , XAn(·) are independent compound Poisson processes that are all indepen-

dent of X(·)−
(
XA1 + · · ·+XAn(·)

)
.

The take-home message of this theorem is that the accumulated jumps of a Lévy

process into disjoint sets bounded away from 0 are independent, compound Poisson

processes. Thus, a Lévy process with jumps has a very rich structure which aggregates
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the influence of many, independently occurring Poisson streams. Corollary 11.3.4 is

a special case of this theorem for compound Poisson process that admit only a finite

number of possible jumps sizes.

Theorem 1 is at the heart of a result, due to Lèvy and Khinchine, that charac-

terizes the most general Lèvy process. It says that if X is a Lèvy process, there is a

decomposition of the form X(t) = µt+σW (t)+Y (t), where W is a Brownian motion

independent independent of Y , and where Y is a limit of a sequence of processes

Zn(t) +mnt, with Zn being a compound Poisson process for each n.

Lastly we give a heuristic reasoning for decomposing a compound Poisson process

with discrete jumps. Let

Q(t) =

N(t)∑
i=0

Yi,

where N(t) is a Poisson(λ) process and P (Y1 = ym) = pm,m = 1, · · · ,M .

Now if we let

Qm(t) =

N(t)∑
i=0

Yi1{Yi=ym},

then observe that Qm(t) has independent and stationary increments. That is it is a

Levy process. Moreover, one can check that

Eeu
Qm(t)
ym = eλpmt(e

u−1).

That is Nm(t) := Qm(t)
ym

is a Poisson (λpm) process. Lastly, it is clear from the

definition that for n 6= m, Nm(t) and Nn(t) do not jump at the same time. From an

exercise in Homework 3, you’ll see that this implies Nm(t) and Nn(t) are independent.

This gives the decomposition of Q(t) as

Q(t) =
M∑
m=1

ymNm(t),

where Nm(t) are independent Poisson processes with rates λpm.
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5.2 Change of measure for multiple independent Poisson pro-

cesses

Lemma 5.1. Let Nm,m = 1, · · · ,M be independent Poisson processes with rates

λm,m = 1, · · · ,M . Let λ̃m,m = 1, 2, ...,M be given. Define

Zm(t) := e(λm−λ̃m)t

(
λ̃m
λm

)Nm(t)

Z(t) :=
M∏
m=1

Zm(t)

and

dQ = Z(T )dP on F(T ).

Then Nm’s are independent Poisson processes with rate λ̃i under Q.

You will be asked to explore the proof of this Lemma in Homework 2 for the case

M = 2. The proof for general M is similar.

5.3 Change of measure for compound Poisson process with

discrete jumps

The decomposition of a compound Poisson process into multiple independent Poisson

processes and Lemma (5.1) lead to the following result: (Shreve’s Lemma 11.6.4,

Theorem 11.6.5)

Theorem 5.2. Let

Q(t) =

N(t)∑
i=1

Yi,

N(t) has rate λ under a probabilty P and Y1 takes values y1, y2, ..., yM with probability

P(Y1 = ym) = pm, 1 ≤ m ≤M

that is Y1 has discrete distribution.

Let λ̃m,m = 1, 2, ...,M be given. Define Z(t) as in Lemma (5.1). That is

Z(t) :=
M∏
m=1

e(λm−λ̃m)t

(
λ̃m
λm

)Nm(t)

.
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Then Z(t) is a P martingale. Moreover, under Q, Q(t) is a compound Poisson

process with rate λ̃ and PQ(Yi = ym) = p̃m, where

λ̃ =
M∑
m=1

λ̃m

p̃m =
λ̃m

λ̃
.

Remark 5.3. We mentioned at the beginning of this section that we can choose λ̃ and

p̃m, while Theorem (5.2) says we can choose λ̃m. The difference is artificial. Indeed,

given λ̃m we can define λ̃ and p̃m as in Theorem (5.2). But conversely, we can start

out with λ̃ and p̃m and define λ̃m := p̃mλ̃. It’s up to you and the problem you’re

dealing with to decide which are the given variables to work with.

5.4 Compound Poisson with continuous jump distribution

Let Q(t) be a compound Poisson process with rate λ under a probabilty P and F(t)

a filtration for Q(t). Here we assume Yi has continuous distribution with density

function f .

We want to change the intensity of Q(t) as well as the distribution of Yi (that is

the density f) via the change of measure. For any density function f̃ and λ̃, we find

a probabilty Q so that under Q, Q(t) is a compound Poisson process with rate λ̃ and

Yi has continuous distribution with densitry f̃ .

5.5 A rewrite of Z(t) in Theorem (5.2)

There is yet another way to write the process Z(t) in Theorem (5.2). Note that

Z(t) =
M∏
m=1

e(λm−λ̃m)t

(
λ̃m
λm

)Nm(t)

= e(λ−λ̃)t
M∏
m=1

(
λ̃p̃m
λpm

)Nm(t)

= e(λ−λ̃)t
λ̃N(t)

∏M
m=1 p̃

Nm(t)
m

λN(t)
∏M

m=1 p
Nm(t)
m

.
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By rearranging terms,
M∏
m=1

pNm(t)
m =

N(t)∏
i=1

p(Yi),

where we define

p(Yi) := pm if Yi = ym,m = 1, · · · ,M.

To see this equality, note that for each m, there are Nm(t) terms of pm on the LHS.

By definition, for each event ω, the Yi random variables take on values ym exactly

Nm(t) times. Thus there are also Nm(t) terms of pm on the RHS.

Similarly we have,
M∏
m=1

p̃Nm(t)
m =

N(t)∏
i=1

p̃(Yi).

Thus

Z(t) = e(λ−λ̃)t
λ̃N(t)

∏N(t)
i=1 p̃(Yi)

λN(t)
∏N(t)

i=1 p(Yi)

= e(λ−λ̃)t
N(t)∏
i=1

λ̃p̃(Yi)

λp(Yi)
.

5.6 Change of measure for compound Poisson with continu-

ous jump distribution

The above observation suggests the following choice of Z(t) when Yi has continuous

distribution.

Definition 5.4. Fix T > 0. Let λ̃ > 0 and a density function f̃ be given. Define

Z(t) := e(λ−λ̃)t
N(t)∏
i=1

λ̃f̃(Yi)

λf(Yi)
. (2)

Also define

dQ = Z(T )dP on F(T ).

Remark 5.5. Since the density function f can be 0, to avoid dividing by 0, we assume

f̃(y) = 0 whenever f(y) = 0.

We have the important results: (Shreve’s Lemma 11.6.6, Theorem 11.6.7)
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Theorem 5.6. Z(t) defined in (2) is a P martingale (w.r.t. F(t)). Under Q, Q(t)

is a compound Poisson process with rate λ̃ and Yi has continuous distribution with

density f̃ .

Proof.

The proof of this Theorem relies on the following exponential martingale charac-

terization of a compound Poisson process:

Let φ(u) := E(euY ) be the moment generating function of a random variable Y .

Then Q(t) is a compound Poisson process with jump rate λ and i.i.d. jump size Yi

with moment generating function φ(u) if and only if

Z(t) = exp
(
uQ(t)− λt(φ(u)− 1)

)
is a martingale ∀u ∈ R.

The details are left to the readers.

6 Change of measure for compound Poisson pro-

cess and Brownian motion

We now consider the case when we have both a compound Poisson process Q(t) and a

Brownian motion W (t). We want to find a change of measure kernel Z(t) that would

change the rate and the jump distribution of Q(t) and the drift of W (t). First we

discuss an easier case when Q(t) is just a Poisson process.

6.1 Change of measure for Poisson process and Brownian

motion

We first describe an exponential martingale characterization result for Poisson process

and Brownian motion.

Lemma 6.1. N(t) is a Poisson process with rate λ and W (t) is a Brownian motion

adapted to a filtration F(t) and they are independent if and only if

eu1Wt− 1
2
u21t+u2Nt−λt(eu2−1)

is a F(t)-martingale for all u1, u2 ∈ R.

15



The proof of the Lemma follows a similar idea as the proof of the exponential

martingale characterization of a Brownian motion or a Poisson process described

above. It is clear that when the martingale condition holds then Wt is a Brownian

Motion and N(t) is a Poisson process since we can choose u1 = 0 or u2 = 0. The

independence follows from the Kac’s theorem for characteristic function mentioned

in (3.2) since the martingale condition being true also implies that

E
(
eu1Wt+u2Nt

)
= E

(
eu1Wt

)
E
(
eu2Nt

)
,∀u1, u2 ∈ R.

An interesting thing to note is that if W (t) is a Brownian motion and N(t) is

a Poisson process adapted to the same filtration F(t) then they are automatically

independent. To see this, apply Ito’s formula to eu1Wt− 1
2
u21t+u2Nt−λt(eu2−1) to conclude

that it is a martingale. Then we can invoke Kac’s theorem to show independence.

With the above characterization, the following change of measure result is auto-

matic upon our previous discussion on the change of measure for Brownian motion

and Poisson process.

Theorem 6.2. Let N(t) be a Poisson process with rate λ and W (t) is a Brownian

motion under P. Let λ̃ > 0 be given. Define

Z1(t) := exp
[
−
∫ t

0

θ(u)dW (u)− 1

2

∫ t

0

θ2(u)du
]
;

Z2(t) := e(λ−λ̃)t

(
λ̃

λ

)N(t)

;

Z(t) := Z1(t)Z2(t).

Also define

dQ = Z(T )dP on F(T ).

Then W̃ (t) = W (t) +
∫ t
0
θ(u)du is a Brownian motion and N(t) is a Poisson process

with rate λ̃ and they are independent under Q.

6.2 Compound Poisson process and Brownian motion

Let Q(t) be a compound Poisson process with rate λ and W (t) a Brownian motion

defined on the same probabilty space (P,Ω,F) and F(t) a filtration for Q(t),W (t).

Here we also assume Yi has continuous distribution with density function f .
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We want to change the intensity of Q(t), the distribution of Yi (that is the density

f) and the drift of W (t) via the change of measure. More speficially, given a function

θ(u), constant λ̃ > 0 and density function f̃ , we find the probabilty measure Q
such that under Q, Q(t) is compound Poisson with rate λ̃, Y (i) has density f̃ and

W̃ (t) :=
∫ t
0
θ(u)du+W (t) is a Brownian motion. Here we also assume that f̃(y) = 0

when f(y) = 0.

Remark 6.3. Before we proceed, we note that necessarily in this case W (t) and Q(t)

are independent as remarked above (see also Corollary 11.4.9 and Exercise 11.6 in

Shreve’s).

Definition 6.4. Fix T > 0. Let λ̃ > 0 and a density function f̃ be given. Define

Z1(t) := exp
[
−
∫ t

0

θ(u)dW (u)− 1

2

∫ t

0

θ2(u)du
]
;

Z2(t) := e(λ−λ̃)t
N(t)∏
i=1

(
λ̃f̃(Yi)

λf(Yi)

)
, 0 ≤ t ≤ T ;

Z(t) := Z1(t)Z2(t).

Also define

dQ = Z(T )dP on F(T ).

Remark 6.5. Note that Z1(t) is the usual change of measure kernel given by the

Girsanov’s theorem in Section 5.2. This together with the result in Section (5.4) and

Remark (6.3), it is no surprise that Z(t) has such form.

We have the important results: (Shreve’s Lemma 11.6.8, Theorem 11.6.9)

Theorem 6.6. Z(t) is a P martingale (w.r.t. F(t)). Under Q, Q(t) is a compound

Poisson process with rate λ̃, Yi has continuous distribution with density f̃ , W̃ (t) =∫ t
0
θ(u)du + W (t) is a Brownian motion. Moreover, Q(t) and W̃ (t) are independent

under Q.

Remark 6.7. Note that we have the parallel between the independence between Q(t)

and W (t) under P and the independence between Q(t) and W̃ (t) under Q. This is

important since we do not have any restriction on θ(t). Indeed θ(t) can be equal to

Q(t) and the independence structure still holds.
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Remark 6.8. Even though the theorem in Shreve is stated for Yi having continuous

distribution, it is easy to see that a similar result still holds if Yi has discrete distribu-

tion. In this case, under Q, Yi would also have discrete distribution with a probability

distribution p̃ (see Section (5)). The change of measure kernel Z1(t) is the same,

Z2(t) := e(λ−λ̃)t
N(t)∏
i=1

λ̃p̃(Yi)

λp(Yi)
, 0 ≤ t ≤ T ;

and Z(t) = Z1(t)Z2(t).
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