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1 Introduction

So far in this class, we have studied various financial derivatives connected with a

stock model. The stock is a typical example of a risky asset. On the other hand,

we also have the bond, whose price is directly related to the interest rate, which in

turn influences the price of the risk free asset: the money market account. In this

Chapter, we will study various models of the short rate and the forward rate, which

leads us to the price of the bond.

1.1 Money market account versus zero-coupon bond

It is clear that both the money market account and the zero-coupon bond prices are

determined by the interest rate. But just how the two are similar and how are they

different?

When the interest rate is a deterministic constant r, then the price at time t of

a zero-coupon bond is B(t, T ) = e−r(T−t). This is the same as the price of a money

market account that has initial deposit at time 0 equals e−rT = B(0, T ). On the

other hand, it’s also clear that the price at time t of a money market account with

initial deposit K is Kert, which is also the price of KerT shares of zero-coupon with

maturity T .

The situation is not the same when the interest rate is stochastic. First, observe

that if the interest rate is an adapted process R(t), then the value of the money

market with an initial deposit K at time T is

M(T ) = K exp(

∫ T

0

Rudu),
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and is random. Thus one cannot determine an initial deposit amount so that M(T ) =

B(T, T ) = 1: the money market account cannot replicate a zero-coupon bond.

Similarly, the price at time 0 of a zero-coupon bond is

B(0, T ) = Ẽ
(
e−

∫ T
0 Rudu

)
,

where Ẽ is the expectation under a risk neutral measure. So without a prior assump-

tion (or a model) of R(t) under the risk neutral measure P̃ , one cannot compute what

B(0, T ) is (We say the bond price B(0, T ) is determined by the market).

An interesting question is by observingB(t, T ) for all 0 ≤ t ≤ T , can one determine

what R(t) is? I believe for a fixed T , the answer is no. However, if we know the price

of B(t, T ) for various maturity T , then we can deduce what R(t) is, see the next

section.

1.2 Various rates connected with bond

Since the payment of the bond with maturity T at time T is fixed, one can use

the bonds (with various maturities, if necessary) to “lock-in” certain interest rates.

Thus, zero-coupon bond prices are used as the standard for calculating interest rates.

Throughout, it is assumed we deal with the market for risk free bonds and loans.

The price at time t ≤ T of a zero-coupon bond that pays $1 at time T shall always

be denoted by B(t, T ). Notice that B(T, T ) = 1. There are various interest rates

associated with B.

(i) Continuous compounding:

In this discussion all interest rates are quoted assuming continuous compounding.

Consider an account which at time S has $LS and at time T > S has $LT , where

S and T are measured in years. Then the interest rate r, per annum, continuously

compounded, earned over [S, T ] is determined by the equation LSe
r(T−S) = LT , or

r =
1

T − S
ln

(
LT
LS

)
(1)

(ii) The spot rate

The zero rate for the period [t, T ], also called the spot rate, or, more precisely, the

continuously compounded spot rate for the period [t, T ] is the function which gives the

2



interest rate of a zero coupon bond over the interval [t, T ]. That is, if we denote this

rate by R(t, T ) then

1 = B(t, T ) exp
(
R(t, T )(T − t)

)
.

From which it follows that

R(t, T ) =
1

T − t
ln

(
1

B(t, T )

)
= − lnB(t, T )

T − t
(2)

Thus

B(t, T ) = e−(T−t)R(t,T ). (3)

For a fixed t, a plot of R(t, T ) as a function of T is called a spot rate curve. It

gives the (continuously compounded) interest rates available for risk free zero coupon

bonds for all maturities starting from t. The notable fact about the spot rate curve

is that it is not constant—normally it tends to be upward sloping. This phenomenon

is called the term structure of interest rates.

(iii) The forward rate

Consider times t < S < T . Suppose at time t we would want to lock in certain

spot rate for the time interval [S, T ]. Let’s call this rate F (t, S, T ). Then clearly this

rate must be related with the bond price B(t, S) and B(t, T ). So we should determine

what F (t, S, T ) is and further inquire into whether we can indeed lock in this rate at

time t by trading certain shares of the bonds with maturities at S and T .

To answer the first question, clearly what we want is if we invest 1 dollar at time

S then we should receive exp
(
F (t, S, T )(T − S

)
at time T . Note that, 1 dollar at

time S is equivalent to B(t, S) at time t and exp
(
F (t, S, T )(T − S)

)
dollars at time

T is equivalent to B(t, T ) exp
(
F (t, S, T )(T − S)

)
at time t. These clearly should be

equal if we want to lock in the rate F (t, S, T ) at time t. Therefore

B(t, S) = B(t, T ) exp
(
F (t, S, T )(T − S)

)
,

or

F (t;S, T ) =
1

T − S
ln

(
B(t, S)

B(t, T )

)
= − lnB(t, T )− lnB(t, S)

T − S
.
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To answer the second question, first plug in F (t, S, T ) = − lnB(t,T )−lnB(t,S)
T−S into

B(t, T ) exp
(
F (t, S, T )(T − S)

)
and observe that

B(t, T ) exp
(
F (t, S, T )(T − S)

)
= B(t, T )

B(t, S)

B(t, T )
.

This suggests that we should hold B(t,S)
B(t,T )

shares of bond with maturity T at time

t. To finance this position, we should sell 1 share of bond with maturity S at time t

(since we expect to invest 1 dollar at time S). This turns out to be the right scheme

because this costs nothing at time t: If at t we sell one zero-coupon bond maturing at

S for B(t, S) and with this money buy B(t, S)/B(t, T ) zero-coupon bonds maturing

at T , the net value of this transaction for us is 0. At time S we pay out a dollar

and at time T receive B(t, S)/B(t, T ). This is indeed equivalent to earning, at T , the

amount B(t, S)/B(t, T ) = exp
(
F (t, S, T )(T − S)

)
from a deposit of $ 1 at S. The

rate of interest earned by this transaction, F (t, S, T ) is called the forward rate for

[S, T ] contracted at t.

Remark: F (t, S, T ) is known at time t by observing B(t, S) and B(t, T ), that is

F (t, S, T ) ∈ Ft, where Ft is the filtration generated by B(t, S) and B(t, T ).

(iv) The instantaneous forward rate

The forward rate F (t, S, T ) has the formula

F (t;S, T ) = − lnB(t, T )− lnB(t, S)

T − S
.

If we let T goes to S, then the right hand side should go to − ∂
∂T

ln[B(t, S)], if the

derivative exists. Indeed, if we assume B(t, T ) is differentible in T , then this is the

case. This is not an unreasonable assumption since for a fixed t, one can believe that

the bond price is a smooth function of different maturities. (On the other hand, for

a fix maturity T , the bond price should not be a smooth function of t. It should be

very irregular, indeed, in t, similar to behavior of the graph of a Brownian motion in

t).

So we define the instantaneous forward rate at t for investing at time T as

f(t, T ) = − ∂

∂T
ln[B(t, T )]. (4)

By integrating in T , it follows that

B(t, T ) = exp{−
∫ T

t

f(t, u) du} (5)
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For brevity, we refer to f(t, T ) as the forward rate function.

Remark: Again, note that here f(t, T ) is known at time t, that is f(t, T ) ∈ Ft
where Ft is the filtration generated by B(t, T ).

(v) The short rate

The short rate is the rate available at time t for the shortest period loans. Formally

it is defined as

R(t) = f(t, t) (6)

Remark: It seems reasonable to define R(t) = f(t, t) (just from the understanding

of what the forward rate is). First, it is reasonable to believe the spot rate R(t, T )

should converge to the short rate R(t) when T → t. Recall

R(t, T ) = − lnB(t, T )

T − t
=

∫ T
t
f(t, u)du

T − t
.

The RHS converges to f(t, t) (by Lesbegue differentation theorem) as T → t. So

if we expect R(t, T ) to converge to R(t), then it is reasonable to set R(t) = f(t, t).

Second, from comparing the risk neutral pricing formula

B(t, T ) = Ẽ
(
e−

∫ T
t R(u)du

)
with the definition of the forward rate:

B(t, T ) = e−
∫ T
t f(t,u)du,

we should expect R(t) = f(t, t) as well. Indeed, suppose R(t) > f(t, t). Then if we

suppose R(u) and f(t, u) are continuous functions of u (which is reasonable) then

there must exist some T > t so that R(u) > f(t, u) for u ∈ [t, T ]. But then we have

B(t, T ) = e−
∫ T
t f(t,u)du > Ẽ

(
e−

∫ T
t R(u)du

∣∣F(t)
)

= B(t, T ),

which is a contradiction. So this cannot happen.

1.3 Remarks on modeling B(t, T ), R(t), f(t, T )

At each t, the market presents us with the function B(t, t+s), s ≥ 0, or, equivalently,

f(t, t + s), s ≥ 0, capturing, at each time t, the return on zero-coupon bonds of

all maturities. As a function of s, this term structure of interest rates fluctuates as
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t changes, and, we regard these fluctuations as random, because we cannot predict

them exactly for future values of t. Developing good stochastic process models for

the term structure of interest rates is a major area of mathematical finance. These

models are used to analyze and price derivatives that depend on credit markets.

A few, loosely stated principles guide the construction of the basic models covered

in this course. First, the models should be simple enough for fairly explicit calculation

or at least easy simulation. Second, they should be rich enough that they can be

calibrated to the market; that is, it should be possible to choose the parameters

of the model so that its statistical behavior mimics reasonably well actual market

performance. Of course, these two criteria push in opposite directions—the richer

the model, the harder it is to analyze and simulate—and one must strike a good

balance between them. A third important principle is that the model should not

admit arbitrage.

From the previous section, all three processes B(t, T ), R(t), f(t, T ) are objects of

interest in modeling and we would like to obtain models for all three of them (for a

fixed maturity T , as a process in t). It is also clear that if we get a model for one

then the other two can be deduced out of it, via the relations:

B(t, T ) = e−
∫ T
t f(t,u)du

B(t, T ) = Ẽ
(
e−

∫ T
t R(u)du

∣∣F(t)
)

R(t) = f(t, t).

But there are subtle differences in which process we choose to model actually.

First suppose we want to model B(t, T ) (which means we fix the maturity T and

model B(t, T ) as a process in t). And let’s say we go with the Geometric framework:

dB(t, T ) = α(t, T )B(t, T )dt+ σ(t, T )B(t, T )dWt,

under the physical measure P , where B(0, T ) is assumed known. The question is what

should α and σ be? We recognize that they cannot be just any processes because we

have the contraint:

B(T, T ) = 1.

Indeed, unless for very trivial choices (σ = 0, α a constant) the terminal constraint

cannot be easily satisfied. So modeling B(t, T ) as a function of t does not seem

straightforward.
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Note that the constraint B(T, T ) = 1 is naturally built into the formula

B(t, T ) = e−
∫ T
t f(t,u)du.

Thus, a good idea is to model the forward rate f(t, T ) and then derive B(t, T ) via

the above formula. This is the HJM model and will be discussed in the next lecture.

The last approach is of course to model R(t) and derive B(t, T ) via the relation

B(t, T ) = Ẽ
(
e−

∫ T
t R(u)du

∣∣F(t)
)
.

The subtle point to note here is if we take this approach, then necessarily we need

to model R(t) in under the risk neutral measure P̃ to obtain a price for B(t, T ). The

reason is this: if we model R(t) in the physical probability P , say

dR(t) = α(t)dt+ σ(t)dWt,

under P ; then we do not have a market price of risk equation: there is one random

source and there is no asset here. (Remember that we do not have the bond price

dynamics under P under this approach, whose goal is to induce the bond price from

the risk neutral pricing formula). Starting to model R(t) under the risk neutral

measure doesn’t seem unreasonable; all it takes is to declare

dR(t) = α(t)dt+ σ(t)dW̃t,

under P̃ . But this may pose a problem for model calibration when we need to deter-

mine α, σ. The reason is we live in the physical world, i.e. we observe distribution

under P . Nevertheless, modeling R(t) under the risk neutral measure is an approach

that many have taken and it leads to a connection with the forward rate HJM model,

which can be modeled under the physical measure P . So in this lecture, we will

discuss modeling the short rate R(t) under the risk neutral measure and leave the

connection with the forward rate for the next lecture.

The last question you may ask is, if we do not have the market price of risk

equation, then who determines the risk neutral measure P̃? The answer is: the

market does. I.e., it decides the bond price B(t, T ), which in turns imply what the

risk neutral measure P̃ is (This is the answer given by Björk in his book: Arbitrage

theory in continuous time). I’ll leave it to you to ponder more about the meaning of

this answer.

In both approaches (modeling R(t) and f(t, T )), the models we present have an ad

hoc flavor. It would seem more reasonable to build models supported by some theory
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of how the economy works. Such models would try to incorporate in a quantitative

manner the economic factors and indicators that influence term structure. But we

shall proceed innocent of all economic theory. We just look for models based on

stochastic differential equations that we hope are rich enough to capture actual market

behavior.

2 Multi-factor short rate models

A multi-factor model will consist of a vector-valued process

X(t) =

 X1(t)
...

Xm(t)

 ,

that solves a stochastic differential equation and is a Markov process under the risk-

neutral measure, and a function Φ(x1, . . . , xm). The short rate is then defined by

R(t) = Φ(X1(t), . . . , Xm(t)).

The factors Xi, i = 1, · · · ,m are meant to model economic factors that might

influence the interest rate, such as GDP, import-export rate, inflation etc. A partic-

ularly simple choice for Φ(X1(t), . . . , Xm(t)) would be R(t) = δ0(t) +
∑m

i=1 δi(t)Xi(t).

That is R(t) is just a linear combination of the factors. One can then use linear

regression to determine δi, i = 0, · · · ,m.

Recall that the relation between the bond price and the short rate is via the

equation

B(t, T ) = Ẽ
(
e−

∫ T
t R(u)du

∣∣F(t)
)

(7)

In the short-rate approach, being able to analyze the model comes down to cal-

culating the conditional expectation in formula (7).

The key in evaluating this conditional expectation is an old idea that we have

used over and over again in this course:

(i) Construct a model for the process R(t) so that it is Markovian. Then (7)

becomes

B(t, T ) = Ẽ

[
exp{−

∫ T

t

Φ(X1(s), . . . , Xm(s)) ds}
∣∣∣ X1(t), . . . , Xm(t)

]
.
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Thus we can find a function c(t, x1, x2, ..., xm) so that c
(
t,X1(t), X2(t), ..., Xm(t)

)
=

B(t, T ).

(ii) Find a PDE that c(t, x1, x2, ..., xn) satisfies. If we can solve the PDE (via

numerical procedure, for example) then we can recover the bond price B(t, T ) as

described in (i).

2.1 Affine-yield model

Definition 2.1. The short rate model is called an affine-yield model if it turns out

that the zero-coupon bond price can be written as

B(t, T ) = exp{−C1(t, T )X1(t)− · · · − Cm(t, T )Xm(t)− A(t, T )},

for some functions C1(t, T ), . . . , Cm(t, T ), and A(t, T ).

The Vasicek, CIR and Hull-White models discussed below are affine-yield models.

The case in which m = 1 is called a single-factor model. In such a model one takes

R(t) itself to be a Markov process; no auxiliary process X(t) is defined.

2.2 Connection with the forward rate

Affine yield models are particularly nice because it is easy to read off of an affine

model a model for the instantaneous forward rate:

B(t, T ) = exp{−C1(t, T )X1(t)− · · · − Cm(t, T )Xm(t)− A(t, T )}

= exp(−
∫ T

t

f(t, u)du).

Thus

−C1(t, T )X1(t)− · · · − Cm(t, T )Xm(t)− A(t, T ) = −
∫ T

t

f(t, u)du.

By differentiating both sides of the equation with respect to T , (assuming Ci(t, T )

and A(t, T ) are differentiable w.r.t T ) we have a model for f(t, T ).

The obvious question is then how can we come up with candidates for affine yield

models? We’ll give an idea of how this is done in the two factor model in the section

below. The generalization of this procedure for multi-factor model is straight forward.
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3 Affine yield model in general

We illustrate the idea for two factor models under the risk neutral measure P̃ ,

dX1(t) = a1(t,X1(t), X2(t)) dt+ b11(t,X1(t), X2(t)) dW̃1(t) + b12(t,X1(t), X2(t)) dW̃2(t)

dX2(t) = a2(t,X1(t), X2(t)) dt+ b21(t,X1(t), X2(t)) dW̃1(t) + b22(t,X1(t), X2(t)) dW̃2(t)

There is a lot of freedom in this general set-up, and we will quickly be more

specific. But an easy first observation is that to obtain an affine yield model, we need

R(t) to be an affine function of X1, X2.

Thus we assume that R(t) = δ0(t) + δ1(t)X1(t) + δ2(t)X2(t), where δi(t), i = 0, ...2

are parameters of the model that would be determined by model calibration.

Because (X1, X2) is a Markov process, we know that B(t, T ) = g(t,X1(t), X2(t))

for some function g.

To find an equation for g we start with the observation that

D(t)g(t,X1(t), X2(t)) = D(t)B(t, T )

is a martingale under the risk-neutral measure and that

g(T,X1(T ), X2(T )) = B(T, T ) = 1.

Apply Ito’s formula,

d[D(t)B(t, T )] = D(t)Lg(t,X1(t), X2(t)) dt

+D(t)M1g(t,X1(t), X2(t)) dW̃1(t) +D(t)M2g(t,X1(t), X2(t)) dW̃2(t),

where

Lg(t, x1, x2) = −(δ0 + δ1(t)x1 + δ2(t)x2)g + gt + a1(t, x1, x2)gx1 + a2(t, x1, x2)gx2

+
1

2
[b211 + b212](t, x1, x2)gx1x1 + [b11b21 + b12b22](t, x1, x2)gx1x2

+
1

2
[b221 + b222](t, x1, x2)gx2x2

and

M1g(t,X1(t), X2(t)) = b11(t, x1, x2)gx1 + b21(t, x1, x2)gx2

M2g(t,X1(t), X2(t)) = b12(t, x1, x2)gx1 + b22(t, x1, x2)gx2 .
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(In these expressions we have omitted writing the argument (t, x1, x2) of g and its

partials.) In order that D(t)g(t,X1(t), X2(t)) be a martingale, g must be a solution

of the parabolic pde,

Lg(t, x1, x2) = 0, t ≤ T, g(T, x1, x2) = 1. (8)

The following is the key observation:

If all the coefficients of the operator L—that is

a1(t, x1, x2), a2(t, x1, x2), [b
2
11 + b212](t, x1, x2), etc.

are affine functions, i.e. functions of the form

η0(t, T ) + η1(t, T )x1 + η2(t, T )x2,

then (8) has a solution of the affine-yield form. That is, we can find α(t, T ), c1(t, T ), c2(t, T )

such that

g(t, x1, x2) = exp{−c1(t, T )x1 − c2(t, T )x2 − α(t, T )}, with

c1(T, T ) = c2(T, T ) = α(T, T ) = 0.

Remark:

a. We require the b211 + b212 etc. to be affine, not b11 or b12 themselves. This

explains the choice of the volatility in Vasicek model: constant in xi and the choice

of volatility in CIR model:
√
xi for bii and 0 for bij, i 6= j.

b. If η0(t, T ), η1(t, T ), η2(t, T ) are constants, that is the coefficients in the affine

form of ai(t, x1, x2 etc. are constants, (which is the case for the standard Vasicek and

CIR models) then we can check that ci(t, T ) takes the form ci(T − t), similarly for

α(t, T ). That is their dependence on the two variables t, T is only on the difference

T − t.

The conditions c1(T, T ) = c2(T, T ) = α(T, T ) = 0 imply that this function auto-

matically satisfies the boundary condition g(T, x1, x2) = B(T, T ) = 1.

Moreover, for this g, one can see by direct calculation that

Lg = D1(t, T )x1g +D2(t, T )x2g +D3(t, T )g,
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where D1(t, T ), D2(t, T ), D3(t, T ) are defined in terms of c1(t, T ), c2(t, T ), α(t, T )

and their first derivatives (in t).

Since Lg(t, x1, x2) = 0 we need the RHS of the above equation to be equal to 0 as

well. This is accomplished by setting Di(t, T ) = 0, for all i.

So by setting D1(t, T ) = 0, D2(t, T ) = 0, D3(t, T ) = 0, we obtained equations for

determining c1(t, T ), c2(t, T ), α(t, T ) so that exp{−c1(t, T )x1 − c2(t, T )x2 − α(t, T )}
indeed solves (8).

If you examine the multi-factor CIR model or mixed models you will see that

they are formulated exactly so that the coefficients of Lg are affine. Following the

derivation of the affine-yield expressions for these models in Shreve and doing Exercise

10.2 will help you understand this overall strategy.

4 Multi-factor Vasicek models

The single-factor Hull-White model is defined by a short rate which solves a linear

differential equation of the sort, dR(t) = (a(t) − b(t)R(t)) dt + σ dW̃ (t), where W̃ is

a Brownian motion under the risk-neutral measure.

Multi-factor Vasicek models generalize the Hull-White model to the multi-factor

case. In these models, X solves a linear stochastic differential equation with constant

coefficients:

dX(t) = AX(t) dt+B dW̃ (t), X(0) = X0 (9)

where bX0 is a given initial value, W̃ is a multi-dimensional Brownian motion under

the risk-neutral measure, and

R(t) = δ0 + δ1X1(t) + · · ·+ δmXm(t).

Note that the choice of the liner coefficients δi, i = 0, · · · ,m in R(t) are constants

(not depending on t or ω). This is also a siginifcant simplifcation compared with the

general multifactors model we proposed above.

Note also that no constant term c dt enters (9). This causes no loss of generality

if A is invertible, as we usually assume, because the constant term can be removed

by an affine change of variables, as was shown in subsection (6.6) of this lecture.

Remark: The multi-factor Vasicek models have the advantage of having an explicit

solution. More precisely, we can solve for an explicit formula for the factors X(t) -
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see the dicussion in section (6). This in turn leads to explicit computation for B(t, T ),

which we will discuss below.

On the other hand, if one wants a model so that the short rate R(t) is non-

negative, then the Vasicek model may not satisfy this condition (since X(t) may

be negative). Thus if imposing this non-negativity condition takes piority over the

explicit solution, then one should go with the CIR model, discussed below. The CIR

model does not have an explicit solution, but the interest rate R(t) under the CIR

model is guaranteed to be non-negative.

Example Two-factor Vasicek; Canonical form. The canonical form of the two-

factor Vasicek is obtained by a linear change of variables to get an equivalent system

with as few free parameters as possible. It is derived in Shreve assuming that W is a

2-dimensional Brownian motion and that A and B are invertible. The factors solve

the system of Example 2 in Section (6.4) with σ1 = σ2 = 1:

d

(
X1(t)

X2(t)

)
=

(
−λ1 0

−λ21 −λ2

)(
X1(t)

X2(t)

)
dt+

(
dW1(t)

dW2(t)

)
(10)

The short rate is

R(t) = δ0 + δ1X1(t) + δ2X2(t) = δ0 + (δ1, δ2) ·X(t). �

4.1 Explicit formula for B(t, T ) under the Vasicek model

In this subsection, we will obtain an explicit formula for B(t, T ) under the Vasicek

model. This requires some details about stochastic calculus in multi-dimensional

model. These details will be presented in section (6).

Recall that the factors under Vasicek model have the following dynamics

dX(t) = AX(t) dt+B dW̃ (t), X(0) = X0 (11)

Recall that {X(u); u ≥ 0} is a Gaussian process. Because of this, it can be shown

that the conditional distribution of
∫ T
t
R(u) du given (X1(t), . . . , Xm(t)) is Gaussian

with a mean of the form

Ẽ[

∫ T

t

R(u) du
∣∣∣ X1(t), . . . , Xm(t)] = C1(T−t)X1(t)+· · ·+Cm(T−t)Xm(t)+(T−t)δ0,
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where

(C1(τ), . . . , Cm(τ)) =

∫ τ

0

(δ1, · · · , δm)eA·u du,

and with variance Ā(T − t), where

Ā(τ) =

∫ τ

0

(C1(u), . . . , Cm(u))BB∗(C1(u), . . . , Cm(u))∗ du.

Here B∗ denotes the transpose of B (the volatility in equation (11), don’t confuse

B with the bond price). (C1(u), . . . , Cm(u))∗ is the column vector that is the transpose

of the row vector (C1(u), . . . , Cm(u)).)

Indeed, the explicit solution to equation (11) (given X(t) - see equation (23)) is

X(u) = eA·(u−t)X(t) +

∫ u

t

eA·(u−s)B dW̃ (s).

Therefore∫ T

t

R(u)du =

∫ T

t

δ ·X(u)du

=
{∫ T

t

δ · eA·(u−t)du
}

X(t) +

∫ T

t

∫ u

t

δ · eA·(u−s)B dW̃ (s)du.

By switching the order of integration between dW̃ (s) and du, we have∫ T

t

∫ u

t

δ · eA·(u−s)B dW̃ (s)du =

∫ T

t

∫ T

s

δ · eA·(u−s)Bdu dW̃ (s)

=

∫ T

t

∫ T−s

0

δ · eA·uBdu dW̃ (s)

=

∫ T

t

C(T − s)B dW̃ (s),

where

C(τ) := (C1(τ), . . . , Cm(τ)) =

∫ τ

0

(δ1, · · · , δm)eA·u du,

is defined above.

We have ∫ T

t

C(T − s)B dW̃ (s)

has Normal distribution with mean 0 and variance matrix∫ T

t

C(T − s)BB∗C∗(T − s)ds =

∫ T−t

0

C(s)BB∗C∗(s)ds.
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Thus the distribution of
∫ T
t
R(u)du =

∫ T
t
δ ·X(u)du is normal with mean

{∫ T

t

δ · eA·(u−t)du
}

X(t) (12)

and variance∫ T

t

C(T − s)BB∗C∗(T − s)ds =

∫ T−t

0

C(s)BB∗C∗(s)ds. (13)

It is trivial but helpful to keep in mind that the mean and variance here are real

numbers, not vectors.

It follows from the formula E[eλY ] = eλµ+σ
2λ2/2 for the moment generating function

of a normal random variable with mean µ and variance σ2 that

B(t, T ) = Ẽ

[
exp{−

∫ T

t

R(u) du}
∣∣ X1(t), . . . , Xm(t)

]
= exp{−C1(T − t)X1(t)− · · · − Cm(T − t)Xm(t)− (T − t)δ0 +

1

2
Ā(T − t)},

where

C(τ) := (C1(τ), . . . , Cm(τ)) =

∫ τ

0

(δ1, · · · , δm)eA·u du

and

Ā(τ) =

∫ τ

0

(C1(u), . . . , Cm(u))BB∗(C1(u), . . . , Cm(u))∗ du.

are defined above. δ0 is given from the model of R(t).

Application of this formula to the canonical two-factor Vasicek model is carried

out in this week’s Assignment.

5 Cox-Ingersoll-Ross model

As mentioned above, the short rate R(t) under Vasicek model can become negative.

We consider instead the two-factor CIR model:

dX(t) = {µ(t)− A(t)X(t)} dt+B(Xt) dW̃ (t).

where

A(t) =

(
a11 a12

a21 a22

)
, µ(t) =

(
µ1

µ2

)
,
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B(Xt) =

( √
X1(t) 0

0
√
X2(t)

)
, W̃ (t) =

(
W̃1(t)

W̃2(t)

)
,

where µ1, µ2, a11, a22 > 0 and a12, a21 ≤ 0.

The dynamics is constructed so that when X1(t) = 0 then µ1 − a12X2(t) ≥ 0

pushing X1 above 0. Similarly for X2. Thus one sees that X1(t), X2(t) stays non-

negative for all t if X1(0), X2(0) are non-negative.

Thus by choosing

R(t) = δ0 + δ1X1(t) + δ2X2(t),

where we set δ0 ≥ 0, δi > 0 for all i = 1, 2 then R(t) is non-negative as well.

There is no explicit solution for the CIR factor models (because of the
√
Xi(t) term

in the volatility). But also exactly because of this structure, and the independence

of W̃1, W̃2 we also have an affine yield structure for the CIR model. In other words,

the bond price B(t, T ) has the form

B(t, T ) = f(t,X1(t), X2(t))

f(t, x1, x2) = e−x1C1(T−t)−x2C2(T−t)−A(T−t).

One can then set up a system of ODE equations for C1, C2, A in the fashion discussed

in the Section (3) and solve for the bond price that way. See also Shreve’s Section

10.2.2 for more details.

6 Linear Systems of Stochastic Differential Equa-

tions

6.1 The setting

This is a purely mathematical section. Linear systems of stochastic differential equa-

tions appear frequently in applied modeling and it is useful for the mathematical

finance practitioner to know the basics about them.
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By a linear system of stochastic equations we mean a system of the form

dX1(t) = {a11(t)X1(t) + a12X2(t) + · · ·+ a1m(t)Xm(t) + c1(t)} dt+
d∑

k=1

σ1k(t) dWk(t)

dX2(t) = {a21(t)X1(t) + a22X2(t) + · · ·+ a2m(t)Xm(t) + c2(t)} dt+
d∑

k=1

σ2k(t) dWk(t)

· · · = · · · · · · · · · · · · · · ·

dXm(t) = {am1(t)X1(t) + am2X2(t) + · · ·+ amm(t)Xm(t) + cm(t)} dt+
d∑

k=1

σmk(t) dWk(t)

It is much more efficient to write this in vector notation. Define

X =

 X1(t)
...

Xm(t)

 , A(t) =

 a11(t) · · · a1m(t)
...

...
...

am1(t) · · · amm(t).

 , c(t) =

 c1(t)
...

cm(t)

 ,

B(t) =

 σ11(t) · · · σ1d(t)
...

...
...

σm1(t) · · · σmd(t).

 , W (t) =

 W1(t)
...

Wd(t)

 .

Then the system of equations becomes

dX(t) = {A(t)X(t) + c(t)} dt+B(t) dW (t). (14)

Here W (t) is a multi-dimensional Brownian motion, and A(t), c(t), and B(t) are

given functions of t. They could even be stochastic processes adapted to a filtration

{F(t); t ≥ 0} for W . In this lecture we shall present results only for the case in which

A(t) = A, B(t) = B, and c(t) = c are constant, deterministic matrices or vectors.

This is the simplest, most often encountered case, and the theory for (14) is a fairly

straightforward generalization from this case.

In equation (14) the components of X(t) do not appear in the ‘dW (t)’ term. It

is common to use the term “bilinear” for equations in which linear functions of the

components of X(t) multiply dWi(t) terms. The Black-Scholes equation is bilinear in

this sense.

Consider

dX(t) = {AX(t) + c} dt+B dW (t), (15)

where A is an m × m matrix, B is an m × d matrix, c is an m-vector, and W

is a d-dimensional Brownian motion. An explicit solution to this equation can be

written down using the theory of ordinary linear systems of differential equations.

This requires a bit of review.
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6.2 The fundamental matrix for a linear system

Let I denote the m×m identity matrix. For a given m×m matrix A, define

eA·t = I +
∞∑
k=1

Ak
tk

k!
. (16)

This is a matrix-valued, infinite series, and it can be proved that it converges for any

A and any t, −∞ < t <∞, and so eA·t is well-defined.

Let
d

dt
eA·t denote the matrix obtained by differentiating each entry of eA·t. Then

it can be shown also that

d

dt
eA·t =

∞∑
k=1

Ak
d

dt

tk

k!
=
∞∑
k=1

Ak
tk−1

(k − 1)!
= A ·

[
I +

∞∑
k=1

Ak
tk

k!

]
= AeA·t. (17)

Also, clearly, eA·0 = I. As a result, if Z0 is any m-vector, Z(t) = eA·tZ0 solves

d

dt
Z(t) = AZ(t), Z(0) = Z0. (18)

This is easily verified; eA·0Z0 = I ·Z0 = Z0 and (d/dt)eA · tZ0 = [AeA·t]Z0 = A[eA·tZ0].

For this reason, eA·t is called the fundamental matrix for the equation
d

dt
Z(t) = AZ(t).

From the fact that solutions to (18) are unique, one can also deduce a converse

statement:

if Φ(t) is a matrix valued solution to
d

dt
Φ(t) = AΦ(t), Φ(0) = I, then Φ(t) = eA·t.

(19)

The following basic fact can be proved using either the definition (15) or the

fact that eA·t solves equation (16): for any −∞ < s, t < ∞, eA·teA·s = eA·(t+s); in

particular, e−A·teA·t = eA·0 = I, and hence e−At is the inverse of eAt. However, if

C 6= A, it is not in general true that eA·teC·t = e(A+C)·t.

Another very useful fact when it come to computing matrix exponentials is the

following. Suppose P is an invertible matrix. Observe that

[PAP−1]k = [PAP−1][PAP−1] · · · [PAP−1] = PAkP−1.

Thus

e[PAP
−1]·t = I +

∞∑
k=1

PAkP−1
tk

k!
= PeA·tP−1.
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Example 1. Let

A =

(
−λ1 0

−λ21 −λ2

)
.

Then if λ1 6= λ2,

eA·t =

(
e−λ1t 0

λ21
λ1−λ2

(
e−λ1t − e−λ2t

)
e−λ2t

)
. (20)

If λ1 = λ2,

eA·t =

(
e−λ1t 0

λ21te
−λ1t e−λ1t

)
. (21)

Shreve gives a derivation of these formulas in Lemma 10.2.3 on page 417. It is not

necessary to study this derivation in detail. From the characterization of eA·t in (19),

it suffice to show that the given formula in each case solves
d

dt
Φ(t) = AΦ(t) with

Φ(0) = I. Consider the case of (20). Obviously the given matrix is the identity

matrix when t = 0. A simple calculation shows that

d

dt

(
e−λ1t 0

λ21
λ1−λ2

(
e−λ1t − e−λ2t

)
e−λ2t

)
=

(
−λ1e−λ1t 0

−λ21
λ1−λ2

(
λ1e

−λ1t − λ2e−λ2t
)
−λ2e−λ2t

)
.

It is left to the student to show that

A ·

(
e−λ1t 0

λ21
λ1−λ2

(
e−λ1t − e−λ2t

)
e−λ2t

)
=

(
−λ1e−λ1t 0

−λ21
λ1−λ2

(
λ1e

−λ1t − λ2e−λ2t
)
−λ2e−λ2t

)
.

This completes the verification of (20) and (21) may be checked in the same way.

6.3 Multi-dimensional Ito’s formula

Let

µ(t) =

 µ1(t)
...

µm(t)

 , σ(t) =

 σ11(t) · · · σ1d(t)
...

...
...

σm1(t) · · · σmd(t).

 ,

W (t) =

 W1(t)
...

Wd(t)

 .
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Let the m-dimensional process X have the dynamics given by

dX(t) = µ(t)dt+ σ(t)dWt.

Let f be a smooth function that maps (R+,Rm)→ R. Then the process f(t,X(t))

has a stochastic differential given by

df =
{∂f
∂t

+
m∑
i=1

µi(t)
∂f

∂xi
+

1

2

m∑
i,j=1

(σσ∗)ij
∂2f

∂xi∂xj

}
dt+

m∑
i=1

∂f

∂xi
σi(t) · dWt,

where σi denotes the ith row f the matrix σ:

σi = [σi1, ..., σid],

and σ∗ denotes the transpose of σ.

All the expression of df and the partials of f in the above are evaluated at (t,Xt),

which we suppressed in the formula for simplicity of notation.

Alternatively, if we denote

∇f :=
( ∂f
∂x1

, ...,
∂f

∂xm

)
σ(t) =


∂2f
∂x21

· · · ∂2f
∂x1∂xm

...
...

...
∂2f

∂x1∂xm
· · · ∂2f

∂x2m
(t).

 ,

to be the gradient and the Hessian matrix of f respectively, then the Ito’s formula

can be written succinctly as

df =
{∂f
∂t

+ µ(t) · ∇f +
1

2
tr
(
σσ∗(t)Hf

)}
dt+∇f · σdWt,

where tr(A) :=
∑

iAii denotes the trace of a a square matrix A.

6.4 The solution to equation (15)

The matrix exponential function of A may be used to express the solution to (15).

This solution is

X(t) = eA·tX(0) +

∫ t

0

eA·(t−s)B dW (s) +

∫ t

0

eA·(t−s)c ds (22)
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In the expression
∫ t
0
eA·(t−s)B dW (t), the term eA·(t−s)B is an m×d matrix multiplying

a d-dimensional vector dW (t) of Brownian differentials; hence

∫ t

0

eA·(t−s)B dW (t) is

an m-dimensional, vector-valued process.

A variant of (22) is true for representing X(T ) for T > t in terms of T ,

X(T ) = eA·(T−t)X(t) +

∫ T

t

eA·(T−s)B dW (s) +

∫ T

t

eA·(t−s)c(s) ds (23)

The increments dW (s) for times s > t are independent of X(t); hence (23) exhibits

X(T ) is the sum of a linear transformation of X(T ) plus a random vector independent

of X(t).

Example 2. Let λ1 6= λ2. Consider

d

(
X1(t)

X2(t)

)
=

(
−λ1 0

−λ21 −λ2

)(
X1(t)

X2(t)

)
dt+

(
σ1 0

0 σ2

)(
dW1(t)

dW2(t)

)
(24)

Using the result of Example 1,(
X1(t)

X2(t)

)
=

(
e−λ1t 0

λ21
λ1−λ2

(
e−λ1t − e−λ2t

)
e−λ2t

)(
X1(0)

X2(0)

)

+

∫ t

0

(
e−λ1(t−s) 0

λ21
λ1−λ2

(
e−λ1(t−s) − e−λ2(t−s)

)
e−λ2(t−s)

)(
σ1dW1(s)

σ2dW2(s)

)
.

The student should verify that:

X1(t) = e−λtX1(0) +

∫ t

0

e−λ1(t−s)σ1 dW1(t)

X2(t) =
λ21

λ1 − λ2
(
e−λ1t − e−λ2t

)
X1(0) + e−λ2tX2(0)

+

∫ t

0

λ21
λ1 − λ2

(
e−λ1(t−s) − e−λ2(t−s)

)
σ1 dW1(s)

+

∫ t

0

e−λ2(t−s)σ2 dW2(s). �

To show the validity of (22), write eA·(t−s) = eA·te−A·s and factor eA·t out of the

integrals to write,

X(t) = eA·t
[
X(0) +

∫ t

0

e−A·sB dW (t) +

∫ t

0

e−A·sc ds

]
.
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Let Y (t) = X(0) +
∫ t
0
e−A·sB dW (t) +

∫ t
0
e−A·sc ds be the vector-valued Itô process in

this expression, and note that dY (t) = e−A·t [c dt+B dW (t)]. Then

dX(t) =

[
d

dt
eA·t
]
Y (t) dt+ eA·tdY (t)

= AeA·tY (t) dt+ c dt+B dW (t) = AX(t) dt+ c dt+B dW (t).

6.5 Joint distribution of the solution to (15)

In Theorem 4.4.9, Shreve states and proves the important fact that the Itô integral of

a deterministic integrand is a normal random variable. This fact generalizes. If W (t)

is a d-dimensional Brownian motion and B(t) is a deterministic m× d-matrix-valued

function, then
∫ t
0
B(s) dW (s) is a normally distributed random vector. Hence, its

joint density is determined by its mean vector and covariance matrix. The proof is

essentially the same as that of Theorem 4.4.9. This fact has the following consequence

for the solution X(t) of (15): for any 0 ≤ t ≤ T , the conditional distribution of X(T )

given X(t) is Gaussian (normal). In particular, if X(0) is deterministic or is a normal

random variable independent of W , then {X(t); t ≥ 0} is a vector-valued, Gaussian

process.

Exercise 10.1 in Shreve is about the mean vector and covariance matrix of the

process defined in Example 2.

6.6 How (15) changes under affine change of variable

Let X solve equation (15), let P be an invertible m×m matrix, let a be an m-vector,

and define

Y(t) = PX(t) + a.

Then Y(t) also satisfies a system of linear stochastic differential equations. Note that

X(t) = P−1(Y(t)− a). Thus,

dY(t) = P dX(t) = P [(AX(t) + c) dt+B dW (t)]

=
[
PAP−1Y(t) + P (c− AP−1a)

]
dt+ PB dW (t).

Linear transformations like this are extremely useful for simplifying linear systems.

For example, if A is invertible, and we choose a = PA−1C, then (c− AP−1a) equals
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the zero vector, and hence dY(t) = PAP−1Y(t) dt + PB dW (t). More importantly,

one can choose P so that the matrix PAP−1 has a canonical form that is simple to

work with, in terms of calculating ePAP
−1·t = PeA·tP−1 and in terms of understanding

how the different components of Yi(t) influence one another. For example, if A has a

basis of eigenvectors with real eigenvalues λ1, . . . , λm, P can be chosen so that PAP−1

is the diagonal matrix

PAP−1 =


λ1 0 0 · · · 0

0 λ2 0 · · · 0
...

. . .
...

0 . . . . . . . . . . . λm

 .

It is easily seen that

ePAP
−1·t =


eλ1t 0 0 · · · 0

0 eλ2t 0 · · · 0
...

. . .
...

0 . . . . . . . . . . . . . eλmt

 .
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