
Jump process models

Math 622 - Spring 2015

January 26, 2015

1 Motivations

Previously, most of the models of the stock process we have encountered are contin-

uous, i.e the stock price is not supposed to have jumps. Very quickly we see this

assumption is restrictive: when the stock pays dividend, the stock price has a down-

ward jump corresponding to the amount of divident payout. However, the dividend

payment can be covered within the continuous framework without introducing any

new ideas, essentially because the dividend payment times are deterministic.

Dividend payments are not the only phenomenons that cause the stock price to

have jumps, obviously. In reality, we quickly observe many instances where stock price

jumps, and the most important characteristic of these jumps is that they happen at

random times. Being able to model stock prices that incorporate jumps at random

(or more precisly, stopping times) and learning how to price financial products based

on these models are the main focus of this Chapter.

2 Overview of price modeling in continuous time

Let {F(t); t ≥ 0} be a filtration modeling the accumulation of market information

available to investors as time progresses. A simple paradigm guides the construction

of models for an asset price, {S(t); t ≥ 0}, that is a continuous function of time:

dS(t)

S(t)
= α(t) dt+ dM(t), (1)

where α is a process adapted to {F(t); t ≥ 0}, M is a martingale with respect to

{F(t); t ≥ 0}, and dS(t) = S(t + dt) − S(t) denotes the price increment at t for
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an infinitesimally small positive increment of time, dt. This is a formal equation,

because dt is not precisely defined. Intuitively, (1) says that if dt is replaced by a

small finite time, the left- and right-hand sides are approximately equal and that the

approximation is better the smaller dt is.

This modeling framework is entirely natural. Because M is a martingale,

E[dM(t)
∣∣∣F(t)] = E[M(t+ dt)−M(t)

∣∣F(t)] = 0.

Therefore

E
[dS(t)

S(t)

∣∣∣F(t)
]

= α(t) dt.

This means that α(t) dt is the expected infinitesimal return on owning a share of the

asset over the period [t, t+dt], conditional on the market history at time t. Therefore,

from equation (1), dM(t) is the fluctuation of the return about this conditional mean.

Essentially, M is the source of the random fluctuations in the price; we say that the

noise M drives the evolution of S. Using paradigm (1), we can break down price

modeling into the separate problems of modeling α and M .

3 Models based on Brownian motion, a review

From the perspective of equation (1), the theory of stochastic integrals with respect to

Brownian motion is a mechanism for producing a large and flexible class of martingales

to use for M . Let us recall in broad outline, how this theory goes. We start with

a continuous process W , namely Brownian motion, which is not just a martingale,

but a process with independent and stationary increments. It is assumed that W

is adapted to {F(t); t ≥ 0} and that future increments W (t + h) − W (t), h ≥ 0

are independent of F(t). We then define
∫ t
0
α(s) dW (s) for processes α adapted to

{F(t); t ≥ 0} and satisfying E[
∫ T
0
α2(s) ds] < ∞ for all T . The definition proceeds

in two steps. First, we define the integral if α has the form:

α(t) =
t∑
i=1

αi1(ti−1,ti](t)

where t0 < t1 < · · · < tn and αi is F(ti−1)-measurable for each i. The definition is:∫ t

0

α(s) dW (s) :=
n∑
i=1

αi[W (ti ∧ t)−W (ti−1 ∧ t)]
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This is the accumumlated return, up to time t, from betting amount αi on the incre-

ment of W over every interval [ti−1 ∧ t, ti ∧ t]. We then show this integral satisfies the

Itô isometry,

E
[( ∫ t

0

α(s) dW (s)
)2]

= E
[ ∫ t

0

α2(s) ds
]
,

use this isometry to extend the definition to more general, adapted integrands, and

obtain in this way a large family of martingales of the form,

M(t) :=

∫ t

0

σ(s) dW (s),

where σ(t) is adapted to {F(t); t ≥ 0} and E[
∫ T
0
σ2(s) ds] <∞ for all T .

When
∫ t
0
σ(s) dW (s) is used for M in (1), the price model becomes:

dS(t) = α(t)S(t) dt+ S(t)σ(t)dW (t). (2)

Here we have expressed dM(t) as σ(t)dW (t); formally it consists of a Gaussian term

dW (t), with mean zero and variance dt, independent of the past, times a volatility

factor σ(t) that is known at time t. For this class of price equations, the job of mod-

eling reduces to choosing α and σ. (Pricing derivatives requires taking expectations

with respect to a risk-neutral measure, and we found that this measure does not

depend on α. Therefore, for pricing we really only need to model volatility.)

4 The problem of modeling jumps

As we mentioned in the Introduction, the main constraint of model (2) above is

continuity; W (t), M(t) =
∫ t
0
σ(s) dW (s), and, consequently, the price S(t) solving

(2) are all continuous functions of t with probability one.

Of course, in reality prices move in steps of discrete size. So long as these steps are

small, continuous models of form (2) should be okay, if returns over small intervals are

approximately Gaussian. But occasionally, prices take large, sudden and unexpected

jumps, such as a market shock, and returns might not be Gaussian.

Therefore, one would like to allow jumps in price models. This will not only

incorporate the phenomenon of sudden large jumps, but will also offer a richer family

of models for fitting the empirically observed, statistical behavior of prices.

Price models with jumps can be obtained by introducing jumps into the noise,

M , in equation (1). To proceed we need to know how to define martingales with
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jumps and we need a theory to interpret and solve stochastic differential

equations with jump terms.

The strategy for carrying this out parallels stochastic integration theory for Brow-

nian motion. One starts with independent increment processes, X(t), that are mar-

tingales and that have jumps. The simplest example is the compensated Poisson

process. Then one defines stochastic integrals,
∫ t
0
σ(s) dX(s), and establishes con-

ditions on σ(·) so that these integrals are martingales. This produces a large

class of martingales with jumps to use as the driving noise in price equations. Finally,

one extends Itô calculus to stochastic integrals with jumps. This calculus can

then be used to analyze derivatives based on the new price models.

The compensated Poisson process is derived from the Poisson process. To under-

stand it, we start out with the Poisson process.

Remark 4.1. As mentioned in the Introduction, we can also have stock price jumps

in the case of dividend payments. In this case the stock will be modeled as followed:

dS(t) = α(t)S(t)dt+ σ(t)S(t)dW (t) + S(t−)dJ(t),

where if we let 0 < t1 < · · · < tn < T be the dividend payment days and αi, i =

1, · · · , n be the dividend percentage (that is at time ti the dividend paid is αiS(ti−))

then

J(t) =
n∑
i=1

−αi1{t≥ti}.

(See also Shreve’s Section 5.5.3)

The point is here J(t) is NOT a martingale, nor can it be made into a martingale

by being compensated as a compensated Poisson process. Thus the dividend payment

stock’s model does not fall into the theory of jump processes discussed in this Chapter

as far as the martingale aspect is concerned. However, the mathematical tools de-

veloped here can be used to analyze the jump part in the dividend paying stock in a

similar way as we present later in this Chapter.
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5 The most basic model of jump processes: Pois-

son process

5.1 Heuristics about Poisson process

We think of Poisson process as followed: suppose that we have an alarm clock that

will ring after a random time τ , where τ is exponentially distributed with some mean
1
λ
. We keep account of the value of the Poisson process at any time t by the notation

N(t). At time 0, we set the alarm clock and set N(0) = 0. When the alarm rings, we

increase the value of N by 1, that is we set N(τ) = 1 and repeat the whole process

(i.e. we reset the alarm clock and increase the value of N by 1 the next time the

clock rings). The resulting process N(t) is then a Poisson process with rate λ. We

observe that the larger λ is, the clock would be likely to ring sooner and the more

jumps would likely happen in a given time interval [0,T]. It is also clear that N(t) is

constant in between the “ring” times.

5.2 Formal mathematical definition

a. τ (as a R.V.) is said to be exponentially distributed with rate λ if it has the density

f(t) = λe−λt1(t≥0).

It follows that E(τ) = 1
λ

and V ar(τ) = 1
λ2

. An important property of exponential

random variable is the memoryless property:

P(τ > t+ s|τ > s) = P(τ > t).

b. Let τi, i = 1, 2, ... be a sequence of i.i.d. Exponential(λ). Let Sk :=
∑k

i=1 τi.

The Poisson process N(t) with rate λ is defined as:

N(t) =
∞∑
i=1

1(t≥Si).

τi is called the inter-arrival time. It is the wait time from the (i − 1)th jump to

the ith jump. Si is called the arrival time. It is the time of the ith jump.

5.3 Important basic properties

a. Distribution: N(t) is has distribution Poisson(λt), that is

P(N(t) = k) =
e−λt(λt)k

k!
.
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Proof. Let Sn =
∑n

i=1 τi be the arrival time, then

P(N(t) = k) = P(Sk+1 > t, Sk ≤ t)

= P(Sk+1 > t)− P(Sk+1 > t, Sk > t) = P(Sk+1 > t)− P(Sk > t).

From Shreve’s Lemma 11.2.1, Sn has Gamma(λ, n) distribution. That is, it has

the density:

gn(s) =
(λs)n−1

(n− 1)!
λe−λs, s ≥ 0.

It is a straight forward matter of integration now to verify that

P(Sk+1 > t)− P(Sk > t) =
e−λt(λt)k

k!
.

The integration can be tedious, however. Another way to verify it is as followed:

Denote f(t) := P(Sk+1 > t) − P(Sk > t) and note that f(t) satisfies the following

ODE:

f ′(t) = gk(t)− gk+1(t) =
(λt)k−1

(k − 1)!
λe−λt − (λt)k

k!
λe−λt

f(0) = 0.

It is clear that f(t) = e−λt(λt)k

k!
is the unique solution to the above ODE. The

verification is complete.

b. N(t) has independent increment. That is if we denote Ft to be the filtration

generated by N(s), 0 ≤ s ≤ t then for all t ≤ t1 < t2, N(t2) − N(t1) is independent

of Ft.
Heuristic reason: Let 0 ≤ s < t. Clearly N(t)−N(s) counts the number of jumps

starting from time s. Given all the information up to time s, what is the distribution

of the first jump time after s? That is, we want to compute P(SN(s)+1 ≥ t|Fs), where

Sn is the arrival time as defined in Shreve (11.2.4). Note that since N(s) represents

the number of jumps up to time s, SN(s)+1 is exactly the time of the first jump after

time s.

But this is the same as computing P(τN(s)+1 ≥ t − SN(s)|τN(s)+1 ≥ s − SN(s)).

Note that SN(s) here represents the time of the last jump before time s, and τN(s)+1

is the wait time between the last jump before time s and the first jump after time s.

So P(τN(s)+1 ≥ t − SN(s)|τN(s)+1 ≥ s − SN(s)) asks for the probability that we have

to wait until after time t for the first jump after time s, given that we know we have
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waited up until time s since the last jump before s, which has the same content as

P(SN(s)+1 ≥ t|Fs).
Note also that P(τN(s)+1 ≥ t−SN(s)|τN(s)+1 ≥ s−SN(s)) = P(τN(s)+1 ≥ t− s+ s−

SN(s)|τN(s)+1 ≥ s− SN(s)). Since Fs is given, N(s) should be looked at as a constant

here. But from the memoryless property of τN(s)+1, we get

P(τN(s)+1 ≥ t− s+ s− τN(s)|τN(s)+1 ≥ s− τN(s)) = P(τN(s)+1 ≥ t− s).

That is, the first jump time after s can be looked at as an exponential clock starts at

time s, hence independent of the past information. Using the independence of inter-

arrival times, it is clear now that the increments of N(t) after time s is independent

of the information up to time s.

c. N(t) has stationary increment. More specifically, N(t)−N(s) has distribution

Possion(λ(t− s)).
Heuristic reason: It follows from the same arguments of part b.

6 Generalizations of Poisson process

6.1 Compound Poisson process

The Poisson process we introduced has the satisfactory property that it jumps at

random times. However, each of the jump is by definition of length 1, which is rather

restrictive. It is desirable in terms of being realistic to have random jumps in our

model. To that end, we proceed as followed.

LetN(t) be a Poisson process with rate λ and let Y0 = 0, Yi, i = 1, 2, ... be i.i.d.(and

also independent of N(t)) with E(Yi) = µ. Define

Q(t) =

N(t)∑
i=0

Yi,

then Q(t) is called a compound Poisson process. Similar to a Poisson process, Q(t)

also has the basic properties of independent and stationary increments. We do not

know the specific distribution of Q(t)−Q(s) (it depends on the distribution of Yi’s ,

of course), but we do know that E(Q(t)−Q(s)) = µλ(t− s).

6.2 Pure jump process

Poisson process and compound Poisson process are examples of pure jump processes.
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Definition 6.1. A stochastic process {J(t); t ≥ 0} is called a pure jump process if

its sample paths are right-continuous and piecewise-constant. (Recall that this

entails that each sample path of J(t) admits only a finite number of jumps in any finite

time interval.) A pure jump process N is called a counting process if N(0) = 0

and it its jumps all have magnitude 1; hence it can only increase, and is always

integer-valued. If N is a counting process, N(t) counts the number of jumps in the

time interval [0, t].

Remark 6.2. In stochastic integration theory, the definition of a pure jump process

is more general than the one here and allows infinite numbers of jumps in finite time

intervals.

Remark 6.3. By right continuity, a pure jump process J(t) CANNOT jump at time

0, which is always the conventional time that we start observing the process.

6.3 Levy process

So far the three processes that we have encountered: Brownian motion, Poisson and

compound Poisson processes have these three properties in common:

• Its value at time 0 is 0 : X(0) = 0.

• It has càdlàg path.

• It has stationary and independent increments.

A process X(t) is said to be a Levy process starting at 0 if it satisfies these three

properties (clearly if we change the first property to X(0) = x then we would get a

Levy process starting at x). Brownian motion is an example of a continuous Levy

process and Poisson process is an example of a pure jump Levy process. Indeed,

Brownian motion, compound Poisson process and pure jump process may be thought

as “building blocks” of a Levy process (See Levy-Ito decomposition on Wikipedia, for

example).

A rather simple but important property of Levy process is as followed: IfX1, X2, ...Xn

are independent Levy process then
∑n

i=1Xi is a Levy process. In particular, if we

consider S(t) = X(t) + Q(t), where X(t) is a Geometric Brownian motion with the

drift µ and volatility σ constant), Q(t) a compound Poisson process then S(t) is a

Levy process.
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7 Martingale property

In Math finance, we always require the discounted underlying to be a martingale, so

that no arbitrage can happen. As mentioned, the Levy process is intimately connected

to our stock models, so it’s natural to first study the martingale property of Levy

processes.

7.1 Levy process

Let X(t) be a Levy process and F(t) its filtration. If E(X(1)) = µ then it can be

shown that E(X(t)) = µt. Similarly, if V ar(X(1)) = σ2 then it can be shown that

V ar(X(t)) = σ2t. Since X has independent increment, one can check that

Y (t) = X(t)− µt;
Z(t) = (X(t)− µt)2 − σ2t

are martingales with respect to F(t).

7.2 Brownian motion

Let W (t) be a Brownian motion and F(t) its filtration. Then W (t) and W 2(t) − t
are martingales w.r.t. F(t). More importantly, we have the following exponential

martingale associated with Brownian motion:

Z(t) = eσWt− 1
2
σ2t.

7.3 Poisson process

Let N(t) be a Poisson process and F(t) its filtration. Then N(t) − λt (called a

compensated Poisson process) and (N(t)− λt)2 − λt are martingales w.r.t. F(t). We

also have the following exponential martingale associated with N(t):

Z(t) = exp
(
iuN(t)− λt(eiu − 1)

)
,∀u ∈ R.

7.4 Compound Poisson process

Let Q(t) be a compound Poisson process and F(t) its filtration. That is

Q(t) =
Nt∑
i=0

Yi,
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where N(t) is a Possion(λ) process. Let E(Y1) = µ and V ar(Y1) = σ2. One can check

that

E(Qt) = λµt

and

V ar(Qt) = λt(σ2 + µ2).

Then

Q(t)− µλt

(called a compensated compound Poisson process) and

(Q(t)− µλt)2 − λt(σ2 + µ2)

are both martingales w.r.t. F(t).

Let φ(u) := E(eiuY1) be the characteristic function of Yi. Then we also have the

following exponential martingale associated with Q(t):

Z(t) = exp
(
iuQ(t)− λt(φ(u)− 1)

)
,∀u ∈ R.

8 Lebesgue-Stieltjes integral

8.1 Motivation

Now that we have introduced Poisson process, it is easy to see how to incorprate

jumps into the current Black-Scholes stock model. Specifically, letX(t) be a geometric

Brownian motion:

dXt = µXtdt+ σXtdWt,

and N(t) a Poisson process. Then defining the stock process as S(t) := X(t) +N(t)

already gives us a stock price that jumps at random times, and in between the jumps

behave as a geometric Brownian motion.

Let ∆t represent the number of shares of S(t) we hold at time t. As you might

remember from the previous material, we need to know how to evaluate the integral∫ t
0

∆sdSs, since it is connected with the value of a portfolio that has S as a component.

It is reasonable to expect that∫ t

0

∆sdSs =

∫ t

0

∆sdXs +

∫ t

0

∆sdNs,
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and we already know how to evaluate
∫ t
0

∆sdXs from the chapter on Ito integral. It

remains to define
∫ t
0

∆sdNs.

For each event ω, the path Nt(ω) (as a function of t) belongs to a special class

of functions called the functions of bounded variation. For this reason,
∫ t
0

∆sdNs is

defined via the concept of Lebesgue-Stieltjes integral of classical analysis. It still

has some subtleties, however, mostly due to the facts that N(t) has jumps, so the

regularity (left or right continuity) of the integrand ∆t affects the value of the integral.

For this reason, we will review some basic aspects of the Lebesgue-Stieltjes integral

with respect to càdlàg integrator in the next section.

8.2 Mathematical preliminaries; right-continuous functions

with left limits

1. Limits, continuity and jumps. Let f(t) be a function defined for t ≥ 0. The right

limit of f at t ≥ 0 is

f(t+) := lim
s↓t

f(s), assuming it exists.

The left limit of f at t > 0 is

f(t−) := lim
s↑t

f(s), assuming it exists.

As a convention, we set f(0−) = f(0). The jump of f at t is the difference of these

limits and is denoted

4f(t) = f(t+)− f(t−)

A function f is said to be right-continuous with left limits if f(t) = f(t+) for all t and

if f(t−) exists for all t. Such functions are sometimes called càdlàg functions in the

literature. It is worth knowing this term so we shall use it. It is an acronym of the

French phrase meaning ‘right-continuous with left limits’: continu à droite, limites à

gauche.

If we are to allow jumps in price models, we need a convention for what the price

is at the exact time of the jump. Our convention shall be that all prices are càdlàg

functions. Hence S(t) = S(t+) is the price that the asset jumps to at time t, S(t−)

is the price immediately before the jump, and 4S(t) = S(t)−S(t−) is the size of the

jump.
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The same convention will be imposed on the driving martingale M in our price

models, since it is the martingale M that causes the jump. Likewise, in the theory of

stochastic integration that we develop, stochastic integrals will have càdlàg paths.

Along with these conventions we need to re-interpret the intuitive meaning of

dS(t). You should think of this as the increment S(t + dt) − S(t−); Of course, this

coincides with S(t+dt)−S(t) at times t at which S(t) is continuous; if not, it captures

the jump at time t. Note that, as usual, the identity, dS(t) = S(t+ dt)−S(t−), does

not have a strict meaning, since dt does not have a strict meaning, but it is a correct

guide to thinking about the movements of S over small time intervals.

2. Important facts to know about càdlàg functions. Let f be càdlàg:

(i) The function t→ f(t−) is left-continuous.

(ii) The set of points at which f is not continuous is either finite or countably

infinite.

(iii) Since f(t) and f(t−) differ only at points at which f is not continuous and there

are only countably many such points,
∫ T
0
f(t−)g(t) dt =

∫ T
0
f(t)g(t) dt, for any

T > 0 and g.

8.3 Lebesgue-Stieltjes integrals for increasing, right-continuous

integrators

A. Let G(t), t ≥ 0, be a function that can be written in the form

G(t) = A1(t)− A2(t), where A1 and A2 are increasing and right-continuous. (3)

Since A1 and A2 are increasing, Ai(t−) = lims↑tAi(s) exists automatically for all

t > 0, and for each i = 1, 2. Hence A1, and A2, and, therefore, G, are all càdlàg.

It is easy to see that if G1(t) and G2(t) are both functions with the property (3),

then so is any linear combination αG1(t) + βG2(t).

A function G that can be written as the difference of two increasing function has

the special property of being a function of bounded variation. You will learn what this

means in a homework exercise. Conversely, any function of bounded variation may

be written as the difference of increasing functions. Therefore, we shall summarize

the condition (2) by saying G is a càdlàg function of bounded variation.
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Examples of functions of the form (3).

(i) G is a right-continuous, piecewise constant functions of the form

G(t) =
n∑
0

ak1[tk,tk+1)(t)

where 0 = t0 < t1 < · · · < tn, and tn+1 =∞.

(ii) G(t) is a differentiable function, G(t) = G(0) +
∫ t
0
g(s) ds.

(iii) G(t) =
∫ t
0
g1(s) ds + G2(t), where G2 is right-continuous and piecewise

constant, as in (i).

Explanation : (i) The function 1[a,∞)(t) is right-continuous and increasing. There-

fore 1[a,b)(t) = 1[a,∞)(t)− 1[b,∞)(t) is a function of form (3). Because G as defined in

(i) is a linear combination of functions of the form (3), it also has this form.

As for (ii), observe that

G(t) = G(0) +

∫ t

0

g(s) ds = G(0) +

∫ t

0

|g(s)|1{g(s)≥0} ds−
∫ t

0

|g(s)|1{g(s)<0} ds

decomposes G into the difference of two continuous, increasing functions.

(iii) is a consequence of (i) and (ii). �

B. If G is a càdlàg function of bounded variation, there is a natural way to define

integrals, which we shall denote, ∫ t

0

H(s) dG(s),

built on the increments ofG. In the mathematical literature, these are called Lebesgue-

Stieltjes integrals.

8.4 Lebesgue-Stieltjes integral for left-continuous, piecewise

constant integrands

A function H(t), t ≥ 0 is left-continuous and piecewise constant if it has the form:

H(s) =
n∑
i=1

ci1(ti−1,ti](s) + cn+11(tn,∞)(s) (4)

where 0 = t0 < t1 < · · · < tn. For convenience let tn+1 =∞. For this H, define∫
(0,t]

H(s) dG(s) :=
n+1∑
i=1

ci

[
G(ti ∧ t)−G(ti−1 ∧ t)

]
(5)

Usually, we will write the integral in (5) as
∫ t
0
H(s) dG(s).
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Motivation and comments.

1. This definition should be no surprise; the idea is to multiply the value of H on

each interval (ti−1, ti] by the increment of G over that interval. If G(s) = s, then∫
(0,t]

H(s) dG(s) =
n+1∑
i=1

ci

[
ti ∧ t− ti−1 ∧ t

]
=

∫ t

0

H(s) ds,

which is the usual Riemann (or Lebesgue) integral. If instead we replaced G by a

Brownian motion W , we would get the Itô integral of H.

2. The fact that we used intervals of the form (ti−1, ti] in the definition of H in

(5), so that H is left-continuous, is not an accident and is tied up with the

assumption that G is right-continuous.

First, we model G as being right-continuous according to our intuition that a

shock cannot be predictable (you can observe the behavior of the stock up until the

time of the shock - the jump time - but you will not be able to tell the value of the

stock after the jump based on your observation).

Second, the result in Example 1 below also works well with our intuition: the

change in the portfolio value after the shock is the change in the stock price (∆G(τ))

multiplied with the number of shares we hold at the time of the shock (H(τ)). Note

that if we use a right continuous integrand H(s), we will NOT get a similar result.

This explains the choice of left continuous integrand for our basic building block of

Lebesgue-Stieltjes integral w.r.t. right continuous integrator.

Example 1. Consider the simplest example, where G is piecewise constant with a

single jump at time τ :

G(t) =

{
a0, if 0 ≤ t < τ ;

a1, if t ≥ τ ,
(6)

where a0 6= a1. We will show that∫
(0,t]

H(s) dG(s) =

{
H(τ)4G(τ), if t ≥ τ ;

0, if t < τ .
� (7)

Let H be given as in (4). Observe that

G(tk ∧ t)−G(tk−1 ∧ t) =

{
a1 − a0 = 4G(τ), if tk−1 ∧ t < τ ≤ tk ∧ t;
0, otherwise.

Also, notice that if tk−1 < τ ≤ tk, then H(τ) = ck, since H has the constant value ck

on (tk−1, tk]. Thus each term in the sum on the right-hand side of (5) is zero, except
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if tk−1 ∧ t < τ ≤ tk ∧ t, and for this k, ck

[
G(tk ∧ t)−G(tk−1 ∧ t)

]
= H(τ)4G(τ). If

t < τ , there is no k such that tk−1 ∧ t < τ ≤ tk ∧ t, and so the sum in (5) is zero. If

t ≥ τ , the sum contains one non-zero term, which we have shown equals H(τ)4G(τ).

This proves (7).

Example 2. Let G(t) = G(0) +
∫ t
0
g(s) ds, that is, G is differentiable and G′(t) = g(t).

Let H be as in (4). Then∫
(0,t]

H(s) dG(s) =
n+1∑
i=1

ci

[
G(ti ∧ t)−G(ti−1) ∧ t)

]
=

n+1∑
i=1

ci ·
∫ ti∧t

ti−1∧t
g(s) ds

=

∫ t

0

[ n+1∑
i=1

ci1(ti−1,ti](s)
]
g(s) ds

=

∫ t

0

H(s)g(s) ds, � (8)

8.5 Lebesgue-Stieltjes integral for Borel measurable integrands

The following theorem states that definition (5) can be extended in a unique way to

a large class of integrands. The proof requires tools of measure theory beyond the

scope of this course. It is only important for you to know what the theorem says.

This will usually be enough for you to understand what is going on if you encounter

Lebesgue-Stieltjes integrals when reading mathematical finance literature.

Theorem 1. There is a unique way to assign to each bounded, Borel measurable

function H and bounded variation function G, an integral
∫ t
0
H(s) dG(s) for t > 0,

with the following properties:

(i)
∫ t
0
H(s) dG(s) is defined by (5) when H has the form given in (4);

(ii) (linearity)
∫ t
0
[a1H1(s)+a2H2(s)] dG(s) = a1

∫ t
0
H1(s) dG(s)+a2

∫ t
0
H2(s) dG(s);

and∫ t

0

H(s) d
[
aG1(s) + bG2(s)

]
= a

∫ t

0

H(s) dG1(s) + b

∫ t

0

H(s) dG2(s);

(iii) (exchange of limit and integral) Assume H(s) = limn→∞Hn(s) for all s, where,

for some K <∞,
∣∣Hn(s)

∣∣ ≤ K for all n and s ≥ 0. Then∫ t

0

H(s) dG(s) = lim
n→∞

∫ t

0

Hn(s) dG(s).
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Unfortunately, Theorem 1 only assures us that the Lebesgue-Stieltjes integral

can be defined in a meaningful way; it does not directly say how to compute one.

Fortunately, in most situations we shall encounter, the Lebesgue-Stieltjes integral can

be reduced to familiar and easy-to-handle objects.

8.5.1 G(t) is continuously differentiable

When G(t) = G(0) +
∫ t
0
g(s) ds, and H is any bounded, Borel function∫ t

0

H(s) dG(s) =

∫ t

0

H(s)g(s) ds. (9)

We saw this is true in Example 2, when H is a left-continuous, piecewise constant

function. This shows that the right-hand side of (9) satisfies property (i) of Theorem

1. It also satisfies the properties in (ii), as one can show by direct calculation, and it

satisfies property (iii) because of the properties of the Legesgue integral (full expla-

nation omitted!). Thus

∫ t

0

H(s)g(s) ds must coincide with

∫ t

0

H(s) dG(s), because,

by Theorem 1, the latter integral is uniquely determined by properties (i)—(iii).

8.5.2 G(t) is a pure jump function

Let G be piecewise-constant of the form

G(t) = a01[0,τ1)(t) + a11[τ1,τ2)(t) + · · ·+ an1[τn−1,τn) + · · ·

Thus G is constant except for jumps at the points τ1 < τ2 < · · · . Notice that G is

defined so as to be càdlàg.

In this case, also for any bounded, Borel function H we have∫ t

0

H(s) dG(s) =
∑
j;τj≤t

H(τj)4G(τj). (10)

To emphasize, the sum is over the jump times of G that occur at time t or before.

Since 4G(s) = 0 if s is not equal to any jump time, it is convenient to write this

formula as ∫ t

0

H(s) dG(s) =
∑
0<s≤t

H(s)4G(s). (11)

This result is derived from Theorem 1 by showing that the expression on the

right-hand side of (10) satisfies properties (i)—(iii) of the Theorem. For simplicity,
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consider the case when G jumps only at a finite number of times. Properties (ii) and

(iii) are easy to verify directly. In example 1, we have verified property (i) for the case

when G has a single jump and H is a left-continuous, piecewise constant function.

Thus, Theorem 1 implies that (10) is true if G has just one jump. If G has multiple

jump times, we can write G(s) = G1(s) + G2(s) + · · · + Gn(t), where each Gi is a

piecewise-constant, càdlàg function jumping at only one time, and use property (ii)

of Theorem (1) to deduce (10).

8.5.3 Combination of the above two cases

We will encounter the case G(t) =
∫ t
0
g1(s) ds+G2(s), where G2 is piecewise constant,

càdlàg, as in (8.5.2). Then, by property (ii) of Theorem 1,∫ t

0

H(s) dG(s) =

∫ t

0

H(s)g1(s) ds+
∑
0<s≤t

H(s)4G2(s).

However, notice that 4G(s) = 4G2(s) for all s because the integral term in G is

continuous. Therefore we can rewrite the formula as∫ t

0

H(s) dG(s) =

∫ t

0

H(s)g1(s) ds+
∑
0<s≤t

H(s)4G(s). (12)

If the jumps of G occur at times 0 < τ1 < τ2 < . . . , then G′(s) = g1(s) exists at

any time s not equal to a jump time. Thus,∫ t

0

H(s) dG(s) =
∑
i

∫ τi∧t

τi−1∧t
H(s)G′(s) ds+

∑
s≤t

H(s)4G(s). (13)

This is the easiest form to use.

Because of item (iii) on page 4, if G is differentiable and G′(s) = g(s), and if H

is cádlàg,

∫ t

0

H(s−) dG(s) =

∫ t

0

H(s−)g(s) ds =

∫ t

0

H(s)g(s) ds =

∫ t

0

H(s) dG(s).

But if G has jumps, the two integrals may not agree, as we shall see by example later.

Remark Let {W (t)(ω); t ≥ 0, ω ∈ Ω} be a Brownian motion. The definition of

stochastic integrals with respect to W was a fairly complicated affair. We did need

such a complex definition? Why not just define
∫ t
0
H(s) dW (s) by applying Theorem

1 to W (·)(ω) for each ω and be done with it? Or did we use a complicated definition

only because of some clandestine conspiracy to make the lives of math finance students
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miserable? Solemn vows of secrecy forbid me from answering the last question, but

the first two are easy to answer. We cannot apply Theorem 1 to Brownian motion

because, with probability one, the paths of Brownian motion are not functions of

bounded variation. This is due to the fact that Brownian motion has non-trivial

quadratic variation. You will get to explore this point in a homework exercise. It is

absolutely essential to your understanding of stochastic integration.

8.6 Stochastic Integration

Let {X(t)(ω); t ≥ 0, ω ∈ Ω} be a stochastic process defined on a probability space

(Ω, IP ). Assume that for every ω, X(t, ω) is a bounded variation function, as a

function of t. Let {α(t)(ω); t ≥ 0, ω ∈ Ω} be another stochastic process. Then,∫ t

0

α(s)(ω) dX(s)(ω)

will always represent the Lebesgue-Stieltjes integral of the process α with respect to

the process X. Usually, we suppress the explicit dependence on ω and simply write

the integral as
∫ t
0
α(s) dX(s).

9 Stochastic integration w.r.t. semi-martingales

9.1 Definition and examples

Let X(t) =
∫ t
0
γ(s)dWs + A(t), where W (t) is a Brownian motion with respect to a

filtration F(t), γ(t) ∈ F(t) be such that
∫ t
0
φ(s)dWs is defined and A(t) ∈ F(t) a

process of bounded variation. X(t) is called a semi-martingale w.r.t. F(t).

Definition 9.1. Let φ(t) ∈ F(t) be so that
∫ t
0
φ(s)γ(s)dWs and

∫ t
0
φ(s)dA(s) are

defined. Then we define∫ t

0

φ(s)dX(s) :=

∫ t

0

φ(s)γ(s)dWs+

∫ t

0

φ(s)dA(s).

It is important to note here that
∫ t
0
φ(s)γ(s)dWs is an Ito integral, which is not

defined path-wise (since W (t) has infinite variation) and
∫ t
0
φ(s)dA(s) is a Lebesgue-

Stieltjes integral, which is defined pathwise using the definition of Section (8).
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Example 9.2. (i) Let X(t) be a compensated compound Poisson process, i.e. X(t) =

Q(t) − λµt where Q(t) is a compound Poisson process. Let Sk be the jump times of

Q(t). Then ∫ t

0

φ(s)dX(s) =
∑
i

φ(Si)Yi1(Si≤t) −
∫ t

0

λµφ(s)ds.

(ii) Let X(t) = W (t) + J(t), where J(t) is a pure jump procress. Then∫ t

0

φ(s)dX(s) =

∫ t

0

φ(s)dWs+
∑
0<s≤t

φ(s)∆J(s).

We understand the term
∑

0<s≤t φ(s)∆J(s) as followed: for each event ω, let

0 < t1(ω) < t2(ω) < ... < tn(ω)(ω) ≤ t be the jump times of J(t). (The fact that

there are finitely many jumps in [0, t] and there is no jump at t = 0 come from the

definition of pure jump process). Also note that the number of jumps in [0, t], n(ω) is

random. Then∫ t

0

φ(s)dJ(s)(ω) =
∑
0<s≤t

φ(s)∆J(s) =

n(ω)∑
i=1

φ(ti)[J(ti)− J(ti−)](ω).

9.2 Martingale properties

Suppose we model our stock as

S(t) = σW (t) +X(t),

where W (t), X(t) ∈ F(t) are independent, W (t) is a Brownian motion and X(t) =

Q(t)− λµt is a compensated compound Poisson process. Then S(t) is a martingale.

It is important for us then that if we denote φ(t) as the number of shares of S we

hold at time t ,
∫ t
0
φ(r)dSr is a martingale.

From Ito integration, we know that if φ is an adapted process, then
∫ t
0
φ(s)dW (s)

is a martingale. So it remains to ask if
∫ t
0
φ(s)dX(s) is also a martingale. However,

this is not always the case. See Shreve’s examples 11.4.4 and 11.4.6.

A suffficient condition for the stochastic integral w.r.t. a jump process (that is

also a martingale) to be a martingale is that the integrand is left-continuous (and

of course adapted). This is stated in Shreve’s theorem 11.4.5. More generally, one

can use a predictable integrand (a process that is the limit of a sequence of left-

continuous processes) and the stochastic integral w.r.t. a jump martingale will still

be a martingale.
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In Shreve’s example 11.4.6, the following process is considered:

X(t) =

∫ t

0

1[0,S1](s)d(N(s)− λs)

=

∫ t

0

1[0,S1](s)dN(s)−
∫ t

0

1[0,S1](s)λds,

where S1 is the first jump time of N(t). Note that the integrand here is left continuous.

For t < S1, the integrand 1[0,S1](s) = 0. Thus X(t) = −λt.
For t = S1,

∫ t
0

1[0,S1](s)dN(s) = 1∆N(S1) = 1 while
∫ t
0

1[0,S1](s)λds = λS1. Thus

X(t) = 1− λS1.

For s > S1,1[0,S1](s) = 0 thus X(t) = 1− λS1, t ≥ S1.

We conclude that

X(t) = −λt1(t<S1) + (1− λS1)1(t≥S1)

= N(t ∧ S1)− λ(t ∧ S1).

Here we can use the fact that a stopped martingale is a martingale to conclude

that X(t) is a martingale since N(t) − λt is a martingale and the above formula

showed that X(t) is a stopped martingale.

Using a similar argument, we have

Y (t) =

∫ t

0

1[0,S1)(s)d(N(s)− λs) = −λ(t ∧ S1).

Heuristically, P(S1 > 0) = 1 therefore, for s < t,

P
(
− λ(t ∧ S1) ≤ −λ(s ∧ S1)

)
= 1;

P
(
− λ(t ∧ S1) < −λ(s ∧ S1)

)
> 0.

Therefore E(−λ(t ∧ S1)) < E(−λ(s ∧ S1)) and Y (t) is not a martingale. A rigorous

proof is provided in Shreve’s.

10 Ito’s formula for jump processes

10.1 Ito’s formula for one jump process

The most general jump process we will consider in this chapter has the following form:

X(t) = X(0) +

∫ t

0

α(s)ds+

∫ t

0

γ(s)dWs+ J(t),
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where J(t) is a pure jump process (Discussed in Section (6.2)). We also denote by

Xc(t) the continuous part of X, that is

Xc(t) = X(0) +

∫ t

0

α(s)ds+

∫ t

0

γ(s)dWs.

Given a function f ∈ C2, we would like to obtain a formula for df(X(t)). We have

the following observations:

(i) If X(t) = Xc(t), i.e. if X has no jump then we have the classical Ito’s formula:

df(X(t)) = f ′(X(t))dXt+
1

2
f ′′(X(t))γ2(t)dt.

(ii) If X(t) = J(t), then f(X(t)) is also a pure jump process. Moreover,

f(X(t)) = f(X(0)) +
∑
0<s≤t

f(X(s))− f(X(s−)).

(iii) In general when X(t) = Xc(t) + J(t), intuitively we should have df(X(t))

following the classical Ito’s formula in between the jumps of X and ∆f(X(t)) =

f(X(t))− f(X(t−) at the jump points of X.

This leads to the following Ito’s formula (see Shreve’s theorem 11.5.1)

f(X(t)) = f(X(0)) +

∫ t

0

f ′(X(s))dXc(s) +

∫ t

0

1

2
f ′′(X(s))γ2(s)ds

+
∑
0<s≤t

f(X(s))− f(X(s−)).

Remark 10.1. In general, the above Ito’s formula does NOT have a differential

form, i.e. df(X(t)) = · · · . The reason is generally we cannot express ∆f(X(s)) =

f(X(s))− f(X(s−)) in terms of some derivative of f and ∆X(s) = X(s)−X(s−).

In some special case, for example when X(t) is a pure jump process then we may have

a differential form for df(X(t)), but this is not guaranteed. See also the discussion in

(11.2).

10.2 Ito formula for multiple jump processes

Following similar argument to the one dimensional Ito formula for jump process, we

can derive the multi-dimensional Ito formula for jump processes. Here we give the

version for two processes. The formula for higher dimension follows the same pattern.

21



Theorem 10.2. Let X1, X2 be two jump processes:

X i(t) = X i(0) +

∫ t

0

αi(s)ds+

∫ t

0

γi(s)dWs+ J i(t), i = 1, 2.

Let f(t, x1, x2) be a twice differentiable in its spatial variables. Then

f(t,X1
t , X

2
t ) = f(t,X1

0 , X
2
0 ) +

∫ t

0

2∑
i=1

fxi(s,X
1
s , X

2
s )d(X i)cs

+
1

2

∫ t

0

2∑
i=1

fxixi(s,X
1
s , X

2
s )(γi)2sds

+

∫ t

0

fx1x2(s,X
1
s , X

2
s )γ1sγ

2
sds

+
∑
0<s≤t

f(s,X1
s , X

2
s )− f(s,X1

s−, X
2
s−).

Corollary 10.3. Let X1, X2 be two jump processes:

X i(t) = X i(0) +

∫ t

0

αi(s)ds+

∫ t

0

γi(s)dWs+ J i(t), i = 1, 2.

Then

X1
tX

2
t = X1

0X
2
0 +

∫ t

0

X1
sd(X2)cs +

∫ t

0

X2
sd(X1)cs

+

∫ t

0

γ1sγ
2
sds+

∑
0<s≤t

X1
sX

2
s −X1

s−X
2
s−.

Remark 10.4. If each X i is driven by a different Brownian motion W i and they are

independent then the cross variation term in Theorem (10.2)
∫ t
0
fx1x2(s,X

1
s , X

2
s )γ1sγ

2
sds

will disappear, as well as the cross variation term
∫ t
0
γ1sγ

2
sds in Corollary (10.3).

11 Models of stock price with jumps

11.1 Stock models

Recall that before we model the dynamics of a stock S(t) as followed:

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dWt.
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Also observe that the most important property of W (t) we used in pricing financial

models with S(t) is that it is a martingale. This motivates us to replace W (t) with

a general martingale with jumps. That is, we let

M(t) =

∫ t

0

α(s)ds+

∫ t

0

γ(s)dWs+ J(t),

where J(t) is a pure jump process and J(t) +
∫ t
0
α(s)ds is a martingale. Consider the

following model for S(t):

S(t) = S(0) +

∫ t

0

µ(s)S(s−)ds+

∫ t

0

S(s−)dM(s). (14)

Intuitively, the reason we use S(s−) in the RHS is so that at the jump of M(t),

we have

S(t)− S(t−) = S(t−)∆J(t). (15)

If we think of ∆J(t) as representing an external shock, then this says the jump in the

stock price is its value immediately before the shock occurs multiply with the size of

the shock, which makes sense.

Mathematically, using S(s−) in the RHS has the benefit of guaranteeing
∫ t
0
S(s−)dM(s)

to be a martingale under proper conditions (see the discussion in Section 7.2). Either

way, it should be noted that we can equivalently write (14) as

S(t) = S(0) +

∫ t

0

(µ(s) + α(s))S(s)ds+

∫ t

0

S(s)γ(s)dW (s) +
∑
0<s≤t

S(s−)∆J(s).(16)

That is, we only use S(s−) in conjuction with the jumps in J(s).

Relation (15) has another important implication for the jumps of J(t):

S(t) = S(t−)(1 + ∆J(t)).

Since we want to use S(t) as a stock price, S(t) ≥ 0 implies we need to restrict

∆J(t) > −1.

Similar to the classical Black-Scholes model, we have an explicit formula for S(t)

satisfying (14) or (16):

S(t) = S(0) exp
[ ∫ t

0

[µ(s) + α(s)− 1

2
γ2(s)]ds+

∫ t

0

γ(s)dWs
] ∏
0<s≤t

(1 + ∆J(s)). (17)
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Example 11.1. Geometric Poisson process: If we let M(t) = σ(N(t)− λt) then

S(t) = S(0) +

∫ t

0

S(s−)dMs = S(0)e−σλt
∏

0<s≤t

(1 + σ∆N(s)) = S(0)e−σλt(1 + σ)N(t),

since we observe that 1 + σ∆N(s) = 1 + σ at all jump points of N(t) and there are

exactly N(t) jumps at time t. Also note that since σ is the jump size of the pure jump

process σN(t), we require σ > −1 as in the discussion above.

11.2 Some general remarks

Let W (t) be a BM and N(t) be a Poisson process. Observe that

X1(t) = 1 +

∫ t

0

σX1(s)ds

X2(t) = 1 +

∫ t

0

σX2(s)dW (s)

X3(t) = 1 +

∫ t

0

σX3(s−)dN(s)

(note the X3(s−) in the last equation) have solutions

X1(t) = eσt

X2(t) = eσW (t)− 1
2
σ2t

X3(t) = (1 + σ)N(t),

where the solution for X1 follows from classical calculus, X2 from “classical” Ito’s

formula and X3 from the calculus for jump processes (see also the discussion about

Geometric Poisson process). The point to observe here is that three very similar

differential equations give three distinctly different answers depending on different

integrators.

Also observe that if we apply Ito’s formula for jump processes to the f(N(t)) =

(1 + σ)N(t), we get

X3(t) = f(N(t)) =
∑
s≤t

(1 + σ)N(s) − (1 + σ)N(s−). (18)

This at first glance does not look like the “differential” form

dX3(t) = σX3(t−)dN(t) (19)

X3(0) = 1.
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However, we observe from (18) that ∆X3(s) = (1+σ)N(s)−(1+σ)N(s−). Moreover,

at the jump point of N

∆X3(s) = (1 + σ)N(s) − (1 + σ)N(s−) = (1 + σ)N(s) − (1 + σ)N(s)−1

= σ(1 + σ)N(s)−1 = σX3(s−)

= σX3(s−)∆N(s).

Now the agreement between (18) and (19) are clear. The point here is that it is not

immediate to derive “differential” form from the explicit formula of a jump process.

Indeed such differential form is not always possible. The fact that N(t) is a counting

process (having jump of size 1) is central to the reason why the formula X3 is nice,

as well as that we could re-derive the differential form of X3(t) from its explicit

formula. Replacing N(t) with a general jump process (having arbitrary jump size) in

the differential equation for X3, and you will see that we no longer can easily derive

such nice formula anymore.
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