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1 Forward LIBOR

1.1 Continuous vs simple compounding

Let 0 < t < S < T . Suppose we want to price a product based on the forward rate,

say a cap K on the forward rate for a loan taken on the interval from S to T , with

the rate locked in at time t. The risk neutral pricing formula for this product would

be

Ẽ
(
e−

∫ T
S (f(t,u)−K)+du

)
.

(The meaning of such cap would be clearer when we discuss the Caplet below).

It is certainly desirable to be able to obtain a closed form solution to such formula,

under the assumption that the volatility of f(t, T ) (as a process in t) is of the form

σf(t, T ) where σ is a constant. But we saw that from a purely mathematical point of

view, this is not possible since it would force the drift term of f(t, T ) under the risk

neutral measure P̃ to have certain form, which in turn makes the solution to f(t, T )

explode near T (Shreve’s Section 10.4.1).

Furthermore, the problem of the drift term of f(t, T ) cannot be solved by a change

of measure associated with a change of numéraire. You should try to derive the

dynamics of f(t, T ) under the P̃ T ′-forward measure, for some T < T ′ for example,

and convince yourself that the drift term of f(t, T ) cannot be eliminated.

The presence of the drift term, or equivalently the dynamics of f(t, T ), can be

seen as coming from the continuous compouding used in its definition:

B(t, T ) = e−
∫ T
t f(t,u)du.
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It turns out that in order to “eliminate the drift term” in the “interest rate”, so

that we will be able to posit a log-normal distribution for it, we want to use simple

compounding instead. That is, we denote Lδ(t, T ) as the quantity that satisfies

B(t, T + δ)(1 + δLδ(t, T )) = B(t, T ).

You should see that Lδ(t, T ) is the interest rate one can lock in at time t for

investing on the time interval [T, T + δ] with simple compounding: repayment =

investment × (1 + duration of investment × interest rate).

Lδ(t, T ) is called the simple forward LIBOR rate of tenor δ.

The reason why Lδ(t, T ) should have a “better” dynamics than f(t, T ) (in terms

of being able to posit a log normal distribution) is because of its definition:

1 + δLδ(t, T ) =
B(t, T )

B(t, T + δ)
.

Thus clearly the dynamics of Lδ(t, T ) is related to the dynamics of B(t, T ) under

the P̃ T+δ forward measure, using B(t, T + δ) as numéraire. Since D(t)B(t, T ) is a

martingale under P̃ we expect the dynamics of Lδ(t, T ) under P̃ T+δ is “nice” as well.

Thus in this note we will develop the dynamics of Lδ(t, T ) under the T +δ forward

measure and show how to price financial products based on it (cap and caplet), under

the assumption of determinsitic volatility, using Black-Scholes type of calculation.

1.2 How to construct a portfolio that realize the simple in-

terest rate Lδ(t, T )

Suppose at time t < T , we go short one share of B(t, T ) and long B(t, T )/B(t, T + δ)

shares of B(t, T +δ). The value of this portfolio is zero at time t; at time T it requires

us to pay out one dollar and at time T + δ we receive B(t, T )/B(t, T + δ) dollars.

Thus at time t we can lock in a deposit that multiplies to B(t, T )/B(t, t + δ) over

[T, T + δ] and hence earns the simple interest rate Lδ(t, T ) satisfying

1 + δLδ(t, T ) =
B(t, T )

B(t, T + δ)

Thus

Lδ(t, T ) =
1

δ

[
B(t, T )

B(t, T + δ)
− 1

]
=

1

δ

B(t, T )−B(t, T + δ)

B(t, T + δ)
.
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We have immediately that

1 + δLδ(T, T ) =
1

B(T, T + δ)
.

Thus Lδ(T, T ) is the simple interest rate available at time T for a deposit over time

period [T, T + δ]. This is a financially important quantity, because it is often used for

floating rate loans or as a benchmark for interest rate caps and floors.

1.3 Dynamics of Lδ(t, T )

Here is an elementary, but very important observation:

Lδ(t, T ) =
1

δ

B(t, T )−B(t, T + δ)

B(t, T + δ)

=
1
δ
B(t, T )− 1

δ
B(t, T + δ)

B(t, T + δ)
.

Thus Lδ(t, T ), for t ≤ T is the T + δ forward price of a portfolio that is long 1/δ

zero coupon bonds that mature at T and short 1/δ zero coupon bonds that mature

at T + δ.

In this section, we will derive the model implied for the forward LIBOR rate by

the risk-neutral HJM model. To start out, observe that since

Lδ(t, T ) =
1

δ

B(t, T )−B(t, T + δ)

B(t, T + δ)

=
1

δ

B(t, T )

B(t, T + δ)
− 1

δ
,

we have

dLδ(t, T ) = δ−1d[B(t, T )/B(t, T+δ)].

Following the notation of the change of numéraire section, we define

BT+δ(t, T ) := B(t, T )/B(t, T+δ)

as the T+δ forward price of B(t, T ).

Observe then, that it is most natural to express the model for Lδ(t, T ) under the

T+δ forward measure P̃T+δ. We know from Theorems 9.2.1 and 9.2.2 in Shreve that

because

dD(t)B(t, T ) = −D(t)B(t, T )σ∗(t, T ) dW̃ (t)

dD(t)B(t, T+δ) = −D(t)B(t, T+δ)σ∗(t, T+δ) dW̃ (t),
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we have

dLδ(t, T ) =
1

δ
BT+δ(t, T )[σ∗(t, T+δ)− σ∗(t, T )] dW̃ T+δ(t)

=
1

δ
[1 + δLδ(t, T )] [σ∗(t, T+δ)− σ∗(t, T )] dW̃ T+δ(t)

= Lδ(t, T )

{
1 + δLδ(t, T )

δLδ(t, T )
[σ∗(t, T+δ)− σ∗(t, T )]

}
dW̃ T+δ(t), (1)

where W̃ T+δ(t) = W̃ (t) +
∫ t
0
σ∗(u, T + δ) du is a Brownian motion under P̃T+δ. From

this equation we can easily derive the model for the forward LIBOR rate under the

original risk-neutral measure P̃, but we will not have need for this.

Remark:

(i) If we denote

γ(t) :=
1 + δLδ(t, T )

δLδ(t, T )
[σ∗(t, T+δ)− σ∗(t, T )],

then it follows that

dLδ(t, T ) = Lδ(t, T )γ(t)dW̃ T+δ(t).

If we assume γ(t) is a constant then it is easy to see that Lδ(t, T ) has log-normal

distribution under P̃T+δ, which is a goal we have set out to achieve. This will help

us to derive pricing equation in Black-Scholes style for financial products based on

Lδ(t, T ) as discussed in the Sections below.

(ii) Assuming γ(t) is a constant is a big assumption if we start from the risk

neutral model of B(t, T ) and B(t, T + δ). However, we can start modeling under the

T + δ-forward measure, where we are free to assume the fact that γ(t) is a constant.

The distribution of B(t, T ) and B(t, T + δ) under the risk neutral measure can then

be derived from the P̃ T+δ model.

2 T -forward models

Previously, we defined a T -forward measure. This is a measure, P̃T , if it exists, under

which T -forward prices of all market assets are martingales. Recall that the T -forward

price of an asset whose price in dollars is S(t) is S(t)/B(t, T ). Now assume we have an

HJM model driven by a single Brownian motion, and write it under the risk-neutral
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measure P̃. According to the theory developed in Chapter 9 of Shreve, the T -forward

measure is defined by a change of measure from P̃ by the Radon-Nikodym derivative,

dP̃T

dP̃
=

D(T )

B(0, T )
. (2)

That is, P̃T (A) = E[1AD(T )]/B(0, T ), for A ∈ F . But we know the solution to

dB(t, T ) = R(t)B(t, T )dt− σ∗(t, T )B(t, T )dWt

is

D(t)B(t, T ) = B(0, T ) exp{−
∫ t

0

σ∗(u, T ) dW (u)− 1

2

∫ t

0

(σ∗)2(u, T ) du}

and hence

dP̃T

dP̃
= exp{−

∫ T

0

σ∗(u, T ) dW (u)− 1

2

∫ T

0

(σ∗)2(u, T ) du}. (3)

It follows from Girsanov’s theorem that

W̃ T (t) = W̃ (t) +

∫ t

0

σ∗(u, T ) du (4)

is a Brownian motion under P̃T , at least for times t ≤ T .

All this is review of section 9.4 in Shreve.

3 Financial products based on forward LIBOR

3.1 Description

The forward LIBOR Lδ(t, T ) is strictly not a financial asset by itself. However, if we

think about investing a principal P at time T for the duration [T, T + δ] to realize

the interest payment PδLδ(T, T ) at time T + δ, then we have a product that is very

much like a Euro style derivative, with expiry T + δ.

One can also create another product that is in the spirit of the Euro Call option,

in this case called an interest rate cap. For a constant K positive, we can consider a

financial product that pays

VT+δ = δP
(
Lδ(T, T )−K

)+
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at time T+δ. The interpretation is that if we borrow an amount P at time T , we may

not want the interest rate Lδ(T, T ) to go beyond K. Therefore to protect ourselves,

we would want to get an interest rate cap that would pay us the difference should the

interest rate go beyond K.

Moreover, since P and δ are deterministic (we think of them as determined at time

0), for simplicity we can take Pδ = 1. Thus, one can discuss the following products:

(i) A contract that pays Lδ(T, T ) at time T + δ. This is called a backset LIBOR

on a notional amount of 1.

(ii) A contract that pays (Lδ(T, T )−K)+ at time T + δ. This is called an interest

rate caplet.

Clearly the question is what are the risk neutral prices of these products at time

0. We will give the formula for backset LIBOR in this section and give a detailed

discussion of interest rate cap and caplet in the next section.

3.2 Risk neutral price of backset LIBOR

Theorem 3.1. The no arbitrage price at time t of a contract that pays Lδ(T, T ) at

time T + δ is

S(t) = B(t, T + δ)Lδ(t, T ), 0 ≤ t ≤ T

= B(t, T + δ)Lδ(T, T ), T ≤ t ≤ T + δ.

(S(t) is the notation Shreve used in the textbook. Don’t confuse it with the stock

price).

Proof:

By the risk neutral pricing formula

S(t) = Ẽ
[
e−

∫ T+δ
t R(u)duLδ(T, T )

∣∣∣F(t)
]
.

If T ≤ t then Lδ(T, T ) is F(t) measurable. Therefore

S(t) = Lδ(T, T )Ẽ
[
e−

∫ T+δ
t R(u)du

∣∣∣F(t)
]

= B(t, T + δ)Lδ(T, T ).

If t < T then by the change of numéraire pricing formula under P̃T+δ we have

S(t)

B(t, T + δ)
= ẼT+δ

[
Lδ(T, T )

∣∣∣F(t)
]
.
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But Lδ(t, T ) is a martingale under P̃T+δ (see equation 1 in Section 1). Therefore,

S(t)

B(t, T + δ)
= Lδ(t, T )

and the conclusion follows.

4 Caps and caplets

4.1 Description

We will consider the following type of floating rate bond. It starts at T0 = 0 and pays

coupons C1, . . . , Cn+1 on principal P at dates T1 = δ, T2 = 2δ, . . . , Tj = jδ, . . . , Tn+1 =

(n+1)δ. The interest charged over [Tj−1, Tj] is the LIBOR rate set at Tj−1. So coupon

Cj = δPLδ(Tj−1, Tj−1).

Suppose now that Alice has issued such a bond. An equivalent interpretation is

she has taken out a floating rate loan. For convenience, assume the principal is $1.

She can purchase an interest rate cap to protect herself against unacceptable increases

in the floating rate.

A cap set at strike K and lasting until Tn+1 will pay her δ(Lδ(Tj−1, Tj−1) −K)+

at each time Tj, 1 ≤ j ≤ n + 1. This means that she will never pay more than rate

K over any period; the cap will make up the difference between the δLδ(Tj−1, Tj−1)

she owes the bond holder and the maximum δK she wishes to pay. We shall use

Capm(0, n+ 1) to denote the market price of this cap at time T0 = 0.

Consider the derivative which pays the interest rate cap only at time Tj. So it

consists of a single payoff δ(Lδ(Tj−1, Tj−1)−K)+ at Tj. This is called a caplet. Caplets

are not traded as such. However, we can imagine them for the purposes of pricing.

Clearly, if Capletj(0) denotes the price of this caplet at time T0 = 0, the total price

at T0 = 0 of a cap of maturity Tn+1 will be

n+1∑
j=1

Capletj(0).

If caps of all maturities are available on the market, we can create a caplet with payoff

at Tj by going long one cap maturing at Tj and short one cap maturing at Tj−1. Thus

the market price of the caplet at Tj is

Capletj(0) = Capm(0, j)− Capm(0, j − 1).
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Just as there are interest rate caps, there are also interest floors. By going long

a cap and short a floor, one can create also a collar that keeps the interest rate one

pays between two levels.

Interest rate caps and floors are widely traded and their prices are readily available

from the market.

4.2 A remark on the Black-Scholes formula

The pricing formula for the caplet follows the argument of the Black-Scholes formula.

The derivation of the Black-Scholes formula is a direct consequence of the following

result about normal random variables, which in turn is a consequence of Corollary 1

in the class lecture notes, Review of Mathematical Finance I.

Theorem 1. If Y is a normal random variable with mean 0 and variance ν2,

E

[(
xeY−ν

2/2 −K
)+]

= xN

(
ln(x/K) + ν2/2

ν

)
−KN

(
ln(x/K)− ν2/2

ν

)
. (5)

To see the connection to the Black-Scholes formula, note that the price at time 0

of a call with strike K is

e−rT Ẽ

[(
xeσW̃ (T )+rT− 1

2
σ2T −K

)+]
= e−rT Ẽ

[(
xerT eσW̃ (T )− 1

2
σ2T −K

)+]
.

Since σW̃ (T ) is a normal random variable with mean 0 and variance σ2T , we are

exactly in the situation of Theorem 1, and it is easy to derive the Black-Scholes

formula from (5).

4.3 Black’s caplet model and pricing formula

The idea behind Black’s caplet model and price is to take advantage of Theorem 1

by positing lognormal models where possible. We already saw this strategy in section

9.4 of Shreve, where we assumed T -forward prices for a given T were lognormal. The

idea for caplets is similar. Consider the caplet that pays δ(Lδ(Tj, Tj)−K)+ at Tj+1.

We posit that there is a risk-neutral model P̃Tj+1 under which Tj+1 forward prices are

martingales, that there is a Brownian motion W̃ Tj+1 under P̃Tj+1 and that

dLδ(t, Tj) = γ(t, Tj)Lδ(t, Tj) dW̃
Tj+1 , (6)
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where γ(t, Tj) is deterministic. Equivalently,

Lδ(t, Tj) = Lδ(0, Tj) exp

{∫ t

0

γ(u, Tj) dW̃
Tj+1(u)− 1

2

∫ t

0

γ2(u, Tj) du

}
.

For convenience of notation, let

γ̄2(Tj) =
1

Tj

∫ Tj

0

γ2(u, Tj) du.

Let Capletj+1(0, γ̄(Tj)) denote the price at T0 = 0 of the caplet maturing at

Tj+1); (we will see that this price depends only on γ̄(Tj), if δ and K are fixed, so the

notation is appropriate.) By the risk-neutral pricing formula, the Tj+1-forward price

of the caplet is

Capletj+1(0, γ̄(Tj))

B(0, Tj+1)
= δẼTj+1

[(
Lδ(0, Tj)e

∫ Tj
0 γ(u,Tj) dW̃

Tj+1 (u)− 1
2

∫ Tj
0 γ2(u,Tj) du −K

)+
]
.

But, since γ(t, Tj) is deterministic,
∫ Tj
0
γ(u, Tj) dW̃

Tj+1(u) is a normal random variable

with mean 0 and variance
∫ Tj
0
γ2(u, Tj) du = Tj γ̄(Tj). Thus from Theorem 1,

Capletj+1(0, γ̄(Tj))

B(0, Tj+1)
= δLδ(0, Tj)N

(
ln

Lδ(0,Tj)

K
+ 1

2
γ̄2(Tj)Tj

γ̄(Tj)
√
Tj

)

− δKN

(
ln

Lδ(0,Tj)

K
− 1

2
γ̄2(Tj)Tj

γ̄(Tj)
√
Tj

)
In this way, we derive Black’s caplet formula:

Capletj+1(0, γ̄(Tj)) = B(0, Tj+1)

[
δLδ(0, Tj)N

(
ln

Lδ(0,Tj)

K
+ 1

2
γ̄2(Tj)Tj

γ̄(Tj)
√
Tj

)

− δKN

(
ln

Lδ(0,Tj)

K
− 1

2
γ̄2(Tj)Tj

γ̄(Tj)
√
Tj

)]
(7)

The implied spot volatility is a number γj, which, when substituted into Black’s

caplet formula, gives the market value:

Capletj+1(0, γj) = Capletj+1(0).

By finding the implied volatilities and then choosing γ(t, Tj) for each j so that∫ Tj

0

γ2(u, Tj) du = Tjγ
2
j ,
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we can fit Black’s model to the market for all j.

We emphasize that this model is formulated directly for forward LIBOR and does

not assume that one has formulated a prior model, such as an HJM model, for zero-

coupon bond prices.

5 Calibration of forward LIBOR model

5.1 Motivation

From the above, we’ve seen that the forward LIBOR rates for different maturity

Tj, 1 ≤ j ≤ n have the dynamics:

dLδ(t, Tj) = γ(t, Tj)Lδ(t, Tj) dW̃
Tj+1 ,

where W̃ Tj+1 is a Brownian motion under the Tj+1 forward measure.

The financial products associated with these LIBOR rates are the caplets that

pay δ(Lδ(Tj−1, Tj−1) −K)+ at Tj. The market price of these caplets can be derived

from the price of the caps:

Capletj(0) = Capm(0, j)− Capm(0, j − 1).

On the other hand, from the model of the LIBOR rates, we can also derive,

under the assumption that γ(t, Tj) are determinstic, via Black-Scholes formula, the

theoretical price of these caplets. We denote these prices by Capletj(0, γ̄(Tj−1)).

The obvious question is: can we build a model of these forward LIBOR rates so

that

Capletj(0) = Capletj(0, γ̄(Tj−1))?

The answer is of course yes. Since Capletj(0, γ̄(Tj−1)) is a function of γ̄(Tj−1))

we can choose a number γj−1 so that the above equation holds:

Capletj(0) = Capletj(0, γj−1).

γj−1 is called the implied volatility of the LIBOR rate with maturity Tj. In general,

we do not have an explicit formula for γj−1. The way to find γj−1 is via numerical

procedure, but it can be done.
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Next we can construct a determinsitic function γ(t, Tj−1) so that∫ Tj−1

0

γ2(t, Tj−1) = Tj−1γj−1.

There is much freedom in choosing γ(t, Tj−1) of course.

We may think the next step is just to construct n Brownian motions: W̃ Tj+1 , 1 ≤
j ≤ n (question: how are they related?) and from which we can derive n LiBOR

rates Lδ(t, Tj), 1 ≤ j ≤ n from which the Caplet price will match the market data.

But this is missing some details.

First, we want to build a consistent model for Lδ(t, Tj), 1 ≤ j ≤ n, beyond just

matching the market data at time 0. Recall the definition of the LIBOR rates:

Lδ(t, Tj) =
1

δ

B(t, Tj)−B(t, Tj + δ)

B(t, Tj + δ)

=
1

δ

B(t, Tj)−B(t, Tj+1)

B(t, Tj+1)

So even without knowing the details, we should suspect that Lδ(t, Tj) and Lδ(t, Tj+1)

are related at some level. If we simulate W̃ Tj+1 and W̃ Tj+2 without regards to this

relation, we’re missing certain things.

Second, suppose starting out from the risk neutral measure P̃ , we have the dy-

namics of the bond B(t, Tj) as

dB(t, Tj) = R(t)B(t, Tj)dt+ σ∗(t, Tj)B(t, Tj)W̃ (t).

Note that there is only one Brownian motion W̃ here, which is independent of Tj.

(The choice of how many Brownian motions we put in is up to us, of course, but the

point is that we use the same Brownian motions to model the dynamics of B(t, Tj)

for different Tj). So from what we learned from the change of numéraire section, the

Brownian motion W̃ Tj+1 are all related to W̃ via the equation:

dW̃ Tj(t) = dW̃ (t) + σ∗(t, Tj) dt.

Thus all Brownian motions W̃ Tj are related actually. So to model Lδ(t, Tj) prop-

erly, beyond determining the γ(t, Tj) to match the market data, we also need to learn

about the relations of Lδ(t, Tj). We will do so in the next section.

Finally, as the bond price B(t, Tj) and LIBOR rates Lδ(t, Tj) are clearly related,

we will see that by modeling the Lδ(t, Tj) properly, this will also give us a handle on

how to model the volatility σ∗(t, Tj) of the bonds and the (discounted) value of the

bond B(t, Tj) themselves. The details will be given in the third section.
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5.2 Consistent forward LIBOR models - Relation among the

L(t, Tj)

5.2.1 Relation among W̃ Tj

Recall from section (5.1) that for every j, dW̃ Tj(t) = dW̃ (t) + σ∗(t, Tj) dt. In partic-

ular, it follows from this that

dW̃ Tj(t) = dW̃ Tj+1(t) + [σ∗(t, Tj)− σ∗(t, Tj+1)] dt (8)

Next, from the dynamics of Lδ(t, Tj) that we derived before:

dLδ(t, Tj) = Lδ(t, Tj)

{
1 + δLδ(t, Tj)

δLδ(t, Tj)
[σ∗(t, Tj+1)− σ∗(t, Tj)]

}
dW̃ Tj+1(t).

This will be the same as the Black model dLδ(t, Tj) = γ(t, Tj)Lδ(t, Tj) dW̃
Tj+1(t) only

if

γ(t, Tj) =
1 + δLδ(t, Tj)

δLδ(t, Tj)
[σ∗(t, Tj+1)− σ∗(t, Tj)], t ≤ Tj

or equivalently,

σ∗(t, Tj+1)− σ∗(t, Tj) =
δLδ(t, Tj)

1 + δLδ(t, Tj)
γ(t, Tj), t ≤ Tj. (9)

Assume this is the case for all j ≤ n. By combining this result with equation (8),

dW̃ Tj(t) = dW̃ Tj+1(t)− δLδ(t, Tj)

1 + δLδ(t, Tj)
γ(t, Tj) dt (10)

The significance of this equation is that the processes σ∗(t, T ) no longer explicitly

appear—everything is expressed in terms of the LIBOR rates themselves and their

volatility functions γ(t, Tj).

By working backward with (10), dW̃ Tj(t) can be expressed in terms of dW̃ Tn+1(t)

for all j. Indeed,

dW̃ Tn(t) = dW̃ Tn+1(t)− δLδ(t, Tn)

1 + δLδ(t, Tn)
γ(t, Tn) dt.

But then

dW̃ Tn−1(t) = dW̃ Tn(t)− δLδ(t, Tn−1)

1 + δLδ(t, Tn−1)
γ(t, Tn−1) dt

= dW̃ Tn+1(t)−
[

δLδ(t, Tn)

1 + δLδ(t, Tn)
γ(t, Tn) +

δLδ(t, Tn−1)

1 + δLδ(t, Tn−1)
γ(t, Tn−1)

]
dt.
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Continuing further, and using what has just been derived,

dW̃ Tn−2(t) = dW̃ Tn−1(t)− δLδ(t, Tn−2)

1 + δLδ(t, Tn−2)
γ(t, Tn−2) dt

= dW̃ Tn+1(t)−
[ n∑
i=n−2

δLδ(t, Ti)

1 + δLδ(t, Ti)
γ(t, Ti)

]
dt.

Clearly, this will yield for general j ≤ n that

dW̃ Tj(t) = dW̃ Tn+1(t)−
[ n∑
i=j

δLδ(t, Ti)

1 + δLδ(t, Ti)
γ(t, Ti)

]
dt. (11)

The significance of this equation, compare with (10) is that now all W̃ Tj is written

in terms of W̃ Tn+1. Thus, instead of generating n Brownian motions, we only need

to generate one Brownian motion W̃ Tn+1. This is consistent with what we mentioned

before that we started out with only one Brownian Motion under risk neutral measure

W̃ .

5.2.2 The relation among the L(t, Tj) - Their construction

Now we can write down a coherent system of equations for the LIBOR forward rates

. First of all, Black’s model for j = n gives

dLδ(t, Tn) = Lδ(t, Tn)γ(t, Tn) dW̃ Tn+1(t), t ≤ Tn. (12)

Next, for arbitrary j < n, dLδ(t, Tj) = Lδ(t, Tj)γ(t, Tj) dW̃
Tj+1(t), and so

dLδ(t, Tj) = Lδ(t, Tj)γ(t, Tj)

[
−

n∑
i=j+1

δLδ(t, Ti)

1 + δLδ(t, Ti)
γ(t, Ti) + dW̃ Tn+1(t)

]
, t ≤ Tj

(13)

This system of equations makes no reference to the original risk-neutral HJM

model. In fact, it can stand alone as its own model. By working backwards on this

set of equations using standard theorems, one can prove that it generates a consistent

model for caplets of all maturities up to Tn+1, without assuming the prior existence of

an HJM model for B(t, T ). We state this result and summarize the forward LIBOR

model in the following theorem. The proof will be given in the next subsection where

we discuss the relation between forward measures, see (3).

Theorem 2. Let there be given a probability space with measure P̃Tn+1 supporting a

Brownian motion W̃ Tn+1. Then there exists a unique solution Lδ(t, T1), . . . , Lδ(t, Tn)
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to the system of equations (12)–(13). If the measures P̃Tj , j = n, n − 1, . . . , 1 are

defined recursively by

P̃Tj(A) = ẼTj+1

[
1A

1 + δLδ(Tj, Tj)

1 + δLδ(0, Tj)

]
,

and the processes W̃ Tj(t), 1 ≤ j ≤ n, are defined recursively by

dW̃ Tj(t) = dW̃ Tj+1(t)− δLδ(t, Tj)

1 + δLδ(t, Tj)
γ(t, Tj) dt,

then W̃ Tj is a Brownian motion under P̃Tj for each j ≤ n and

dLδ(t, Tj) = Lδ(t, Tj)γ(t, Tj) dW̃
Tj+1(t), for each j ≤ n.

5.2.3 Changing between T -forward measures

Let 0 < T < T ′. Suppose that we have a risk-neutral model for the T ′ forward prices

of a market in which zero-coupon bonds are offered on all maturities. We are not

assuming that this has necessarily been derived from an HJM model, just that we

have a probability space with a measure P̃T ′ under which the T ′-forward prices of all

assets are martingales. Let us denote the T ′ forward price of an asset whose price

in dollars is S(t) by ST
′
(t) = S(t)/B(t, T ′). In particular, the T ′-forward price of a

zero-coupon bond maturing at T , which is

BT ′(t, T ) =
B(t, T )

B(t, T ′)
, t ≤ T,

is a martingale under P̃T ′ . The T forward price of an asset whose T ′ forward price is

ST
′
(t) is

ST (t) =
S(t)

B(t, T )
=

S(t)/B(t, T ′)

B(t, T )/B(t, T ′)
=

ST
′
(t)

BT ′(t, T )
.

We are interested in finding the P̃T -forward measure that makes prices ST (t) into

martingales. Since we are not starting from an HJM model as in the previous section,

we want to derive this in terms of the T ′-forward measure. Denote expectation with

respect to P̃T ′ by ẼT ′ .

Theorem 3. Define, P̃T by

P̃T (A) =
B(0, T ′)

B(0, T )
ẼT ′ [1A

1

B(T, T ′)
] (14)
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Then if an asset is such that its T ′- forward price is a martingale under P̃T ′ then its

T -forward price is also a martingale under P̃T .

This theorem is a generalization of formula (9.2.7) in Shreve.

Heuristic idea:

The intuitive idea why formula (14) is true is as followed. We want to convert

from P̃T ′ to P̃T . The numéraire associated with P̃T is B(t, T ). The price process of

this numéraire under P̃T ′ is

N(t) :=
B(t, T )

B(t, T ′)
.

Thus the change of measure formula states that

P̃T (A) = ẼT ′ [1A
N(T )

N(0)
]

=
B(0, T ′)

B(0, T )
ẼT ′ [1A

1

B(T, T ′)
].

Compare this with what we did for change of measure from P̃ to P̃(N), for example.

The numéraire under P̃(N) is clearly N(t). Its “price” under P̃ is D(t)N(t). Therefore

the change of measure formula is

P̃(N)(A) = Ẽ[1A
D(T )N(T )

D(0)N(0)
]

Rigorous proof:

The proof is an application of Lemma 5.2.2 in Shreve: Suppose that Z(t) is a

positive martingale under a probability measure P and define

PZ(A) = E[1AZ(T )]/Z(0).

Then if M(t) is a martingale under P,

{M(t)/Z(t); t ≤ T}
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is a martingale under PZ . To prove the theorem, simply apply this principle with

P̃ in place of P and BT ′(t, T ) = B(t, T )/B(t, T ′) in place of Z(t). Note that the

definition in (14) is the same as

P̃T (A) = ẼT ′ [1AB
T ′(T, T )]/BT ′(0, T ).

Since a T ′ forward price ST
′
(t) is a martingale under P̃T ′ , it follows that the T forward

price

ST (t) = ST
′
(t)/BT ′(t, T ),

is a martingale under P̃T as defined in (14). This completes the proof.

5.3 Construction the Tj-Maturity Discounted Bonds

5.3.1 Construction of σ∗(t, Tj)

The above theorem does not give us a HJM model, which is defined in terms of func-

tions σ∗(t, Tj) on the risk-neutral probability for prices denominated in the domestic

currency. This is done in Shreve on pages 444-447. We will only outline the main

idea here.

With the deterministic functions γ(t, Tj) in hand, we can construct the functions

σ∗(t, Tj) that are consistent with γ(t, Tj)

σ∗(t, Tj+1)− σ∗(t, Tj) =
δLδ(t, Tj)

1 + δLδ(t, Tj)
γ(t, Tj) t ≤ Tj.

By writing this as

σ∗(t, Tj+1) = σ∗(t, Tj) +
δLδ(t, Tj)

1 + δLδ(t, Tj)
γ(t, Tj), t ≤ Tj. (15)

we see that Lδ(t, Tj), γ(t, Tj), and σ∗(t, Tj) determine σ∗(t, Tj+1) at least for t ≤ Tj.

This leads to a recursive procedure for defining σ∗(t, Tj). We outline the procedure

of construction here:

1. Choose σ∗(t, T1) for 0 ≤ t ≤ T1. The only constraint is

lim
t→T1

σ∗(t, T1) = 0.

2. Construct σ∗(t, T2) for 0 ≤ t ≤ T1 (note the time interval) using the relation

σ∗(t, Tj+1) = σ∗(t, Tj) +
δLδ(t, Tj)

1 + δLδ(t, Tj)
γ(t, Tj), t ≤ Tj.
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3. Choose σ∗(t, T2) for T1 ≤ t ≤ T2 (again note the time interval). The only

constraint is

lim
t→T2

σ∗(t, T2) = 0.

4. Repeat this procedure to construct σ∗(t, Tj) for j ≥ 3.

Observe that in the above procedure, we had freedom to construct σ∗(t, Tj) on

the interval Tj−1 ≤ t ≤ Tj subject to the only constraint

lim
t→Tj

σ∗(t, Tj) = 0.

Thus there is also much freedom in constructing σ∗(t, Tj).

5.3.2 Construction the Tj-Maturity Discounted Bonds

Now that we have constructed σ∗(t, Tj), the dynamics of the bond B(t, Tj) under the

risk neutral measure P̃ is straightforward:

dB(t, Tj) = R(t)B(t, Tj)dt− σ∗(t, Tj)B(t, Tj)dW̃ (t).

Since we constructed the LIBOR rate under the forward measure P̃ Tn+1 and the

Brownian motion W̃ Tn+1 , it’s also convenient to write the dynamics of B(t, Tj) using

these as well:

dB(t, Tj) = R(t)B(t, Tj)dt+ σ∗(t, Tj)σ
∗(t, Tn+1)B(t, Tj)dt− σ∗(t, Tj)B(t, Tj)dW̃

Tn+1(t).

Lastly, since we haven’t constructed R(t), it is better to write the dynamics of the

discounted bond price instead:

d
(
D(t)B(t, Tj)

)
= σ∗(t, Tj)σ

∗(t, Tn+1)D(t)B(t, Tj)dt− σ∗(t, Tj)D(t)B(t, Tj)dW̃
Tn+1(t).

We need the initial conditions to generate the bonds. They can be obtained from

the LIBOR rates we have constructed as well:

D(0)B(0, Tj) = B(0, Tj) =

j−1∏
i=0

B(0, Ti+1)

B(0, Ti)
=

j−1∏
i=0

(
1 + δLδ(0, Ti)

)−1
.

The verification that our construction is consistent: D(t)B(t, Tj) is a martingale

under P̃ is stated in Shreve’s Theorem 10.4.4. (The only subtle point is we start out

modeling under the forward measure P̃ Tn+1 . So we need to define the risk neutral

measure P̃ from P̃ Tn+1 . After that the verification is straightforward.)
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