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CHAPTER 1 Probability theory

1.1 Probability and Events

1.1.1 Events and their properties

Consider an experiment where we toss a coin twice. All the possible outcomes are

{TT}, {HH}, {TH}, {HT}.

We call these (elementary) events. The events have the following properties:
a. The union of two events is an event:

{TT} ∪ {TH} = {First toss is T}.

b. The intersection of two events is an event:

{First toss is T} ∩ {Second toss is T} = {TT}.

c. The complement of an event is an event:

{TT}c = { At least one of the toss is H}.

Note: In everyday language, union corresponds to OR, intersection corresponds to
AND, complement corresponds to NOT.

Suppose we toss a coin n times. It is not difficult to see that that more generally we
have the followings:

a’. The union of finitely many events is an event: The event {First toss is T} is the
union of finitely many events where each of them has the form {T · · · }.

b’. The intersection of finitely many events is an event: The event {All tosses are T} is
the intersection of n events where each of them has the form { The nth toss is T}.

Suppose we toss a coin indefinitely. Then we have the followings:
a”. The union of (countably) infinitely many events is an event: The event {We eventually see a T}

is the (countable) union of events of the form { The nth toss is T, n = 1, 2 · · · }.
b”. The intersection of (countably) infinitely many events is an event: The event

{All the even toss is T} is the (countable) intersection of events of the form { The nth toss is T, n =
2, 4, 6 · · · }.

Terminology: When two events have nothing in common (their intersection is ∅, the
empty set) we say they are mutually exclusive. For example, the two events {First toss is H}
and {First toss is T} are mutally exclusive.
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Abstractly, we use capital letters at the beginning of the alphabet: A,B or E1, E2 · · ·
to denote an event. We also see that in the examples above, an outcome (or an elementary
event) is an event that has no sub-event contained in it (in other words, a smallest possible
event).

1.1.2 Probability

The union of all possible outcomes is an event, (the universal event, also called the sample
space), which we denote by Ω. Then all events are subsets of Ω. We assign a probability,
which is a number between 0 and 1, on each event. The probability then is nothing but a
mapping from the set of events to the interval [0, 1]. Intuitively, this mapping should satisfy
the following property:

a. The probability of the union of all outcomes is 1: P (Ω) = 1.
b. The probability of the empty set is 0: P (∅) = 0.
c. The probability of the union of two mutually exclusive events is the sum of the

individual probability of each event: If A ∩B = ∅ then P (A ∪B) = P (A) + P (B).
From c, we have the following inclusion - exclusion principle: For any eventsA,B (not

necessarily mutually exclusive)

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Exercise: Prove the inclusion - exclusion principle.
Using a,b,c one can come up with more probability identity, for example P (Ac) =

1− P (A) etc.
When assigning probability, besides a,b,c, we also use the following “commonsense"

principle: outcomes that are equally likely have the same probability. For example, if a coin
is fair, then all outcomes {TT}, {HH}, {TH}, {HT} are equally likely. Now applying a
and c, we see easily that each of them should have probability equals 1/4.

1.1.3 Examples

Example 1.1.1. We toss a coin twice. The probability that we get at least 1 tail is

P ({TT} ∪ {TH} ∪ {HT}) =
3

4
.

The probability that we get no tail is

P ({HH}) =
1

4
.

Example 1.1.2. Combinatorics Suppose an urn has 2 white balls and 3 red balls. We pick
out (without replacement) 2 balls. What is the probability that the 2 balls are red?

Ans: Here we need to see what the sample space is. It is all possible ways we can pick
out 2 balls from the urn. What is the event of interest? It is all possible ways we can pick 2
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red balls form the urn. Since each outcome from our pick is equally likely (by equally likely
outcome here we mean suppose we number all the balls from 1 to 5, then the possibility
we pick out balls 1,2 is the same as the possibiltiy we pick out balls 4,5), the probability of
interest is just the ratio of the size of the event with the size of the sample space.

Concretely, the number of ways we can pick 2 balls out of 5 balls is
(

5
2

)
= 10. The

number of ways we can pick 2 red balls is
(

3
2

)
= 3. So the probability is 3

10
.

1.2 Conditional probability and independent events

1.2.1 Conditional probability

Motivating example

Suppose we toss a coin twice. What is the probability that we get 2 tails? From the above,
it’s 1

4
. Suppose, however, that you know the additional information that the first toss is a

tail. We ask the same question: what is the probability that we get 2 tails? Clearly it’s
no longer 1

4
, because for you, the set of all possible events have changed. Namely, the

outcomes {HH}, {HT} are no longer possible.
Concretely, the set of all possible outcomes now are:

{TT}, {TH}.

Thus the probability that you get 2 tails is 1
2
. We say: the probability that we get 2 tails,

conditioned on the first toss being a tail, is 1
2
.

Conditional probability

Definition 1.2.1. Let A,B be events. If P (A) > 0, the probability of B conditioned on A,
or B given A, denoted P (B|A), is defined as:

P (B|A) =
P (B ∩ A)

P (A)
.

The interpretation is that we have already had the knowledge that A happened. So the
probability of the event B happening, given that A has happened, should be calculated as
given in the definition.

Remark 1.2.2. If P (A) = 0 then we cannot use the above formula to define P (B|A).
There is a way around it, using the measure theoretic definition of conditional expectation,
and the notion of regular conditional probability. We’ll discuss this later on in Lecture 1b.
See also the discussion on conditional density in Lecture 1b.

Example 1.2.3. We toss a die. What is the probability that we get a 6, given that we know
the toss is even?

Ans: Let A be the event that we get an even toss, B the event that we get a 6 (when
you get used to this, you don’t have to explicitly name out the events). Then P (A) = 1/2,
P (A ∩B) = P (B) = 1/6. Thus P (B|A) = 1/3.
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Bayes’ rule

From the definition of conditional probability, we have

P (B|A)P (A) = P (B ∩ A).

It is clear that

P (A|B) =
P (B ∩ A)

P (B)
.

Therefore, we conclude

P (A|B) =
P (B|A)P (A)

P (B)
.

This formula is called the Baye’s rule. At first glance this is pure mathematical manip-
ulation. But it has an important implication: that of switching what we conditioned on. An
example would illustrate what this means.

It is well-known that medical test is not 100% reliable. That is suppose you test for
a disease, which has 1% chance of happening, then even if the test comes out negative, it
doesn’t mean you have 0% of contracting the disease. Instead, with a very small probability,
it could be a false negative. Concretely, suppose that if you indeed have the disease, then
there is 98% chance that the test comes out positive, and 2% negative. However, suppose
you don’t have the disease, there is 95% chance the test comes out negative, and 5% chance
it comes out positive. Now you go for the test, and it comes out negative. What is the
probability that you contract the disease?

Ans: Let A be the event that you contract the disease and B be the event that the test is
positive. Then we have

P (B|A) = .98, P (Bc|A) = .02, P (B|Ac) = .05, P (Bc|Ac) = .95.

The question asks for P (A|Bc). Thus you see how Bayes’ rule is appropriate for the
situation. Can you figure out what it is?

1.2.2 Independent Events

Definition 1.2.4. Two events A and B, are said to be independent if P (A|B) = P (A) and
P (B|A) = P (B).

Remarks: If P (A|B) = P (A) then P (B|A) = P (B∩A)
P (A)

= P (A|B)P (B)
P (A)

= P (B). Thus
we actually need one of the two equalities given above for the definition of 2 independent
events.

Interpretation: Intuitively, two events are independent if the knowledge of one event
already happened does not influence the probability of the other happening, hence the def-
inition.
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Alternatively, one can define A and B to be independent if P (A ∩ B) = P (A)P (B).
You should check that this is equivalent to the condition P (A|B) = P (A) given in the
definition. So in fact one have two possible ways to define what it means for 2 events to be
independent. The interpretation of the equality P (A ∩ B) = P (A)P (B) is not very clear
(at least to me) so I prefer to use the other equality for definition of independence.

1.3 Random variables

1.3.1 Definition

In an experiment, we have (random) outcomes. We can give them names (for example
tossing a coin twice, we can get HH,TT · · · ). Each of these have some weight attached to
them, i.e. their probability ( in the coin toss example, 1/4 for each). However, we cannot do
computations with these outcomes unless we give them some numerical values. A random
variable is a way to quantify the random outcomes in a meaningful manner. We use capital
letters at the end of the alphabet: X, Y, Z, to denote random variables.

Formally, a random variable (from now on abbreviated as RV) X is a mapping from the
set of outcomes to the real line (R) such that all sets of the form {X ∈ [a, b]} are events.
That is, we can assign probability to these sets.

Example 1.3.1. Let X be a random variable corresponding to a coin toss. That is X = 1
is the coin turns up H and X = 0 if the coin turns up T . Then we can see that P (X =
1) = P (X = 0) = 1/2.

Note: There is no reason why 1 has to be assigned to H and 0 assigned to T . One
can assign a different value to these outcomes and get a different variable, as suited one’s
purpose. For example, the RV Y such that Y = 1 if the coin is H nd Y = −1 if the coin is
T is also an example of a RV.

Example 1.3.2. LetX be a random variable that corresponds to the time one has to wait at
the Hill Center’s bus stop before one can catch a bus to College Ave. Suppose that the bus
arrives every 15 minutes, and they arrive uniformly during any time frame. The we see that
P (a < X < b) = b−a

15
, for 0 ≤ a ≤ b ≤ 15. Also one should observe that P (X = a) = 0

for any a ∈ [0, 15] (the probability that one waits exactly 7 minutes before the bus arrives
is 0).

1.3.2 Discrete versus continuous RVs

In probability theory, one distinguishes between discrete and continuous RVs (note that
these are not the only types of RVs there are. One can have a mixed RV as well). Roughly
speaking, a discrete RV takes values on a discrete set (for example, the natural numbers is
a discrete set, so is {1, 2, 3, 4, 5}). Moreover, if X is a discrete RV then P (X = x) > 0,
where x is in the range of X . Examples of discrete RVs that you may have learned are: the
Binomial, the Geometric, the Hypergeometric, the Poisson.
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A continuous RV, on the other hand, takes values on an interval (or several intervals).
Moreover, if X is a continuous RV then P (X = x) = 0, even if x is in the range of X .
Examples of continuous RVs that you may have learned are: the Exponential, the Normal,
the Uniform, the Gamma, the Cauchy.

1.3.3 Probability distribution, pdf, cdf

Discrete RV

To characterize a discrete RV, we use the probability distribution function. It gives the
formula for the probability that the RV takes some specific value. For example, if X has
Bionimial(n,p) distribution, then P (X = k) =

(
n
k

)
pk(1− p)n−k is the distribution function

of X .

Continuous RV

To characterize a continuous RV, we use the probability density function (pdf). The pdf
does not give a probability itself, but it is connected to a probability via the following
formula:

P (X ≤ x) =

∫ x

−∞
fX(u)du,

where fX above is the pdf of the RV X .

1.3.4 cdf

Both continuous and discrete RVs can also be described via the cumulative distribution
function, which gives the formula for the probability that the RV is less than or equal to
some value:

FX(x) = P (X ≤ x).

Note that if X is a continuous RV, then FX is differentiable, and its derivative is the
density function fX .

1.3.5 The moments

Discrete RV

Let X be a discrete RV. Then its first moment, the Expectation, is defined as:

E(X) =
∑
n

nP (X = n),

where the sum is understood to be taken over all values in the range of X .
It can be showed (note: not a definition) that for any function f , the expectation of the

RV f(X) is
E(f(X)) =

∑
n

f(n)P (X = n).
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In particular, we have the kth moment of X is E(Xk) =
∑

n n
kP (X = n).

Continuous RV

For a continuous RV X , we define the expectation as:

E(X) =

∫ ∞
−∞

xfX(x)dx.

More generally, for any function g, we have

E(g(X)) =

∫ ∞
−∞

g(x)fX(x)dx.

Variance, covariance, correlation

Let X be a RV. We then define its variance as

V ar(X) = E
[
(X − E(X))2

]
= E(X2)− E2(X).

The variance measures how “spread out" the RV is from its mean.
Let X, Y be RVs. We define their covariance as

Cov(X, Y ) = E
[
(X − E(X))(Y − E(Y ))

]
= E(XY )− E(X)E(Y ).

The covariance measures how “correlated" two RVs are with respect to each other. There
is a catch, two different pair of RVs may have the same degree of correlation, but their
covariance may be very different. For example, it is clear that

Cov(X,X) = V ar(X).

Intuitively, the degree of "correlation" between X and X , versus 100X and 100X should
be the same (they are perfectly correlated in each case). However, you can easily check
that Cov(100X, 100X) = 10000Cov(X,X). Thus we need to introduce another quantity
that measures only the correlation and not affected by scaling of the RVs. That is the
correlation:

Let X, Y be RVs. We definte their correlation as

Corr(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

.
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1.3.6 Joint distribution, joint pdf

When we have 2 RVs X, Y , besides describing each individual distribution of X, Y , we
also need to know how they interact together. The joint distribution (in the discrete case) or
the joint pdf (in the continuous case) gives us this information. In fact, to calculate E(XY )
in the Covariance formula we would need to use the joint distribution of X, Y .

a. Discrete: Let X, Y be discrete RVs. Then the joint distribution of X, Y is P (X =
x, Y = y).

b. Continuous: Let X, Y be continuous RVs. Then their joint pdf, denoted fX,Y (x, y)
is such that

P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dudv.

Some elementary properties:
a. ∑

x,y

P (X = x, Y = y) = 1.

b. ∫ ∞
−∞

∫ ∞
−∞

fX,Y (u, v)dudv = 1.

c. Discrete:
E(XY ) =

∑
x,y

xyP (X = x, Y = y).

d. Continuous:
E(XY ) =

∫ ∞
−∞

∫ ∞
−∞

uvfX,Y (u, v)dudv.

More generally
e. Discrete:

E(g(X, Y )) =
∑
x,y

g(x, y)P (X = x, Y = y).

f. Continuous:

E(g(X, Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(u, v)fX,Y (u, v)dudv.

1.3.7 Independence

Two random variables X, Y are independent if all events they generated are independent.
More specifically, X, Y are independent if for all x, y:

P (X ≤ x, Y ≤ Y ) = P (X ≤ x)Y (≤ y).

An easier criterion to check is if the joint distribution “splits", i.e.

P (X = x, Y = y) = P (X = x)P (Y = y)( discrete), or
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fXY (x, y) = fX(x)fY (y) (continous) .

An important property is that if X, Y are independent then E(XY ) = E(X)E(Y ).
Note that, the reverse implication is not generally true. That is E(XY ) = E(X)E(Y )
does NOT imply that X, Y are independent. See the following example.

Example 1.3.3. LetX have the following distribution: P (X = 1) = P (X = 0) = P (X =
−1) = 1/3, and let Y = X2. Then it is clear that X, Y are NOT independent (you should
try to show this using the definition of independence). However, we can also easily check
that

E(XY ) = E(X)E(Y ) = 0.

1.4 Conditional expectation

1.4.1 Conditional distribution, conditional density

We have discussed conditional probability P (A|B), which is the probability that A hap-
pened given the knowledge that B has happened. In a similar way, for 2 RVs X, Y , we can
talk about the probability that X takes some value x given that we know Y has taken some
y. If X and Y are correlated in some way, the fact that we have seen Y taking some value
should change the probability that X taking value x. Formally, we define, for 2 discrete
RVs X, Y

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
.

For continuous RVs, we cannot talk about the probablity thatX takes some value, given
that we have observed Y taking some value. The reason is the probability that Y taking
some value is 0, since it is a continuous RV. This poses a slight problem, since in reality, we
always observe Y taking some particular value, even if it is a continuous RV (think about
the amount of time you wait for the bus to arrive, for example. You always have to wait a
particular amount of time until the bus arrives, even if the probability that the continuous
random variable representing the time you wait taking that particular value is 0). So for
continuous RVs, we talk about the conditional density instead. Formally, we define, for 2
continuous RVs X, Y

fX|Y (x|y) =
fXY (x, y)

fY (y)
.

Remark: In the two formulas above, we think of y as fixed, and x as taking any possible
values in the range of X . Thus the conditional distribution, or conditional density, is a
function of x, given a fixed value y. Moreover, for a fixed y, the conditional distribution
(or probability density), is a probability distribution (or density). That is∑

x

P (X = x|Y = y) = 1; (1.1)∫ ∞
−∞

fX|Y (x|y)dx = 1. (1.2)
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Proof. Left as an exercise.

1.4.2 Conditional probability and conditional expectation

Discrete

Let X, Y be discrete RVs. The conditional probability P (X = i|Y = j) was defined
naturally using the definition of conditional expectation as above. Note that we also have

P (X ≤ k|Y = j) =
∑
i≤k

P (X = i|Y = j).

In this way, for every y, conditioned on Y = y, P (X < a|Y = y) is a proper cumulative
distribution function, even though P (Y = y) = 0. This is related to the notion of regular
conditional probability distribution, discussed below.

We define the conditional expectation of X , given Y = y as

E(X|Y = y) =
∑
x

xP (X = x|Y = y).

Continuous

Let X, Y be continuous RVs. Note that we can NOT define P (X < a|Y = y) using the
definition of conditional expectation, because P (Y = y) = 0. However, we can define it
as followed:

P (X < a|Y = y) =

∫ a

−∞
fX|Y (x|y)dx.

We define the conditional expectation of X , given Y = y as

E(X|Y = y) =

∫ ∞
−∞

xfX|Y (x|y)dx.

Interpretation: Besides the fact that conditional expectation is the average (or mean)
value of X given Y = y, it is also the best guess of X given Y = y, in some precise sense
that we will discuss below.

Remark: Note that in these definitions, E(X|Y = y) is a real number. This will be
constrasted with E(X|Y ), which is a RV , the definition of which is given below.

1.4.3 Abstract definition of conditional expectation

Motivation

The above definitions of E(X|Y = y), while useful, is rather restrictive. It is because
we do not have to observe the value of Y to be able to talk about the expectation of X
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conditioned on Y in a meaningful way. An example will explain. It is clear that the stock
price of today depends on the stock price of yesterday (for simplicity let’s suppose that
stock price only changes discretely from day n to day n + 1). Suppose we are at day 0,
which is today, and we want to discuss our “expectation", or our best guess, of the stock
price on day n + 1, the guess being made on day n. It is clear that on day n, we have the
knowledge of the stock price of that day, say Sn. So what we’re asking for is E(Sn+1|Sn).
Since we are still at day 0, we do not know what value Sn is, it is a RV to us. However, to
discuss our action on day n, in anticipation of day n+ 1, it is necessary that we make sense
of the notion E(Sn+1|Sn). Thus we need an abstract definition of conditional expectation,
one that doesn’t require us to plug in an observed value for the RV being conditioned on.
We will als refer to this as the measure theoretic definition of conditional expectation.

Definition

Definition 1.4.1. Let X, Y be RVs. The conditional expectation E(X|Y ) is a function of
Y , such that for any function g, we have

E
[
E(X|Y )g(Y )

]
= E

[
Xg(Y )

]
.

Remark: Note that in contrast with the above, as we already said, E(X|Y ) is a RV,
since it is a function of Y (in some trivial case it could be the constant function, but this
does not happen usually). The interpretation of the equality in the definition is that as far as
taking expectation with respect to function of Y , it does not matter if we use the conditional
expectation E(X|Y ) or X itself. Thus the conditional expectation E(X|Y ) is a guess of
X , in terms of the random variable Y , which satisfies some “indifference" property in terms
of expectation.

Perhaps a more satisfactory property ofE(X|Y ) is that not only it is a guess ofX given
Y , it is the best guess of X given Y in the following sense:

Lemma 1.4.2. Let X, Y be RVs. Then for any function g we have

E
(

[E(X|Y )−X]2
)
≤ E

(
[g(Y )−X]2

)
.

Proof. Left as an exercise.

Some elementary properties

The definition (1.4.1) unfortunately does not, most of the time, give us an easy way to
compute whatE(X|Y ) is. So the followings are some elementary properties of conditional
expectation that will help us do that. You should try to prove these properties yourself.

a. E(E(X|Y )) = E(X).

b. E(aX + bY |Z) = a(EX|Z) + bE(Y |Z), a, b constant .
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c. If X is independent of Y then

E(X|Y ) = E(X).

d. For any function g,

E(g(Y )X|Y ) = g(Y )E(X|Y ).

e. The independence lemma: If X is independent of Y then for any function g

E
[
g(X, Y )|Y

]
= E

[
g(X, y)

]
|y=Y .

(Properties f and g are not used in this course except in the discussion of regular con-
ditional probability. You can skip these.)

f. If Xn ≥ 0, Xn ↑ X then E(Xn|G) ↑ E(X|G).

g. If X ∈ L2(Ω,F , P ) then E(X|G) is the orthogonal projection of X onto the sub-
space L2(Ω,G, P ) in the Hilbert space L2(Ω,F , P ) with inner product 〈X, Y 〉 := E(XY ).

Remark: The expression E
[
g(X, y)

]
|y=Y means that we just evaluate E

[
g(X, y)

]
as

a regular expectation (it is only a random variable in terms of X , y is understood to be a
constant (or just a dummy variable) here. Note that E

[
g(X, y)

]
is a function of y. Thus we

are free to plug in the random variable Y after we compute what E
[
g(X, y)

]
is.

Example 1.4.3. Let X be a Bernoulli(1/2) random variable and Y has Normal(0,1) distri-
bution, X independent of Y . Compute E(Y X |Y ).

Ans: We have

E(yX) = y0 · 1

2
+ y1 · 1

2
=

1

2
(1 + y).

Thus y the independence lemma, E(Y X |Y ) = 1
2
(1 + Y ). Note how the distribution of Y is

irrelevant in this computation.

1.4.4 Expectation conditional on more than one random variables

In applications, a random variable X may be correlated to not just 1 random variable Y ,
but possibly to n random variables Y1, Y2, · · · , Yn (it is reasonable to build a model of stock
so that the stock price today does not just depend on its performance yesterday, but on its
performance in the past month). To discuss the behavior of X given our observations of
Y1, · · ·Yn, we need to extend our notion of conditional expectation to more than 1 random
variable. The extension actually is straightforward.

Definition 1.4.4. LetX, Y1, Y2, · · · , Yn be RVs. The conditional expectationE(X
∣∣Y1, Y2, · · · , Yn)

is a function of Y1, Y2, · · · , Yn, such that for any function g, we have

E
[
E(X

∣∣Y1, Y2, · · · , Yn)g(Y1, Y2, · · · , Yn)
]

= E
[
Xg(Y1, Y2, · · · , Yn)

]
.
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Remark: Actually in section (1.4.3), there is no restriction on what the RV Y can be.
Thus one could select it to be a multi-dimensional RV, effectively making it a random vector
with n components

Y =


Y1

Y2

· · ·
Yn

 .
Even more generaly, X itself can also be a multi-dimensional RV,

X =


X1

X2

· · ·
Xm

 .
Thus we see that we have covered the case of expectation conditional on more than one

random variables:

E(X1, X2, · · ·Xm|Y1, Y2, · · · , Yn)

in section (1.4.3), including the elementary properties. One just needs to interpret the
symbol accordingly, for example in E(aX + bY |Z), a, b has to be understood as vector,
aX and bY as vector dot products if X, Y are multi-dimensional RV.

1.4.5 Probability as an expectation

You may observe that in the abstract definition of conditional expectation, we did not
mention about conditional probability. Surely we would want to have a definition for
P (X ≤ x|Y ). It turns out that our definition of conditional expectation already covers
conditional probability as a special case. To be precise, we first need to introduct the
following so-called indicator function of an event E, denoted as 1E

1E(ω) = 1 if ω ∈ E
= 0 if ω 6∈ E.

Basically the indicator function is a logical indicator, it’s 1 if E happens and 0 if E
does not happen. For example 1{0<1} = 1 and 1{1+1<3} = 0. But now note that suppose
we have a random variable X , and say it has a density function fX(x) then

E(1{X≤x}) =

∫ ∞
−∞

1{y≤x}(y)fX(y)dy

=

∫ x

−∞
fX(y)dy = P (X ≤ x).
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where the second equality is because 1{y≤x} = 0 for all values of y > x so we just stop
the integration limit at x. Similarly, you can check that

E(1{X≥x}) = P (X ≥ x)

E(1{X=x}) = P (X = x).

Thus probability can be expressed as an expectation. More importantly for us, this is
still true at the conditional expectation level. More precisely we have the following

Lemma 1.4.5. Let X, Y be random variables. Let f(Y ) = E(1{X≤x}|Y ). Then f(y) =
P (X ≤ x|Y = y) where P (X ≤ x|Y = y) is understood in the sense of section (1.4.1).
Similarly for P (X ≥ x|Y = y), P (X = x|Y = y).

Remark: For a fixed x, the expression 1{X≤x} here is understood as function ofX . Thus
the expression E(1{X≤x}|Y ) is understood in the sense of E(g(X)|Y ) where g(X) is just
a random variable.

1.5 Connection between the measure theoretic and classical definition of conditional
expectations

1.5.1 Discrete RVs

Let X, Y be two RVs. We have seen that we can define E(X|Y ) abstractly via definition
(1.4.1). Suppose X, Y are both discrete. Then we also have alternative definitions of
E(X|Y = y) via classical probability theory. How are these two connected?

Note that E(X|Y ) by definition if a function of Y . Thus we can write E(X|Y ) = g(Y )
for some function g. On the other hand, E(X|Y = y) is also clearly a function of y. So
you can expect that ∀y on the event {Y = y}

E(X|Y ) = E(X|Y = y).

That is

E(X|Y )1Y=y = E(X|Y = y)1Y=y.

Proof. We need to check that for any function g(Y )

E
[
E(X|Y = y)1Y=yg(Y )

]
= E

[
X1Y=yg(Y )

]
.

The LHS is equal to

E(X|Y = y)g(y)P (Y = y) =
∑
i

iP (X = i, Y = y)

P (Y = y)
g(y)P (Y = y)

=
∑
i

iP (X = i, Y = y)g(y)

= E
[
Xg(y)1Y=y

]
= RHS.
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1.5.2 Continuous RVs

What about the case when both X, Y are continuous? Here we cannot use the above crite-
rion, as the event {Y = y} has probability 0. Rather we will turn it around, and observe
that since E(X|Y = y) is a function of y, we can also write E(X|Y = y) = g(y). So now
we can plug the RV Y into the function g and we claim

E(X|Y ) = g(Y ), P a.s.,

where the a.s. notation means the equality holds outside an event of probability 0 with
respect to P .
Proof.

E(X|Y = y) =

∫ ∞
−∞

x
fXY (x, y)

fY (y)
dx.

Therefore

g(Y ) =

∫ ∞
−∞

x
fXY (x, Y )

fY (Y )
dx

We need to check that for any function h(Y )

E
(
h(Y )

∫ ∞
−∞

x
fXY (x, Y )

fY (Y )
dx
)

= E
(
Xh(Y )

)
.

But the LHS is equal to∫ ∞
−∞

h(y)
[ ∫ ∞
−∞

x
fXY (x, y)

fY (y)
dx
]
fY (y)dy

=

∫ ∞
−∞

∫ ∞
−∞

h(y)xfXY (x, y)dxdy = E(Xh(Y )) = RHS.

1.6 Law of large number

1.6.1 The theorem

Theorem 1.6.1. Let X1, X2, · · · be a sequence of independent identically distributed (ab-
breviated as i.i.d.) RVs such that E|X1| <∞. Then with probability 1,∑n

i=1Xk

n
→ E(X1).

Notation: It is usually denoted that Sn =
∑n

i=1 Xk, thus one usually sees Sn
n
→ E(X1)

in the statement of the law of large number (LLN).
Interpretation: Suppose that you play a game where your winning is random, which is

represented by a RV X . As you play this game many times, you will find that your average
earning (over time) is approximately the expected value of X .
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1.6.2 Application

We’ll give one application of the LLN, in pricing of a random game: Suppose there is a
game of tossing a fair coin, where if the coin turns up H then you get paid 3 dollars. If it
turns up T , then you get paid 1 dollars. Question: What is the fair price to charge for this
game?

Ans: The fair price to charge for this game is 31
2

+ 11
2

= 2 (dollars). But can you
explain why this is the fair price? The reason is the LLN. If this game is played only once
(an important point, which we’ll come back later when we discuss the fair price of financial
instrument) then it is not clear that the price is fair. However, the assumption here is that the
game will be played many times, by potentially many different players. Thus each player’s
winning is an independent, identically distributed random variable, which takes values 3
and 1 with probability 1/2 each. The total amount of money the house has to pay to these
players, after n games have been played, is

∑n
i=1 Xi. By the LLN, this is approximately

nE(X1), which is 2n, which is the total amount charged by the house. So the house comes
out even and this is a fair price for the game.

Remark: This is the main principle behind casino’s operation (and profitability). Of
course the players are not charged to play the games in the casino. But the game is set
up so that the expectation is negative (even if you bet on a roulette table, say on an even
number, your chance of winning is still less than 1/2, since there is a 0 and double 0’s).
Thus by the LLN, with a lot of customers, the casino will have a positive profit. Note that
the LLN does allow for an occasional incident where someone plays 1 single game and win
big. But if you play a lot of games at the casino, the LLN says that you will lose money
eventually.

1.7 Central limit theorem

1.7.1 The theorem

The LLN gives us an estimate of Sn
n

(it is approximately E(X1)). However, for various
reasons, we may want a more precise estimate than that. Note that the LLN says noth-
ing about how close to E(X1) Sn

n
is, or (perhaps surprisingly) what distribution we may

approximate Sn
n

with. It is surprising because we do not have any restriction on the distri-
bution of each individual Xi, but it turns out that the approximate distribution of Sn

n
is the

normal distribution. The precise statement is as followed:

Theorem 1.7.1. Let X1, X2, · · · be i.i.d. RV such that E|X1|2 < ∞. We will also denote
E(X1) = µ and V ar(X1) = σ2. Then for any real number x,

P (
Sn − nµ
σ
√
n
≤ x)→ P (Z ≤ x),

where Z has standard normal (N(0, 1)) distribution.
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1.7.2 Application

The central limit theorem is used to estimate probability of the sum or the average of an
i.i.d. sequence of RVs. Determining which case to use requires a close reading into the
problem.

Example 1.7.2. The bus arrives at the Hill center according to a uniform [0, 12] distribu-
tion. Suppose you wait at the Hill center bus stop for 30 days. What is the approximate
probability that your average wait time is more than 5 minutes?

Ans: Let X1, X2, · · · be i.i.d. U [0, 12]. Then E(X1) = 6 and V ar(X1) = 12. Thus

P (
S30

30
≥ 5) = P (

S30 − 6× 30√
12× 30

≥ 5
√

30√
12
− 6
√

30√
12

) ≈ P (Z ≥ −1.58).

Example 1.7.3. The earning per day of a casino is distributed as an Exponential(1) RV. (1
here stands for 1 million, we omit the unit). What is the approximate probability that the
casino’s earning in 1 month is more than 35 millions?

Ans: Note that here we’re asked for the total earning. Thus let X1, X2, · · · be i.i.d.
Exp(1). Then E(X1) = 1 and V ar(X1) = 1. Thus

P (S30 ≥ 35) = P (
S30 − 30√

30
≥ 5√

30
) ≈ P (Z ≥ 5√

30
).

1.8 Appendix - On regular conditional probability distribution

(This section is not required for the course. You can skip this.)
In the above discussion, you see that we can define, for X, Y jointly continuous

P (X < a|Y = y) :=

∫ a

−∞
fX|Y (x|y)dx,

even though P (Y = y) = 0. This is connected with the notion of regular conditional
probability distribution (r.c.p.d). We will discuss r.c.p.d. and the connection in this section.

1.8.1 R.c.p.d

Let X : (Ω,F , P ) → (S,S) be a RV taking values in a general space S with sigma-field
S. Let G ⊆ F be a sub sigma-field.

For any set A ∈ S, the conditional probability of X ∈ A given G is given by the
conditional expectation

P (ω,A) := E(1A(X)|G). (1.3)

As we vary A in S, we obtain a map from Ω× S to [0, 1].
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The question is: when we consider simultaneuously all A ∈ S, that is when we fix a
particular ω, can we ensure that for P almost every ω, P (ω, ·) is a probability measure (on
S)? The answer is non trivial.

First note that for each A, P (·, A) is only defined almostsuredly via (1.3). That is, we
are free to modify P (·, A) outside a set of probability 0.

Thus, in particular, for any countable collection of disjoint sets An ∈ S , we can define
P (ω,An) and P (ω,∪nAn) such that

P (ω,∪nAn) =
∑
n

P (ω,An)

holds outside an exceptional set N{An} of probability 0. The notation N{An} is used to
emphasize the dependence of the exceptional set on the sequence {An}.

We desire a version of P (·, ·) (that is a definition of P (ω,A) for any A ∈ S outside a
set N ⊆ Ω of probability 0. This set N is defined independent of all the sets A), such
that P (ω, ·) satisfies the above countable additivity property for any infinite collection of
disjoint sets.

Since there are possibly uncountable number of such collections of sets, the correspond-
ing exceptional sets N{An} of probability 0 could add up to a set with positive probability,
or even become non-measurabale.

Definition 1.8.1. Let (Ω,F , P ),G and X : (Ω,F , P ) → (S,S) be as above. A family of
probability distributions on (S,S), denoted by P (ω, ·)ω∈Ω is called a r.c.d. of X given G
if for each A ∈ S , P (·, A) = E(1A(X)|G)-a.s. . When (S,S) = (Ω,F) and X(ω) = ω,
P (ω, ·), ω ∈ Ω is called a r.c.p on F given G.

Remark: The above definition captures the two desirable properties of a r.c.p.d that
we discussed above: For each ω, P (ω, ·) is a probability on S. Second, it agrees with the
conditional expectation given G almost surely. Note that the family is given a priori to the
discussion about its agreement with the conditional expectation. In this way it is defined
for all ω ∈ O. The countable additivity property follows from the definition because

P (·, An) = E(1An(X)|G)-a.s.
P (·,∪nAn) = E(1∪nAn(X)|G)-a.s.

Thus we can choose an exepctional set N{An} of probability 0 such that outside of
N{An}

P (·,∪nAn) = E(1∪nAn(X)|G) =
∑
n

E(1An(X)|G) =
∑
n

P (·, An),

where the second equality follows from the property that if Xn ≥ 0, Xn ↑ X then
E(Xn|G) ↑ E(X|G).

If X has a r.c.d given G then conditional expectations of X given G can be expressed as
integrals over the r.c.d.
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Proposition 1.8.2. Let P (ω, ·)ω∈Ω be a r.c.d of X given G. Then for any Borel measurable
funcion f : (S,S)→ (R,B) with E(f(X)) <∞, we have

E(f(X)|G)(ω) =

∫
f(x)P (ω, dx), for P a.e. ω.

Examples of r.c.p.d., discrete RV

Let X, Y have discrete distribution. In this case WLOG we can consider Ω = Z2, X, Y are
coordinate mappings: for ω = (ω1, ω2):

X(ω) = ω1

Y (ω) = ω2.

We let F = FX,Y ,G = FY . We define a probability measure on F simply by

P (ω) = P (X = ω1, Y = ω2).

(In this way, if ω is such that X cannot take value ω1 or Y cannot take value ω2, we simply
assign P (ω) = 0).

For any ω ∈ Ω and any A ∈ B(R) we define

P (ω,A) := P (X ∈ A|G)(ω) :=
∑

ω̃:ω̃1∈A,ω̃2=ω2

P (X = ω̃1, Y = ω2)

P (Y = ω2)

=

∑
ω̃:ω̃1∈A,ω̃2=ω2

P (X = ω̃1, Y = ω2)

P (Y = ω2)

=

∑
ω̃:ω̃1∈A,ω̃2=ω2

P (ω̃)∑
ω̃:ω̃2=ω2

P (ω̃)

= P (X ∈ A|Y = ω2).

We claim that P (ω,A) is the r.c.d. of X given G.
First, for any fixed ω, it is clear that P (ω,A) is a probability measure. To check that

P (ω,A) = E(1A(X)|G)(ω), for every ω, we need to check that for any function g(Y );∫
P (ω,A)g(Y )(ω)dP (ω) =

∫
1A(X)(ω)g(Y )(ω)dP (ω).

The LHS is equal to∑
ω

∑
ω̃:ω̃1∈A,ω̃2=ω2

P (ω̃)∑
ω̃:ω̃2=ω2

P (ω̃)
(ω)g(Y )(ω)P (ω).

Observe that for any ω,
∑
ω̃:ω̃1∈A,ω̃2=ω2

P (ω̃)∑
ω̃:ω̃2=ω2

P (ω̃)
(ω) and g(Y )(ω) only depend on ω2. That is,

if ω and ω′ are such that ω2 = ω′2 then∑
ω̃:ω̃1∈A,ω̃2=ω2

P (ω̃)∑
ω̃:ω̃2=ω2

P (ω̃)
(ω) =

∑
ω̃:ω̃1∈A,ω̃2=ω2

P (ω̃)∑
ω̃:ω̃2=ω2

P (ω̃)
(ω′)
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and g(Y )(ω) = g(Y )(ω′). Therefore the LHS is actually equal to

∑
ω

(∑
ω̃:ω̃1∈A,ω̃2=ω2

P (ω̃)∑
ω̃:ω̃2=ω2

P (ω̃)
(ω)g(Y )(ω)

) ∑
ω̃:ω̃2=ω2

P (ω̃)

=
∑
ω

( ∑
ω̃:ω̃1∈A,ω̃2=ω2

P (ω̃)

)
(ω)g(Y )(ω)

=

∫
1A(X)(ω)g(Y )(ω)dP (ω).

Examples of r.c.p.d., continuous RV

Let X, Y have continuous distribution. In this case we consider Ω = R2, X, Y are coordi-
nate mappings: for ω = (ω1, ω2):

X(ω) = ω1

Y (ω) = ω2.

We let F = FX,Y ,G = FY . For a set E ∈ F we define

P (E) =

∫
E

fXY (x, y)dxdy.

(Again, in this way if there is a set E ∈ B(R2) such that X, Y cannot take values in E,
we simply assign P (E) = 0).

For any ω ∈ Ω and any A ∈ B(R) we define

P (ω,A) := P (X ∈ A|G)(ω) :=

∫
A
fXY (x, ω2)dx

fY (ω2)

=

∫
A
fXY (x, ω2)dx∫∞

−∞ fXY (x, ω2)dx
= P (X ∈ A|Y = ω2).

We claim that P (ω,A) is the r.c.d. of X given G.
First, for any fixed ω, it is clear that P (ω,A) is a probability measure. To check that

P (ω,A) = E(1A(X)|G)(ω), for every ω, we need to check that for any function g(Y );∫
P (ω,A)g(Y )(ω)dP (ω) =

∫
1A(X)(ω)g(Y )(ω)dP (ω).

The LHS is equal to (in the following ω = (x, y) = (ω1, ω2))∫
R2

P (ω,A)g(Y )(ω)fXY (ω)dxdy =

∫
R2

∫
A
fXY (x, ω2)dx∫∞

−∞ fXY (x, ω2)dx
(ω)g(Y )(ω)fXY (ω)dxdy.
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Again note that both
∫
A fXY (x,ω2)dx∫∞
−∞ fXY (x,ω2)dx

(ω) and g(Y )(ω) only depend on ω2. Thus the LHS
is equal to ∫

R

( ∫
A
fXY (x, ω2)dx∫∞

−∞ fXY (x, ω2)dx
(ω)g(Y )(ω)

)(∫
R
fXY (ω)dx

)
dy

=

∫
R

(∫
A

fXY (x, ω2)dx

)
(ω)g(Y )(ω)dy

=

∫
R

∫
A

fXY (x, y)g(Y )dxdy =

∫
1A(X)(ω)g(Y )(ω)dP (ω).

Existence of r.cp.d.

It is clear from our above discussion that we do not always have a family of r.c.p.d. The
following gives a sufficient condition for the existence of r.c.p.d.

Theorem 1.8.3. Let X : (Ω,F , P ) → (S,S) be a RV taking values in a general space S
with sigma-field S. Let G ⊆ F be a sub sigma-field. If S is a complete separable metric
space with Borel sigma field S then there exists a r.c.p.d. family P (ω, ·)ω∈Ω of X given G.

Remark: From our examples, in the discrete case it is clear that the r.c.p.d. always
exists. The key there is because X, Y takes values on a space with countably many values,
so that we can re-cast the probability space asZ2. This demonstrates the condition requiring
S being a separable metric space

In the jointly continuous case the r.c.p.d also exists, but it is not clear how the separa-
bility comes into play, as we used the density to define the r.c.p.d. there. One can suspect
that the existence of the density fXY , or the Radon-Nikodym derivative of the distribution
of X, Y with respect to the Lebesgue measure on R2, has to do with the separability of R2.
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1.9 Exercises

1. Our friend John tells we that he has two daughters. we also know that he has three
children in total. What is the probability that his youngest child is a girl (assuming that a
boy and a girl are equally likely)?

2. The arrival time of shuttles at a bus stop from 5:00pm to 5:30pm on a weekday is
uniformly distributed. In other words, let X be the waiting time (in minutes) after 5:00 pm
until the arrival of a particular shuttle, then X has the p.d.f

fX(x) =
1

30
, 0 ≤ x ≤ 30. (1.4)

Suppose there are 30 shuttles arriving at the bus stop from 5:00 pm to 5:30 pm, and their
distribution are i.i.d. What, then, is the approximate probability that their average arrival
time on a particular weekday is before 5:12 pm?
3. Studying probability and statistics has a positive effect on students’ job placement. A
student who has succesfully completed these classes has a 70% probabilty of landing a job
with Goldman Sachs. A student who did not succesfully complete the program, however,
only has a 40% probability of landing such a job. our friend, Tom, just got a position with
Goldman Sach. Suppose the probability of a student succesfully completing the Financial
Math program at Rutgers is 80%. What is the probability that Tom succesfully finished his
Financial Math program at Rutgers?
4. The breakdown time of the Apple Ipad is an exponential(5) random variable. In other
words, let X be the time until break down (in years) of a particular Ipad, then X has the
p.d.f

fX(x) =
1

5
e−

1
5
x, 0 ≤ x <∞. (1.5)

Suppose an Apple store has 30 Ipads, and the distribution of their break down times are
i.i.d. What, then, is the approximate probability that the average break down time of these
Ipads is before 2 years?
5. There are 120 students in the Introduction to Probability class. Suppose that each
student has a probability of .3 of getting an A in this class, and the students’ performance
is independent of one another. What, then, is the approximate probability that the class
will have at least 20 students getting an A ?
6. In this problem we will verify that the conditional expectation E(X|Y ) is the best
guess of X given Y in the following sense

E
[
(X − E(X|Y ))2

]
≤ E

[
(X − g(Y ))2

]
, for all g(Y ). (1.6)

a. Show that

E
[
E(X|Y )X

]
= E

[
E(X|Y )2

]
.
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Hint:

E
[
E(X|Y )X

]
= E

[
E
(
E(X|Y )X

∣∣∣Y )].
Proceed using properties of conditional expectation.
b. Use the result of part a to prove (1.6).

7. Let X, Y be independent random variables, Y having Normal(0,1) distribution and X
has distribution P (X = 1.5) = P (X = 0.5) = 1/2. Let Z = XY . Compute
a. E(Z|Y ).
b. E(Z2|Y ).
8.
a. Let X have distribution Uniform[0,Y ] distribution, where Y has Exp(1) distribution.
Compute the joint distribution of X, Y and E(X).
b.Let X have distribution Exponential(Y ) distribution where Y has Uniform[1,2]
distribution. Compute the joint distribution of X, Y and E(X).
9. Prove the inequalities in (1.4.2).
10. Prove equations (1.1) and (1.2).
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CHAPTER 2 Derivative pricing in one period model

In this Chapter and the following ones, we apply the probabability theory described in
Chapter (1) to study the problem of pricing a financial derivative. A financial derivative
is simply a contract between two parties which specifies agreements on the buying and /
or selling of a certain commodity or security. We refer to commodity or the security on
which the contract is based as the underlying. Since the contract derives its value from the
underlying, we call such contract the derivatives. We start with a brief description of the
various derivatives that will be studied in this book. The central question for this chapter is
the fair price of contracts such as the one described below. More importantly, we want to
clarify the sense in which we call it a fair price.

2.1 The financial derivatives

2.1.1 Forward contracts

Suppose we run a factory, and we know that in November we will need a large amount
of oil (say 10,000 barrels). Suppose the price of oil now is 100 dollars per barrel; but for
certain reason we do not want to purchase 10,000 barrels right now. This could be because
we did not have the cash available; or the cost of inventory will be very high from now until
November when we actually need the oil. But waiting until November to purchase is also
risky, since the price may jump to 115 dollars per barrel. So what we do is entering into a
contract to lock down a price for the future purchase of oil at say, 105 dollars per barrel.
In this way, we have entered into a forward contract with expiration date on Nov 1, for a
barrel of oil with strike price 105 dollars. For simplicity we suppose each contract is just
for 1 barrel. To lock in the price for 10,000 barrels we simply buy 10,000 contracts.

2.1.2 European call option

One feature of the forward contract is that once we enter the contract, we must purchase
the product on the expiration date. Suppose in November the oil price drops to 95 dollars
per barrel. If we already are in a forward contract with strike equals 105 dollars, we’re in
an undesirable situation. Another type of financial derivative, which offers a more flexible
agreement than the forward contract is the so-called European option. A European call
option on a certain underlying with expiration date T and strike price K is a contract that
gives we the right, but not the obligation, to purchase one unit of the underlying at time T
at price K.
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Remark 2.1.1. An example of a European call option is a feature that is offered in several
airlines, where with a small fee we can lock in the price for a ticket for one day, two days
or a week. We do not have the obligation to buy the ticket at the locked-in price. Indeed
if the price for the ticket falls before the expiration of the fare-lock, we can simply ignore
the fare-lock and purchase the ticket at a lower price. This is exactly a call option on the
airplane ticket with strike equals the locked-in price and expiration being one day, two days
or a week.

2.1.3 European put option

Suppose we are operating a farm that grows corn and the current time is July. We do not
harvest our crops until October; but we would want to lock in a price for our crop as an
insurance against price drop. If additionally we also want the flexibility to sell if in October
the actual price for our crop is higher than the locked-in price, then we want to enter into
a European put option. An European put option can be viewed as the exact oppposite of a
European call option. That is, a European put option on a certain underlying with expiration
date T and strike price K, is a contract that gives we the right, but not the obligation to sell
one unit of the underlying at time T at price K.

2.1.4 Other types of derivatives

There are many other derivatives besides forward contract, European call and put option.
A few examples include the American, look back, Asian, Bermudan, Barrier options. We
will discuss these later in Chapter (3).

2.2 Different approaches to pricing

When we have a product (be it a tangible product, like a laptop, or a service, like a legal
consulting, or a random game, like a casino game), we would like to know what its fair
price is. Here are some possible approaches we may take:

By cost of components

We may decide how much the components of our product cost, and the price is simply
the sum of these costs (our labor or however much we contribute into the making of
the product is also considered into these cost factors). This approach only works,
obviously, when our product can be decomposed into components, and each has a
cost.

By supply and demand

An alternative approach to find the fair price is by supply or demand. Another way
to say it is let the market decides what the price is. This answer has limitations of
course. First, no one knows for sure how the supply and demand curves look like.
So to know the price precisely, we would need to model these curves, a non-simple
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task. Second, letting the market decides the price works for a product already on
the market. If we have a completely new product (say we just came up with a new
financial derivative), looking into the market for a price is not helpful.

By the Law of Large Number

This approach works for a random game, as mentioned in the previous lecture. The
basis for it is that we expect a large number of people to play the game, thus our
revenue from selling the tickets to the game will balance out the profits and losses
we make from each individual game. Note that there have to be two factors to make
this approach works: a lot of incidents of the product (the game) and they are inde-
pendent, identically distributed. Without either, pricing by the Law of Large Number
will not work.

Remark 2.2.1. We may refer to this approach as pricing by expectation. Here we
refer to it as pricing by the Law of Large Number to avoid confusion, since later on
we will see another approach of pricing by expectation, which is completely different
from this one and not based on the Law of Large Number.

2.2.1 Pricing of financial derivatives

We observe that none of the approach above applies to the pricing of the financial deriva-
tives we mentioned in Section 2.1. Actually, the reason why the the Law of Large Number
approach does not work is a bit subtle. Even if we have a probabilistic model for the un-
derlying, the Law of Large Number is still not the right way to price. A more detailed
explanation will be given when we come to the one period model.

We make the following observation: in any financial derivative, there is a transfer of risk
from the buyer to the seller of the contract. By selling us a financial derivative, the contract-
seller assumes the risk of facing the ups an downs of the market price of the underlying.
Therefore, the fair price of the financial derivative must properly reflect this risk that the
seller takes. This philosophy will lead to the pricing by portfolio replication approach,
discussed in Section 2.3.

On the other hand, a financial derivative is traded on the market. One can observe as a
fact that the price of the underlying is strongly correlated with that of the derivative. Since
we can buy and sell a derivative together with the underlying, a mis-price of the derivative
might lead to some risk-free profit. We require then the price of the derivative is such that
this risk-free profit cannot happen. This philosophy will lead to the pricing by no-arbitrage
principle approach, discussed in Section 2.4.

2.3 Pricing by portfolio replication

2.3.1 Hedging portfolio

Let us revisit the example of the forward contract in section (2.1.1) from the point of view
of the contract seller. How much would we charge for such a contract? A better question is:
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what would we do with the money we obtained from selling the contract, keeping in mind
that we have the obligation to sell 1 barrel of oil at 105 USD in November? Clearly we
would like to fulfill the contract at the expiration time without any additional money out of
our pocket. Therefore, we should invest the money received from the contract so that our
position is covered. Since the oil price and the forward contract based on oil are positively
correlated, we should invest some money into the money market (i.e. a saving account with
interest) and some money into the oil market. If our investment strategy is right, the value
of our portfolio would be equal to the payout we have to make independent of the outcome
of the underlying price. Thus we have completely hedged our risk. We call the portfolio
in this case a hedging portfolio or a replicating portfolio, from the fact that our portfolio
‘replicates the value of the financial derivative at the expiration time.

One implicit assumption we made in the above scenario is that our portfolio is self-
financing. That is we can re-adjust our position in between the sale time and the expiration
time, but we cannot do this using additional funding from outside, nor can we withdraw
money from the portfolio. Clearly if the portfolio is not self-financing, then its risk-hedging
property becomes meaningless. This suggests that the fair price of a financial derivative is
how much it takes to set up the hedging portfolio at the initial time.

Remark 2.3.1. The existence of a hedging portfolio is not guaranteed. In the case of the
non-existence of a hedging portfolio, we will have to find a different way to define a fair
price, see Section (2.4). But if there is a hedging portfolio, then its initial value must be the
price we charge for the contract. Otherwise there will be an arbitrage opportunity, which
we will discuss next.

2.3.2 Arbitrage opportunity

An arbitrage opportunity is an opportunity to earn profit without risk. This is clearly an
undesirable situation for the economy. One of the central principles in derivative pricing
is that arbitrage opportunity does not exist. We call this the no-arbitrage principle. Our
first application of the no-arbitrage principle is to show the equality between the price of a
derivative and its hedging portfolio.

Lemma 2.3.2. Suppose the no-arbitrage principle holds. If there exists a hedging portfolio
for a financial derivative then the portfolio’s initial value must be the price of the derivative.

Proof. Suppose the price x for the derivative is higher than the value y of the hedging
portfolio. At time 0, we sell the contract for x and use y to finance our portfolio. Thus we
gain x − y > 0 dollars at the beginning, which we can put into a saving account. At the
expiration time, because the portfolio is replicating, our position is completely cover. Thus
we have made a riskless profit; the hedging portfolio gives us an arbitrage opportunity. A
similar argument holds when x < y.
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2.3.3 Price of a forward contract

We will leave the example of the oil forward contract in Section (2.1.1) and work with an
abstract setting. Suppose we have a forward contract with expiration T with strike K on
an underlying S. That is at time T , we can obtain one share of S for K dollars. We will
denote the price of S at time t as St. Thus the value of this forward contract at time T is
ST − K. Suppose also that the interest rate is r. What is the price for the contract at the
current time t = 0?

Lemma 2.3.3. The price for a forward contract with strike K and expiration T on an
underlying S at time t = 0 is S0 −Ke−rT .

Proof. At time 0, we purchase 1 share of S and borrow Ke−rT from the bank. Since
we receive S0 − Ke−rT dollars from selling the forward contract, our initial position is
completely balanced. At time T , one share of S is worth ST and we owe the bankKe−rT erT

due to accumulating interest. Thus the value of our portfolio is ST −Ke−rT erT = ST −K,
which is exactly the value of the forward contract at time T . We have constructed a hedging
portfolio whose initial value is S0 − Ke−rT . By the discussion above, the price for the
forward contract is S0 −Ke−rT .

2.3.4 Finding the hedging portfolio for a forward contract

The price S0 −Ke−rT gives us an idea of how to construct a hedging portfolio. But if we
do not know this price, how can we proceed? We will just assume that our portfolio has x
shares of S and y dollars in the money market at the beginning. If we can construct x and
y so that at the expiration we have

xST + yerT = ST −K, (2.1)

then by the no arbitrage principle the price of the forward contract would be xS0 + y.
Equation (2.1) contains two unknowns x, y. The key to solving it is to note that this

equation has to hold for all outcomes of ST . Also observe that in this equation only ST is a
random variable, while the rest of x, y,K, erT are constants. We rewrite the equation as

(x− 1)ST = −yerT −K.

The left hand side is a random variable, the right hand side is a constant. They can only
be equal if the left hand side is also a constant, from which we conclude x = 1. It follows
that y = −Ke−rT .

Remark 2.3.4. Observe that the price of a forward contract we found is model indepen-
dent. That is we did not make any assumption about the distribution of ST or the behavior
of St from time 0 to T . This is due to the fact that the value of the forward contract ST −K
is a linear function of ST . A similar approach will not hold when the derivative value is no
longer a linear function of the underlying asset price. For example, we will need to build
models for ST to find the price of the European options.
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2.3.5 Forward price

For the forward contract with strike K, there is a special value of K0 that makes the value
of the contract at the initial time t = 0 equal to zero. That is the buyer does not have to
pay anything to enter the contract. Note that this does not imply the contract value remains
zero after time t = 0. In fact at time T its value is still ST −K. Because ST is random, it
cannot be the case that ST −K = 0 with probability 1.

From the above discussion, we can easily see that this value of K0 is S0e
rT . This

is called the forward price of the underlying S (for expiration time T ). In words, the
forward price (of an asset with expiration T ) is the strike price of a forward contract on the
same asset with expiration T such that the contract costs no money to enter. We should
distinguish this concept from the price of a forward contract, which is typically not zero at
t = 0.

2.4 Pricing by the no-arbitrage principle

We discussed in a preliminary way the no-arbitrage principle in Section (2.3.2). We con-
cluded that if there is a hedging portfolio the price of the financial derivative must be the
same as the value of the portfolio. In many scenarios, a hedging portfolio does not exist.
One common reason is because there are more random sources than the number of financial
asset so in a sense we cannot hedge away all randomness.

However, we can still discuss about the fair price of a financial derivative in this case.
Assuming the derivative V is traded in the market, one can form a portfolio consisting of
V , the underlying S and the money market account that earns interest r. If the price of V
is such that that it allows for an arbitrage-portfolio, then it cannot be the right price.

So we can simply define the price of V is such that no matter how one combines V, S
and the money market account, no arbitrage-portfolio can arise. This turns out to be an
acceptable concept to arrive at a price for V . We refer to it as the pricing by no-arbitrage
principle.

Remark 2.4.1. Pricing by the no-arbitrage principle does not seem to lead to a concrete
price. As we shall see, no-arbitrage price is derived via the risk-neutral pricing technique.
Another observation to keep in mind is the pricing by no-arbitrage principle also allows
for many possible prices of V . In this case, the market will ultimately decide which price
to pick for the derivative.

2.5 Introduction to the one period model

2.5.1 Value of a European option

Consider a European call option on an asset S with expiration T and strike price K. From
now on, we will denote the value of a financial product at time t as Vt. We first discuss the
mathematical expression of VT .

35



Clearly at time T two things can happens: Either ST > K or ST ≤ K. If ST > K, the
holder would exercise the option to buy 1 share of S at price K. Since the asset is actually
worth ST , he has made a gain of ST −K > 0. If ST ≤ K he simply does not exercise the
option. In that case VT = 0. Thus we have

VT = max(ST −K, 0).

We introduce some notation to re-write max(ST −K, 0). For a real number x, we denote
max(x, 0) as x+ and max(−x, 0) as x−. For example, 5+ = 5, (−5)+ = 0, (−5)− =
5, 5− = 0. With this notation, we see that the value of a European call option at time T is
VT = (ST −K)+.

Figure 2.1: Payoff of a call-option

Recall that a European put option gives the owner the right, but not the obligation to
sell one share of the underlying S at price K at time T . Thus the value of a corresponding
European put option is V put

T = (ST −K)− = (K − ST )+.

2.5.2 An attempt to construct a hedging portfolio for European options

Suppose we sell one share of a European call option on S with strike K and expiration
T . To hedge our risk, we invest in the underlying S and the money market . Specifically
suppose at time t = 0 we buy x shares of S and hold y dollars in the money market. Can
we construct a portfolio that replicates the value of a European call option at time T ? The
equation that the portfolio value has to satisfy is

xST + yerT = (ST −K)+; (2.2)
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and it has to hold true no matter what value ST takes. However here we cannot repeat the
approach in Section (2.3.3) to solve for x and y because the function (ST − K)+ is not
linear in ST .

The system (2.2) is in general an over-determined system for x and y. If there are n
different possible outcomes or ST then the system (2.2) is a linear system (in x, y) with two
unknowns and n equations. Thus to have a hope to solve for such as system we need to
limit ourselves to the case n = 2. That is we posit that ST has only two possible outcomes:
u for up and d for down. This is the one period binomial model that we discuss in the next
Section.

2.6 The one period binomial model

2.6.1 Model specification

The one period binomial model is a model about the underlying asset S. We posit the
followings: there are 2 stages of action, the inital time t = 0 and the expiration time t = T .
We purchase (or sell) the option at t = 0 and exercise the option (or fulfill the option’s
terms) at t = T . At any other time 0 < t < T we do not take any action to buy or sell any
financial asset.

The value of the asset at t = 0 is a constant S0. Its value at t = T is a random variable
ST that can take on two values: ST = uS0 or ST = dS0 where u and d are positive real
numbers. We will also assume the interest rate is r > 0. We think of d, u, r as parameters
of the model that we can estimate and plug into the model using information about the asset
and the interest rate.

Figure 2.2: One period binomial model

2.6.2 Restriction on d, u, r

Whenever we build a model, we should check whether our model violates any fundamental
principle. In the one period model we need to have

d < erT < u,
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otherwise there is an arbitrage opportunity. Indeed, suppose erT ≤ d < u. This implies
that the underlying S is guaranteed to have a higher return than the money market account.
If this is the case, we can borrow S0 from the money market and purchase one share of
S. At t = T we will be guaranteed a non-negative profit. A similar argument holds when
u ≤ erT .

2.6.3 Pricing of a financial product using the hedging portfolio

Consider a financial derivative V based on an underlying S. At the expiration time T , if the
asset goes up (ST = uS0) then VT = Vu and if the asset goes down (ST = dS0) VT = Vd.
Here Vu and Vd are 2 constants that depends on the specific derivative in consideration.

Example 2.6.1. Let V call (respectively V put, V forward) be the value of the European call
option (respectively European put option, forward contract) based on S with strike K and
expiration T . Then

V call
u = (uS0 −K)+, V put

d = (dS0 −K)+;

V put
u = (K − uS0)+, V put

d = (K − dS0)+;

V forward
u = uS0 −K,V forward

d = dS0 −K.

Note that in general we do not have Vd < Vu even if dS0 < uS0 by construction. For
example if dS0 < K < uS0 then V put

u = 0 and V put
d = K − dS0 > 0.

We construct a replicating portfolio for V that consists of x shares of S and y dollars in
the money market at t = 0. The replication condition requires:

xuS0 + yerT = Vu

xdS0 + yerT = Vd.

The system can be written in a matrix form as[
uS0 erT

dS0 erT

] [
x
y

]
=

[
Vu
Vd

]
. (2.3)

The inverse of the matrix
[
uS0 erT

dS0 erT

]
is 1

erTS0(u−d)

[
erT −erT
−dS0 uS0

]
.Note that 1

erTS0(u−d)
6=

0 because of our requirement that d < u.
The solution for the system (2.3) is[

x
y

]
=

1

erTS0(u− d)

[
erT −erT
−dS0 uS0

] [
Vu
Vd

]
.

Then easily we see that x = Vu−Vd
S0(u−d)

and y =
[
Vu − Vu−Vd

u−d u
]
e−rT . Thus the price of the

financial derivative V is

V0 = xS0 + y =
Vu − Vd
u− d

+
[
Vu −

Vu − Vd
u− d

u
]
e−rT . (2.4)
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2.6.4 Some remarks

1. The formula (2.4) gives the price for any financial derivative based on S in the one
period model. The only requirement is the correlation VT = Vu when ST = uS0 and
VT = Vd when ST = dS0. This correlation exactly captures the fact that the value of V is
derived from the value of S. Without this correlation, the pricing formula (2.4) becomes
meaningless.

2. Formula (2.4) relies heavily on the fact that there are only two possible outcomes at
t = T , namely ST = uS0 or ST = dS0. If we were to posit a more general model where
there are pore than two possible outcomes then the system (2.3) may not be solvable.

Example 2.6.2. Suppose there are three possible out comes ω1, ω2, ω3 at t = T . Let
ST (ω1) = ST (ω2) = uS0, ST (ω3) = dS0 but VT (ω1) = Vu and VT (ω2) = VT (ω3) = Vd.
The matrix equation (2.3) becomes uS0 erT

uS0 erT

dS0 erT

[ x
y

]
=

 Vu
Vd
Vd

 .
We can easily see that this system has no solution since the first two equations

xuS0 + yerT = Vu

xuS0 + yerT = Vd

are in consistent if Vu 6= Vd.

3. ST is a random variable. However we did not require its probability distribution
to obtain formula (2.4). What if we do have information that allows us to plug in some
probability distribution for ST ? For example when S is a stock we can observe the of the
past performance of the company to estimate the distribution of ST . Would this information
play some role in determining the price? This is an important question which we address
in the next section.

2.7 Pricing by Expectation

2.7.1 An example

Consider a company whose stock price is S0 = 90 today. Suppose tomorrow, with proba-
bility 0.9 the stock price is S1 = 100 and with probability 0.1 the stock price is S1 = 80.
Also suppose that the interest rate r = 0. Consider a contract that will deliver a share of
S to the holder tomorrow, but the payment has to be made today. This is an example of a
forward contract with strike price 0. What is the price of such a contract?

An intuitive answer is that sinceE(S1) = (.9)100+(.1)80 = 98 and r = 0, the price for
the contract is 98 dollars. However this answer is incorrect. Let us recall that the price of a
general forward contract with strike K is S0 −Ke−rT . Since K = 0 the price is S0 = 90.
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We show in (2.3.3) that 90 dollars is the no-arbitrage price of the forward contract with
K = 0. Hence if the contract is priced at 98 dollars, there will be an arbitrage opportunity.
Indeed we would simply sell such a contract at 98 dollars, and use the money to buy one
share of stock at 90. Tomorrow we give the share of stock to the contract holder to close
our position, and make an 8 dollar profit without risk.

We want to understand why giving the price by E(S1) is incorrect. Recall from Section
(2.2) that pricing by Expectation is an implicit appeal to the Law of Large Number. How-
ever, the Law of Large Number does not apply in the current situation. Indeed, observe
that in this case we only have one instance of S1. That is there is only one variable S1 that
we receive the random payment from. This clearly does not fall into the large number of
independent random variables context of the the Law of Large Number. What if we sell
the contracts to many buyers to create an instance of a large number of random variables?
Unfortunately here the Law of Large Number still does not apply; since all of these buyers
will face the same S1. That is every one has to observe the same stock price tomorrow from
the same company. We can say there are many identical copies of a random variable; but
this does not fulfill the independent requirement of the the Law of Large Number.

We remark that there is an approach of pricing financial derivative by taking expecta-
tion. However, it is an expectation that is taken under a risk neutral probability, which we
have yet defined. We will present this approach in (2.7.3).

2.7.2 A discussion of risk versus expectation

In the example of the previous Section, the probability that the stock price goes up is very
high at 90 %. So we may wonder if in a realistic situation, a buyer would be willing to pay
a little more for than 90 dollars for S. Maybe we would not pay 98 dollars for the contract;
but 90 dollars seems like a too low value for such a “good" stock.

To understand this question, let us suppose we are offered a game where with 1 %
probability we can win 1000 dollars but with 99 % we will lose 9 dollars. We can only
play the game once. Would we be willing to play? The expectation of this game is slightly
more than 1 dollars. So if we use the expectation as a standard of judgment, then we would
definitely play this game. However, in real life many would hesitate to play this game.
Those who hesitate can be described as risk averse. Since the game can be played only
once, there is a very big chance we would lose money. The ones who are willing to play
the game can be described as risk seeking. The bottom line is the decision to play the game
(or to purchase the stock at a price higher than 90 dollars) is not based on expectation.
Expectation is not the appropriate standard to make the decision in a game we play only
once.

The price of 98 dollars we found for the forward contract in the previous Section is a
no-arbitrage price. That is it is a price that allows for no arbitrage opportunity based on the
contract. In terms of risk preference, a person who accepts the price of 98 dollars today in
exchange for a share of the asset tomorrow is said to be risk neutral. He or she is indifferent
(or neutral) about receiving a riskless payment today versus a risky payment tomorrow in
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terms of the asset. This is reflected in his or her acceptance to exchange 98 dollars (the
riskless price of the asset today) for a random (risky) payment tomorrow.

2.7.3 Pricing by expectation under the risk neutral distribution

Recall the setting in Section (2.6.3): a derivative V based on S that pays Vu when ST = uS0

and Vd when ST = dS0. We found the price V0 to be

V0 =
Vu − Vd
u− d

+
[
Vu −

Vu − Vd
u− d

u
]
e−rT . (2.5)

By collecting the terms that involve Vu and the terms that involve Vd, we have

V0 = e−rT
[
Vu
erT − d
u− d

+ Vd
u− erT

u− d

]
. (2.6)

Recall the specification d < erT < u of the parameters u, d, r in Section (2.6.2). It follows
that if we denote

q =
erT − d
u− d

then

1− q =
u− erT

u− d
and 0 < q < 1. Thus {q, 1 − q} is a probability distribution. The formula (2.6) can be
re-writen as

V0 = EQ(e−rTVT ),

where EQ is understood as taking expectation under a distribution Q that puts weight q on
the event u that the S goes up and 1− q on the event d that S goes down. Correspondingly,
the distribution Q puts weight q on Vu and 1 − q on Vd for the random variable VT . The
probability distribution Q is called a risk neutral distribution for the one period model.

Remark 2.7.1. We can view the formula (2.6) as a mathematical representation of V0 (the
other representation is formula (2.5)). In other words, there does not have to be a physical
interpretation of taking expectation under the risk neutral distribution. We will discuss
more aspects of the riskneutral distribution in the next section. There is no appeal to the
Law of Large Number in formula (2.6) since the probabiliy Q is not necessarily the real
world probability P that ST will go up or down. For example, in Section (2.7.1) these real
world probabilities are 0.9 and 0.1 respectively. Indeed most of the time Q and P are very
different distributions.
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2.7.4 Remarks about the risk neutral measure

• In the formula (2.6), if we use Vu = uS0, Vd = dS0, then V0 = S0. This is exactly
the same result as we’ve discussed in section (2.7.1). In this context, the risk neutral
measure has the interpretation that

EQ(e−rTST ) = S0. (2.7)

That is, if a person puts the weight of a risk neutral probability on S then he is
indifferent (neutral) between the payoff today and the discounted expectation of the
future payoff based on S.

• We do not necessarily live in a risk neutral world. That is the real life probability
of the stock increasing or decreasing its value may be different from the risk neutral
distribution. In fact this is often the case. We call the probability distribution of
a stock in the physical world the objective probability and denote it by P . Taking
expectation under the risk neutral measure should be looked at as a mathematical
tool to obtain the no arbitrage price for the financial derivative.

• Two probability distributions P andQ are equivalent if for any event E, P (E) = 0 if
and only if Q(E) = 0. That is an improbable event under one distribution cannot be
probable under the other distribution. We require a risk neutral probability Q to be
equivalent to the objective probability P . Indeed, the likelihood of the no arbitrage
event only makes sense under the objective probability P . When pricing derivative,
we operate under the risk neutral framework. The equivalence between P and Q
allows us connect back to the real world to assert that the price we found is indeed a
no-arbitrage price.

• We will use a variation of (2.7) as a definition of the risk neutral measure. Under
the risk neutral measure, the asset satisfies the property that the expectation of the
discounted future value is the present value. We say a probability distribution Q is
an equivalent risk neutral probability if it is equivalent to the objective probability P
and the discounted asset price if a martingale under Q. The notion of a martingale is
discussed in Chapter (4).

• The objective probability is not directly connected to pricing a financial product,
except for the requirement that the risk neutral distribution has to be equivalent to it.
We usually just compute the risk neutral distribution without specifying the objective
probability in derivative pricing.
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2.8 The fundamental theorems of asset pricing in 1 period model

2.8.1 Mathematical definition of arbitrage opportunity

Definition 2.8.1. An arbitrage opportunity is a self-financing portfolio π such that

π0 = 0,

P (πT ≥ 0) = 1

P (πT > 0) > 0. (2.8)

Remark:
1. Self-financing means the portfolio’s funding is its own money: it cannot have outside

source of funding nor can one withdraw (consume) money from the portfolio.
2. Note that the probability used in the definition is the physical probability. It makes

sense, since intuitively an arbitrage opportunity is a chance to make money without risk.
The risk should be measured via the real world probability.

3. Note, however, that since the risk neutral probability PQ is equivalent to P, P (πT >
0) = 1 if and only if PQ(πT > 0) = 1.

4. The portfolio can consist of the underlying asset and the saving account and the
financial derivative in consideration.

5. Actually a portfolio does not have to start out at value π0 = 0. We can use the
following equivalent definition for an arbitrage opportunity:

Definition 2.8.2. An arbitrage opportunity is a self-financing portfolio π such that

P (e−rTπT ≥ π0) = 1

P (e−rTπT > π0) > 0. (2.9)

Exercise: Prove that these definitions are equivalent.

2.8.2 The fundamental theorems of asset pricing

1. There is no arbitrage opportunity if and only if a risk neutral measure exists.
Let’s use the binomial 1 period model. We have seen that this model is always arbitrage

free, since we can find the replicating portfolio, if and only if the condition d < erT < u is
satisfied. We now show this condition is equivalent to the risk neutral measure exists.

Note that

EQ(e−rTST ) = e−rTS0(uq + d(1− q)) = S0

and this leads to

q =
erT − d
u− d
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as we mentioned before. Note that 0 < q < 1 if and only if d < erT < u in this case. (q
cannot be 0 or 1 since in this case, the risk neutral probability cannot be equivalent to the
physical probability).

2. In an arbitrage free market, the replicating portfolio for any financial derivative
exists if and only if the risk neutral measure is unique. In this case we say the market is
complete.

Remark:
a. The key word in the 2nd fundamental theorem of asset pricing is any derivative. A

consequence of this is if the risk neutral measure is not unique, then there must be some
financial derivative based on the asset that we cannot priced. We give an example where the
risk neutral measure is not unique, and the replicating portfolio does not exist: the trinomial
model.

b. We need the no arbitrage condition to be satisfied first before we can discuss the
completeness of the market. This is mainly used in verifying the underying asset itself
cannot create an arbitrage opportunity, (as manifested in the condition d < erT < u in the
1 period binomial model).

2.8.3 A trinomial model example

Suppose ST have three possible outcomes: u,m, d (for up, middle and down). Also for
simplicity let m = erT . We will impose d < erT < u as our usual necessary condition
for no arbitrage, but there might be some additional conditions that are required for no
arbitrage. Additional investigation of the model is needed to completely determine what
the set of no arbitrage conditions are, in general. Here it turns out that the condition d <
erT < u is also sufficient, because of our choice m = erT . For other choices of m, we can
see that the no arbitrage conditions need further modification.

Figure 2.3: One period trinomial model

And suppose min(P (ST = u), P (ST = m), P (ST = d)) > 0. Then the risk neutral
probability Q needs to put positive weight on all these outcomes. So let

PQ(ST = u) = q1, P
Q(ST = erT ) = q2, P

Q(ST = d) = 1− q1 − q2.

We then require

EQ(e−rTST ) = e−rTS0(uq1 + erT q2 + d(1− q1 − q2)) = S0.
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That is

q1(u− d) + q2(erT − d) = erT − d.

There are several choices for q1, q2.
a. If we choose q1 = q2 then we have

q1 = q2 =
erT − d

u− d+ erT − d
.

It follows automatically that 0 < q1 = q2 < 1.
We also need q1 + q2 < 1 therefore we require

erT − d
u− d+ erT − d

<
1

2
.

This is equivalent to erT − d < u− d or erT < u as we already have.
b. If we choose q2 = 2q1 then

q1 =
erT − d

u− d+ 2(erT − d)
.

This automatically implies that q1, q2 > 0. We need to guarantee 0 < q1, q2, q3 < 1. It
is enough to require q1 + q2 < 1 or equivalently 3q1 < 1. This is equivalent to

erT − d
u− d+ 2(erT − d)

<
1

3
.

But this is equivalent to, again erT − d < u− d or erT < u.
So we see that the no arbitrage condition in our 1 period trionomial model is d <

erT < u. However, the risk neutral measure is not unique as we have showed there are at
least 2 choices for it.

Observe also that the replicating portfolio does not exist as we remarked, since the
system

xuS0 + yerT = Vu

xerTS0 + yerT = Vm

xdS0 + yerT = Vd

is over-determined. The matrix uS0 erT Vu
erTS0 erT Vm
dS0 erT Vd
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has REF  uS0 erT Vu
S0(u− erT ) 0 Vu − Vm

0 0 (Vu−Vm)(u−d)
u−erT − (Vu − Vd)

 ,
so unless

Vu − Vm = (Vu − Vd)
u− erT

u− d
, (2.10)

the system cannot have a solution. (Note that for the forward contract VT = ST −K we
always have a replicating portfolio. It is trivial to check that the forward contract satisfies
(2.10)).

2.8.4 No-arbitrage pricing using risk neutral measure

An important consequence of the first fundamental theorem of asset pricing is that if a risk
neutral measure Q1 exists, then a candidate for no arbitrage price of a financial derivative
that pays VT at time T is V 1

0 = EQ1(e−rTVT ). We say a candidate because there may exist
another risk neutral measure Q2 and it is sufficient, for the no-arbitrage condition to hold,
to charge V 2

0 = EQ2(e−rTVT ) for the derivative as well. Thus there is no unique price for
the financial product in this case, if our criterion is only the no-arbitrage condition.

To demonstrate, we show that a portfolio consisting of just the financial derivative itself
cannot be an arbitrage opportunity. Note that the no arbitrage condition requires that the
two following conditions cannot hold together

P (e−rTVT ≥ V0) = 1

P (e−rTVT > V0) > 0.

But this is equivalent to requires that the two following conditions cannot hold to-
gether

PQ1(e−rTVT ≥ V0) = 1

PQ1(e−rTVT > V0) > 0.

(or for that matter, any measure P̃ equivalent with P the above two cannot hold together
under P̃ ).

we can verify that the condition V0 = EQ1(e−rTVT ) implies that

PQ1(e−rTVT ≥ V0) = 1

PQ1(e−rTVT > V0) > 0.

Note that the condition S0 = EQ1(e−rTVT ) implies that a portfolio consisting of the
underlying asset and the derivative cannot be an arbitrage opportunity. Clearly a saving
account satisfies y0 = e−rT (erTy0). Thus we see how the existence of an equivalent risk
neutral measure implies the no arbitrage condition.
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2.9 Market with more than 1 asset

Observe that in the trinomial model above, the reason why we cannot replicate certain
financial product is because we do not have enough financial assets. It makes sense that
as the financial product ”becomes more complex" (in the sense that it has more outcomes),
we need more underlying assets to replicate it. In particular, we can imagine a market with
2 underlying assets S1, S2. They can go up, stay neutral or go down at time T . Specifically,
there are 3 possible outcomes for Si(T ) : Si(T ) = uiS

i(0), Si(T ) = erTSi(0), Si(T ) =
diS

i(0), i = 1, 2.
For simplicity we can assume that S1, S2 move in “synchrony", that is if S1 goes up,

stays neutral or goes down, then S2 would also go up, stay neutral or go down (This is
not so innocent as it seems, the synchronicity of S1, S2 can cause the non existence of the
equivalent risk neutral measure, see examples below).

What are the conditions on ui, di and the synchronicity of S1, S2 that would make the
model arbitrage free?

We can come up with a financial derivative based on S1, S2, for example VT = (S1
T +

S2
T−K)+. Can we find a replicating portfolio for any VT (not just this particular example)?

The answer is yes, via solving the system

x1u1S
1(0) + x2u2S

2(0) + yerT = Vu

x1e
rTS1(0) + x2e

rTS2(0) + yerT = Vn

x1d1S
1(0) + x2d2S

2(0) + yerT = Vd

Finally, we have the following principle for asset pricing in discrete model: Suppose
the market has n risky assets S1, S2, · · · , Sn, and each Sk has m possible outcomes. Then
the market is complete if n ≥ m.

2.9.1 Some examples

Suppose r = 0. Let S1
0 = 200, S2

0 = 300 and S1
T can take values 400, 200, 100, S2

T can take
values 400, 300, 100. Below we will consider two examples with these set up, just changing
the synchronicity of S1, S2. we’ll see both markets are complete, but one is abitrage free
and one is not.

Arbitrage free and complete market

There are 3 possible outcomes ω1, ω2, ω3. Then we specify that S1
0 = 200

S1
T (ω1) = 400

S1
T (ω2) = 200

S1
T (ω3) = 100
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and S2
0 = 300

S2
T (ω1) = 300

S2
T (ω2) = 400

S2
T (ω3) = 100.

Note that when S1 goes up, S2 states neutral and vice versa. We claim that this model
is arbitrage free and complete. Indeed we can check that the unique risk neutral probability
is

PQ(ω1) =
1

7
;PQ(ω2) =

4

7
;PQ(ω3) =

2

7
.

Let’s apply this to pricing a call option that pays (S1
T + S2

T − 400)+ at time T . If we
hold xi shares of Si and y dollars in cash then the matrix system for x1, x2, y is 400 300 1 300

200 400 1 200
100 100 1 0

 ,
which has REF  1 0 0 5/7

0 1 0 3/7
0 0 1 −800/7

 .
Therefore the price for this option is

x1S
1
0 + x2S

2
0 + y =

5

7
200 +

3

7
300− 800

7
=

1100

7
,

which agrees with the price we get via expectation under risk neutral probability:

1

7
Vu +

4

7
Vn +

2

7
Vd =

1

7
300 +

4

7
200 =

1100

7
.

Actually because the left hand side of the matrix is always the identity, we can see that
any financial product is replicable.

Complete but not arbitrage free market

This time we change the outcomes of S1, S2 to S1
0 = 200

S1
T (ω1) = 400

S1
T (ω2) = 200

S1
T (ω3) = 100
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and S2
0 = 300

S2
T (ω1) = 400

S2
T (ω2) = 300

S2
T (ω3) = 100.

Note that now S2 goes up and stays neutral whenever S1 goes up and stays neutral and
vice versa. we can check that the only risk neutral measure we can find is

PQ(ω1) = PQ(ω3) = 0;PQ(ω2) = 1.

But this is not equivalent to the physical measure, assuming that the physical measure
puts positive weights on all three outcomes. Thus this means there is arbitrage opportunity
for this model. Can we find it?

Surprisingly, this model is still complete. For simplicity again let’s consider again the
call option that pays (S1

T + S2
T − 400)+ at time T . If we hold xi shares of Si and y dollars

in cash then the matrix system for x1, x2, y is 400 400 1 400
200 300 1 100
100 100 1 0

 ,
which has REF  1 0 0 5/3

0 1 0 −1/3
0 0 1 −400/3

 .
The thing to note is the left hand side of the matrix again is the identity. Thus any asset

is replicable, yet the market is NOT arbitrage free!

2.10 Asset that pays dividend

In many cases, an asset can pay dividend, either in the form of cash or shares. Then
the payment can be made at discrete time points (lump sum payment) or continuously.
Eitherway, the stock price will decrease after dividend payment is made. We describe these
situations and the effect of dividend payment on a portfolio value.

2.10.1 Stock dividend

The first form of dividend payment is in a percentage of the stock price, that is reinvested
in to the stock. This has the overall effect of increasing the number of shares a stock holder
have in his portfolio.

Suppose the dividend payment rate is 30 % per annumn. Also suppose that this is a
one time payment made at time t. To clarify the situation, we will use t− to describe the
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moment right before time t. Then the company makes a one time payment of 30 % St− in
dividend at time t. The stock price St becomes St = .7St−. If you hold x shares of S then
your portfolio value at time t (after the dividend payment) is

πt = x(.7St−) + x(.3St−) = xSt− = πt−,

so it hasn’t changed in value.
Now suppose you use this money to reinvest into the stock, then the number of shares

you hold at time t is

x̃ =
πt
St

=
xSt−

0.7St−
=
x

.7
.

So another way to look at your portfolio value at time t is

πt =
x

0.7
St =

1

1− 0.3
xSt.

The above calculation is just an illustration. In the situation that the dividend payment
is stock dividend, the reinvesment into the stock is automatically made.

Now suppose that the dividend is paid n times over the time interval [0, T ], (T is in
year), still at the same rate 30% per annum. Then at each time 0.3T

n
% of the stock price is

paid in dividend. You can verify that

πT =

(
1

1− 0.3T
n

)n

xST .

As n→∞ this approaches
πT = e0.3TxST .

Thus we say if the dividend payment rate is q and the stock is continuously reinvested,
then a portfolio consisting of one share of the stock at time 0 is worth eqTST at time T .
More precisely, 1 share of S has grown to eqT shares of S at time T .

2.10.2 Cash dividend

The second form of dividend payment is in cash, that is not automatically reinvested into
the stock. More specifically, suppose a cash amount d is paid out a time t. Then the stock
price St becomes

St = St− − d.
A portfolio consisting of x shares of S stays the same in value after the dividend payment:

πt = x(St− − d) + xd = xSt− = πt−.

Since the cash payment is not automatically reinvested into the stock, the value of this
particular portfolio at time T is

πT = xST + xder(T−t).
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Remark: 1. Technically the cash dividend can also be reinvested into the stock at the
discretion of the portfolio holder. But in this case it will come back to the stock dividend
case discussed above, just not continuously re-invested. Since we are discussing the one
period model, we will assume the portfolio holder does not rebalance their portfolio in
between time 0 and time T . The re-balancing situation will be discussed later in the multi-
period model.

2. The difference between stock dividend and cash dividend, besides the re-investment
issue, is the denomination. Stock dividend is denoted in percentage of stock, and cash is
just in dollars.

2.10.3 Stock price has to decrease after dividend payment

You may wonder if there is a situation where the stock price stays the same after the divi-
dend is paid out (in either form). The answer is no. The reason is there will be arbitrage if
this is the case. Suppose a cash dividend d is made at time t. Then if the stock price stays
the same, one can simply borrow St from the bank to buy 1 share of the asset right before
time t, collect the dividend payment d at time t and sell the asset to pay back the loan to
the bank. This way one made d dollars in riskless profit. But if the asset price decreases to
St − d after the dividend payment, then the situation described above won’t happen.
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2.11 Exercises

1. (a) Suppose Apple is currently trading at $500.00. Alice believes Apple will go up in
a major way and wants to bet $60,000 on this speculation. Right now, suppose a January
call at strike $600 costs $6.00. Therefore Alice can buy 10,000 calls with her money;
since Apple options are exchange-traded in standardized contracts for the purchase or sale
of 100 shares, this means she can buy 100 contracts. Suppose she buys and holds the
option until expiry. Call this investment strategy I. Strategy II is to simply invest the entire
$60,000 today in Apple stock and sell in January at the same date the options expire. (For
simplicity assume the interest rate is 0.) If the stock price on the date of expiry is $620 per
share, calculate her profit from each different strategy.

Comment: we should find in (a) that the profit for strategy I is significantly greater; this
is an example of how an option may provide leverage for speculation. Of course, strategy
I also magnifies possible losses. If the option expires worthless, then Alice will lose her
entire $60,000. She would lose everything in strategy II only if the stock price went to 0,
which is very unlikely.

(b) For each strategy in (a), determine the profit or loss as a function of the price ST
of Apple stock at the expiration date. Determine that price S∗T at which both strategies
produce the same profit. Alice would have to strongly believe that ST will be larger than
S∗T to prefer strategy I.

2. A hedger would buy a put on XYZ stock to protect against a decrease in XYZ stock
price. A speculator would buy a put on XYZ stock to try to profit from a decrease in XYZ
stock price. Explain.
3. Suppose we enter a 3 month forward contract on a non-dividend paying stock. The price
of the stock today is $ 25 and the risk-free borrowing and lending rate is 6% per annum.
What is the forward price?

A month later the price of the stock is $ 30 and the interest rate is the same. What is the
above contract worth at this time?
4. In this question, we will find the forward price for a forward contract on a stock that
pays dividend. Assume the interest rate is for the money market is r.

a. Suppose a stock pays a one time dividend worth d dollars at time t, where 0 < t < T .
That is, at time t, the holder of 1 share of stock receives d dollars (and only at this time).
Shows that the forward price is

F (0, T ) = [S0 − e−rtd]erT .

b. Suppose a stock pays dividend continuously at a rate rd > 0, called the dividend
yield, which is continuously reinvested in the stock. That is, an investment in one share
held at time 0 will increase to become erdTST at time T . Show that the forward price is

F (0, T ) = S0e
(r−rd)T .
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5. Consider the one period model: we have a stock whose price at time k = 0 is S0 and

ST = uS0 with probability q
= dS0 with probability 1− q,

where u ≤ erT ≤ d. We add an additional assumption that this stock pays dividend at rate
rd that is reinvested: one share of S at time k = 0 is worth erdTST at time T .

a. What is the no arbitrage condition for this model?
b. What is the no arbitrage price of a financial derivative that is worth Vu when ST =

uS0 and worth Vd when ST = dS0? (our answer will be in terms of q, r, T, S0, u, d, Vu, Vd).
c. Is this model arbitrage free and is the market complete in this model?

6. Show that in the 1 period binomial model, there are infinitely many choices for x and y
in the game theory portfolio so that πT (ω) is a constant in ω. Moreover, for any of those
choice, V0 is the same, and equals to the value we found in class.
7.

a. Show that if the price of the forward contract on an asset S with expiration T and
strike K is not S0 −Ke−rT then there is an arbitrage opportunity.

b. Show that in the game theory portfolio, if we don’t have πT = π0e
rT then there is an

arbitrage opportunity.
8.

a. Suppose the stock of a company follows the following model: S0 = 300, ST = 350
with probability 99% and St = 250 with probability 1%. Suppose T = 1 year and r = 0.
What is the no arbitrage price of a forward contract on S with expiration T and strike 280?

b. Answer the same question as a, with the difference that P (ST = 350) = 1.
9. Show that the trinomial model we described in Section 5.2 of the lecture note is arbitrage
free.
10. Show that the one period, trinomial market with 2 assets in the trinomial model we
described in Section (2.9) is complete. What conditions do we need for this conclusion?
What condition do we need for the market to be arbitrage free?
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CHAPTER 3 Derivative pricing in multi-period model

3.1 Description of the multi-period binomial model

To make our model richer, we’ll transition from the 1-period model to the multi-period
binomial model. Specifically we’ll have:

3.1.1 Notations

The present time, denoted at n = 0 and the expiration time, denoted at n = N . The lower
case letter n, k (and occasionally i, j,m) will be used to denote the time variable. The
notation Sk (or Sn, Si, Sj · · · ) denotes the value of the stock (the underlying) at time k (or
time n, i, j · · · ). An important convention we’ll use is that S0 will always be a constant,
that is the present value of the stock is always known. For any k ≥ 1, Sk is a random
variable. The specific distribution of Sk will be discussed below.

Similarly, we’ll denote Vk to be the value of a specific financial product at time k. In
particular, if V is the European call option with strike K and expiration N , then VN =
(SN − K)+. We’ll also denote πk to be the value of a specific portfolio at time k. In
particular, if the portfolio is replicating then VN = πN . Also note that V0, π0 are also
constants, and for k ≥ 1, Vk, πk are random variables.

We will suppose that the time interandom variableals between any two discrete mo-
ments k, k + 1 are the same, denoted as ∆T . Thus the expiration time can also be written
as T = N∆T .

For a replicating portfolio, we will denote the number of shares of S we hold at a
particular time as ∆k (do not confuse this with the interandom variableal length ∆T . In
general, ∆k will also be a random variable (which is easy to understand, as the number of
shares we hold at time k will depend on the actual value of Sk at that time).

The interest rate will be denoted as r.

3.1.2 The evolution of the stock

At any time k, there are two possibilities for the stock to evolve: either jump up to Sk+1 =
uSk or jump down to Sk+1 = dSk for some d < er∆T < u. Moreover, the distribution of
Sk+1 only depends on Sk and not any further history of S. In mathematical notation we
write:

P (Sk+1 = x|S0, S1, · · · , Sk) = P (Sk+1 = x|Sk),
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for any real value x. That is, as far as deciding the behavior of Sk+1, the only information
we need is the behavior of Sk. Any further information about its past history is irrelevant.
We call this property of a random process (which Sk, k = 1, · · ·N is) the Markov property.

Figure 3.1: Multi-period binomial model

An example of something that is not a Markov chain is any process whose evolution
depends on more than its immediate history. For example, you may argue that the distribu-
tion of tomorrow’s weather (whether it’s gonna rain, shine, snow, be windy etc.) does not
just depend on today’s weather but also on the last couple of days. I.e. if it has been raining
for the last 2 days then the chance of its continuing raining is higher than if it’s only been
raining today. In this sense, the day by day weather is not a Markov process. But one can
consider the weather of a two or three days in a row, and then it may be a Markov process.
This is a technique called changing the state space of a process. This particular discussion
is only for your information. In this class we’ll only be dealing with process that is already
Markov to start with.

3.1.3 A mathematical construct of Sk

We will construct our multi-period model for Sk out of independent, identically distributed
random variables that represent jump size. This will be a very important idea, that we
may see again in the construction of general Markov processes, or in Brownian motion, an
important ingredient in our continous model later on.

More specifically, let X1, X2, · · · , XN be i.i.d random variables with distribution

P (X1 = u) = p;P (X1 = d) = 1− p,
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for some 0 < p < 1. (Note: since these random variables are identical, we only need to
prescribe the distribution of X1 and the rest would have the same distribution).

Then we simply define

Sk := S0X1X2 · · · Xk = S0

k∏
i=1

Xi.

Note that in this way we have a recursion relationship between Si and Sj, i < j which
comes in handy when we compute conditional expectation (discussed later on in this lec-
ture)

Sj = SiXi+1Xi+2 · · ·Xj = Si

j∏
k=i+1

Xk.

We claim that this way we recover the description of the evolution of Sk given above.
Indeed, it is easy to see the probability space and state space are the same. The only thing
to check is the Markovian property of Sk. We will give a rigorous justification when we
discuss conditional expectation in the multi-period model. For now, let’s just give some
intuition why it is true. We have

P (Sk+1 = x|S1, S2, · · · , Sk) = P (SkXk+1 = x|S1, S2, · · · , Sk)

And we see that Xk+1 is independent of S1, S2, · · · , Sk by construction. Thus condi-
tioning on S1, S2, · · ·Sk is the same as not conditioning as far as Xk+1 is concerned (recall
that if X is independent of Y then E(X|Y ) = E(X)). On the other hand, the only infor-
mation we need to determine Sk is Sk itself, and we don’t need S1, S2, · · · , Sk−1. Putting
these two facts together, we can believe that

P (SkXk+1 = x|S1, S2, · · · , Sk) = P (SkXk+1|Sk),

which is the Markov property.
This description will be important when we use the probabilistic approach (or expec-

tation approach) to pricing a financial product. One important remark here is that the
replicating portfolio approach still works in multi-period model. The only drawback is it is
computationally intensive (we’ll see why). Thus if all we are interested in is pricing, then
the expectation approach is more efficient. We’ll treat the replicating portfolio approach in
the in the final section of this section.

3.1.4 Some preliminary discussion about Markov chain

As we see in the previous section, Sk is a Markov chain if conditioning on the whole past
history of Sk gives us as much information as conditioning on the most recent past event.
In this sense, any process whose evolution depends on more than its immediate history
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is not a Markov chain. For example, we may argue that the distribution of tomorrow’s
weather (whether it’s gonna rain, shine, snow, be windy · · · ) does not just depend on to-
day’s weather but also on the last couple of days. In other words if it has been raining for
the last two days then the chance of its continuing raining is higher than if it’s only been
raining today. In this sense, the day by day weather status is not a Markov chain. However
one can consider the weather status of a two days in a row, and then vector-valued process
may be a Markov chain. This is a technique called changing the state space of a process.

Mathematically, a process has Markov property if it has independent increments. This
increment may be in an additive form, as in a random walk, or in a multiplicative form, as
in our multi-period binomial model. For example,let Xi be i.i.d. random variables where

P (Xi = 1) = P (Xi = −1) = 1/2,

and Sk =
∑k

i=1Xi. Then Sk is a one-dimensional symmetric random walk. It has the
interpretation that at any time k, we flip a coin and move to the right one unit if the coin is
head and move to the left one unit otherwise.

We are already familiar with the construction of the multiplicative independent incre-
ment from the multi-period stock model. We remark that by taking the log, the multiplica-
tive increment structure transforms into the additive increment structure: if

Sk =
k∏
i=1

Xi

then

log(Sk) = logki=1 log(Xi).

We now show that the independent increment property implies the Markov property.
It is clear that Sk satisfies the Markov property if and only if log(Sk) is also Markov.
Therefore, by the above remark, we only need to consider the process Sk with additive
independent increment structure. Thus let

Sk =
k∑
i=1

Xi,

where X ′is are i.i.d. random variables. We need to show

E(Sk+1|S0, S1, · · · , Sk) = E(Sk+1|Sk). (3.1)

Note that

E(Sk+1|S0, S1, · · · , Sk) = E(Sk|S0, S1, · · · , Sk) + E(Xk+1|S0, S1, · · · , Sk)
= Sk + E(Xk+1),

since Xk+1 is independent of S0, S1, · · · , Sk. Also

E(Sk+1|Sk) = E(Sk|Sk) + E(Xk+1|Sk) = Sk + E(Xk+1).

Thus (3.1) is verified.

57



3.1.5 The probability space and the state space

we can easily see that for a given k, there are only k + 1 values Sk can take. Namely

Sk = S0u
idk−i, i = 0, 1, · · · , k.

It is convenient to have notations to refer to this event. We’ll give an example when N = 3.
It is clear that when N = 3, there are only 8 possible outcomes, namely

Ω =
{
uuu, uud, udu, duu, ddu, dud, udd, ddd

}
,

which corresponds to, for example

S3(uuu) = S0u
3, S3(dud) = S0d

2u, S2(uud) = S0u
2, S0(udu) = S0ud · · ·

From this list we can create other events, such as

{uu} = {uuu} ∪ {uud}, {ud} = {udu} ∪ {udd} · · ·

(and events at the time k = 1 level etc)
Note that these events are outcomes for S2 but not outcome for S3. Thus it makes sense

to say S2(ud) = S0ud but not S3(ud)(=?).
We’ll refer to Ω as our probability space and the values Sk can take as our state space

for Sk. Note that for a particular N , there are 2N outcomes in Ω, and there are k + 1
members in the state space of Sk.

3.2 The distribution of Sk

We have the following result:

Lemma 3.2.1. In the above construction, Sk has a binomial distribution. Namely

P (Sk = S0u
idk−i) =

(
k

i

)
pi(1− p)k−i.

Remark: This is not the typical Bin(k, p) distribution that we’re used to, as far as the
values Sk takes is concerned. But if we consider any time S goes up as a success, and count
how many times it goes up until time k, then indeed we get a Binomial distribution in the
traditional sense.
Proof. Recall that Sk = S0X1X2 · · ·Xk. Clearly Sk = S0u

idk−i if and only if i of X ′s
take value u and k − i of them take value d. Because they are independent, the probability
for a particular arrangement to happen is pi(1 − p)k−i. There are

(
k
i

)
such arrangements,

since we just choose i of them among k total to take value u.

58



3.3 Financial products in multi-period model

The multiperiod model allows for a richer variety of financial products, namely the products
that can depend on the past history of the stock. We’ll describe the financial products we’ll
encounter in this course for the multi-period model below.

3.3.1 The European-style options

A financial product that makes a payment f(SN) for some deterministic function f at time
N is referred to as a European-style option. For example, if f(x) = (x − K)+ then we
have the European-call and f(x) = (K − x)+ then we have the European-put option.
But we can also choose f(x) = x2, f(x) = sin(x) or f(x) = (x2 − K)+. Of course
the question about the financial interpretation of these products can be raised (what kind
of advantage to the buyers do they offer?). But mathematically, we can treat all of these
the same ways as we treat the European-put and European-call options. Moreover, these
additional examples allow for more tractable mathemtical problems to be worked on. To
recap, the distinguishing features of a European-style option is that the exercise time is only
at the expiration time N and the dependence of the payoff is only on the value of the stock
at the expiration time SN .

3.3.2 Exotic options

Now that we’re in multi-period model, it makes sense to talk about a history of S on the time
interandom variableal 0, 1, · · · , N . A financial product that makes payment f(S0, S1, · · · , SN)
for some deterministic function f at time N is referred to as an exotic-option. Thus like a
European-style option, the exercise time of an exotic option is still the expiration time N ,
but the pay off can be dependent on the past history of S.

Remark: we may argue whether the word option has any meaning in these contexts,
since we do not have the interpretation of a choice here. This is correct, but simply the word
option here can be understood as a financial product. It is also the terminology employed
in the finanical literature, so we’ll follow the convention here.

Some examples of exotic options: The look back option:

f(x1, x2, · · · , xN) = max
i=1,··· ,N

xi.

We call it a look back option since we get the best value of the stock in its past history as
the payment.

On the other hand, if the payment is the average of the stock value in its history, then
we get the Asian option:

f(x1, x2, · · · , xN) =
1

N

N∑
i=1

xi.
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We also have the barrier options: if the stock ever get below or above some threshold,
then the option is activated or the option becomes worthless. The first scenario is referred
to as down (or up) and in options. The second is referred to as down (or up) and out
options. The barrier options can in turn be call or put option. It means if the option ever
gets activated (or never knocked out) then its payment at the expiration time will be the
same as a European call or put option. In particular, let’s consider a barrier call option with
strike K and barrier L (L is a constant). The function f(x1, x2, · · · , xN) in this case takes
the following form:

Up and in:
f(x1, x2, · · · , xN) = 1{maxi=1,··· ,N xi≥L}(xN −K)+.

Up and out:

f(x1, x2, · · · , xN) = 1max{i=1,··· ,N xi≤L}(xN −K)+.

Down and in:

f(x1, x2, · · · , xN) = 1min{i=1,··· ,N xi≤L}(xN −K)+.

Down and out:

f(x1, x2, · · · , xN) = 1{maxi=1,··· ,N xi≥L}(xN −K)+.

Where, for a real number x, we have

1{x≥L} = 1 if x ≥ L

= 0 if x < L.

3.3.3 American options

The last product we’ll encounter is the American option, which is similar to a European
option, with the additional feature that it gives the holder the right to choose the time to
exercise the option with a fixed strike price K. More specifically, for an American call
option, the option holder can choose a time between 0 and N to exercise and pay K dollars
for a share of S. For an American call option, the option holder can choose a time between
0 and N to exercise and sell a share of S for K dollars.

3.4 Pricing by the replicating portfolio approach

3.4.1 Self-financing portfolio

The idea of pricing using the replicating portfolio approach is the same: we would like to
construct a portfolio, initially with ∆0 shares of stock and y dollars in the money market
such that at the expiration time

∆NSN + yN = VN , (3.2)
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where VN is the value of the financial product and yN is the amount of cash in the portfolio
at time N . Notice that here we use ∆N and yN versus the construction in the 1 period
model, where the number of shares of stocks remains the same and the money market
account only becomes yerT . The reason is in the multi-period model, we can’t expect to
select our portfolio at time 0 and leave it unattended, hoping that equation (3.2) will hold at
time N . Such approach is called the buy and hold approach for a portfolio; and obviously
we can’t generally use such approach for pricing in multi-period model. (One reason is we
can visualize, with the buy and hold approach, we’re treating the multi-period model as one
big one-period model. However, now at the terminal time T , SN can take N + 1 values, in
stead of just 2 values as before. Thus one cannot solve for ∆0 and y in a over-determined
system, as discussed in the previous lecture).

Thus we need to re-balance our portfolio at each time period 1, 2, · · · , N. How we
select the portfolio will be addressed next; but first we need to note there is one obvious
constraint, if the portfolio is replicating. That is the portfolio has to be self-financing, i.e.
one cannot put additional funding into the portfolio, nor can one withdraw the cash from
it. Letting yk be the amount of cash in the portfolio at time k, the self-financing condition
can be expressed as:

πk+1 = ∆k+1Sk+1 + yk+1 = ∆kSk+1 + yke
r∆T . (3.3)

The interpretation is this: we hold ∆k shares of stock and yk dollars at time k. At time
k + 1, the stock price changes to Sk+1 and the money market grows to yker∆T . This is our
portfolio value at time k+ 1, πk+1. Now we can rebalance our portfolio, if we want to. But
all we at our disposal is πk+1 dollars. Thus if we want to buy ∆k+1 shares of stock at price
Sk+1, then the amount of cash we have in the bank, yk+1 has to be such that

πk+1 = ∆k+1Sk+1 + yk+1.

Note that throughout this discussion, yk can be negative, with the interpretation that we
borrow money from the bank, in stead of putting it in a saving account. Note that since

πk = ∆kSk + yk,

it follows from (3.3) that

πk+1 = ∆kSk+1 + er∆T (πk −∆kSk). (3.4)

This equation can be looked as as a recurrence relation between πk+1 and πk. It has the
advantage that the cash holding yk and yk+1 do not show up in the equation, thus reducing
the number of unknowns we have to deal with (only ∆k needs to be found). observe
that both (3.3) and (3.4) are equivalent, thus we’ll refer to either one as the self-financing
condition (or equivalently, the self-financing equations). More often equation (3.4) will
be used. However, we should still use our judgement to decide which equation is best for
which situation.

The self-financing equation (3.4) will be the key to solve for the replicating portfolio.
The pricing by the replicating portfolio approach in the 1-period model is simply an appli-
cation of the self-financing condition, as we’ll show in the next section.
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3.4.2 Self-financing equation in 1 period model

In the 1 period model, N = 1 thus the equation (3.4) reduces to

π1 = ∆0S1 + er∆T (π0 −∆0S0).

How to use this equation? The portfolio is replicating, thus pi1 = V1. Keeping in mind
that this equation has to hold for all outcomes, we have

Vu = V1(u) = ∆0S1(u) + er∆T (π0 −∆0S0) = ∆0uS0 + er∆T (π0 −∆0S0)

Vd = V1(d) = ∆0S1(d) + er∆T (π0 −∆0S0) = ∆0dS0 + er∆T (π0 −∆0S0).

Thus we have ∆0 = Vu−Vd
S0(u−d)

, exactly as we had before.

3.4.3 The steps of solving the self-financing equation

3.4.4 Non-path dependent option

A recursive approach is used to find the replicating portfolio using the self-financing equa-
tion. We start at time k = N − 1 where equation (3.4) reads as

πN = ∆N−1SN + er∆T (πN−1 −∆N−1SN−1).

What are we solving for? We are solving for ∆N−1 and πN−1. Once we know these
then it is clear that we known how to construct a hedging portfolio at timeN−1. However,
observe that the above equation is an equation of random variables, so clearly we are NOT
solving for explicit (numerical) value of ∆N−1 and πN−1. Instead, we should ask we are
solving for ∆N−1 and πN−1 in terms of what variable? The answer is we are solving for
∆N−1 and πN−1 in terms of SN−1.

A crucial observation here is that since we are at time k = N − 1, SN−1 is a known
value. This has a real-life interpretation that once we arrive at timeN−1, then by observing
the stock market, we know what SN−1 is. Since ∆N−1 and πN−1 are expressed in terms of
SN−1, we can balance our portfolio accordingly.

What about πN , how do we know its value? This is where the replication property
is used. Since the portfolio is replicating, πN = VN and if we are dealing with say a
European-style derivative, then we can replace VN with g(SN) for some function g.

What about SN? This is where the binomial model is used. Namely, for a given value
of SN−1 (recall we assumed it’s known, since we’re at time N − 1), the only values SN can
take are uSN−1 or dSN−1, thus essentially reducing us to the 1-period model’s case. More
details will be given in the example in class.

Now assume that we have solved this equation at time N − 1. Proceed backwardly, the
next equation at time N − 2 is

πN−1 = ∆N−2SN−1 + er∆T (πN−2 −∆N−2SN−2).
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But now we’re back to the same procedure above, with πN−1 being function of SN−1,
SN−2 is known, and we’re solving for ∆N−2 and πN−2 in terms of SN−2.

Thus we see that provided, at each step k we can solve for ∆k and πk then keep on going
we will arrive at step k = 0, at which point we have completely obtained our replicating
portfolio set up, as well as the price of the financial product V0, given by π0.

It is not hard to be convinced that we can solve for ∆k and πk at each step k. An abstract
proof can be given, but it can be messy. We’ll demonstrate this by an example with N = 3
in class and we’ll see how one can generally prove this fact.

3.4.5 Path dependent option

If the derivative is path-dependent, then the above system of equations needs to be replaced
with

g(SN , SN−1, · · · , S0) = ∆N−1SN + er∆T (πN−1 −∆N−1SN−1).

So now, we are solving for πN−1 as a function of SN−1, SN−2, · · · , S0 instead of just
SN−1. This has to hold true for all N + 1 outcomes of SN . The question is, of course, is
the above system solvable? The answer is yes.

The key again is for any outcomes of s0,1 , · · · , sN−1, SN can only take 2 values
usN−1, dsN−1. Thus the above equation reads, for a particular outcome

g(usn−1, sN−1, · · · , s0) = ∆N−1(s0, s1, · · · , sN−1)usN−1

+er∆T (πN−1(s0, s1, · · · , sN−1)−∆N−1sN−1)

g(dsn−1, sN−1, · · · , s0) = ∆N−1(s0, s1, · · · , sN−1)dsN−1

+er∆T (πN−1(s0, s1, · · · , sN−1)−∆N−1sN−1)

This is a system of 2 equations with 2 unknowns, and we can verify that it is solvable.

3.5 Conditional expectation in the multi-period model

3.5.1 The value of a forward contract in the future

Suppose we’re in the multi-period model with the present being k = 0. Consider the
forward contract, which allows the holder to pay K dollars for 1 share of the asset S at
time N . We’ve already discussed that its price V0 should be S0 −Ke−rN∆T .

Now suppose at a time n : 0 < n < N we want to sell this contract. How much
should we charge it by? we should easily see that its price at time n would be Vn =
Sn−Ke−r(N−n)∆T , by a replicating portfolio argument. But suppose we would like to apply
the probabilistic approach in this case, how can we do it? Up to now, we used expectation
under the risk neutral measure as a method for obtaining the no arbitrage price. But it’s
clear that taking expectation will not yield Vn of the above forward contract; because taking
expectation gives a constant value, while Vn is clearly a random variable.
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Of course the probabilistic approach can still be used, but instead of taking expectation
we need to take conditional expectation. The intuition is that we are discussing a situation
in the future, where conditioning on the price of Sn, we can decide the value of Vn. Indeed
conditional expectation is fundamental in studying the multi-period model, as well as the
continuous model later on. It is useful, for example, when we want to talk about not only
the current price of a financial product, but its price evolution from time 0 to the expiration
time N . We’ll give a few examples for the multi-period model in the next section.

3.5.2 The flow of information

We mentioned that at time n, the value of Sn is known to us. This is correct. But to be more
precise, at time n, all values S0, S1, · · · , Sn are known to us. Thus in deciding the price of a
financial product at time n, we need to condition on information of S0, S1, · · · , Sn instead
of just Sn. This would be clear, for example, when we deal with path-dependent or exotic
option.

We will then look at expressions of the form

E(f(Sn+k)|S0, S1, · · · , Sn), k ≥ 0.

We introduce a notation that represents the amount of information regarding Sk, k =
1, 2, · · · , n available at time n :FSn . When the asset in mind is clear (i.e. we’re only
discussing 1 asset S), we’ll drop the super-script S and just write Fn. Thus

E(f(Sn+k)|S0, S1, · · · , Sn) = E(f(Sn+k)|FSn ) = E(f(Sn+k)|Fn).

Now because the process Sk is Markov, we have

E(f(Sn+k)|Fn) = E(f(Sn+k)|Sn).

Thus most of the time, conditioning on Sn is sufficient. There are exceptions, for ex-
ample, when we deal with path-dependent option. It is clear that

E(S1S2|FS2 ) = S1S2 6= E(S1S2|S2),

because
E(S1S2|S2) = S2E(S1|S2),

and generally E(S1|S2) 6= S1.

3.5.3 Examples

When taking conditional expectation in the multi-period model, we should try to take ad-
vantage of the following:

1. The form of Sn : Sn = S0X1X2 · · ·Xn.
2. The i.i.d property of Xi, i = 1, · · ·n.
3. The elementary properties of conditional expectation.
4. The form of f in E(fSn+k |Sk).
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Example 3.5.1.

E(S4|S2) = E(S2X3X4|S2) = S2E(X3X4|S2) = S2E(X3)E(X4) = S2(pu+ (1− p)d)2.

Example 3.5.2.

E(S2
3 |S2) = E((S2X3)2|S2) = SE2 (X2

3 ) = S2(pu2 + (1− p)d2).

3.5.4 Conditional expectation revisited

When dealing with path-dependent options, we cannot rely on the Markovian property of
S as remarked above. So the following rule (the so-called tower property of conditional
expectation) is important:

If m ≤ n then for any random variable ξ:

E(E(ξ|FSn )|FSm) = E(E(ξ|FSm)|FSn ) = E(ξ|FSm).

In other words, when we condition on more information, and then condition on less
information, (or the other way) the result is always the same as conditioning on less infor-
mation.
Proof. We prove

E(E(ξ|FSn )|FSm) = E(ξ|FSm)

and leave the other equality as exercise. First note that E(E(ξ|FSn )|FSm) is a function of
S0, S1, · · · , Sm by definition. Let’s call it g(S0, S1, · · · , Sm). We need to check for any
function f(S0, S1, · · · , Sm)

E
[
g(S0, S1, · · · , Sm)f(S0, S1, · · · , Sm)

]
= E

[
ξf(S0, S1, · · · , Sm)

]
.

But by definition,

E
[
g(S0, S1, · · · , Sm)f(S0, S1, · · · , Sm)

]
= E

[
E(ξ|FSn )f(S0, S1, · · · , Sm)

]
.

observe that f(S0, S1, · · · , Sm) is also a function of S0, S1, · · · , Sn since m ≤ n.
Therefore,

E
[
E(ξ|FSn )f(S0, S1, · · · , Sm)

]
= E

[
ξf(S0, S1, · · · , Sm)

]
.

3.6 The risk neutral measure

3.6.1 Motivation

In the multi-period model, we do not have to limit ourselves to only consider expiration
time n = N . Consider a forward contract on the asset S with 0 strike price that has
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expiration time n ≤ N . What is the price for this contract at time k? Again, using the
replicating portfolio apprach, we’ll see that the price is Sk.

Recall how we define the risk neutral measure in the 1 period model as the measure Q
such that

EQ(e−rTST ) = S0.

The motivation for us there is exactly because the forward contract with 0 strike price
expiration T must be worth S0 at time 0. Thus together with the above analysis, we can see
that the the risk neutral measure Q in the multi-period binomial model is such that for any
k ≤ n

EQ(e−(n−k)∆TSn|Sk) = Sk. (3.5)

3.6.2 The formula for the risk neutral measure

The equation (3.5) defines the risk neutral measure. But we want to find out concretely
how to implement the risk neutral measure on the multi-period model, just as we did in the
1-period model. One important observation will help us here, that is when limit to a 1 step
period, such as from n− 1 to n, the multi-period model looks exactly as a 1 period model.
And the entire multi-period model can be re-produced by repeating so many such 1 step
period movements.

In terms of mathematics, what we’re utilizing is the identical property of Xi. That is if
we find out the distribution of X1 under the risk neutral measure Q, then we’ve found out
the distribution of all the Xi’s under Q as well. And that completes the decription of risk
neutral measure]

Concretely, the equation (3.5) for n = 1 and k = 0 reads

EQ(e−∆TS1) = S0.

But we have solved this equation before, of course. We conclude that Q(X1 = u) = q
and Q(X1 = d) = 1− q where

q =
er∆T − d
u− d

. (3.6)

And thus under Q, P (Xi = u) = q and P (Xi = d) = 1− q for all i = 1, 2, · · · , N .
we may be suspicious. We derived this distribution from a 1 period analysis. Are we

sure that the equation (3.5) holds for general n and k?
To check, note this simple but also important observation:

EQ(X1) =
er∆T − d
u− d

u+
u− er∆T

u− d
d = er∆T .

Thus

EQ(e−(n−k)∆TSn|Sk) = EQ(e−(n−k)∆TSkXk+1Xk+2 · · ·Xn|Sk)
= e−(n−k)∆TSk[E(X1)]n−k = Sk,

and equation (3.5) has been checked.
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3.6.3 A model where volatility stays the same under physical and risk neutral mea-
sure

A measure of how volatile the asset is can be defined as followed:

(σP )2∆T = V arP (
Sk+1 − Sk

Sk
).

Here the notation P means that the Variance is taken under the probability P . We proceed
to show that under the Binomial tree model, (σP )2 is independent of P , and thus we just
refer to it as σ2. The volatility of the stock is σ.

Under the Binomial tree model, Sk+1−Sk
Sk

= Xk+1− 1. We suppose that under P , Sk has
growth rate µ and volatiltiy σP . That is

EP (Xk+1) = 1 + µ∆T

V arP (Xk+1) = (σP )2∆T.

Here we use discret compounding. The only requirement for the risk neutral probability Q
is that Sk under it has growth rate r. That is

EQ(Xk+1) = 1 + r∆T

We can achieve the first set of conditions under P as followed:

Xk = 1 + µ∆T + σPWk,

whereWk is a Bernoulli type RV with two states u, d such that EP (Wk) = 0, V arP (Wk) =
∆T . We can achieve the 2nd set of conditions under Q by letting

Xk = 1 + r∆T + σP W̃k,

where

W̃k = Wk +
µ− r
σP

∆T.

We require Q to be such that EQ(W̃k = 0. That is

EQ(Wk) =
r − µ
σP

∆T.

3.6.4 Pricing by risk neutral measure

Theorem 3.6.1. Suppose the asset Sn follows the multi-period binomial model, where the
probability Sn goes up is given by equation (3.6). Then the no arbitrage price at time k for
any financial derivative with exercise time N is

Vk = EQ(e−(N−k)∆TVN |FSk ). (3.7)

In particular, its value at 0 is

V0 = EQ(e−N∆TVN).
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Remark:
1. We will refer to equation (3.7) as the pricing formula (under risk neutral measure).
2. Note that in the pricing formula, the conditioning is on the history of S, up to time k.

This formula becomes

Vk = EQ(e−(N−k)∆TVN |Sk)

when we deal with European-style derivative for example. But in general, say, when deal-
ing with exotic options, one cannot reduce conditioning on FSk down to Sk. Thus the
pricing formula is a great theoeretical result for discussing the evolution of the derivative’s
price. Computing explicitly Vk might take additional work.

3. The pricing formula also only works for financial product with exercise time N . In
other words, it applies to European style and exotic derivatives, but NOT American option.
We’ll discuss why when we discusses the pricing of American options.

3.6.5 The fundamental theorems of asset pricing in multi-period model

we may also question the connection between the risk neutral measure, the existence of
the replicating portfolio and the non-existence of arbitrage opportunity. Similar to the one
period model, we also have two fundamental theorems that establish their connection here:

Theorem 3.6.2. In the multi-period binomial model, the risk neutral measure exists if and
only if there is no arbitrage opportunity.

Theorem 3.6.3. In the multi-period model, the risk neutral measure exists, and is unique,
if and only if there is a replicating portfolio.

Intuitively, these theorems are true because when we limit to any one step period, the
multi-period model “looks like" the 1 period model. We have checked that for the one-
period model, these theorems are true.

3.7 Remarks on using the binomial tree for pricing

It is common to use the “backward stepping" method to price a financial asset in the multi-
period binomial model. This again makes use of the formula (3.7), where now we replace
N by k + 1, by the property of conditional expectation:

Vk = EQ(e−∆TVk+1|FSk ).

Even more explicitly, if we denote ω to be a vector of length k consisting of u and d (so
that ω denotes an outcome at time k) then the above formula becomes

Vk(ω) = e−∆T [qVk+1(ωu) + (1− q)Vk+1(ωd)]. (3.8)
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This equation can be reduced further, in the case of Euro-style options, to finding the
value of Vk at “a certain node" on the binomial tree by the Markov property of S. Consider
a time k, 0 ≤ k ≤ N with the corresponding k+ 1 nodes. The price Vk at a particular node
i, i = 1, · · · , k + 1 can be computed as

Vk(i) = e−∆T [qVk+1(iu) + (1− q)Vk+1(id)].

For example, consider the following example on pricing a put option on a stock with
the strike K = 1.56 and the expiration N = 3. The put price at each node is given in
parentheses below the stock price. The risk neutral probability is q = 0.4626.

Figure 3.2: Binomial pricing of a put option

At the time k = 2 there are k + 1 = 3 nodes. At the bottom node i = 3, we have

V2(3u) = (1.56− 1.2216)+ = 0.3384

V2(3d) = (1.56− 0.9050)+ = 0.6550

V2(3) = 0.4626× 0.3384 + (1− 0.4626)× 0.6550 = 0.5059.

Formula(3.8) implies that for any outcomes ω1, ω2 of length k that consists of the same
portion of u and d (for example k = 3 and ω1 = ddu and ω2 = dud), we have

Vk(ω1) = Vk(ω2).

This is valid because the price of the financial derivative (in this case the European op-
tion) is Markovian. That is Vk only depends on Sk (and not Sk−1, Sk−2, · · · ), and Sk(ω1) =
Sk(ω2).

69



Indeed in the figure (3.2), we see that for the two outcomes ω1 = ud, ω2 = du, V2(ω1) =
V2(ω2) = 0.1371. This is because V2 only depends on the value of S2. And in this example
S2(du) = S2(ud) = 1.4229.

However, this finding value at a “certain node" will no longer be valid in a path depen-
dent option, for example a down and out option. It is because now Vk depends not only
on Sk, but also on Sk−1, Sk−2, · · · . It could happen that Sk(ω1) = Sk(ω2) but Sk−1(ω1) 6=
Sk−1(ω2). For example in figure (3.2),

S3(uud) = S3(duu) = 1.6490

but
S2(uud) = 1.9207 6= S2(duu) = 1.4229.

So one cannot conclude that Vk(ω1) = Vk(ω2). For example, if we consider an look
back option on the same stock as given in figure (3.2) then you can see that

V3(uud) = max(1.43, 1.6573, 1.9207, 1.6490) = 1.9207

while
V3(duu) = max(1.43, 1.2277, 1.4229, 1.6490) = 1.6490.

However we emphasize that the formula (3.8) is still valid. We just have to price the
option via a “path by path" method.

3.8 The American options

3.8.1 Some preliminaries

Definition

An American call option with strike price K and expiration T on an underlying S gives the
holder the right to choose a time between 0 and T to buy 1 share of S with price K.

An American put option with strike price K and expiration T on an underlying S gives
the holder the right to choose a time between 0 and T to sell 1 share of S with price K.

Remark: The American option allows the possibility of buying and exercising the op-
tion immediately. Therefore, if we let V A

t be the price of an American call option with
strike K and expiration T , then V A

t ≥ (St−K)+ for all t. It is because if V A
t < (St−K)+

then one can buy the option and exercise immediately for a positive profit, which is an
arbitrage opportunity. Similarly, the price V A

t of an American put option also satisfies
V A
t ≥ (K − St)+ for all t.

The optimal exercise time

A holder of an American option will judiciously choose a time to exercise the option to
maximize his expected profit. Such a time will be referred to as the optimal exercise time.
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Also note that a prioi, the optimal exercise time is a random time. That is for different
realizations of the paths of the underlying S, the holder might choose different times to
exercise the option.

Comparison with European option

We have the following easy, but still important observation: Let V A
t be the (no arbitrage)

price of an American call option and V C
t the (no arbitrage) price of the corresponding

European call option purchased at time t = 0 with the same strike K and expiry T . That is
V C
T = (ST −K)+ and the European option holder cannot exercise the option earlier than
T . Then V A

t ≥ V C
t . That is the price of an American option is always at least as expensive

as its European counterpart. Note that this conclusion is model independent: we do not
make any assumption on St.

Reason: Suppose V C
t > V A

t . Then we take a long position (that is we buy 1 share) on
the American option and a short position (that is we sell 1 share) on the European option.
Then we make a risk free positive profit equals V C

t − V A
t . At time T , we exercise the

American option to close out our short position on the European option. Thus this is an
arbitrage opportunity and therefore we must have V C

t ≤ V A
t .

There is another rather surprising result. That is in the case of a call option, the price
of an American option on an asset that does not pay dividend is equal to the price of
a European option for all time: V A

t = V C
t , for all t. Thus the optimal exercise time of

an American call option will always be the expiration time T . This result also is model
independent. We present it in the next subsection.

American call option

Let C(t) be the price of a European call with strike K expiring at time T . Let A(t) be the
price of the corresponding American call. No particular model is put on the price process,
except that we assume no dividends are paid on the asset. We will use a no-arbitrage
argument to show that C(t) > (S(t)−K)+ for all t < T , as long as S(T ) can fall to either
side of K with positive probability. Use this result to show that A(t) = C(t) for all t and
that early exercise is never optimal. ( It is also helpful to keep this observation in mind: If
A(t) > (St − K)+ then it is not optimal to exercise the American option at time t since
trading the option itself gives higher pay off than exercising the option).

Ans: As long as P (S(T ) > K) > 0, the price C(t) > 0, because the probability of a
strictly positive payoff is greater than zero.

If 0 < C(t) ≤ (S(t)−K)+ at some t < T , then S(t) > K and S(t) ≥ C(t) +K. This
would create an arbitrage opportunity. Suppose you short one share of the underlying (that
is you borrow S(t) in cash from an agent and pay back one share of S at time T - Another
way to think about it is you borrow 1 share of S now and pay it back at time T ) and buy
the European call for C(t), this leaves you with at least S(t) − C(t) ≥ K to invest at the
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risk-free rate. Since you owe a share of the underlying, your return from this position at T
is

(S(t)− C(t))er(T−t) + (S(T )−K)+ − S(T ) = (S(t)− C(t))er(T−t) −min{K,S(T )}
≥ Ker(T−t) −min{K,S(T )}

If r > 0, this is always positive, and so it yields an arbitrage. If r = 0, this payoff is
non-negative and strictly positive on the event S(t) < K, which we assume happens with
positive probability, so again we have an arbitrage. It follows that C(t) > (S(t)−K)+, if
t ≤ T , in order that there is no arbitrage.

The price of the, A(t) of the American call is always greater than or equal to C(t).
Thus A(t) ≥ C(t) > (S(t) − K)+ when t < T . Since the value of the American call is
thus always strictly greater than the value of immediate exercise if t < T , it is optimal to
exercise the American call only at T . It follows then that the American and European call
have the same value: A(t) = C(t), for all t ≤ T .

3.8.2 Optimal stopping

Suppose you’re the holder of an American option. Your goal is to choose a time to stop (to
exercise the option) judiciously to maximize your return. What properties does this time
have to satisfy? We have the following observations:

1. The exercise time would be random, rather tha deterministic : it is clear that for
different realizations of the asset, you would want to choose different times to exercise the
option.

2. Suppose we are currently at time t. The decision, whether or not, to exercise at time
t would be based on the past performance of the asset, up to time t. For example, if you
hold an American put option, one possible stopping rule is to exercise when the asset price
goes beyond a level L, where L is a constant chosen at time 0.

However, the exercise decision cannot be made based on the future information after
time t. We say the random time is a stopping time with respect to the filtration generated
by the underlying asset S. If we denote τ(ω) to be the exercise time, then we write τ ∈ FSt .

3. The best (random) stopping strategy you can make can only be chosen among the
stopping time strategies. This is a subtle point to appreciate, as besides stopping time
decision, one can imagine another type of mixed strategy: if we have 2 strategies τ1, τ2

then we use τ1 with probability p and τ2 with probability 1 − p, and this is done via an
independent coin flip. For example, you can do the following: every day you flip a coin
and exercise the option the first time the coin flip turns H. This will not be better than
making your decision using purely stopping time. The reason is we can show there is an
optimal stopping time τ ∗ that maximizes your return among other stopping times. Thus
if you randomized your decision among stopping times, then you miss the “best optimal"
stopping time sometimes. More conrete example will be showed below.

4. If we are in a discrete time model, the decision to stop must be made on discrete time
points. In other words, the stopping times we referred to above are discrete stopping times.
We study some preliminary properties of discrete stopping times in the next subsection.
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3.8.3 Discrete stopping time

Stopping time definition

Definition 3.8.1. Let τ be a random variable taking values {0, 1, ..., N}. We say τ is a
stopping time with respect to FS(n) if for all n = 0, 1, ..., N

{τ ≤ n} ∈ FS(n)).

Remark 3.8.2. Note that the notion of a stopping time is tied to a filtration (similar to the
notion of a martingale). It could happen that τ is a stopping time w.r.t a filtration FS1(n)
but not a stopping time w.r.t another filtration FS2(n).

Some propreties

1. If τ is a F(n) stopping time then {τ < n} = {τ ≤ n − 1} ∈ F(n − 1) ⊆ F(n), we
have

{τ ≥ n} = {τ < n}c ∈ F(n)

Hence

{τ = n} = {τ ≤ n} ∩ {τ ≥ n} ∈ F(n).

Conversely if {τ = n} ∈ F(n) for all n then {τ ≤ n} = ∪ni=0{τ = i} ∈ F(n), for
all n as well. So we can use either conditions: {τ = n} ∈ F(n) or {τ ≤ n} ∈ F(n) as
definition for stopping time in discrete time.

2. (Important) The event {τ = 0} has probability 0 or 1. The reason is {τ = 0} ∈ FS0 ,
but FS0 is the information of the asset up to today, which we assume know. Thus we must
know whether or not {τ = 0} with probability 1 (simply put: we must know whether we
exercise the option today or not).

3. Let τ1, τ2 be stopping times w.r.t. FS(n). Then min(τ1, τ2) and max(τ1, τ2) are
stopping times w.r.t FS(n).

3.8.4 Pricing an American put option in 1 period model

Mathematical definition

For any time k, 0 ≤ k ≤ N , let Vk denote the price of an American put option with strike
K and expiration N , provided the option has not been exercised. This is equivalent to say
Vk is the price of an American put option that allows you to choose an exercise time from
k to N . From our discussion above, we conclude

Vk = max
τ : τ stopping time taking values from k to N

EQ
(
e−(τ−k)∆T (K − Sτ )+|FSk

)
.
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This will be our mathematical definition of the value of an American option at time
k, if it has not been exercised.

We call the stopping time that achieves the maximum in the above definition the op-
timal stopping time for Vk, from here on denoted as τ ∗k . We will show that it exists and
characterize it in the later subsection.

Pricing in 1 period

1. We will now investigate how to solve for Vk, k = 0, 1, · · · , N in our discrete binomial
model. First, suppose that N = 0, that is the option exires today, then it is clear that

V0 = (K − S0)+.

3. Now suppose N = 1. Then V1 = (K−S1)+. What about V0? Note that if a stopping
time τ ∈ Fk, k = 0, 1 then P (τ = 0) = 0 or 1, as well as P (τ = 1) = 0 or 1.

In other words, at time 0 we have 2 choices: exercise the option right away or exercise
the option tomorrow. (Any strategy that says with 40% we exercise today and 50% we
exercise tomorrow etc. will not be optimal, as we will show).

Let’s denote V 1
0 = EQ(e−r∆T (K − S1)+) to be the expected return of the option if

we go with the strategy exercising tomorrow. Also V 0
0 = (K − S0)+ is the return we get

if we go with the strategy exercising today. Then our decision is clear: exercise today if
V 0

0 ≥ V 1
0 and exercise tomorrow if V 1

0 > V 0
0 . And the value (the price) of the American

option today is
V0 = max(V 1

0 , V
0

0 ).

4. Mathematically we can express the above as followed: define τ ∗ as

τ ∗ := 1{V 1
0 >V

0
0 }.

Then (you can check) τ ∗ is a stopping time (actually it is deterministic) and

V0 = EQ(e−r(∆T )τ∗(K − Sτ∗)+).

5. Why is the mixed strategy (40% today, 60% tomorrow) not optimal? Let τ be a
random variable such that P (τ = 0) = .4, P (τ = 1) = .6 and τ is independent of S. Then
the return of this strategy is

V τ
0 = EQ(e−r(∆T )τ (K − Sτ )+)

= EQ
[
EQ(e−r(∆T )τ (K − Sτ )+|τ)

]
Since τ is independent of S,

EQ(e−r(∆T )τ (K − Sτ )+|τ) = EQ(e−r(∆T )(K − S1)+)1τ=1 + (K − S+
0 )1τ=0

= V 1
0 1τ=1 + V 0

0 1τ=0.

Thus

V τ
0 = V 1

0 P (τ = 1) + V 0
0 P (τ = 0) ≤ max(V 1

0 , V
0

0 )

and hence τ is not an optimal strategy.
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3.8.5 Pricing an American put option in multi-period model

An intuitive approach

We want to find a formula for Vk, 0 ≤ k ≤ N . When k = N, the answer is easy: VN =
(K − SN)+. This is because at the expiration, exercising the option is always no worse
than letting it expires worthless.

At k = N − 1, the option holder has 2 choices: either exercise immediately, or wait to
exercise at time N . Which way is better? If she exercises immediately, she’ll get a pay off
of (K − SN−1)+. If she waits until time N to exercise, the risk neutral expected payoff of
this choice at time N − 1 to her is

EQ(e−r∆T (K − SN)+|FSN−1).

She can compare between these two values and decide her strategy depending on which
one yields a better payoff. It also follows that at time N − 1 the American option is worth

VN−1 = max
{

(K − SN−1)+, EQ(e−r∆T (K − SN)+|FSN−1)
}
.

Generally, at a time k, she has 2 choices: exercise immediately and receive (K −Sk)+,
or wait until time k + 1 and get the pay off Vk+1. How? By following the optimal stopping
strategy starting at time k+1 once she is at time k+1. Thus, at time k the American option
is worth

Vk = max
{

(K − Sk)+, EQ(e−r∆TVk+1|FSk )
}
.

This approach is intuitive, but needs justification on why it is correct. The reason is
by definition, Vk is the best risk neutral expected payoff among all stopping time strategies
starting at time k. To reach this value, one may imagine the option holder searching among
all strategies available to her at time k and choose the optimal one among those. The
assertion that

Vk = max
{

(K − Sk)+, EQ(e−r∆TVk+1|FSk )
}

is equivalent to saying searching optimally from time k to N gives the same payoff as
searching optimally from time k to k + 1, and then search optimally from time k + 1
to N .

By searching optimally from k to k+ 1, and then search optimally from k+ 1 to N we
mean choose a strategy that realizes the best payoff comparing if one stops at k or stops at
k + 1, with the payoff at k + 1 equals to the optimal payoff starting from k + 1 to N .

But this assertion is not obvious. Stating that it is true amounts to proving the dynamic
programming principle for Vk.

The dynamic programming principle

We now develop a formula for Vk. The claim is that

Vk = max
{

(K − Sk)+, EQ(e−r∆TVk+1|FSk )
}
. (3.9)
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For the binomial model, this translates to

Vk(ω) = max
{

(K − Sk)+, e−rT [qVk(ωu) + (1− q)Vk(ωd)]
}
. (3.10)

Formula (3.9) is the basis for the intuitive approach, or the tree pricing method we
described above. Now we prove it.

Proof of (3.9)

Case 1: At k = N − 1 Observe that, if τ stopping time taking values from N − 1 to N ,
then by a similar argument from the previous subsection either P (τ = N − 1|FSN−1) = 1
or P (τ = N − 1|FSN−1) = 1.

Denote

V N
N−1 = EQ(e−r∆T (K − SN)+|FSN−1).

Then by definition, we have

VN−1 = max
{

(K − SN−1)+, V N
N−1

}
,

which is (3.9).
Define

τ ∗N−1 := N1{V NN−1>(K−SN−1)+} + (N − 1)1{V NN−1≤(K−SN−1)+},

then we can check that τ ∗N−1 is a stopping time and

VN−1 = EQ(e−r(∆T )τ∗N−1(K − Sτ∗N−1
)+)|FSN−1),

as in the 1 period model. More importantly,

Vτ∗N−1
= VN1{V NN−1>(K−SN−1)+} + VN−11{V NN−1≤(K−SN−1)+}

= (K − SN)+1{τ∗N−1=N} + (K − SN−1)+1{τ∗N−1=N−1} = (Sτ∗N−1
−K)+.

This is very important: at the optimal exercise time, the value of the option is equal to
the excercise value. We will show this is true for general k.

Case 2: At a general k ≤ N − 1
We proceed by induction. Suppose (3.9) is true at step k + 1 and the optimal stopping

time τ ∗k+1 exists and the following relation holds:

Vτ∗k+1
= (Sτ∗k+1

−K)+.

Recall that by definition

Vk = max
τ : τ stopping time taking values from k to N

EQ
(
e−r(τ−k)∆T (K − Sτ )+|FSk

)
.
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Again observe that, if τ is a stopping time taking values from k to N , then either
P (τ = k|FSk ) = 1 or P (τ > k|FSk ) = 1. The set of these two types of stoping times are
mutually exclusive. Therefore, if X is a function of τ

max
τ : τ values from k to N

E(X(τ)|FSk ) = max
{
Xk, max

τ : τ values from k + 1 to N
E(X(τ)|FSk )

}
.

Replacing X(τ) with e−(τ−k)∆T (K − Sτ )+ we have

E(
(
e−(τ−k)∆T (K − Sτ )+|FSk ) = E

(
e−r∆TE(

(
e−r(τ−(k+1))∆T (K − Sτ )+|FSk )

)
and for any τ taking values from k + 1 to N

E
(
e−r∆TE(

(
e−r(τ−(k+1))∆T (K − Sτ )+|FSk )

)
≤

E
(
e−r∆T max

τ : τ values from k + 1 to N
E(
(
e−r(τ−(k+1))∆T (K − Sτ )+|FSk )

)
= E

(
e−r∆TVk+1

)
.

It follows that

Vk ≤ max
{

(K − Sk)+, EQ(e−r∆TVk+1|FSk )
}
.

On the other hand, it is clear that

Vk ≥ (K − Sk)+.

Moreover,

EQ(e−r∆TVk+1|FSk ) = EQ
(
e−r∆TEQ[e−r∆(τ∗k+1−(k+1))(K − Sτ∗k+1

)+|FSk+1]|FSk
)

= EQ
(
e−r∆T (τ∗k+1−k)(K − Sτ∗k+1

)+|FSk
)
≤ Vk.

Thus

Vk ≥ max
{

(K − Sk)+, EQ(e−r∆TVk+1|FSk )
}
.

Finally denoting V k+1
k = EQ(e−r∆TVk+1|FSk ) and define

τ ∗k := τ ∗k+11{V k+1
k >(K−Sk)+} + k1{V k+1

k ≤(K−Sk)+},

we see that

Vτ∗k = Vτ∗k+11{V k+1
k >(K−Sk)+} + Vk1{V k+1

k ≤(K−Sk)+}

= (K − Sτ∗k+1
)+1{τ∗k=τ∗k+1} + (K − Sk)+1{τ∗k=k} = (Sτ∗k −K)+,

completing the induction step.
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3.9 General approach for a discrete optimal stopping problem

In this section, we generalize the optimal stopping problem to other contexts than just the
American options. In particular, consider the following two examples:

Example 3.9.1. Consider a game where we toss a fair die. If it’s 1 to 5 then we win 1
dollar and have the option to toss the die again. If it’s 6 then we lose all the winning we
have so far and the game stops (the winning is cumulative, that is if you toss 5 times and
the die never shows a 6 then you win 5 dollars). What is the optimal strategy to play this
game? What is the fair price to play this game?

Example 3.9.2. Consider a game where we toss a fair die three times. In the first two turns,
if we roll a value n other than 6 we receive n dollars. We can then choose to continue rolling
or stop the game. If we continue rolling we forego the n dollar we receive from the turn. If
we roll a 6 the game stops and we recieve nothing. The pay off on the last turn is similar to
the first two, except that the game stops no matter what value we get from the roll. What is
the optimal strategy to play this game? What is the fair price to play this game?

Both of these problems are of the optimal stopping types. The first one is a perpetual
problem (because it can potentially be played infinitely) and the second has a finite horizon.
We give a general approach to both problems. Note that this approach assume a risk netral
player. That is we assume that given a random paymentX , the player is indifferent between
receiving X or E(X).

General approach for a finite horizon problem

Given a finite horizon optimal stopping problem in a discrete setting there are two main
considerations:

a. The continuation decision : Denote V cont
n to be the payoff the player would receive

if they continue to play at time n and V stop
n to be the payoff the player would receive if

they stop at time n. Note that V cont
n is random from the perspective at time n while V stop

n is
known at time n. Lastly let Vn to be the value of the game at time n. Then

Vn = max(V stop
n , E(V cont

n |Fn)).

The player would continue if E(V cont
n |Fn) ≥ V stop

n and stop otherwise. An important
observation here is that if the player indeed decides to continue at time n, then he would /
should play optimally at time n+ 1 as well. That is V cont

n = Vn+1.
b. The terminal condition : Start from the terminal condition where the game value is

known and work backward using the continuation decision.
We use these two principles to solve example (3.9.2). The terminal condition is V3 = n

if the die rolls n ≤ 5 and V3 = 0 if the die rolls 6. At n = 2, we see that V cont
2 = V3 and

V stop
2 = n if the die rolls n ≤ 5 and V stop

2 = 0 if the die rolls 6. E(V cont
2 ) = 15

6
and thus

we stop if we roll a 4 or 5 or 6 on turn 2 and continue otherwise. We also see that V2 = 15
6
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with probability 1/2 and V2 = 4 or 5 with probability 1/6 each and V2 = 0 with probability
1/6. At turn 1, V cont

1 = V2 and E(V cont
1 ) = 33

12
. Thus we would continue at time 1 if we roll

1 or 2 and stops if we roll a 3 or higher. Finally the value of the game is E(V1) = 105
36

.

General approach for a perpetual problem

For a perpetual optimal stopping problem, we do not have a terminal condition to work
with. Nevertheless, there are also three main considerations for a perpetual optimal stop-
ping problem:

a. Expressing the value of the game as a function of the state of the underlying: Because
there is no finite horizion, denoting the value of the game as a function of time (as we are
used to so far) is not a good approach. In stead, we denote V (n) (in contrast to Vn) as
the game value when the underlying state has reached state n. For example, in (3.9.1) it is
better to denote V (n) as the value of the game when the player has winned n dollars. The
value of the game at the beginning is V (0) as he starts the game with 0 winning.

b. The stopping condition : under what condition should the player stop playing the
game? The general principle is again that he will stop if the current game value is higher
than the expectation of the continuation game value. That is, we have

V (n) = max(V stop(n), E(V cont(n)|F(n)))

and the player would continue if E(V cont(n)|F(n)) ≥ V stop(n) and stop otherwise. F(n)
here denotes the condition of the system at state n. Note that V cont(n) is NOT necessarily
V (n + 1) because the system does not necessarily move from state n to state n + 1 in the
next step. For example, in (3.9.1) if n denotes the winning of the player then in the next
step he can move to states n + 1, n + 2, · · · , n + 5 and state 0 with probability 1/6 each.
We use V cont(n) to express the value of the game at the possible next states from state n,
whatever they are.

From this consideration, we can divide the states of the system into two sets: the contin-
uation set and the stopped set. That is we can come up with criteria such that if the player
reaches a certain state, he will know whether he should stop or continue.

c. Work backward from the stopped set: It usually is easy to figure out what V (n) is
for n in the stopped set. For n in the continuation set, see which states can be reached from
n. Find those n in the continuation set such that the immediate state from n ends up in the
stopped set. Call this the first layer. For such n we can find V (n) = E(V cont(n)|F(n)))
because we know the value of the game at the next step. Next find those n in the continu-
ation set such that the immediate state from n ends up in the stopped set or the first layer.
Repeat this process until we find V (n0) where n0 is the state at the beginning.

We use these three principles to solve example (3.9.2). Let V (n) be the game value
after the player as winned n dollars. His stopping condition is when

V (n) >
5∑

k=1

(V (n) + k) = 5/6V (n) + 15/6,
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that is if V (n) > 15. If the player stops, it is clear that V (n) = n. Thus he will stop
if his winnning reaches 16 or above. Because after each roll he can only increases his
fortune by n = 1, 2, · · · , 5, and highest winning where he continues to roll is 15, the
player will actually stop if his fortune reaches 16, 17, 18, 19, 20. That is the stopped
set is {16, 17, 18, 19, 20} and the continuation set is {0, 1, · · · , 15}. We have V (16) =
16, V (17) = 17, V (18) = 18, V (19) = 19, V (20) = 20. The first layer in the continuation
set is n = 15 since immediately after 15 the player will end up in the stopped set. We have

V (15) = V cont(15) =
1

6
(V (16) + V (17) + · · ·+ V (20) =

1

6
(16 + 17 + · · ·+ 20).

Similary we can find V (14)

V (14) = V cont(14) =
1

6
(V (15) + V (16) + · · ·+ V (19) =

1

6
(V (15) + 16 + · · ·+ 19),

where for V (15) we plug in the value found above. Continue similarly we can find V (0),
the explicit value of which we’ll skip.
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3.10 Exercises

We consider the following formulation for the binominal model:

Sk = S0X1X2...Xk, 1 ≤ k ≤ n

where for 0 < d ≤ erτ ≤ u, Xi are i.i.d. with distribution

Xi = u with probability q
Xi = d with probability 1− q.

We denote Q as the risk neutral probability measure. We also take the length of one
period, ∆T to be 1 and the risk free interest rate to be a constant r.

1. Suppose r = 0. Compute

EQ
(
(S5 − S3)+|S3

)
.

2. The Put-Call parity principle says: Holding a long position on a European Call
Option and a short position on a European Put Option is the same as holding a long position
on a Forward Contract (on the same stock S, with the same expiration date n and strike
price K). Suppose S follows the multi-period Binomial model. h a) Express the Put-Call
parity principle in terms of V put, V call and V forward.

b) Prove the Put-Call parity principle.
Consider the multiperiod model with N = 2, S0 = 8. From any given period, the

stock can either double its price or half its price in the next period (ask for a picture if this
description is not clear). Also suppose the interest rate is 0.

3. Consider the multiperiod model with N = 3, S0 = 8. From any given period, the
stock can either double its price or half its price in the next period. Also suppose the interest
rate is 0.

a. Find the price at time period 1, when the stock goes up, that is V1(u) of a down and
out put option with barrier L = 6, strike K = 40 and expiration N = 3.

b. Find the price at time period 0 of the look back option on this stock with expiration
N = 3. Explicit number is not necessary.

4. Consider a game where we toss a fair die. If it’s 1 to 5 then we win 1 dollar and have
the option to toss the die again. If it’s 6 then we lose all the winning we have so far and the
game stops (the winning is cumulative, that is if we toss 5 times and the die never shows a
6 then we win 5 dollars).

a. What is the optimal strategy to play this game?
b. What is the fair price to play this game?
5. Again consider the multiperiod model with S0 = 8. From any given period, the stock

can either double its price or half its price in the next period. Also suppose the interest rate
is 0.

a. Use the replicating portfolio approach to find the price V0 of a European call option
with strike 10 and expiration N = 2 on this stock.
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b. Use the replicating portfolio approach to find the price V0 of a European put option
with strike 20 and expiration N = 2 on this stock.

6. A financial math student, Mr. Solve-alot wants to try out as a rock artist. His first
single, titled “I like Big Math" has just debuted. He plans to sell the single for 8 dollars
during the first week. During the second week, he’ll either double or half the price of the
first week, depending on the response. During the third week, he’ll either double or half
the price of the second week, again depending on the response. Mathematically we model
the price of his single as followed:

S1 = 8

S2 = 8X1

S3 = 8X1X2,

whereX1, X2 are i.i.d with distribution P (Xi = 2) = q, P (Xi = 1/2) = 1−q. Assume
that the interest rate r = 0.

a. Remembering his lessons, Mr. Solve-alot wants to look at his price movement in a
risk neutral way. He also recalls that the risk neutral measure in this case is the q so that
EQ(X1) = 1. Determine this q.

b. What is the risk neutral probability that during the 3rd week, the single will sell for
more than or equal to 8 dollars?
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CHAPTER 4 Discrete time martingales and fundamental theorems of asset pric-
ing

4.1 Introduction

In this note we discuss the two fundamental theorems of asset pricing. The mathemati-
cal tool for discussion is martingale theory in discrete time. We will define the notion of
martingales, and show that under the risk neutral measure, the discounted asset price is
a martingale. By our pricing formula, the discounted value process of a non-American
financial derivative is also a martingale under the risk neutral measure. This is used to
prove the first fundamental theorem of asset pricing. Under the uniqueness of the risk
neutral measure, we show the existence of the hedging portfolio for non-American finan-
cial derivatives. Finally, we show the existence of the hedging portfolio for American put
option, by characterizing it as a super-martingale under the risk neutral measure.

4.2 Martingale in discrete time

A process Vk is a martingale with respect to the filtration FSk under a probability measure
P if:

a. Vk ∈ FSk for all k.
b. For all n ≥ m, E(Vn|FSm) = Vm.
Remark:
1. Condition a means that each Vk is a function of S0, S1, · · · , Sk. This is consistent

with our intuition that the value of the financial derivative should only depend on the his-
torical price of the underlying asset. observe that Sk+1 6∈ FSk in our binomial model.

2. Condition b is the martingale condition. The expectation E is taken under the prob-
ability P . This is essential: if we change the measure P , this condition may not hold. Thus
Vk can be that a process is a martingale under some measure but not under some other
measure (think about the risk neutral meassure for example).

Similarly, Vk is a sub (super)-martingale with respect to the filtration FSk under a prob-
ability measure P if:

a. Vk ∈ FSk for all k.
b. For all n ≥ m, E(Vn|FSm) ≥ (≤)Vm.
3. Sometimes we just say Sk is a martingale (under probability P ). Then it is under-

stood that the filtration is Sk’s own filtration (FSk ).
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4.2.1 Some examples

The following are the most important examples we encountered so far:
1. The discounted stock price e−rk∆TSk is a martingale with respect to FSk under the

risk neutral measure Q (but not neccessarily under the physical measure P ).
2. The discounted value of a European option e−rk∆TVk is a martingale with respect to

FSk under the risk neutral measure Q.
3. The discounted value of an American option e−rk∆TVk is a super-martingale with

respect to FSk under the risk neutral measure Q.

4.3 The first fundamental theorem of asset pricing

4.3.1 Betting against a martingale

A martingale is essentially a model for a fair game. First note that if Vk is a martingale with
respect to FSk under P then E(Vk) = E(Vk−1) = · · · = E(V0). Thus if we treat Vk as our
total earning when investing in S then its expected earning is a constant in time if Vk is a
martingale. Actually something stronger is true: our expected earning based on S at any
time in the future, conditioned on the information up to the current time: E(Vn|FSm), is the
same as our current earning based on S: Vm. This is what we think of as fair.

We can also look at the reverse direction. If Sk is a martingale with respect to Fk then
the total earning under any strategy we can form investing using Sk is also a martingale, as
long as our strategy at time k only uses the information about S up to time k (this excludes
insider trading for example). More specifically, let ∆k be the number of shares we hold of
S at time k, then our net “winning" over the period [k, k + 1] is ∆k(Sk+1 − Sk) and our
total winning up to a time n is

πn =
n−1∑
k=0

∆k(Sk+1 − Sk).

The notation π is used specifically to represent the value of our portfolio of S at time
n. We have the following lemma:

Lemma 4.3.1. If ∆k ∈ FSk and Sk is also a martingale then πn is also a martingale with
respect to FSn .

(From now on, we’ll refer to any process Xk that has the property Xk ∈ FSk as being
adapted to FSk .)
Proof. It suffices to show E(πn+1|FSn ) = πn (Why?). It is equivalent to show

E(πn+1 − πn|FSn ) = 0.

But note that
πn+1 − πn = ∆n(Sn+1 − Sn).
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Thus

E(πn+1 − πn|FSn ) = E(∆n(Sn+1 − Sn)|FSn )

= ∆nE(Sn+1 − Sn|FSn ) = 0.

Similarly, we can show that if Sk is a sub (super) martingale then πn is a sub (super)
martingale under similar conditions. A sub (super) martingale represents a game that favors
one particular side of the game, either the house or the player.

4.3.2 Self-financing portfolio as a martingale

Remark 4.3.2. In our model, Sk is NOT a martingale, but e−rk∆TSk is. But one does
not invest in a discounted stock price process in reality. What one does is investing
in (possibly multiple) financial assets and a saving account. The corresponding result is
that if the portfolio is self financing then its discoutned value process is also a martingale
under the risk neutral measure. The following lemma states the result more precisely.

Lemma 4.3.3. Suppose at any time k we hold ∆k shares of the asset S and yk in the saving
account. Suppose e−rk∆TSk is a martingale. If ∆k is adapted to FSk and the self-financing
condition holds:

πk+1 = ∆k+1Sk+1 + yk+1 = ∆kSk+1 + yke
r∆T . (4.1)

or equivalently

πk+1 = ∆kSk+1 + er∆T (πk −∆kSk). (4.2)

then e−rk∆Tπk is also a martingale under FSk .

Proof. Suppose e−rk∆TSk is a martingale. It is enough to show

EQ
[
e−r∆Tπk+1|FSk

]
= πk.

From the self-financing condition, we have

EQ
[
e−r∆Tπk+1

∣∣∣FSk ] = EQ
[
e−r∆T∆kSk+1 + (πk −∆kSk)

∣∣∣FSk ]
= ∆kE

Q
[
e−r∆TSk+1 − Sk|FSk

]
+ πk = πk.

Remark 4.3.4. We do NOT have a similar conclusion in the self-financing portfolio case
when e−rk∆TSk is a super (sub) martingale, that is correspondingly e−rk∆Tπk is also a
super (sub) martingale. The reason is the sign of ∆k matters in this case. If we short an
asset that is a super martingale (that is it decreases on average), then we’re likely to make
money in the future (that is the portfolio will be a sub-martingale). But if we long an asset
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that is a super martingale, then we’re likely to lose money (that is the portfolio remains a
super-martingale). The following calculation makes it clear:

Suppose e−k∆TSk is a super martingale. Then

EQ
[
e−r∆TSk+1|FSk

]
≤ Sk.

From the self-financing condition, we have

EQ
[
e−r∆Tπk+1

∣∣∣FSk ] = EQ
[
e−r∆T∆kSk+1 + (πk −∆kSk)

∣∣∣FSk ]
= ∆kE

Q
[
e−r∆TSk+1 − Sk|FSk

]
+ πk

≤ πk, if ∆k ≥ 0

≥ πk, if ∆k ≤ 0.

4.3.3 Market with more than 1 assets

The result about self-financing portfolio also holds in market with more than 1 asset S1, S2, · · · , Sm.
We just have to generalize the self-financing condition to:

πk+1 =
∑
i

∆i
kS

i
k+1 + er∆T (πk −

∑
i

∆i
kS

i
k).

Our result is

Lemma 4.3.5. Suppose at any time k we hold ∆i
k shares of asset Si and yk in cash. Suppose

e−rk∆TSik is a martingale for all i. If ∆i
k is adapted to FSk and the self-financing condition

holds:

πk+1 =
∑
i

∆i
kS

i
k+1 + er∆T (πk −

∑
i

∆i
kS

i
k). (4.3)

then e−rk∆Tπk is also a martingale under FSk .

Proof. Suppose e−rk∆TSik is a martingale for all i. It is enough to show

EQ
[
e−r∆Tπk+1|FSk

]
= πk.

From the self-financing condition, we have

EQ
[
e−r∆Tπk+1

∣∣∣FSk ] = EQ
[
e−r∆T

{∑
i

∆i
kS

i
k+1

}
+ (πk −

∑
i

∆i
kS

i
k)
∣∣∣FSk ]

= EQ
[∑

i

∆i
k

{
e−r∆TSik+1 − Sik

}∣∣∣FSk ]+ πk

=
∑
i

∆i
kE

Q
[
e−r∆TSik+1 − Sik|FSk

]
+ πk = πk.
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4.3.4 The first fundamental theorem of asset pricing

We are in the position to prove the first version of the fundamental theorem of asset pricing
for discrete time model.

Theorem 4.3.6. Let a market have m risky assets S1, S2, · · · , Sm. Suppose an equivalent
risk neutral measure Q exists, that is Q is equivalent to P and

Sik = EQ(e−r∆TSik+1|FSk ), i = 1, · · · ,m.

Suppose additionally that all derivatives that make payment VN at time N satisfy

Vk = EQ(e−r∆T (N−k)VN |FSk ),

then there is no self-financing portfolio consisting of Si, V and the saving account such
that π0 = 0 and P (πl ≥ 0) = 1, P (πl > 0) > 0 for 0 < l ≤ N . That is the market is
arbitrage free.

Proof.
Suppose at time 0 we hold ∆i shares of asset Si and y dollars in cash, as well as ∆

shares of V such that π0 = 0. Then because e−rk∆TVk is also a martingale under Q, we
conclude e−rk∆Tπk is a martingale by Lemma (4.3.5). Thus

EQ
(
e−rl∆Tπl

)
= π0 = 0.

Now since we’re in a discrete space model, there are only finitely many outcomes
ω1, ω2, · · · , ωn at time l. Let PQ(ωi) = qi and note that by the equivalence condition,
qi > 0,∀i. Then

q1πl(ω1) + q2πl(ω2) + · · ·+ qnπl(ωn) = 0.

Thus it must follow that either πl(ωi) = 0,∀i or there exists i such that πl(ωi) < 0.

Theorem 4.3.7. Let a market have m risky assets S1, S2, · · · , Sm. Suppose that there is
no arbitrage opportunity in the market. Then a risk neutral measure Q exists, that is

Sik = EQ(e−r∆TSik+1|FSk ), i = 1, · · · ,m.

Moreover, all derivatives that make payment VN at time N must satisfy

Vk = EQ(e−r∆T (N−k)VN |FSk ),

Remark 4.3.8. Theorem (4.3.6) and (4.3.7) together can be stated simply as a market is
arbitrage free if and only if an equivalent risk neutral measure exists.
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Proof. Without loss of generality we prove the statement for N = 1. We restate the
statements of Theorem (4.3.6) and (4.3.7) into the following:

There exists a vector Q = [q1, q2, · · · , qn]T > 0 so that
e−r∆TS1

1(ω1) e−r∆TS1
1(ω2) · · · e−r∆TS1

1(ωn)
e−r∆TS2

1(ω1) e−r∆TS2
1(ω2) · · · e−r∆TS2

1(ωn)
· · ·

e−r∆TSm1 (ω1) e−r∆TSm1 (ω2) · · · e−r∆TSm1 (ωn)
1 1 · · · 1



q1

q2

· · ·
qn

 =


S1

0

S2
0

· · ·
Sm0
1

 ,
if and only if we cannot find a vector ∆ = [∆1,∆2, · · · ,∆m,∆m+1]T so that

[
S1

0 S2
0 · · · Sm0 1

]


∆1

∆2

· · ·
∆m

∆m+1

 = 0 (4.4)

and 
S1

1(ω1) S2
1(ω1) · · · Sm1 (ω1) er∆T

S1
1(ω2) S2

1(ω2) · · · Sm1 (ω2) er∆T

· · ·
S1

1(ωn) S2
1(ωn) · · · Sm1 (ωn) er∆T




∆1

∆2

· · ·
∆m

∆m+1

 	 0, (4.5)

where by z 	 0 we mean z ≥ 0 and g 6= 0.
Conditions (4.4) and (4.5) can be combined into one statement: we cannot find vector

∆ = [∆1,∆2, · · · ,∆m]T so that


S1

1(ω1)− er∆TS1
0 S2

1(ω1)− er∆TS2
0 · · · Sm1 (ω1)− er∆TSm0

S1
1(ω2)− er∆TS1

0 S2
1(ω2)− er∆TS2

0 · · · Sm1 (ω2)− er∆TSm0
· · ·

S1
1(ωn)− er∆TS1

0 S2
1(ωn)− er∆TS2

0 · · · Sm1 (ωn)− er∆TSm0




∆1

∆2

· · ·
∆m

 	 0.

Stated in this way, this is a well-known result in linear programming, known as Stiemke’s
Theorem. It is as followed: Let A be a m × n matrix. Then exactly one of the following
system has a solution:

a. yTA 	 0 for some y ∈ Rm
or
b. Ax = 0, x > 0, x ∈ Rn.
Applying Stiemke’s Theorem to our situation with

AT =


S1

1(ω1)− er∆TS1
0 S2

1(ω1)− er∆TS2
0 · · · Sm1 (ω1)− er∆TSm0

S1
1(ω2)− er∆TS1

0 S2
1(ω2)− er∆TS2

0 · · · Sm1 (ω2)− er∆TSm0
· · ·

S1
1(ωn)− er∆TS1

0 S2
1(ωn)− er∆TS2

0 · · · Sm1 (ωn)− er∆TSm0

 ,
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we see that if yTA 	 0 does not have a solution (the market is arbitrage free) then we
must be able to find x > 0 ∈ Rn so that Ax = 0. we can easily see that this means we can
find a probability vector Q (by normalizing x) so that for all j = 1, · · · ,m∑

i

qi(S
j(ωi)− er∆TSj0) = 0.

But then Q is exactly the risk neutral measure. Conversely, if a risk neutral measure
exists, then the system Ax = 0 has a positive solution. Thus we cannot solve the system
yTA 	 0. That is there is no arbitrage opportunity in the market.

Remark 4.3.9. In Theorem (4.3.6), we did not include the American option in the portfolio.
The reason is the discounted value of an American option is a super-martingale in gen-
eral and the direction of the discounted portfolio value is unclear, as explained in Remark
(4.3.4). However, one should also expect that the inclusion of American options should not
affect the arbitrage property of the market. This is indeed the case, if the option holder
acts in an optimal way. The description of this situation is slightly more complicated, so
we reserandom variablee a separate section to discuss it.

4.3.5 Hedging portfolio as a pricing tool

Theorem (4.3.6) already states the pricing we must follow for any financial derivative if we
want our market to be arbitrage free, whether or not we can find a replicating portfolio for
the derivatives. We learned in Lecture 2b that we can also price a financial derivative by
the replicating portfolio, if it exists. These two methods should be consistent, that is they
should give the same price. The following Lemma confirms this is the case.

Lemma 4.3.10. Let a market havem risky assets S1, S2, · · · , Sm. If a risk neutral measure
Q exists, that is

Sik = EQ(e−r∆TSik+1|FSk ), i = 1, · · · ,m.

Consider a financial derivative V , whose replicating portfolio exists. That is at any
time 0 ≤ k ≤ N , we can find ∆i

k shares of asset Si and yk dollars in cash such that

πk =
∑
i

∆i
kS

i
k + yk = Vk,

and the self-financing condition is satisfied:

πk+1 =
∑
i

∆i
kS

i
k+1 + er∆T (πk −

∑
i

∆i
kS

i
k).

Then Vk = EQ(e−r∆T (N−k)VN |FSk ), ∀k.

Proof. By Lemma (4.3.5), e−rk∆Tπk is a martingale. Therefore

Vk = πk = EQ(e−r(N−k)∆TπN |FSk ) = EQ(e−r(N−k)∆TVN |FSk ).
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4.4 The second fundamental theorem of asset pricing

Theorem 4.4.1. Let a market havem risky assets S1, S2, · · · , Sm. If a risk neutral measure
Q exists, that is

Sik = EQ(e−r∆TSik+1|FSk ), i = 1, · · · ,m.

and it is unique, then every financial derivative that pays VN at time N can be replicated
and the market is arbitrage-free.

We will first prove this theorem for the case N = 1 and then for general N . Because
we’re in a discrete space, there are n possible outcomes, ω1, ω2, · · · , ωn at time N = 1.
The replicating condition requires that we are able to find ∆i, i = 1, · · · ,m and y such that

m∑
i=1

∆iSi1(ωj) + yer∆T = V1(ωj), j = 1, · · · , n.

Note that the above is a system of n equations inm+1 variables. The unique martingale
measure condition says that there exists a unique positive solution q1, q2, · · · , qn to the
system of equations

n∑
i=1

qie
−r∆TSj1(ωi) = Sj0, j = 1, · · · ,m∑
i

qi = 1.

Note that the above is a system of m+ 1 equations in n variables (the variables are the
qi). The left hand side matrix in the first system is

S1
1(ω1) S2

1(ω1) · · · Sm1 (ω1) erT

S1
1(ω2) S2

1(ω2) · · · Sm1 (ω2) erT

· · ·
S1

1(ωn) S2
1(ωn) · · · Sm1 (ωn) erT

 .
It is equivalent to

A =


e−r∆TS1

1(ω1) e−r∆TS2
1(ω1) · · · e−r∆TSm1 (ω1) 1

e−r∆TS1
1(ω2) e−r∆TS2

1(ω2) · · · e−r∆TSm1 (ω2) 1
· · ·

e−r∆TS1
1(ωn) e−r∆TS2

1(ωn) · · · e−r∆TSm1 (ωn) 1

 ,
as far as existence of solution is concerned.

The left hand side matrix in the second system is

B =


e−r∆TS1

1(ω1) e−r∆TS1
1(ω2) · · · e−r∆TS1

1(ωn)
e−r∆TS2

1(ω1) e−r∆TS2
1(ω2) · · · e−r∆TS2

1(ωn)
· · ·

e−r∆TSm1 (ω1) e−r∆TSm1 (ω2) · · · e−r∆TSm1 (ωn)
1 1 · · · 1

 .
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Note that A = BT . Thus what we need to prove is the following Lemma

Lemma 4.4.2. Let A be a m × n matrix. Suppose that there exists a vector b ∈ Rm such
that the equation Ax = b has a unique solution. Then for any vector c ∈ Rn, the equation
ATx = c has a solution.

This is a well-known result in linear algebra. We provide the proof for completeness.
Proof. If the equation Ax = b has a unique solution then the equation Ax = 0 has a
unique solution (and vice versa). The equation Ax = 0 has a unique solution if and only
if the columns of A are linearly independent. But the columns of A are the rows of AT .
Thus the matrix AT has full row rank. Thus for any vector c, the equation ATx = c has a
solution.

Remark 4.4.3. The fact that the system Bq = S0 has a positive solution was not used in
the Lemma. In fact it is not needed. We have seen this in the example of market that is
complete but not arbitrage free. The condition for qi > 0 is used to assert that the market is
arbitrage free, and provide a link between pricing using expectation under the risk neutral
measure and using the replicating portfolio, as described in Lemma (4.3.10).
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CHAPTER 5 Continuous time stochastic processes

Discrete time process, such as Markov chain, has the advantage of giving us clear intuition
and analysis. On the other hand, if we model a real life process using discrete time model,
it has the dis-advantage of restricting the possible action on the discrete time points. For
example, using the binomial tree model for a stock price Sk has the implication that an
investor can only balance his or her portfolio based on S at k = 0, 1, · · ·N and cannot do
so in between k and k+ 1. To overcome this restriction and to obtain a model that captures
the intuition that we can take action at any time, we need to use continuous time stochatic
process St, 0 ≤ t ≤ T . A very common way to model St is by decomposing it into two
components: signal and noise. Intuitively, in an ideal environment where there is no noise,
St will follow an Ordinary Differential Equation:

dSt
dt

= f(t, St). (5.1)

In reality, the movement of St over time is subject to random perturbation. Therefore, we
need to add a noise term to the equation (5.1) to obtain

dSt = f(t, St)dt+ “Noise" . (5.2)

There are typically two types of noise that are used when we model continuous time
process: Brownian motion and Possion processes. These two types have specific interpre-
tation when St represents a stock price. Brownian motion represents the minute to minute
fluctation that results from the continuous trading activities of S from the investors. Pois-
son processes represent a shock (for example a market crash) that causes St to jump in
value. A typical model would incorporate both types of noise to capture various degree of
change in the underlying process.

We note here that even though these two noises are “orthogonal" in the sense that the
Brownian motion is continuous and the Poisson process is pure-jump, they belong to the
same family known as the Levy processes. The Levy processes enjoy the properties of
having independent and identically distributed increment. That is if t1 < t2 < t3 < t4 such
that t2 − t1 = t4 − t3 and St is a Levy process then

St4 − St3
d
= St2 − St1 ,

St2 − St1 and St4 − St3 are independent.
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As we shall see, having the independent and identically distributed increment makes it
nice and convenient to analyze the noise. Moreover, it also makes it easier for us to make
sense out of the stochastic differential equation

dSt = f(t, St)dt+ σ(t, St) “Noise" . (5.3)

which is a generalization of the equation (5.2).

5.1 Discrete noise - Poisson process

5.1.1 Heuristics about Poisson process

We think of Poisson process as followed: suppose that we have an alarm clock that will
ring after a random time τ , where τ is exponentially distributed with some mean 1

λ
. We

keep account of the value of the Poisson process at any time t by the notationN(t). At time
0, we set the alarm clock and set N(0) = 0. When the alarm rings, we increase the value of
N by 1, that is we set N(τ) = 1 and repeat the whole process (i.e. we reset the alarm clock
and increase the value of N by 1 the next time the clock rings). The resulting process N(t)
is then a Poisson process with rate λ. We observe that the larger λ is, the clock would be
likely to ring sooner and the more jumps would likely happen in a given time interandom
variableal [0,T]. It is also clear that N(t) is constant in between the “ring" times.

5.1.2 Formal mathematical definition

a. τ (as a R.V.) is said to be exponentially distributed with rate λ if it has the density

f(t) = λe−λt1(t≥0).
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It follows that E(τ) = 1
λ

and V ar(τ) = 1
λ2

. An important property of exponential random
variable is the memoryless property:

P(τ > t+ s|τ > s) = P(τ > t).

b. Let τi, i = 1, 2, ... be a sequence of i.i.d. Exponential(λ). Let Sk :=
∑k

i=1 τi. The
Poisson process N(t) with rate λ is defined as:

N(t) =
∞∑
i=1

1(t≥Si).

τi is called the inter-arrival time. It is the wait time from the (i − 1)th jump to the ith

jump. Si is called the arrival time. It is the time of the ith jump.

5.1.3 Important basic properties

a. Distribution: N(t) is has distribution Poisson(λt), that is

P(N(t) = k) =
e−λt(λt)k

k!
.

Proof. Let Sn =
∑n

i=1 τi be the arrival time, then

P(N(t) = k) = P(Sk+1 > t, Sk ≤ t)

= P(Sk+1 > t)− P(Sk+1 > t, Sk > t) = P(Sk+1 > t)− P(Sk > t).

From Shreve’s Lemma 11.2.1, Sn has Gamma(λ, n) distribution. That is, it has the
density:

gn(s) =
(λs)n−1

(n− 1)!
λe−λs, s ≥ 0.

It is a straight forward matter of integration now to verify that

P(Sk+1 > t)− P(Sk > t) =
e−λt(λt)k

k!
.

The integration can be tedious, however. Another way to verify it is as followed: Denote
f(t) := P(Sk+1 > t)− P(Sk > t) and note that f(t) satisfies the following ODE:

f ′(t) = gk(t)− gk+1(t) =
(λt)k−1

(k − 1)!
λe−λt − (λt)k

k!
λe−λt

f(0) = 0.

It is clear that f(t) = e−λt(λt)k

k!
is the unique solution to the above ODE. The verification

is complete.
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b. N(t) has independent increment. That is if we denoteFt to be the filtration generated
by N(s), 0 ≤ s ≤ t then for all t ≤ t1 < t2, N(t2)−N(t1) is independent of Ft.

Heuristic reason: Let 0 ≤ s < t. Clearly N(t) − N(s) counts the number of jumps
starting from time s. Given all the information up to time s, what is the distribution of the
first jump time after s? That is, we want to compute P(SN(s)+1 ≥ t|Fs), where Sn is the
arrival time as defined in Shreve (11.2.4). Note that since N(s) represents the number of
jumps up to time s, SN(s)+1 is exactly the time of the first jump after time s.

But this is the same as computing P(τN(s)+1 ≥ t − SN(s)|τN(s)+1 ≥ s − SN(s)). Note
that SN(s) here represents the time of the last jump before time s, and τN(s)+1 is the wait
time between the last jump before time s and the first jump after time s. So P(τN(s)+1 ≥
t− SN(s)|τN(s)+1 ≥ s− SN(s)) asks for the probability that we have to wait until after time
t for the first jump after time s, given that we know we have waited up until time s since
the last jump before s, which has the same content as P(SN(s)+1 ≥ t|Fs).

Note also that P(τN(s)+1 ≥ t− SN(s)|τN(s)+1 ≥ s− SN(s)) = P(τN(s)+1 ≥ t− s+ s−
SN(s)|τN(s)+1 ≥ s−SN(s)). Since Fs is given, N(s) should be looked at as a constant here.
But from the memoryless property of τN(s)+1, we get

P(τN(s)+1 ≥ t− s+ s− τN(s)|τN(s)+1 ≥ s− τN(s)) = P(τN(s)+1 ≥ t− s).

That is, the first jump time after s can be looked at as an exponential clock starts at time s,
hence independent of the past information. Using the independence of interarrival times, it
is clear now that the increments of N(t) after time s is independent of the information up
to time s.

c. N(t) has stationary increment. More specifically, N(t) − N(s) has distribution
Possion(λ(t− s)).

Heuristic reason: It follows from the same arguments of part b.

5.1.4 Compound Poisson process

The Poisson process we introduced has the satisfactory property that it jumps at random
times. However, each of the jump is by definition of length 1, which is rather restrictive. It
is desirable in terms of being realistic to have random jumps in our model. To that end, we
proceed as followed.

Let N(t) be a Poisson process with rate λ and let Y0 = 0, Yi, i = 1, 2, ... be i.i.d.(and
also independent of N(t)) with E(Yi) = µ. Define

Q(t) =

N(t)∑
i=0

Yi,

then Q(t) is called a compound Poisson process. Similar to a Poisson process, Q(t) also
has the basic properties of independent and stationary increments. We do not know the
specific distribution of Q(t)−Q(s) (it depends on the distribution of Yi’s , of course), but
we do know that E(Q(t)−Q(s)) = µλ(t− s).
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5.2 Continuous noise - Brownian motion

5.2.1 Brownian motion as a source of noise from the limit of discrete time binomial
model

We have seen that the discrete time binomial model provides some rich features to our
modeling of a financial asset. In particular, it allows us to discuss the pricing path dependent
derivatives and American options, which would be trivial in the 1 period model. However,
the discrete time model is still limiting in a sense: we’re only allowed to take action; and
the underlying asset can only change value at certain discrete points in time. Between these
points, no change and no action can happen.

Of course the situation can be improved by adding more discrete time points. The finer
the decision making process (making decisions more often), or the richer the movement of
the underlying becomes, the more points we will have to add to the model. Eventually we
can see that our model approaches some kind of continuous time process. The question
is how can we do it in a tractable way? Let’s call our process St and suppose it’s defined
for every t in [0, T ] (by approximation). Tractable here means, for one thing, that our
approximation should converge. (Not every refining procedure will converge, as we may
have learned with a non-Riemann integrable function - the refining procedure there for the
integral of such a function does not converge). For another, we want to be able to compute
the distribution of St at any time t, as well as the joint distribution of St1 , St2 , · · · , Stn for
any time points t1, t2, · · · , tn. Beyond this we would like to know as much about St as
possible. The key tool for us is the Central Limit Theorem. As we shall see, the limiting
process St will have the form of the equation (5.3) where the noise term is replaced by the
increment of a Brownian motion.

5.2.2 The limit of discrete time binomial model

As mentioned in the previous section, we need to do our approximation in the right way.
For example, observe that if SN = S0X1X2 · · ·XN then

log(Sn) = log(S0) +
N∑
k=1

log(Xk).

Thus

E(log(SN)) = log(S0) +NE(log(X1));

V ar(log(SN)) = NV ar(log(X1)).

As we add more time points (increasing N ) we would want to keep the E(log(SN))
and V ar(log(SN)) constant. After all, it is the distribution of the asset at the terminal
time T = NδT . Also, the spirit of Central Limit Theorem is that if we have a sequence
of partial sum of i.i.d random variables, scaled in such a way that ther expectation and
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variance remains constant:

E

(∑n
i=1 Xi − µ
σ
√
n

)
= 0;

V ar

(∑n
i=1 Xi − µ
σ
√
n

)
= 1.

then the sequence of partial sum will converge.
This motivates us to model Xi as followed: for a fixed µ, σ

Xi = eµ∆T+σ
√

∆Tξi ,

where P (ξi = 1) = P (ξi = −1) = 1/2, and the ξi are independent.
Note that this is just another way to express our previous discrete time model, with

u = eµ∆T+σ
√

∆T ;

d = eµ∆T−σ
√

∆T .

Given u, d, we can solve for µ, σ such that the above system is satisfied. Note also that
the no arbitrage condition requires:

µ∆T − σ
√

∆T < r∆T < µ∆T + σ
√

∆T .

Also note that the probability given above is the real world probability, not the risk
neutral probability. The choice of 1/2 may seem a bit arbitrary, but keep in mind that the
real world probability is irrelevant for pricing. We only need to build a model with rich
enough structure to capture the up and down movement of the asset. The choice of 1/2
helps us to prove the convergence of the model in an easier way. Also note that we can
even make µ and σ be random variables, if we feel adventurous. For now we’ll just keep
them constants.

Lastly we want to verify that the expectation and variance of log(SN) is constant:

E(log(SN)) = log(S0) +NE(log(X1)) = log(S0) + µN∆T = log(S0) + µT ;

V ar(log(SN)) = NV ar(log(X1)) = σ2N∆T = σ2T.

5.2.3 Converging to the continuous model

We will now denote SN as ST (since T = N∆T ). From the previous section, we have

log(ST ) = log(S0) + µT +
N∑
i=1

σ
√

∆Tξi

= log(S0) + µT + σ
√
T

∑N
i=1 ξi√
N

.
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Let N →∞, by the Central Limit Theorem, we see that ST has distribution

log(ST ) = log(S0) + µT + σWT ,

where WT has distribution N(0, T ) (one can represent WT =
√
TN(0, 1) as well).

By a similar argument, partitioning the interandom variableal [t, T ] into N sub-interals,
and let N →∞ we also have

log(ST ) = log(St) + µ(T − t) + σWT−t,

where WT−t has N(0, T − t) distribution.
Moreover, since the increments ξi are independent, it can be shown that WT−t is in-

dendent of Wt (where Wt is the random variable we get for partitioning the interandom
variableal [0, t] and let N → ∞). In fact, by the same argument, we can see that WT−t
is indendent of Wr, 0 ≤ r ≤ t. This is the so called independent increment propety we’ll
discuss later.

Thus, in summary, one can say that our continuous model, derived from the limit of the
discrete binomial model, satisfies the following properties in distribution:

a. For any s < t

St = Sse
µ(t−s)+σWt−s ,

Wt−s has N(0, t− s) distribution, Wt−s is indendent of Wr, 0 ≤ r ≤ s.
b. In particular,

St = S0e
µt+σWt .

We say St has log normal distribution (the log of St has Normal distribution).

5.2.4 Brownian motion and Itô integral

Definition

A stochastic process Wt is a Brownian motion (abbreviated BM) if
a. W0 = 0
b. Wt −Ws is independent of Wr, 0 ≤ r ≤ s.
c. Wt −Ws has Normal(0, t− s) distribution.
Remark:
1. Property a can be changed toW0 = xwhich would be referred to as Brownian motion

starting at x. Without specification, by default we refer to a Brownian motion starting at 0.
2. Property b and c together are referred to as independent and stationary increment.

Omiting the normal distribution, we can write it as: for any s1 < t1 ≤ s2 < t2 Wt1 −Ws1

and Wt2 −Ws2 are i.i.d. This can be generalized to n pair of points.

Example 5.2.1. Compute, for s < t E(Wt)
2, E(WsWt), E(WsW

2
t ), E(Wt|Ws), E(W 2

t |WS).
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Some terminologies

1. We will say that an event E happens almost surely (abbreviated a.s.) (under some
reference probability P ) if it happens with probability 1 under P : P (E) = 1.

2. A stochastic process can be viewed as a function of 2 variables: t and ω. Let Xt be
a stochastic process (the ω variable is usually suppressed when it’s implicitly understood
that Xt also depends on ω). By a path of Xt, we understand it as fixing an ω and viewing
X(·, ω) as a function of t.

Some properties of Brownian motion

a. Almost surely, Brownian motion path is continous . That is

P (Wt is continuous in t on [0, T ]) = 1.

b. Almost surely, Brownian motion has nowhere differentiable path. This property is
one of the reasons we need to use Itô Calculus to study integration with respect to Brownian
motion.

c. Let ∆ be a finite partition of t, T ], that is a collection of t = t0 < t1 < t2 < · · · <
tn = T . Then for all partition ∆ of [t, T ] we have

E
∑
i

(Wti+1
−Wti)

2 = T − t.

We say the quadratic variation of Brownian motion on the interandom variableal [t, T ]
is T − t. This is also one important feature of Brownian motion that leads to Itô Calculus.
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5.3 Exercises

1. Compute φX(t) := E
(

exp(itX)
)
, where exp(x) := ex, i is the imaginary number:

i2 = −1 and X has N(µ, σ2) distribution. Recall that the density of N(µ, σ2) is

f(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

φ(t) is called the characteristic function of X .

2.
a) Suppose µ = 0. Compute φ(4)

X (t): the 4th derivative of φX with respect to t.
b) Use the following fact:

E[Xk] = (−i)kφ(k)
X (0)

to compute E[(Wt)
4] where W is a Brownian motion.

3. Let 0 ≤ s ≤ t ≤ T and W a Brownian motion. Compute the followings:
a) E(W 2

sWt)
b) E(W 2

t Ws)
c) E(exp(σWt − 1

2
σ2t)), where σ is a constant.

d) E(W 2
t |Ws)
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CHAPTER 6 An introduction to stochastic calculus

6.1 The dynamics of St

6.1.1 Evolution in discrete time

In the discrete time model, the evolution of Sn is clear. At the next time point n+ 1, to get
the value of Sn+1, we just have to multiply Sn with Xn+1, where Xn+1 = eµ∆T+σ

√
∆Tξn+1

as described above. In other words

Sn+1 = Sne
µ∆T+σ

√
∆Tξn+1 .

Equivalently, at the next time point n+ 1, to get the value of log(Sn+1), we just have to
add log(Sn) with µ∆T + σ

√
∆Tξn+1. We say

∆ log(Sn) := log(Sn+1)− log(Sn) = µ∆T + σ
√

∆Tξn+1.

This is a discrete recursion equation that specifies the dynamics of log(Sn). We would like
to get an equation for the dynamics of Sn:

∆Sn := Sn+1 − Sn =?

But in our discrete time model, this won’t be anything nice. we’ll see that the situation is
different in the continuos time.

6.1.2 Evolution in continuous time

In the continuous time context, ∆T becomes dt (dt is not a real physical quantity, it’s a
differential and only makes sense within an integral sign. Nevertheless, it can be used to
specify the dynamics of a process in time, as long as we are clear on what we mean by
using dt).

Formally, we have

St+dt = Ste
µdt+σ

√
dtξt ,

where ξt takes values±1 with probability 1/2 each. Apply Taylor’s expansion on the expo-
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nential term, we get

St+dt = St(1 + µdt+ σξt
√
dt+

1

2
σ2ξ2

t dt+ higher order terms)

= St(1 + [µ+
1

2
σ2]dt+ σξt

√
dt+ higher order terms)

= St + St[µ+
1

2
σ2]dt+ σStξt

√
dt+ Sthigher order terms).

since ξ2
t = 1. What we mean by the above is, provide we can make sense of the

intergration, we have for s < t

St = Ss +

∫ t

s

[µ+
1

2
σ2]Sudu+

∫ t

s

σSuξu
√
du+

∫ t

s

higher order terms.

By higher order terms, we mean terms of order higher than dt3/2. As we will explain later,
the intergral of the form∫ t

s

higher order terms =

∫ t

s

O(dt3/2) = 0.

Also the integral needs to be explained, because of the term∫ t

s

σSuξu
√
du.

As we’ll also explain,
∫
O(
√
dt) = ∞. Thus the term

∫ t
s
σSuξu

√
du is undefined.

However, St is defined (we got it as a limit of convergence of the discrete model, and we
have a distribution for St). Thus there must be a way to define

∫ t
s
σSuξu

√
du. As we’ll see,

this will lead to the definition of Brownian motion and Itô Calculus.
The bottomline is, provided we can make sense of these technical details, we have

arrived at the dynamics of St as we wished for in the continuous time, using the Taylor’s
expansion:

dSt := St+dt − St = St[µ+
1

2
σ2]dt+ σStξt

√
dt,

where we thow away the higher order terms since it disappears in the integral, which is
the rigorous sense we want to give to the above dynamical equation anyway.

6.2 Prelude to Brownian motion and Itô Calculus

6.2.1 Brownian motion

As we can observe from the previous sections, the term that makes St a random variable is
Wt in

St = S0e
µt+σWt ,
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or Wt−s is

St = Sse
µ(t−s)+σWt−s ,

or ξu in

St = Ss +

∫ t

s

[µ+
1

2
σ2]Sudu+

∫ t

s

σSuξu
√
du.

Indeed, there is reason to believe these are all different forms of one single process,
let’s call it Wt where corresponding to the above we have

Wt = Wt

Wt−s = Wt −Ws√
duξu = dWu.

Let’s see what we have learned about this process Wt so far:
a. Wt −Ws is independent of Wr, 0 ≤ r ≤ s.
b. Wt −Ws has N(0, t− s) distribution.
Surprisingly, these two characteristics are enough to specify a unique stochastic (ran-

dom) process called the Brownian motion. As typical in mathematics, now that we have the
intuition, we’ll take the reverse approach and define Brownian motion as a process satisfy-
ing properties a and b. We then build a model for the underlying St out of this Brownian
motion Wt. The question is: how do we build St?

6.2.2 Itô Calculus

The short answer to the question how to build St is to specify its dynamics:

dSt = Stµdt+ σStdWt,

S0 = x.

Then we will find, if possible, a process St that has the above dynamics. Yet this
involves several significant difficulties. First of all, the above is a Stochastic Differential
Equation (SDE). Equation because St appears on both sides of the equality (recall Ordinary
Differental Equation (ODE) and what makes it a differntial equation). Stochastic because
the equation relates random quantities on both sides. Differential because it involves dt and
dWt.

Even ignoring the issue that we are dealing with a SDE, there is even a more funda-
mental issue: what do we mean by ∫ t

0

f(u)dWu,
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for a (possibly random) process f(u). The reason is we have seen in some sense∫ t

0

f(u)dWu =

∫ t

s

f(u)ξu
√
du,

and integrating with respect to the term
√
du has to be interpreted in a special way. Being

able to give a sense to integrating with dWu is one fundamental result in the Itô Calculs:
the so-called Itô’s integral.

Similar to classical Calculus (but in some sense developing things in the reverse order),
after we have a notion of the integral, we want to have notion of differentiation. That is,
what is the “derivative" with respect to t (to time) of a term like

St =

∫ t

0

α(u)du +

∫ t

0

σ(u)dWu?

In some sense, the answer has been given above, the “derivative" is given in terms of
the differential:

dSt = α(t)dt+ σ(t)dWt.

The reason we don’t have a proper derivative with respect to t is because Wt is NOT
differentiable in t, another characteristic property of Brownian motion.

Then what about the “derivative" of a function os St, say S2
t ? This is to ask for the chain

rule for the stochastic calculus. The chain rule in this case is referred to as Itô’s formula.
Lastly, how can we solve a SDE? After having the chain rule, we can develop some

basic techniques to find the explicit solution for some basic form of SDEs, in which the
equation

dSt = Stµdt+ σStdWt,

S0 = x

is included. St in this case will be referred to as Geometric Brownian motion.

6.3 The Lebesgue-Stiltjes integral

6.3.1 The Riemann integral

Suppose we have a partition of the interandom variableal [0, T ]: 0 = t0 < t1 < · · · < tn =
T and a function f(t) on [0, T ] that has nice properties. Define ‖∆‖ = maxi(ti+1 − ti) as
the mesh of this particular partition. Then

n∑
i=1

f(ti)(ti+1 − ti)→
∫ t

0

f(s)ds,

as ‖∆‖ → 0.
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Additionally, if we try the following:

n∑
i=1

f(ti)(ti+1 − ti)1+ε

or
n∑
i=1

f(ti)(ti+1 − ti)1−ε

for some ε > 0 we’ll see that
n∑
i=1

f(ti)(ti+1 − ti)1+ε → 0

and
n∑
i=1

f(ti)(ti+1 − ti)1−ε →∞

as ‖∆‖ → 0. The intuitive reason is because

n∑
i=1

f(ti)(ti+1 − ti)1+ε =
n∑
i=1

f(ti)(ti+1 − ti)(ti+1 − ti)ε

and since
n∑
i=1

f(ti)(ti+1 − ti)→
∫ t

0

f(s)ds,

(ti+1 − ti)ε → 0,

the product converges to 0. Similarly,

n∑
i=1

f(ti)(ti+1 − ti)1−ε =
n∑
i=1

f(ti)(ti+1 − ti)
(ti+1 − ti)ε

which goes to infinity.
Formally we write ∫ t

0

f(t)(dt)1+ε = 0∫ t

0

f(t)(dt)1−ε = ∞,
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where ∫ t

0

f(t)(dt)1+ε = lim
‖∆‖→0

n∑
i=1

f(ti)(ti+1 − ti)1+ε

∫ t

0

f(t)(dt)1−ε = lim
‖∆‖→0

n∑
i=1

f(ti)(ti+1 − ti)1−ε

In particular, ∫ t

0

f(t)(dt)2 = 0∫ t

0

f(t)
√
dt = ∞,

6.3.2 Some examples

Example 6.3.1.

lim
n→∞

n∑
i=1

i

n2
=

∫ 1

0

tdt =
t2

2

∣∣∣1
0

=
1

2
,

where we see the sum on the left hand side as the function f(t) = t evaluated at the grid
point i

n
and ti+1 − ti = i+1

n
− i

n
= 1

n
.

Note that the sum above can be checked straightforwardly by using the identity

n∑
i=1

i =
n(n+ 1)

2
.

The point is this simple example allows us to verify that∫ 1

0

t
√
dt = ∞∫ 1

0

t(dt)2 = 0

since

lim
n→∞

n∑
i=1

i

n

1

n2
= lim

n→∞

n(n+ 1)

2n3
= 0

lim
n→∞

n∑
i=1

i

n

1√
n

= lim
n→∞

n(n+ 1)

2n
√
n

=∞.
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6.3.3 The Lebesgue-Stiltjes integral

we may ask why do we even care about expression like
∫ t

0
f(s)
√
ds or

∫ t
0
f(s)(ds)2, since

we never see them in calculus. This is true, because all we’ve dealt with there were Rie-
mann integral. However, we can generalize the notion of integration in the following way:
let g(x) be a function defined on [0, T ] with nice property. Then we can define∫ T

0

f(s)dg(s) := lim
‖∆‖→0

n∑
i=1

f(ti)(g(ti+1)− g(ti)),

if the limit on the right hand side exists. This is called the Lebesgue-Stiltjes integral of f
against g.

And since now we deal with general function g, we can see that there are such functions
that when ti+1 − ti is small

g(ti+1)− g(ti) ≈
√
ti+1 − ti.

(Such function g is not one of our classical calculus examples. At least if we look among
the differentiable functions we won’t find one. The reason is if g is differentiable, then first
order approximation tells us that

g(ti+1)− g(ti) ≈ g′(ti)(ti+1 − ti),

so it’s of order O(dt), not O(
√
dt).)

Our discussion above shows us that for such function g the Lebesgue-Stiltjes integral
for f against g does not exist. As we will see, the Brownian motion paths give us such an
example of a function g, which makes it necessary to define the Itô’s integral.

6.3.4 An example

Actually if we have done u-substitution in Calculus, we have performed the Lebesgue-
Stiltjes integral (possibly without realizing it). Consider the following example:∫ 1

0

2xex
2

dx =

∫ 1

0

eudu,

where we made the substitution

u = x2

du = 2xdx.

More explicitly we consider u as a function of x:

u(x) = x2

du/dx = 2x.
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But another way to write this is we’re evaluating the integral∫ 1

0

ex
2

du(x) =

∫ 1

0

ex
2

u′(x)dx =

∫ 1

0

ex
2

2xdx.

That is we integrate ex2 with respect to u(x) = x2 over the interandom variableal [0, 1].

6.3.5 The Lebesgue-Stiltjes integral as an example of portfolio value

we may ask when we need to use the Lebesgue-Stiltjes integral. Consider the following
example.

Let 0 = t0 < t1 < ... < tn = T be a partition of [0, T ]
Consider an investor who invests in an underlying asset S and the saving account such

that the portfolio is self-financing. Let πk = πtk be the value of the portfolio and ∆k be the
number of shares of S he holds at time k. Then

πk+1 = ∆kSk+1 + er∆T (πk −∆kSk).

We will replace er∆T with 1 + r∆T , i.e. continuous compounding with discrete com-
pouding. They should be very close, if ∆T is small. Then the self-financing equation
reads

πk+1 = ∆kSk+1 + (1 + r∆T )(πk −∆kSk),

or

πk+1 = πk + ∆k(Sk+1 − Sk) + r∆T (πk −∆kSk)

= πk + ∆k(Sk+1 − Sk) + ykr(tk+1 − tk)

=
k∑
i=1

∆i(Si+1 − Si) + yir(ti+1 − ti).

where yk is the amount of cash we holds at time k. Thus we see that if we consider
∆(t), y(t) as a function of t, self-financing requiring that ∆(t) + y(t) = π(t), letting
‖∆‖ → 0 we get

πt =

∫ t

0

∆udSu +

∫ t

0

yurdu.

Thus the amount of money we get from investing in the stock in the continuous time is
a Lebesge-Stiltjes integral.

Note: if we replace yu = πu − rSu, then the above equation reads

πt =

∫ t

0

∆u(dSu − rSudu) +

∫ t

0

πurdu,
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which has the following interpretation:
When we invest in a risky asset (S) in such a way that our portfolio is self-financing, our

gain can be decomposed in two components: the deterministic component, which is just
the saving account:

∫ t
0
πurdu. The other component is how the underlying asset performs

versus the saving account: if it performs better: dSu > rSudu then our portfolio will
perform better than the traditional saving. If it performs worse: dSu < rSudu then our
portfolio will perform worse than the traditional saving.

6.3.6 Integrating with respect to Brownian motion

As we have seen in the previous chapter, the underlying asset in continuous time has the
structure

St =

∫ t

0

α(u)du +

∫ t

0

σ(u)dWu.

Thus we need to make sense out of the term
∫ t

0
σ(u)dWu. Naively, one can define

it like this: let ∆ be a partition of [0, t]. By ‖∆‖ we mean the mesh of this partition:
maxi |ti+1 − ti|. Then following the Riemann integration technique, we can define∫ t

0

σ(u)dWu := lim
‖∆‖→0

∑
i

σ(ti)(Wti+1
−Wti).

There are several issues that need to be considered.
1. In what sense do we understand the convergence in the right hand side (if it’s conver-

gent at all)? The reason is both the left hand side and the right hand side are still functions
of ω. So the most straightforward (!) way is to require the right hand side to converge for
all ω (or a.s.). This won’t happen, because of the irregularity of BM. It turns out that we
need to settle for some type of convergence on average (that is, when we average - take ex-
pectation of the square - in ω, we see that the right hand side converges). More specifically,
we say Xn converges to Y in mean square if as n→∞

E[(Xn − Y )2]→ 0.

In this way, there exists a random variable, we call it
∫ T

0
σ(u)dWu so that

∑
i σ(ti)(Wti+1

−
Wti) converges to

∫ T
0
σ(u)dWu as ‖∆‖ → 0. This way of interpreting the convergence of

the right hand side is the first feature of Itô’s integral.
2. Notice that the integrand σ is sampled at the left hand point of the partition: ti. Recall

that in Riemann integration, where we sample the integrand on the interandom variableal
does not affect the value of the integral (we can use right hand, left hand or mid point). In
integrating with respect to BM, it turns out that which sample point we use matters.

3. The choice of the left hand point is referred to as the Itô integral, which we use
in math finance because of its connection to non-anticipating portfolio. The choice of
the trapezoidal rule (using 1

2
(σ(ti+1) + σ(ti))) is referred to as the Stratonovich integral,
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and more popular among the physicists and engineers because of its closer connection to
classical calculus and a “more natural" interpretation of convergence. ( “More natural here
means if we approximate the Brownian path with path of nicer poperty - say piecewise
smooth - then the integrals against these paths converge to the Stratonovich integral.)

Example 6.3.2. Let ∆ be a partition of [0, t]. Then∑
i

2Wti(Wti+1
−Wti)

converges to W 2
t − t in mean square as ‖∆‖ → 0 while

2
∑
i

1

2
(Wti+1

+Wti)(Wti+1
−Wti)

converges to W 2
t in mean square as ‖∆‖ → 0.

Proof:
We show the first limit. The second is left as a homework exercise.
The key to proving the first limit is the identity

2Wti(Wti+1
−Wti) = W 2

ti+1
−W 2

ti
− (Wti+1

−Wti)
2.

Thus ∑
i

2Wti(Wti+1
−Wti) =

∑
i

W 2
ti+1
−W 2

ti
−
∑
i

(Wti+1
−Wti)

2

= W 2
t −

∑
i

(Wti+1
−Wti)

2.

We will not show the details, but it can be showed without much difficulty that∑
i

(Wti+1
−Wti)

2

converges to t in mean square (The proof is left as a homework exercise). Just keep in mind
that it is not the same as showing

E(
∑
i

(Wti+1
−Wti)

2)→ t,

which is a simpler calculation and indeed true for every partition ∆. What we need to show
is

E
{[∑

i

(Wti+1
−Wti)

2 − t
]2}
→ 0,

as ‖∆‖ → 0.
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6.3.7 Some properties of the Itô integrals

1. With probability 1, Xt =
∫ t

0
α(u)dWu is nowhere differentiable in t.

2.

E
{∫ t

0

α(u)dWu

}
= 0.

E
{[ ∫ t

0

α(u)dWu

]2}
=

∫ t

0

E(α(u)2)du.

3. If α(u) is deterministic, then
∫ t

0
αudu has N(0,

∫ t
0
α(u)2du) distribution.

Example 6.3.3.
∫ t

0
udWu has N(0, t

3

3
) distribution.

Example 6.3.4. W 2
t − t =

∫ t
0

2WudWu does NOT have a Normal distribution, because the
integrand, 2Wu, is NOT deterministic.

We can still compute

E(W 2
t − t) = t− t = 0,

which is consistent with

E(

∫ t

0

2WudWu) = 0.

ComputingE((W 2
t −t)2) = E(W 4

t −2tW 2
t +t2) involves computing the fourth moment

of a Normal distribution (we’ll learn how to do that later with Itô’s formula). There’s an
easier way to do it by computing the right hand side:

E
{[ ∫ t

0

2WudWu

]2}
=

∫ t

0

4E(Wu)
2du =

∫ t

0

4udu = 2t2.

Thus we can deduce that

E(W 4
t ) = 2t2 − t2 + 2tE(W 2

t ) = 3t2.

6.3.8 Itô integral versus Riemann integral

The convergence ∑
i

2Wti(Wti+1
−Wti)

to W 2
t − t in mean square means that∫ t

0

2WudWu = W 2
t − t.
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Now suppose we have a process x(t) that is differentiable in t with x(0) = 0, so that
we can write

dx(t) = ẋ(t)dt,

where ẋ(t) is the derivative of x(t) wrt to t. (The above is just another way to write
dx(t)
dt

= ẋ(t). Then we have, by the chain rule,∫ t

0

2x(u)dx(u) =

∫ t

0

2x(u)ẋ(u)du = x2(t)− x2(0) = x2(t).

Thus Itô integral has a “correction" term versus its Riemannian counter part, in this
case the −t in the Itô integral. This can be thought of also as a consequence of the non-
differentiability of the BM, so Itô integral cannot be done in the Riemannian way to begin
with (the Ẇ (t) = dW (t)

dt
does not exist).

6.3.9 Itô process and differential form

Let α(t, ω) and σ(t, ω) be nice enough process. The discussion above have given the mean-
ing to the process Xt defined as

Xt = x+

∫ t

0

α(u)du+

∫ t

0

σ(u)dWu,

where the dt term is understood in the Riemannian sense and the dWt term is under-
stood in the Itô sense. Any process Xt with the above structure is referred to as an Itô
process. Note that we also have X0 = x in the above equation.

It is the convention in stochastic calculus that we write the above equation for Xt in
differential form:

dXt = α(t)dt+ σ(t)dWt,

X0 = 0.

Just keep in mind that the differential form has no more rigorous meaning than saying:

Xt = x+

∫ t

0

α(u)du+

∫ t

0

σ(u)dWu.

So if this is our first time seeing the differential form, it is good to build the habit of
automatically converting it to the integral form to give it meaning.

6.3.10 Explicit formula for Itô’s integral

we may wonder if we have explicit formula for Itô integral calculation, like the example∫ t
0
WudWu. The answer is yes, for certain types of integrand, essentially like the classical
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calculus. Of course we do not want to go through the definition to learn what the answer is.
Recall that we “compute" the integral in the classical case by guessing the anti-derivative,
then prove that it is the true anti-derivative by differentiating this candidate.

The idea for the Itô integral is the same, except that we have the correction term, so
it’s not easy to guess precisely what the “anti-derivative" is - but we can get close. For
example in

∫ t
0

2WudWu it is natural to guess it isW 2
t . The next step is to “differentiate" the

candidate and find out what the correction term should be. However, we do not know what
differentiation in the Itô’s context means yet. It cannot be done like the classical derivative,
because one can also show that the process Zt =

∫ t
0
σ(u)dWu is nowhere differentiable in

t. The Itô’s formula gives the us the meaning in “differentiating" in this case, as well as
rules to “differentiate" correctly with the right correction term.

6.4 Itô formula

6.4.1 Another perspective of differentiation

Let f(t) be a deterministic function of t. What do we mean by the derivative of f wrt t:
f ′(t) ? We can either use the classical definition, via the limit of the difference quotion, or
we can define it as a function such that for all s < t

f(t)− f(s) =

∫ t

s

f ′(u)du.

The only issue is such definition of f ′(t) needs to be unique (there might possibly
be two different functions f ′(t) that would satisfy the above equation). As we may have
expected from classical calculus, it turns out there is only one f ′(t) that satisfies the above
equation.

In this way, one can develop classical calculus with the notion of the integral first,
and define the derivative this way (which is the approach of the Lebesgue integral and the
derivative associated with it).

As far as we’re concerned, we’ve followed exactly this program with the Itô’s integral.
We developed what it means to have an Itô’s integral, and now we ask what it means to
differentiate in t. If we take the above definition as guidance, then we’ve already known
the answer: the “derivative" of a stochastic process is dXt. This statement contains nothing
deep, it simply says:

Xt =

∫ t

0

dXu,

which is true by partitioning the interandom variableal [0, t] and check it the Riemannian
way.

However, if Xt is an Itô process then we have something more to say: if

Xt = x+

∫ t

0

α(u)du+

∫ t

0

σ(u)dWu,
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then

dXt = α(t)dt+ σ(t)dWt.

Note that if we divide both sides of the differential form with dt (a VERY formal oper-
ation, not to be taken in any rigorous sense) we have

dXt

dt
= α(t) + σ(t)

dWt

dt
,

which is exactly the differentiation with respect to t that we have in mind. The problem,
of course is the term dWt

dt
does not exist, so we have to use the differential form, and interpret

the two types of integrals in two different sense.
So it turns out that differentiation in Itô sense is not that exciting (there is not much we

can say). Yet there are still questions worth asking: if

dXt = α(t)dt+ σ(t)dWt,

what can we say about dX2
t , or better, df(Xt) for a smooth function of f(Xt)? Asking

this question is equivalent to formulating the chain rule in the classical case. Since if we
have a differentiable function x(t) in t, we have

df(x(t)) = f ′(x(t))ẋ(t)dt.

In the case that X(t) is an Itô process, X(t) is not differentiable in t. Thus the above
formula does not work. The chain rule for a function of an Itô process, i.e. to figure out
df(Xt) when Xt is an Itô proess, is referred to as the Itô’s formula.

6.4.2 The Itô’s formula

Theorem 6.4.1. Let Xt be a Itô process:

dXt = α(t)dt+ σ(t)dWt.

Let f(t, x) be once continously differentiable in t, twice continuously differentiable in x
(abbreviated as C1,2). Then

df(t,Xt) = ft(t,Xt)dt+ fx(t,Xt)dXt +
1

2
fxx(t,Xt)σ

2(t)dt

= [ft(t,Xt) + fx(t,Xt)α(t) +
1

2
σ2(t)fxx(t,Xt)]dt+ fx(t,Xt)σ(t)dWt.

Remark: If we understood that the formula should be evaluated at (t,Xt) we can neglect
the arguments and write the Itô’s formula in a somewhat cleaner form:

df(t,Xt) = ftdt+ fxdXt +
1

2
fxxσ

2
t dt

= [ft + fxαt +
1

2
σtfxx]dt+ fxσtdWt.
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Example 6.4.2. Apply Itô’s formula to W 2
t :

dW 2
t = 2WtdWt + dt

That is

W 2
t −W 2

0 =

∫ t

0

2WudWu + t.

Or ∫ t

0

2WudWu = W 2
t − t,

recovering the formula we developed above.

Example 6.4.3. Apply Itô’s formula to tW 2
t :

d(tW 2
t ) = W 2

t dt+ 2tWtdWt + tdt.

That is

tW 2
t =

∫ t

0

W 2
udu+

∫ t

0

2uWudWu +

∫ t

0

udu.

Or

tW 2
t −

t2

2
=

∫ t

0

W 2
udu+

∫ t

0

2uWudWu.

This is an example of the integration by parts formula in the Itô’s context:∫ t

0

W 2
udu = tW 2

t −
∫ t

0

ud(W 2
u )

= tW 2
t −

∫ t

0

2udWu −
∫ t

0

udu.

6.4.3 Intuition of the Itô’s formula

We won’t give a rigorous proof of the Itô’s formula. We’ll only list here the steps to help we
understand why such formula is intuitively correct. We’ll do this by considering different
forms of f(t,Xt). Note that intuitively

df(t,Xt) ≈ ∆f(t,Xt) = f(t+ h,Xt+h)− f(t,Xt),

for very small h. The key to Itô’s formula is the second order Taylor expansion. Indeed
Itô’s formula can be looked at as Taylor’s expansion with the dWt term.
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f(t,Xt) = f(Wt)

Apply Taylor’s expansion

f(Wt+h)− f(Wt) = f ′(Wt)(Wt+h −Wt) +
1

2
f ′′(Wt+ε)(Wt+h −Wt)

2,

for some 0 ≤ ε ≤ h.
Therefore, if ∆ is a partition of [0, t] such that ‖∆‖ ≤ h, we have

f(Wt)− f(W0) =
∑
i

f(Wti+1
)− f(Wti)

=
∑
i

f ′(Wti)(Wti+h −Wti) +
1

2
f ′′(Wti+ε)(Wti+h −Wti)

2

Let ‖∆‖ → 0, we’ll see that

∑
i

f ′(Wti)(Wti+h −Wti)→
∫ t

0

f(Wu)dWu,

in mean square.
We have discussed how

∑
i(Wti+h − Wti)

2 → t in mean square as ‖∆‖ → 0. In a
similar manner, we can believe that∑

i

f ′′(Wti+ε)(Wti+h −Wti)
2 →

∫ t

0

f ′′(Wt)dt,

in mean square. That is, we have showed

f(Wt)− f(W0) =

∫ t

0

f ′(Wu)dWu +
1

2

∫ t

0

f ′′(Wu)du.

f(t,Xt) = f(t,Wt)

This case is very similar to the above, except the Taylor’s expansion becomes

f(t+ h,Wt+h)− f(t,Wt) = ft(t,Wt)(t+ h− h) + fx(t,Wt)(Wt+h −Wt)

+
1

2
fxx(t,Wt)(Wt+h −Wt)

2 + ftx(t,Wt)h(Wt+h −Wt)

+ higher order term

where by higher order term we mean terms of order hk(Wt+h −Wt)
j such that j + k ≥ 3.
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Apply the partition of [0, t] as before, and note that∑
i

ft(ti,Wti)h →
∫ t

0

f(u,Wu)du,

∑
i

fx(ti,Wti)(Wti+h −Wti) →
∫ t

0

fx(Wu)dWu,

∑
i

fxx(ti,Wti)(Wti+h −Wti)
2 →

∫ t

0

fxx(Wt)dt,∑
i

higher order term → 0

in mean square as before. The only point to note is that the term∑
i

ftx(ti,Wti)(Wti+h −Wti)h → 0

as h→ 0.
The heuristic reason is this: since

∑
i(Wti+h − Wti)

2 → t in mean square, we can
believe that Wti+h −Wti“ → ”

√
h for small h. (This is not to be taken in any rigorous

way). Thus, if ftx is bounded by a constant C:∣∣∣∑
i

ftx(ti,Wti)(Wti+h −Wti)h
∣∣∣ ≤ C

∑
i

h3/2 ≤ C
T

h
h3/2 → 0,

as h→ 0.
The above gives the following informal rule about product of differentials when we deal

with Taylor expansion involving dWt.

Informal rule for product of differentials

We have

(dt)2 = 0;

dtdWt = 0;

(dWt)
2 = dt.

More rigorously, the above means, for a partition ∆ of [0, T ] and bounded f∑
i

f(ti)(ti+1 − ti)2 → 0;∑
i

f(ti)(ti+1 − ti)(Wti+1
−Wti) → 0;

∑
i

f(ti)(Wti+1
−Wti)

2 →
∫ t

0

f(s)ds
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in mean square as ‖∆‖ → 0.
With these informal rule, we can give an intuition about the Itô’s formula for the general

case that Xt is an Itô process.

f(t,Xt), Xt an Itô process

By Taylor’s expansion

f(t+ h,Xt+h)− f(t,Xt) = ft(t,Xt)(t+ h− t) + fx(t,Wt)(Xt+h −Xt)

+
1

2
fxx(t,Xt)(Xt+h −Xt)

2 + ftx(t,Xt)h(Xt+h −Xt)

+ higher order term

Note that

Xt+h −Xt ≈ α(t)h+ σ(t)(Wt+h −Wt).

Rewriting the Taylor’s expansion, replacing the difference term with differential term
we have

df(t,Xt) = ftdt+ fxdXt +
1

2
fxx(α

2
t (dt)

2

+ σ2
t (dWt)2 + 2αtσtdtdWt) + ftxdt(αtdt+ σtdWt).

Applying the informal rule of product of differentials, we get

df(t,Xt) = ftdt+ fxdXt +
1

2
fxxσ

2
t dt,

which is exactly the Itô’s formula.

6.4.4 An application of Itô’s formula

Itô’s formula is fundamental in stochastic analysis as it provides the equivalence of the
chain rule in this context. It also provides a nice tool for some computations, for example,
the moments of a Normal random variable as followed.

Example 6.4.4. Let X have Normal(0, σ2) distribution. Compute E(X4).

Ans: If we were to apply the usual formula

E(X4) =

∫ ∞
−∞

x4fX(x)dx,

where fX(x) is the density of the Normal (0, σ2) it would be a tedious calculation.
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Instead, let’s compute E(W 4
t ) where Wt is a BM. If we can do this, then

E(X4) = σ4E(Z4) =
σ4

t2
E(W 4

t ),

where Z is a standard Normal.
Now apply Itô’s formula to W 4

t we have

W 4
t = W 4

0 +

∫ t

0

4W 3
s dWs +

∫ t

0

6W 2
s ds.

The key is the expectation of
∫ t

0
4W 3

s dWs is 0. Thus taking expectation on both sides,
we get

E(W 4
t ) = 6

∫ t

0

E(Ws)
2ds = 6

∫ t

0

s2ds = 3t2.

Therefore E(X4) = 3σ4.
Remark: It is clear that E(X2k+1), k an integer is always 0. So we’re only interested in

computing the even moments of X . And for that purpose, we can just focus on computing
the even moment of Wt using the conversion trick described above.

Example 6.4.5. Compute E(W 2k
t ).

Ans: Apply Itô’s formula to W 2k
t :

W 2k
t = W 2k

0 +

∫ t

0

2kW 2k−1
s dWs +

∫ t

0

k(2k − 1)W 2k−2
s ds.

Taking expectations on both sides give

E(W 2k
t ) =

∫ t

0

k(2k − 1)E(W 2k−2
s )ds.

This provides a recursion formula to compute the even moments of Wt. For example,
for k = 3

E(W 6
t ) =

∫ t

0

3 · 5 · 3s2ds

= 5 · 3t3.

With this, we can compute for the case k = 4 for E(W 8
t ). In fact, it is not hard to guess

that

E(W 8
t ) = 7 · 5 · 3t4,

and in general

E(W 2k
t ) = (2k − 1)!!tk,

where

(2k − 1)!! = (2k − 1)(2k − 3) · · · 3 · 1.
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6.5 Geometric Brownian motion

6.5.1 Definition

As motivated in Lecture notes 5a, a natural model for us to use for the underlying process
St, as the limit of the multiperiod binomial model is

dSt = µStdt+ σStdWt,

where µ, σ are constants, Wt is a BM. We’ll use the convention that σ > 0 (even though St
would have the same distribution if σ < 0).

Definition 6.5.1. A process St following the dynamics

dSt = µStdt+ σStdWt

is referred to as a Geometric BM.

The word geometric comes from the intuition that each increment in St is a product of
St with another increment:

dSt = St(µdt+ σdWt).

6.5.2 Explicit formula

Now we derive an explicit formula for St a Geometric BM. Formally dividing both sides
of (6.1) by St we have

dSt
St

= µdt+ σdWt.

Note that the right hand side is free of St. Therefore, if we can write the left hand side
as df(St) then we’ll be almost done, since then

f(St)− f(S0) =

∫ t

0

df(Su)du =

∫ t

0

µdu+

∫ t

0

σdWu,

and we can solve for St by taking the inverse of f , if possible.
Recalling from classical calculus, the function with a derivative of the form 1/x is

log(x). Thus we can try applying Ito’s formula to log(St). We have

d log(St) =
1

St
dSt −

1

2S2
t

σ2S2
t dt

= µdt+ σdWt −
1

2
σ2dt.
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Therefore,

log(St)− log(S0) =

∫ t

0

(µ− 1

2
σ2)du+

∫ t

0

σdWu

= (µ− 1

2
σ2)t+ σWt.

Therefore,

St = S0e
(µ− 1

2
σ2)t+σWt .

Excerise: Verify that

St = S0e
(µ− 1

2
σ2)t+σWt

satisfies

dSt = µStdt+ σStdWt.

6.6 Risk neutral measure

6.6.1 Definition

So far, the dynamics of St we gave were under the physical measure P . That is properly
we should write

dSt = µStdt+ σStdWt,

under P and

St = S0e
(µ− 1

2
σ2)t+σWt

under P .
How would we define the risk neutral measure in continuous time? Recalling the intu-

tions that
a. The risk neutral measure must be equivalent to the physical measure P .
b. The risk neutral measure should satisfy

Vt = EQ(e−r(T−t)VT |FSt ),

for any financial derivative that pays VT at time t.
c. The risk neutral price at time t for a financial product that pays ST at time T (a

forward contract on S with zero strike) is St.
Thus we see that the proper definition of a risk neutral measure Q is a measure that is

equivalent to P such that for any t ≤ T

EQ(e−r(T−t)ST |St) = St.
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6.6.2 Conditional expectation for Geometric BM

It is clear that to check whether or not a measure Q is risk neutral, we need to perform a
conditional expectation computation of the type

EQ(f(ST )|St),

for some function f .
It is reasonable to believe that under the risk neutral measure, St is still a geometric

Brownian motion, with possibly different µ, σ,Wt. That is it has the following dynamics
under Q:

dSt = µQStdt+ σQStdW
Q
t ,

where µQ, σQ are constants andWQ
t a Q-Brownian motion. For our computational purpose,

we might as well just perform the expectation under P to have an idea of what we’re getting.
Since we’re conditioning on St, we want to rewrite ST in terms of St, that is

E
{
f(ST )

∣∣∣St} = E
{
f
(
Ste

(µ− 1
2
σ2)(T−t)+σ(WT−Wt)

)∣∣∣St}.
Note that we have a very familiar situation as what we dealt with in the discrete time:

WT −Wt is independent of St. (To see this, note that St is a function of Wt by its explicit
formula. The independence follows from the independent increment of BM). Therefore,
we can apply the Independence Lemma, in the following form:

Theorem 6.6.1. Independence Lemma Let X be a random variable independent of St.
Then

E
{
f(X,St)|St

}
= E

{
f(X, x)

}
|x=St .

Thus by the Independence Lemma, we see that

E
{
f(ST )|St

}
= E

{
f
(
xe(µ− 1

2
σ2)(T−t)+σ(WT−Wt)

)}
|x=St .

The expectation is taken over the random variable WT −Wt, which has Normal(0,T-t)
distribution. In particular, we have

E(ST |St) = E
{
xe(µ− 1

2
σ2)(T−t)+σ(WT−Wt)

}
|x=St = xeµ(T−t)|x=St = Ste

µ(T−t),

where we have used the fact that if X has Normal(0, σ2) distribution

E(eX) = e
1
2
σ2

.
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6.6.3 The dynamics of St under the risk neutral measure

From the previous section, we see that if under Q St has the following dynamics :

dSt = µQStdt+ σQStdW
Q
t ,

then

EQ(e−r(T−t)ST |St) = Ste
(µQ−r)(T−t).

Thus if µQ = r under Q then St satisfies the risk neutral pricing condition under Q.
What about σQ ? What can we say about it? It turns out that,σQ has to be equal to σ if Q is
equivalent to P . The reason will be explained in section (7.2) for continuity of exposition.

It turns out that, there is a theorem called the Girsanov theorem, that says there exists
such an equivalent measure Q. That is there exists a Q equivalent to P such that under Q

dSt = rStdt+ σStdW
Q
t ,

where WQ is a BM under Q. We will take this as given in our further discussion with-
out further dicussing of the proof of Girsanov theorem. Moreover, we will slightly abuse
notation and write Wt instead of WQ

t even when we discuss the distribution of St under Q.
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6.7 Exercises

1. Use Ito formula to compute the following
a) d sin(Wt)
b) d exp(Wt)

2. Let 0 = t0 < t1 < t2 < ... < tn = T . Show that

E
[
(
n−1∑
i=0

(
Wti+1

−Wti)
2 − T

)2
]

= 2
n−1∑
i=0

(ti+1 − ti)2.

3. Suppose St satisfies

dSt = sin(St)t
2dt+ exp(

√
St− t)dWt.

Compute
a) d log(St)
b) d exp(S2

t )
c) d
√
St

Please note that this exercise is only to symbolically practice Ito’s formula. There may
not exist a process St that satisfies the above dynamics, or even if it does exist, to make
sense in the expression a,b and c.

4. E(exp(
∫ t

0
sin(s)dWs)).
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CHAPTER 7 The Black-Scholes formula

7.0.1 The first fundamental theorem of asset pricing in continuous time

Theorem 7.0.1. Let St be a non-negative continuous stochastic process under P . Then the
market consisting of St and a saving account is arbitrage free if and only if there exists an
equivalent risk neutral measure Q. Moreover, for any financial derivative based on S that
makes a payment VT at time T , the no-arbitrage price of V at time t is

Vt = EQ(e−r(T−t)VT |FSt ).

7.0.2 Pricing of European style derivative

Now suppose V is a European style derivative: VT = φ(ST ) (that is it is not path-dependent).
Then

Vt = EQ(e−r(T−t)φ(ST )|FSt )

= EQ
{
e−r(T−t)φ

(
Ste

(r− 1
2
σ2)(T−t)+σ(WT−Wt)

)∣∣∣FSt }.
Note that St is constant given FSt . WT −Wt is independent of FSt . That is, we can use

the Independence Lemma in the following form:

EQ(f(St,WT −Wt)|FSt ) = EQ(f(x,WT −Wt))|x=St .

7.1 Pricing of the European-call option - The Black-Scholes formula

7.1.1 The Black-Scholes formula

Theorem 7.1.1. Suppose that under Q,

dSt = rStdt+ σStdWt.

Then the no-arbitrage price at time 0, V0 of a European call with strike K and expiration
time T satisfies

V0 = S0N(d1)−Ke−rTN(d2),
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where N(d1) = P (Z ≤ d1), Z standard Normal and

d1 =
(r + 1

2
σ2)T − log(K

S0
)

σ
√
T

d2 =
(r − 1

2
σ2)T − log(K

S0
)

σ
√
T

The formula for V0 is referred to as the Black-Scholes formula.

7.1.2 Outline of the proof of Black-Scholes formula

At the heart of it, the Black-Scholes formula is just computing the expectation of (X−K)+,
where X has log normal distribution. However, because of the parameters and the log
normal density involved, the computation may seem intimidating for the first time. To help
we keep track of what’s going on, just keep in mind the big steps that we have to perform
in this computation.

1. Computing E(X−K)+, for a continuous random variable X with some density
φX(x).

The key for this step is to break the function (x−K)+ into two parts: x−K for x > K
and 0 for x < K. That is∫ ∞

−∞
(x−K)+φX(x) =

∫ ∞
K

(x−K)φX(x)

=

∫ ∞
K

xφX(x)−
∫ ∞
K

φX(x).

2. Recognize that
∫∞
K
φX(x) is just P (X > K).

3. Computing P (X > K) for X having log normal distribution.
The key to this step is just to write X as what it is in distribution: X = eY , where Y

have Normal distribution. Then

P (X > K) = P (eY > K) = P (Y > log(K)),

and we can use theZ-transform to turn P (Y > log(K)) into a standard Normal calculation.

4. Recognizing that
∫∞
K
xφX(x) isE(X1X≥K) whereX has log normal distribution

(recall the indicator function definition as 1E = 1 if E happens and 0 otherwise).

5. Computing E(X1X≥K) where X has log normal distribution.
The key to this step is also to write X as what it is in distribution: X = eY , where Y

have Normal distribution. Then

E(eY 1eY ≥K) = E(eY 1Y≥log(K)) =

∫ ∞
log(K)

eyφY (y)dy,
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where φY (y) is a Normal density. What we accomplished here is transforming a log-normal
expectation computation to a normal expectation computation (because it’s complicated to
figure out the density of a log-normal distribution).

6. Computing expression of the type E(eY ), where Y has Normal distribution.
The first key to this step is to recognize that eyφY (y), where φY (y) is a Normal density

will be an exponential function, since it will have the form

eyφY (y) = eye−
(y−µ)2

2σ2 .

The second key is to complete the square for the exponent of the exponential. That is
we want to write

eye−
(y−µ)2

2σ2 = e−(y − µ̃)2

2σ̃2
+ c,

for some constants µ̃, σ̃, c. The point is

e−
(y−µ̃)2

2σ̃2

is (modulo a constant) the density of a Normal(µ̃, σ̃) so it will integrate to one. The constant
ec will just factor out of the integration.

7.1.3 Proof of Black-Scholes formula

1. By the risk neutral pricing formula:

V0 = EQ(e−rTVT ) = EQ(e−rT (ST −K)+) = EQ
[
e−rT

(
S0e

(r− 1
2
σ2)T+σWT −K

)+
]

= EQ
[
e−rT

(
S0e

X −K)+
]
,

where X has distribution N((r − 1
2
σ2)T, σ2T ). Note that S0e

X −K ≥ 0 iff X ≥ log(K
S0

).
Therefore

V0 =

∫ ∞
log( K

S0
)

e−rT (S0e
x −K)φX(x)dx

=

∫ ∞
log( K

S0
)

e−rTS0e
xφX(x)dx−

∫ ∞
log( K

S0
)

e−rTKφX(x)dx

:= A−B,

where φX(x) := 1√
2πσ2T

exp
(
− (x−µ)2

2σ2T

)
, µ := (r − 1

2
σ2)T is the density of X . We will

compute A and B separately.
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2.

B =

∫ ∞
log( K

S0
)

e−rTKφX(x)dx = e−rTKP (X > log(
K

S0

))

= e−rTKP (Z >
log(K

S0
)− (r − 1

2
σ2)T

σT
)

= e−rTKN(d2),

where

d2 :=
(r − 1

2
σ2)T − log(K

S0
)

σ
√
T

.

3.

A =

∫ ∞
log( K

S0
)

e−rTS0e
xφX(x)dx

=
1√

2πσ2T

∫ ∞
log( K

S0
)

e−rTS0 exp
(
x− (x− µ)2

2σ2T

)
dx.

Clearly,

x− (x− µ)2

2σ2T
=

2σ2Tx− (x− µ)2

2σ2T
.

We complete the square in the numerator of the above fraction:

2σ2Tx− (x− µ)2 = −x2 + 2(σ2T + µ)x− µ2 = −
(
x− (σ2T + µ)

)2
+ (σ2T + µ)2 − µ2

= −(x− (σ2T + µ))2 + σ4T 2 + 2µσ2T.

Thus

x− (x− µ)2

2σ2T
=
−(x− (σ2T + µ))2 + σ4T 2 + 2µσ2T

2σ2T

= −(x− (σ2T + µ))2

2σ2T
+

1

2
σ2T + µ.

Also note that

1

2
σ2T + µ =

1

2
σ2T + (r − 1

2
σ2)T = rT.

and

σ2T + µ = σ2T + (r − 1

2
σ2)T = (r +

1

2
σ2)T.
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Therefore

A =
1√

2πσ2T

∫ ∞
log( K

S0
)

e−rTS0 exp
(
x− (x− µ)2

2σ2T

)
dx

=
1√

2πσ2T

∫ ∞
log( K

S0
)

S0 exp
(
−

(x− (r + 1
2
σ2)T )2

2σ2T

)
dx

= S0P
(
X̃ ≥ log(

K

S0

)
)
,

where X̃ has distribution N((r + 1
2
σ2)T, σ2T ). Thus

A = S0P (Z ≥
log(K

S0
)− (r + 1

2
σ2)T

σ
√
T

)

= S0N(d1),

where d1 =
(r+ 1

2
σ2)T−log( K

S0
)

σ
√
T

.
This finishes the derivation of Black-Scholes formula.

Remark 7.1.2. As we mentioned the heart of Black-Scholes formula is just computing the
expectation of a log-normal random variable. So if we understand the technique, we can
handle much more general European style derivative than just the European Call option.
For example, we can price a European style derivative that pays (S2

T −K)+ at time T . The
details are given in the Section (7.2).

7.1.4 Pricing a European call option at time t

Theorem 7.1.3. Suppose that under Q,

dSt = rStdt+ σStdWt.

Then the no-arbitrage price at time t, Vt of a European call with strike K and expiration
time T satisfies

Vt = StN(d1(t))−Ke−r(T−t)N(d2(t)),

where

d1(t) =
(r + 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

d2(t) =
(r − 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t
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Proof. By the risk neutral pricing formula and the Independence Lemma:

Vt = EQ(e−r(T−t)VT |St) = EQ(e−r(T−t)(ST −K)+|St)

= EQ
[
e−r(T−t)

(
xe(r− 1

2
σ2)(T−t)+σ(WT−Wt) −K

)+
]∣∣∣
x=St

= EQ
[
e−rT

(
xeX −K)+

]∣∣∣
x=St

,

where X has distribution N((r − 1
2
σ2)(T − t), σ2(T − t)).

Thus we see that we just repeat exactly the same calculation as the original Black-
Scholes formula at time t = 0, replacing S0 with St and T with T − t. The conclusion now
follows.

7.2 Further discussion and examples

7.2.1 σQ = σ between the risk neutral and physical measures

Why does σQ have to be equal to σ if Q is equivalent to P ? It is because of the following
law of iterated logarithm: if Wt is a BM under P then

P
{

lim sup
t→∞

Wt√
2t log log(t)

= 1
}

= 1.

Thus if Q is to be equivalent to P , the Brownian motion Wt cannot be a scaled version
of WQ

t . If σQ 6= σ then essentially we would have WQ
t as a scaled version of Wt. Then the

law of iterated logarithm would require

PQ
{

lim sup
t→∞

Wt√
2t log log(t)

= 1
}

= 1,

since Q and P are equivalent. But this cannot happen, since we also have

PQ
{

lim sup
t→∞

WQ
t√

2t log log(t)
= 1
}

= PQ
{

lim sup
t→∞

cWt√
2t log log(t)

= 1
}

= 1,

where c is the scaling factor.
Since the two sets{

lim sup
t→∞

Wt√
2t log log(t)

= 1
}
,
{

lim sup
t→∞

WQ
t√

2t log log(t)
= 1
}

are disjoint, it cannot happen that PQ of these two sets are 1.
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7.2.2 Pricing a European style derivative with payment VT = (S2
T −K)+

Lemma 7.2.1. Suppose we have a European-style derivative that pays (S2
T −K)+ at time

T where St is a geometric BM:

dSt = rStdt+ σStdWt

Then the no arbitrage at time 0 of this derivative is

V0 = e(r+σ2)T [S2
0N(d̄1)− e−rT K̄N(d̄2)].

where

d̄1 =
(r + 2σ2)T − log( K̄

S2
0
)

2σ
√
T

d̄2 =
(r − 2σ2)T − log( K̄

S2
0
)

2σ
√
T

K̄ =
K

e(r+σ2)T

Proof. From the pricing formula:

V0 = E(e−rT (S2
T −K)+).

Note that

S2
T = S2

0 exp((2r − σ2)T + 2σWT ).

We need to utilize the Black-Scholes formula, so we want to compare S2
t with a process

with volatility 2σ. So we consider the process S̄t where

dS̄t = rS̄tdt+ 2σS̄tdWt

S̄0 = S2
0 .

That is

S̄t = S2
0 exp((r − 2σ2)t+ 2σWt). (7.1)

The Black-Scholes formula gives

E(e−rT (S̄T −K)+) = S̄0N(d̄1)−Ke−rTN(d̄2),

where

d̄1 =
(r + 2σ2)T − log( K

S2
0
)

2σ
√
T

d̄2 =
(r − 2σ2)T − log( K

S2
0
)

2σ
√
T
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So in the original computation:

V0 = E(e−rT (S2
T −K)+)

= E
(
e−rT (S2

0 exp((2r − σ2)T + 2σWT )−K)+
)

= e(r+σ2)TE
(
e−rT (S2

0 exp((r − 2σ2)T + 2σWT )− K̄)+
)

= e(r+σ2)TE
(
e−rT (S̄T − K̄)+

)
,

where K̄ = K

e(r+σ
2)T
. Now we have rewritten the formula in the form similar to (7.1) with

S̄0 = S2
0 . Therefore, the conclusion is

V0 = e(r+σ2)T [S2
0N(d̄1)− e−rT K̄N(d̄2)].

Proof. Alternative derivation
We can rephrase Black-Scholes formula this way:

e−rTEQ
(

(S̄0e
µ̄T+σ̄WT −K)+

)
= e−rT

(
e(µ̄+ 1

2
σ̄2)T S̄0N(d1)−KN(d2)

)
,

where

d1 =
(µ̄+ σ̄2)T − log

(
K
S0

)
σ̄
√
T

d2 =
µ̄T − log

(
K
S0

)
σ̄
√
T

.

Thus in computing

V0 = E(e−rT (S2
T −K)+) = E

(
e−rT (S2

0e
(2r−σ2)T+2σWT )+

)
,

we only have to plug in the above with

S̄0 = S2
0

µ̄ = 2r − σ2

σ̄ = 2σ.

In this case, we have

V0 = e−rT
(
e(2r+2σ2)TS2

0N(d1)−KN(d2)
)

= e(r+σ2)TS2
0N(d1)−Ke−rTN(d2),
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where

d1 =
(2r + 3σ2)T − log

(
K
S2
0

)
2σ
√
T

d2 =
(2r − σ2)T − log

(
K
S2
0

)
2σ
√
T

.

we can check that this is exactly what we got in the first derivation.

7.2.3 Some further Black-Scholes computation suggestion

we can practice manipulating Black-Scholes formula by considering pricing, that is, find
Vt, for the following European style derivative, all with expiration T , assuming the Black-
Scholes model:

a. VT = log(ST );
b. VT = SβT , β a constant;
c. VT = 1ST≥K , the so-called Binary or cash or nothing option;
d. VT = 1K1≤ST≤K2 , a generalization of the Binary option;
e. VT2 =

ST1
ST2

, T1 < T2 are two fixed times, the option expires at T2.

7.3 Merton’s structural model of credit risk

In this section we discuss a nice example of Black-Scholes formula used in the context of
modeling a company’s credit risk. Roughly speaking, credit risk concerns the possibility
of financial losses due to changes in the credit quality of the company. The most notable
change in credit quality is a default event. Usually, default is triggered by a failure of
the firm to meet its debt servicing obligations, which usually quickly leads to bankruptcy
proceedings. Under structural models, a default event is deemed to occur for a firm when its
assets reach a sufficiently low level compared to its liabilities. These models require strong
assumptions on the dynamics of the firm’s asset, its debt and how its capital is structured.
The main advantage of structural models is that they provide an intuitive picture, as well as
an endogenous explanation for default. We will discuss other advantages and some of their
disadvantages in what follows.

The Merton model assumes that the total value At of a firmâĂŹs assets follows a geo-
metric Brownian motion under the physical probability:

dAt = µAtdt+ σAtdWt.

The company is funded by shares (equity) and bonds (debt). The Merton model as-
sumes that debt consists of a single outstanding bond with face value D and maturity T.
At maturity, if the total value of the assets is greater than the debt, the latter is paid in full
and the remainder is distributed among shareholders. However, if AT < D then default
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occurs: the bondholders exercise the right to liquidate the firm and receive the liquidation
value (equal to the total firm value since there are no bankruptcy costs) in lieu of the debt.
Shareholders receive nothing in this case, but by the principle of limited liability are not
required to inject any additional funds to pay for the debt.

From these simple observations, we see that shareholders have a cash flow at T equal to

(AT −D)+,

and so equity can be viewed as a European call option on the firm’s assets. That is

ET = (AT −D)+.

The equity value Et of the firm at time t can be found using Black-Scholes formula:

Et = EQ(e−r(T−t)(AT −D)+|At) = AtN(d+)−De−r(T−t)N(d−),

where

d± =
(r ± 1

2
σ2)(T − t)− log( D

At
)

σ
√
T − t.

Bond holders, on the other hand, receive

min(D,AT ) = AT − (AT −D)+

= D − (D − AT )+.

We can imagine this debt as a single defaultable bond with face value D and recovered
value D − (D − AT )+. The physical default probability is

P (B(T, T ) < D) = P (AT < D) = N(−(d−)).

The value B(t, T ) for this bond at earlier times t < T can be obtained as the value of
a zero-coupon bond minus a European put option. In the assumption of constant interest
rate:

B(t, T ) = De−r(T−t) − [De−r(T−t)N(−(d−))− AtN(−d+)]

= De−r(T−t)N(d−) + AtN(−d+).

Even though it is not obvious in this form, it is true that

B(t, T ) ≤ e−r(T−t)D.

One way to see this is from the risk neutral pricing formula of B(t, T ). This reflects the
fact that the company bond holder faces greater risk (namely the default risk) than a non-
defaultable bond holder. Thus they require a higher compensation, reflecting in the lower
bond price than that of the zero-coupon non-defaultable bond.
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The yield to maturity Y (t, T ) of a particular bond with face value D is defined by

B(t, T ) = e−Y (t,T )(T−t)D.

That is

Y (t, T ) = − 1

T − t
log(

B(t, T )

D
).

Thus a zero-coupon non-defaultable bond has yield to maturity exactly equal to r. For the
defaultable bond in the Merton model it is

Y (t, T ) = − 1

T − t
log
(
e−r(T−t)N(d−) +

At
D
N(−d+)

)
.

The difference S(t, T ) between the yield to maturity of a defaultable bond and the short
rate is referred to as the yield-spread or the credit-spread. In this case it is

S(t, T ) = − 1

T − t
log
(
N(d−) + er(T−t)

At
D
N(−d+)

)
.

S(t, T ) can be used as a measure of how “risky" the firm is. In practice, since B(t, T ) and
r are observable in the market, S(t, T ) can be directly calculated from market data.

The qualitative behaviour of the credit spread term structure is that credit spreads start
at zero for T = 0, increase sharply to a maximum, and then decrease either to zero at
large times if r − σ2/2 ≤ 0 or a positive value if r − σ2/2 > 0. s. It is at odds with
empirical observations in two respects: (i) observed spreads remain positive even for small
time horizons and (ii) tend to increase as the time horizon increases.

Estimating a firm’s asset and volatility using Merton’s model

Structural models like MertonâĂŹs model depend on the unobserved variable At. On the
other hand, for publicly traded companies, the share price (and hence the total equity) is
closely observed in the market. The usual âĂIJad-hocâĂİ approach to obtaining an estimate
for the firmâĂŹs asset values At and volatility σ in Merton’s model uses the Black-Scholes
formula for a call option, that is,

Et = BSCall(At, D, r, σ, T − t), (7.2)

where D and T are determined by the firmâĂŹs debt structure. One combines this with a
second equation by equating the equity volatility to the coefficient of the Brownian term
obtained by applying Ito’s formula to 7.2, namely,

σAt =
∂BSCall

∂A
= σEEt.

A consistent method is to use Duan’s maximum likelihood to estimate σ and µ directly
from the equity time series Ei. Once an estimate for σ is obtained in this way, it can be
inserted back into the pricing formula 7.2 in order to produce estimates for the firm values
Ai .
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7.4 Binomial approximation to Black-Scholes price

In this section, we compare the price obtained by Black-Scholes formula with the Binomial
tree model, where St is a Geometric BM:

dSt = rStdt+ σStdWt (7.3)

We will show through an example that the two prices are close to each other. This is
not a surprising result, as we showed that the Black-Scholes are indeed obtained from the
continuous limit of the Binomial model. we can believe that as the number of periods in
the Binomial model grow (so that the length of the period decreases) the price obtained by
the Binomial model will converge to the price given by the Black-Scholes model.

7.4.1 The Black-Scholes price:

For simplicty, we let r = 0, σ = 0.1, T = 1, S0 = 1000 and K = 1000. Then the
Black-Scholes formula for European-Call is

V0 = S0N(d1)−KN(d2)

where

d1 =
1
2
σ2T − log(K

S0
)

σ
√
T

= 0.05

Similarly d2 = −0.05. Thus V0 = 1000(0.52− 0.48) = 40.

7.5 The approximation:

We now divide [0, 1] into n = 5 intervals. The discrete approximation to (7.3) is

Stk+1
− Stk = rSk(tk+1 − tk) + σSk(Btk+1

−Btk)

where k = 0, 1, ..., 5 and t0 = 0, t1 = 0.2, ..., t4 = 0.8, t5 = 1.
Btk+1

− Btk has distribution N(0, tk+1 − tk). We approximate this by
√
tk+1 − tkYk

where

Yk = 1 with probability
1

2

= −1 with probability
1

2
.

For short-hand, we will write Sk for Stk . The evolution equation for Sk becomes

Sk+1 = Sk(1 + σ
√
tk+1 − tkYk).
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Note that this is exactly the Binomial model we have studied before with Xk = 1 +
σ
√
tk+1 − tkYk. Plug in , we have

Xk = 1.044 with probability
1

2

= .956 with probability
1

2
.

Draw out the binomial tree, we see that the price for Euro Call on Sk with strike 1000
and expiration time n = 5 is

V b
0 =

(
240 + 5× 135 + 10× 39.9

) 1

25
= 41.06

This is not a very precise approximation to the Black-Scholes price of course (which
gives 40 as in Section 2) but considering we only used 5 steps it is not terrible. The point
of this computation is to convince you again that indeed the Geometric Brownian motion
can be viewed as the limit of the Binomial tree as the time step gets closer to 0.
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7.6 Exercises

In all of the following questions, suppose St follow the Black-Scholes model under a risk
neutral measure Q:

dSt = rStdt+ σStdWt.

1. Derive the Black-Scholes formula. Try to go as far as we can before consulting the
notes or textbook.

2. Compute V0 for the following European-style derivatives:
a. VT = (SβT −K)+, β a constant.
b. VT = 1 is ST < K, VT = 0 otherwise.
c. VT = SβT , β a constant.
d. VT = log(ST ).
e. VT = 1 if K1 < ST < K2, VT = 0 otherwise.
f. VT = (K − SβT )+, β a constant.
3. Let r = 0, σ = 0.1, T = 1, S0 = 1000 and K = 1000. Consider a European Call

option on S with strike K and expiration T .
a. Compute the Black-Scholes price for V0.
b. Compute the Binomial approximation to the Black-Scholes price with the number of

steps n = 5.
c. Repeat part a with r = 0.05.
d. Repeat part b with r = 0.05.
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CHAPTER 8 The Black-Scholes PDE

8.1 Introduction

Consider the price Vt at time of a European call with strike K and expiration T :

Vt = EQ(e−r(T−t)(ST −K)+|Ft).

From either the Markov property of St or the Indendence Lemma, we see that there is
a function v(t, x) (deterministic!) such that for all t,

Vt = v(t, St).

The question is can we derive an equation for v(t, x)? The answer is yes, and the equa-
tion is a Partial Differential Equation (PDE): an equation connecting the partial derivatives
of v in t and x, hence the name.

This equation is of interest because if we can solve it, then to decide Vt we only need to
plug in St for x. Of course we can decide Vt by taking Expectation via the Independence
Lemma, which leads to the Black-Scholes formula. Numerically, this would lead to the
pricing by simulation method: we simulate the paths of St and summing over the paths as
way to approximate the expectation. The pricing of Vt by by figuring out v(t, x) would
like to the numerical solution of PDE approach. This provides us with an alternative (and
sometimes possibly more powerful) approach to the simulation method described above.

8.2 Two approaches to derive the Black-Scholes PDE

There are two approaches to derive the Black-Scholes PDE, by constructing either the repli-
cating or the game theory portfolio. We describe both approaches here. The common key
to both approaches is the dynamics of a self-financing portfolio: Let πt be the value of a self
financing portfolio consisting of n assets: S1, S2, · · · , Sn. (They can be anthing from the
underlying assets, the saving account to the financial derivative based on the underlyings).
Let ∆i

t, i = 1, · · · , n be the number of shares of Si in the portfolio at time i. Then

dπt = ∆1
tdS

1
t + ∆2

tdS
2
t + · · ·+ ∆n

t dS
n
t .

The intuition is since the portfolio is self-financing, the only change in the portfolio
value (from one period to another) is from the change in the asset price. You can make this
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more rigorous by writing from the period [ti, ti+1]:

πti = ∆1
ti
S1
ti

+ ∆2
ti
dS2

ti
+ · · ·+ ∆n

ti
dSnti

πti+1
= ∆1

ti
S1
ti+1

+ ∆2
ti
dS2

ti+1
+ · · ·+ ∆n

ti
dSnti+1

.

Subtracting the two equations, letting ti → ti+1 we have the dynamics of πt as de-
scribed.

8.3 The game theory approach

8.3.1 The idea

Recall the game theory portfolio is a portfolio consisting of the underlying S and the deriva-
tive V such πT is a constant in ω. By the no arbitrage condition this forces erTπ0 = πT .

This argument can be repeat in a small time interval [t, t+ h] to the conclusion that

erhπt = πt+h

Using Taylor’s approximation erh ≈ 1 + rh we have

rπth ≈ πt+h − πt.

Letting h goes to 0, we get

dπt = rπtdt.

Thus the first key is that if the portfolio is a game theory portfolio, it has to satisfy

dπt = rπtdt.

This is not surprising actually, since it says if a portfolio has deterministic growth, then
the growth rate has to be the interest.

The next key is to use the self-financing condition: suppose we hold ∆t shares of the
underlying S and 1 share of V for our game theory portfolio then

dπt = ∆tdSt + dVt.

Equating these two equations give

∆tdSt + dVt = r(∆tSt + Vt)dt,

since πt = ∆tSt + Vt. The term dVt can be expanded by a Taylor expansion to terms
involving the partials of the function v(t, x) (recall that Vt = v(t, St)) with respect to t and
x (by applying the Ito’s formula). This will lead to a PDE for v(t, x).
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8.3.2 Game theory portfolio in continuous time

The above approach did not address a subtle but crucial point: how can we build a game
theory portfolio in continuous time? I.e, how can we choose ∆t? The answer is not simple.
In the 1 period model, we could build a portfolio because by the nature of the model, the
stock price only changes at time T and it only has 2 outcomes. In the continuous time, the
stock price changes on the interval [0, T ] and it takes on a continuum of values. So solving
for the number of shares ∆t of the underlying St at every time t cannot be done directly.
Instead, we introduce the following idea.

Let St be a financial asset in continuous time with the following dynamics:

dSt = µtdt+ σtdWt.

We introduce the following terminology: we call St a risky asset if σt 6= 0 and we call
it a risk-free asset if sit = 0, ∀t. That is a risk free asset must have its dynamics as:

dSt = µtdt.

Note that a risk-free asset does NOT have to be deterministic. The only requirement
is its Brownian motion component is 0. In this way, the bond (or a saving account with
variable (in time) and random interest rate) is a risk-free asset.

Back to our game theory portfolio, by applying Ito’s formula to find dVt = dv(t, St),
we see that dπt consists of a dt and a dWt term. That is, πt is an Ito process. For simplicity
let us write

dπt = µπt dt+ σπt dWt,

where µπt , σ
π
t are some stochastic processes. Observe that by choosing ∆t carefully, we can

control σπt or µπt (for example, possibly making σπt to be 0). If we can do this, then we can
turn πt into a risk-free asset.

Why is this important? It is because the ONLY risk-free asset in an arbitrage-free
market is the bond, or the saving account. More precisely, we have the following result:

Lemma 8.3.1. Let St be a risk-free asset. That is suppose

dSt = µtdt.

In addition, suppose µt is continuous in t. If the market is arbitrage free, then

µt = rSt, ∀t.

Proof. Suppose not, then WLOG we assume µs > rSs for some s. Since µs is continu-
ous, we can find t > s such that µu > rSu, u ∈ [s, t]. Then

St = Ss +

∫ t

s

µudu > Ss +

∫ t

s

rSudu.
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That is

St > Sse
r(t−s).

Then it is clear that by borrowing money from the bank to invest in S at time s, we will
have an arbitrage opportunity.

To conclude, to build a game-theory portfolio in continuous time is equivalent to build
a risk-free portfolio. This will be our approach in deriving the Black-Scholes PDE.

8.3.3 Derivation of the Black-Scholes PDE

Goal:

To show that under the model

dSt = rStdt+ σStdBt,

the price v(t, St) of a European-style derivative that pays φ(St) at time T satisfies

∂

∂t
v(t, x) +

∂

∂x
v(t, x)rx+

1

2

∂2

∂x2
v(t, x)σ2x2 − rv = 0

v(t, x) = φ(x).

Ingredients

1. Ito’s formula
2. Game-theory portfolio: We hold ∆t shares of stock at time t and 1 share of V . We
choose ∆t such that the return of the portfolio is “deterministic".
3. No arbitrage principle: If a portfolio πt satisfies

dπt = µ(t)πtdt, (8.1)

then we must have µ(t) = r, for all t.

Derivation of Black-Scholes PDE

1. Apply Ito’s formula:

dVt =
∂

∂t
v(t, St) +

∂

∂x
v(t, St)dSt +

1

2

∂2

∂x2
v(t, St)σ

2S2
t dt.

Since

dSt = rStdt+ σStdWt,

grouping the dt and dBt terms together we have

dVt =
[ ∂
∂t
v(t, St) +

∂

∂x
v(t, St)rSt +

1

2

∂2

∂x2
V (t, St)σ

2S2
t

]
dt+

[ ∂
∂x
v(t, St)σSt

]
dWt.(8.2)
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2.
a. By definition: πt = ∆tSt + Vt. By self-financing requirement:

dπt = ∆tdSt + dVt

= ∆t

(
rStdt+ σStdWt

)
+ dVt.

Replace dVt by (8.2) and group dt, dWt terms again we have

dπt =
[
∆trSt +

∂

∂t
v(t, St) +

∂

∂x
v(t, St)rSt +

1

2

∂2

∂x2
V (t, St)σ

2S2
t

]
dt

+
[
∆tσSt +

∂

∂x
v(t, St)σSt

]
dWt.

b. Since πt is a game theory portfolio, it has the dynamics

dπt = rπtdt.

Comparing with the above equation, this forces the dWt term to be 0 or

∆t = − ∂

∂x
v(t, St).

Then

dπt =
[ ∂
∂t
v(t, St) +

1

2

∂2

∂x2
v(t, St)σ

2S2
t

]
dt

=

[
∂
∂t
v(t, St) + 1

2
∂2

∂x2
v(t, St)σ

2S2
t

]
πt

πtdt.

This is in the form of (8.1) with

µ(t) =

[
∂
∂t
v(t, St) + 1

2
∂2

∂x2
v(t, St)σ

2S2
t

]
πt

.

Therefore, we conclude that[
∂
∂t
v(t, St) + 1

2
∂2

∂x2
v(t, St)σ

2S2
t

]
πt

= r.

But πt = ∆tSt + v(t, St) = − ∂
∂x
v(t, St)St + v(t, St). So we have

∂

∂t
v(t, St) +

1

2

∂2

∂x2
v(t, St)σ

2S2
t = r(− ∂

∂x
v(t, St)St + v(t, St)).

In other words
∂

∂t
v(t, St) +

1

2

∂2

∂x2
v(t, St)σ

2S2
t + r

∂

∂x
v(t, St)St − rv(t, St) = 0.

Lastly, since this is true for any value of St, replacing St by x we have

∂

∂t
v(t, x) +

1

2

∂2

∂x2
v(t, x)σ2x2 + r

∂

∂x
v(t, x)x− rv(t, x) = 0.

This is the Black-Scholes PDE.
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8.4 The replicating portfolio approach

8.4.1 The idea

Recall the replicating portfolio is a portfolio consisting of the underlying S and the saving
account y such πt = Vt for any time t. But this forces the dynamics of πt and Vt to be the
same:

dVt = dπt.

If we hold ∆t in S and yt in the saving account at time t then (recalling that dyt = rytdt)

dVt = dπt = ∆tdSt + rytdt.

The dVt term can be expanded by Ito’s formula as before. The key now is the above
equation will become

(something1) dt+ (something2) dWt = 0.

The second key is we have the freedom to choose ∆t to make the dWt term to be 0. This
forces the dt term to be 0 as well, from which we can derive the PDE. The details are as
followed.

8.4.2 The derivation

1. Apply Ito’s formula:

dVt =
∂

∂t
v(t, St) +

∂

∂x
v(t, St)dSt +

1

2

∂2

∂x2
v(t, St)σ

2S2
t dt

= [
∂

∂t
v + rSt

∂

∂x
v +

1

2

∂2

∂x2
vσ2S2

t ]dt+
∂

∂x
vσStdWt.

2. Since

dSt = rStdt+ σStdWt,

we have

dπt = ∆t(rStdt+ σStdWt) + rytdt

= ∆t(rStdt+ σStdWt) + r(πt −∆tSt)dt.

Since Vt = πt, we conclude dVt = dSt and

[
∂

∂t
v + rSt

∂

∂x
v +

1

2

∂2

∂x2
vσ2S2

t ]dt+
∂

∂x
vσStdWt = ∆t(rStdt+ σStdWt) + r(πt −∆tSt)dt

= ∆t(rStdt+ σStdWt) + r(Vt −∆tSt)dt

= rvdt+ ∆tσStdWt.
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The above equation becomes:

[
∂

∂t
v + rSt

∂

∂x
v +

1

2

∂2

∂x2
vσ2S2

t − rv]dt+ (
∂

∂x
v −∆t)σStdWt = 0.

Choosing ∆t = ∂
∂x
v(t, St) the dWt term is 0. (Note how this term is exactly the negative

of the choice for ∆t in the game theory portfolio. This is related to the Delta hedging
concept). Then the dt term has to be 0 as well, leaving us with

∂

∂t
v + rSt

∂

∂x
v +

1

2

∂2

∂x2
vσ2S2

t − rv = 0.

This is exactly the same Black-Scholes equation we derived before.

8.5 Some remarks on Delta hedging

As we see from the derivation, in the game theory portfolio, we have to use ∆t = − ∂
∂x
v(t, St)

and in the replicating portfolio, we have to use ∆t = ∂
∂x
v(t, St). This is an example of one

of the Greeks in Math Finance, which we’ll cover later.
The partial derivative of a financial derivative price (or a portfolio price) with respect

to the underlying asset price is referred to as the Delta of the financial derivative at time
t. It measures the sensitivity of the derivative price with respect to the underlying asset.
(Since there are 2 “Deltas" floating around, I will use the Greek symbol ∆t for the number
of assets in the portfolio, and the English word Delta for the concept of partial derivative
with respect to the underlying price).

We have seen that it may be desirable for a portfolio to have “stable" return over time
(as in the game-theory portfolio). The intuitive idea is to make the Delta of our portfolio
to be 0 at all time, so that the portfolio is protected against small change in the underlying
asset price in the short run. In particular if we hold ∆t share of St and 1 share of the
financial derivative in our portfolio, then

πt = ∆tSt + v(t, St).

Thus (assuming ∆t is constant)

∂

∂St
πt = ∆t

∂

∂St
St +

∂

∂St
v(t, St)

= ∆t +
∂

∂St
v(t, St).

It follows that the choice ∆t = − ∂
∂x
v(t, St) will make ∂

∂St
πt = 0. This choice of ∆t is

referred to as Delta hedging: it makes the Delta of the portfolio value to be 0 in the short
run.

Note that the above derivation is NOT rigorous: we assume ∆t to be constant (or at
least independent of St) to pass the partial derivative w.r.t St through it, only to conclude
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that it equals − ∂
∂x
v(t, St) hence depends on St. But the calculation can be heuristically

justified as in the short run, ∆t can be thought of as approximately constant, and all of the
above derivation should be looked at only in the approximate sense.

Thus, in practice, at any time moment t one can choose the number of shares ∆t so that
the Delta of the portfolio is approximately 0 for a short time. But then the approximation
will no longer be valid after a while (maybe a minute, half an hour etc, say at time t + ε).
Then one will need to rebalance the portfolio at that moment to keep the Delta approxi-
mately 0 again. One cannot hope to choose ∆ for all time t (the buy and hold strategy)
while also keep the Delta of the portfolio to be approximately 0 at all time.

8.6 An example

8.6.1 Goal:

To show that the price for a cash or nothing derivative: VT = 1{ST≥K} at time t, which is

v(t, St) = e−r(T−t)N(d2(t, St)),

d2(t, St) =
(r − 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

satisfies the Black-Scholes PDE:

∂

∂t
V +

∂

∂x
V rx+

∂2

∂x2
V σ2x2 − rV = 0

v(t, x) = 1{x≥K}.

8.6.2 Check the terminal condition:

We want to show that

v(t, x) = 1 if x ≥ K

= 0 if x < K.

Indeed if x > K then K
x
< 1 and log(K

x
) < 0. Therefore d2(T, x) = ∞ and

N(d2(T, x)) = 1.
Similarly x ≤ K then K

x
≥ 1 and log(K

x
) ≥ 0. Therefore d2(T, x) = −∞ and

N(d2(T, x)) = 0.
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8.6.3 Calculations:

1. Derivatives of d2(t, x):

∂

∂t
d2(t, x) = −

r − 1
2
σ2

2σ
√
T − t

+
log( x

K
)

2σ
√
T − t3

=
1

2(T − t)
[
d2 −

2

σ
(r − 1

2
σ2)
√
T − t

]
∂

∂x
d2(t, x) =

1

xσ
√
T − t

∂2

∂x2
d2(t, x) = − 1

x2σ
√
T − t

.

2. Derivatives of V :

∂

∂t
V = re−r(T−t)N(d2(t, x)) + e−r(T−t)φz(d2(t, x))

∂

∂t
d2(t, x)

= rV + e−r(T−t)φz(d2(t, x))
∂

∂t
d2(t, x)

∂

∂x
V = e−r(T−t)φz(d2(t, x))

∂

∂x
d2(t, x)

∂2

∂x2
V = −e−r(T−t)d2(t, x)φz(d2(t, x))(

∂

∂x
d2(t, x))2 + e−r(T−t)φz(d2(t, x))

∂2

∂x2
d2(t, x).

3. Check the cancellations:
a.

∂

∂t
V − rV = e−r(T−t)φz(d2)

1

2(T − t)

[
d2 −

2

σ
(r − 1

2
σ2)
√
T − t

]
= e−r(T−t)φz(d2)

1

2(T − t)
d2 − e−r(T−t)φz(d2)

1

σ
√
T − t

(r − 1

2
σ2).

b.

∂

∂x
V rx =

re−r(T−t)φz(d2)

σ
√
T − t

1

2

∂2

∂x2
V σ2x2 =

1

2

[
− e−r(t−t)φz(d2)d2

T − t
− e−r(T−t)φz(d2)σ√

T − t
]
.

It is easy to see that everything cancels out now.
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8.7 Exercises

In all of the following questions, suppose St follow the Black-Scholes model under a risk
neutral measure Q:

dSt = rStdt+ σStdWt.

1. Derive the Black-Scholes PDE using either the game theory or replicating portfolio.
Try to go as far as you can before consulting the notes or textbook.

2. Compute Vt for the following Euro-style derivatives:
a. VT = 1 is ST < K, VT = 0 otherwise.
b. VT = SβT , β a constant.
c. VT = log(ST ).

3. Verify that each of the Vt you find in Question 2 satisfies the Black-Scholes PDE.
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CHAPTER 9 The Greeks

9.1 Motivation:

Suppose an option seller sells a Euro-style derivative that pays VT = φ(ST ) at time T . We
already learned that he should charge V0 = E(e−rTφ(ST )) for the option at time 0.

Now the question is what should the option seller should do with V0? He is obligated to
pay out φ(ST ) (For example, φ(ST ) = (ST −K)+ if the derivative is a Euro Call option)
at time T . Certainly he cannot just invest V0 in the bank and hope that he will have enough
money to cover the random amount φ(ST ) that needs to be paid out at time T . Clearly he
needs to invest V0 in a portfolio that is a combination of the stock S and the money market.

But how much should he hold in stocks? Recall from the binomial tree model, we
learned that to hedge a Euro-style derivative, at any time k the option seller should hold
∆k := Vk+1−Vk

Sk+1−Sk
shares of stock and put the rest of his money into the money market. Then

at the expiration time n, the value of his portfolio will be exactly equal to Vn, the amount
that needs to be paid out. We will apply this idea in continuous time as well. This is the
idea of Delta hedging.

9.2 Delta hedging:

The idea: We divide the interval [0, T ] into n subintervals, each with length δ (δ small). We
denote each grid point of these subintervals by tk, 0 = t0 < t1 < ... < tn = T .

We construct a self-financing portfolio that consists of the underlying stock and the
money market as followed: At each time tk, we will hold ∆k := ∂V

∂S
(tk) shares of stock.

We claim that in this way, the value of the portfolio at time T will approximately be equal
to the value of the derivative VT = φ(ST ).

Reason: By Ito’s formula

Vtk+1
− Vtk ≈

(∂V
∂t

(tk) +
1

2

∂2V

∂S2
(tk)σ

2S2
tk

)
δ +

∂V

∂S
(tk)(Stk+1

− Stk).

Since Vt satisfies the Black-Scholes PDE, we have

∂V

∂t
(tk) +

1

2

∂2V

∂S2
(tk)σ

2S2
tk

= −∂V
∂S

rS(tk) + rV (tk).
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Plug this in the above:

Vtk+1
− Vtk ≈

(
− ∂V

∂S
rS(tk) + rV (tk)

)
δ +

∂V

∂S
(tk)(Stk+1

− Stk)

=
(
V (tk)−

∂V

∂S
S(tk)

)
rδ +

∂V

∂S
(tk)(Stk+1

− Stk).

Now suppose at time tk we have a portfolio π that satisfies π(tk) ≈ V (tk). We purchase
∂V
∂S

(tk) shares of stock, which leaves us with π(tk)− ∂V
∂S
S(tk) to put into the bank. At time

tk+1 the value of our portfolio is (because of self-financing)

π(tk+1) = π(tk) +
(
π(tk)−

∂V

∂S
S(tk)

)
rδ +

∂V

∂S
(tk)(Stk+1

− Stk)

Note that we’re in discrete time so the growth in 1 period of time of the money market
portion is the interest rate times the length of that period, which is δ.

But since π(tk) ≈ V (tk) we have

π(tk+1) ≈ V (tk) +
(
V (tk)−

∂V

∂S
S(tk)

)
rδ +

∂V

∂S
(tk)(Stk+1

− Stk)

≈ V (tk+1).

So the approximation extends to the next period. The quantity ∂V
∂S

, the first partial
derivative of V with respect to S, is thus seen to be very important in hedging, and it’s
called the Delta, in symbol ∆, the first Greek we encounter in this section.

9.3 Computing ∂V
∂S

:

The above derivation is valid for any Euro-style derivative. However, the relevant question
is: how much is exactly ∂V

∂S
? Or how to compute the Delta of a certain Euro derivative? This

is difficult in general and usually one needs to use numerical techniques. However, when
we specialize to certain cases of VT = φ(ST ), for example φ(ST ) = SkT for some integer k
then explicit computation of the Delta is posssible. In this section we show how to compute
the Delta of the most important derivative we encounter in this class: the Euro-Call option.

Recall that the Black-Scholes formula gives for a Euro call that pays (ST −K)+ at time
T :

V (t, St) = StN(d1(t, St))−Ke−r(T−t)N(d2(t, St)),

d1(t, St) =
(r + 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

d2(t, St) =
(r − 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

It is also easy to see that

∂

∂S
d2(t, St) =

∂

∂S
d1(t, St) =

1

Stσ
√
T − t

.
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Therefore,

∂V

∂S
(t) = N(d1(t, St)) + StφZ(d1(t, St))

1

Stσ
√
T − t

−Ke−r(T−t)φZ(d2(t, St))
1

Stσ
√
T − t

.

We claim that

φZ(d1(t, St)) = Ke−r(T−t)φZ(d2(t, St))
1

St
.

To see this, note that d1(t, St) = d2(t, St) + σ
√
T − t. Therefore,

φZ(d1) = φZ
(
d2 + σ

√
T − t

)
=

1√
2π

exp
(
− (d2 + σ

√
T − t)2

2

)
= φZ(d2) exp

(−2d2σ
√
T − t− σ2(T − t)

2

)
.

One can check that

2d2(t, St)σ
√
T − t+ σ2(T − t) = 2

(
r(T − t)− log(K) + log(St)

)
.

Plug this into the above expression, the claim is checked. Thus we see a surprisingly
simple result: ∂V

∂S
(t) = N(d1(t, St)).

9.4 Predicting the future price of Euro Call option - Theta, Delta and Gamma

So we see that the partial derivative of V with respect to S plays an important role in
hedging. Indeed the Greeks are just various partial derivatives of V with respect to different
parameters in the Black-Scholes model: t, r, σ, T, S. Some of them show up more ofen than
others. In particular, two more Greeks that are important for our purpose are the ones that
appear in Ito’s formula:

Θ(t) :=
∂V

∂t
(t)

Γ(t) :=
∂2V

∂S2
(t),

and of course previously we have

∆(t) :=
∂V

∂S
(t).

Note that in this way the Greeks are random processes. They are functions of t and
St. Their use is to measure the sensitivity of the option price with respect to the change of
other parameters in the model. Again in general it may be difficult to compute the Θ,Γ of a
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general derivative. But if we specialize to certain form of φ(ST ) then the computation can
be doable. In particular, for the Euro-Call option:

Γ(t) =
φZ(d1(t, St))

σSt
√
T − t

Θ(t) = rKe−r(T−t)N(d2(t, St)) +
σStφZ(d1(t, St))

2
√
T − t

.

The formulas are complicated, but they are explicit and one can compute these quan-
tities provided St, σ, r, T are given. Also at time t, using Black-Scholes formula we also
know Vt. Therefore, Ito’s formula gives for a small change in time t+ δ

Vt+δ ≈ Vt +
(
Θ(t) +

1

2
Γ(t)σ2S2(t)

)
δ + ∆(t)(St+δ − St).

Note: The book used Vnew for Vt+δ and only consider the case t = 0. So their formula
is simpler than ours and our formula is slightly more general.

9.5 Comparing option price - Vega and Rho

9.5.1 Vega - ν(t, St)

We’re interested in the following question: Suppose

dSit = µiSit+ σSitdWt,

Si0 = S0,

under the physical measure P . That is the two stocks have different average return and
same volitility, with the same initial price. Let V i

t be the price of Euro Call option with
expiration T and strike K on Si. Suppose that µ1 > µ2. Can we conclude that V 1

t > V 2
t ?

This is actually a trick question. The answer is NO, V 1
t = V 2

t . The reason is we need
to price these options under the risk neutral measure. And under the risk neutral measure,
the dynamics of Si are

dSit = rSit+ σSitdWt,

Si0 = S0.

That is they have the SAME dynamics with the same initial condition. So the cor-
resonding call options on them have the same price.

A more interesting question would be what if they have different volitility? Suppose
that

dSit = rSit+ σiSitdWt,

Si0 = S0,
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where σ1 > σ2 under Q. What can we say about V 1
t versus V 2

t ? Note that appealing to the
Black-Scholes formula is not straightforward because

V (t, St) = StN(d1(t, St))−Ke−r(T−t)N(d2(t, St)),

d1(t, St) =
(r + 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

d2(t, St) =
(r − 1

2
σ2)(T − t)− log(K

St
)

σ
√
T − t

,

and we have the presence of σ at BOTH the numerator and the denominator of the fractions
in d1, d2. So one can’t say straightfowardly that if si increases then V (t, St) increases.

The way to answer this question is to differentiate V (t, St) with respect to σ and look at
the sign of the derivative. Doing this is equivalent to find the Greek ν(t, St) = ∂

∂σ
V (t, St)

of the Euro Call option. The computation is as followed: note that

∂

∂σ
d1(t, St) =

−r + log(K
St

)

σ2
√
T − t

+
1

2

√
T − t

∂

∂σ
d2(t, St) =

−r + log(K
St

)

σ2
√
T − t

− 1

2

√
T − t.

Therefore

ν(t, St) = StφZ(d1(t, St))

[
−r + log(K

St
)

σ2
√
T − t

+
1

2

√
T − t

]

− Ke−r(T−t)φZ(d2(t, St))

[
−r + log(K

St
)

σ2
√
T − t

− 1

2

√
T − t

]
.

This, coupled with the fact discusses above that

φZ(d1(t, St)) = Ke−r(T−t)φZ(d2(t, St))
1

St

gives a rather simple formula for ν:

ν(t, St) = StφZ(d1(t, St))
√
T − t.

We can now answer our original question. If σ1 > σ2 then V 1
t > V 2

T , since ν(t, St) ≥ 0.
Remark: The above result can also be justified with the following intuitive argument:

since a call option is like an insurance, and since the larger the volitility, the riskier the
stock is, the call option on the stock with the higher volitility should have a higher price.
Note that this argument also applies to the put option. So we predict that the put option
on the stock with the higher volitility should have a higher price. We do NOT have to
compute the vega of the Put option to justify this. It simply follows from the Put-Call
parity: V c

t − V
p
t = St −K. Thus if V c

t increases, V p
t also have to increase.
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9.5.2 Rho - ρ(t, St)

We consider the following situation

dSit = riSit+ σSitdWt,

Si0 = S0,

and V i
t corresponding price of Euro Call option on Si with strike K and expiration

T . This can be interpreted as evaluating the price of the call option on the same stock in
different periods of the economy that has different interest rate. Can we compare V 1 and
V 2, say if r1 > r2?

From the discussion in the previous section, you see that we need to compute ρ(t, St) =
∂
∂r
V (t, St). You can verify that

ρ(t, St) = K(T − t)e−r(T−t)N(d2(t, St)).

Thus, since ρ(t, St) ≥ 0, we also have V 1
t > V 2

t .
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9.6 Exercises

1. Let ρ = ∂V0
∂r

where VT = (ST −K)+. Prove that

ρ = KTe−rTN(d2),

where

d2 =
(r − 1

2
σ2)T − log(K/S0)

σ
√
T
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CHAPTER 10 Discrete time interest rate model

10.1 Discrete bond model

Consider the binomial multi-period model 0, 1, · · · , N . At each time k there are k + 1
possible outcomes. Consider a bond with maturity N and face value F . That is at time N
the bond holder will receive F dollars (fixed at time 0). We want to model interest rate rk
and the bond price Bk at time k. The length of each period will be denoted as ∆T .

However, what we learned from the previous binomial model cannot be directly used.
First we cannot model the bond price following the stock’s approach: given B0, define

Bk+1 = uBk with probability p
= dBk with probability 1− p.

The reason is that the bond is financial product that we want to price, so we cannot model it
directly. A zero-coupon bond with maturity N is a financial contract that pays the holder 1
dollar at time N . Observe that if we follow the stock’s binominal modelling approach then
there is no way we can get BN = 1. We need to work backward from BN = 1 to figure out
Bk, k = 0, · · · , n− 1.

The bond is not a financial derivative (it does not derive its value from other underlying).
However, the bond price is influenced by interest rate. This suggests that we model the
interest rate directly and simply use the pricing formula:

Bk = EQ(
1

1 + rk∆T
Bk+1|Fk). (10.1)

We discuss the notation. Fk represents the state of the world at time k, which is known
to us at time k. We use disrete compounding in this section, hence the discounting factor

1
1+rk∆T

. Interest rate is allowed to be random and varying with time, that is why we need
to put 1

1+rk∆T
inside the expectation.

In general, the pricing formula for a bond B with face value F (note: F is a constant)
and maturity N is

Bk = EQ(
N−1∏
i=k

1

1 + ri∆T
F |Fk). (10.2)

Note that rk is known at time k but ri, k + 1 ≤ i ≤ N − 1 is not known until time i.
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rk is referred to as the short rate. In the context of the discrete model, we understand rk
as the interest rate available for depositing with the money market account (or borrowing)
in the period [k, k + 1].

If we want to deposit for a longer period (say from time k to k + 2) there are two
options. Either we deposit from time [k, k + 1] with interest rate rk and then roll over to
time [k+1, k+2] with interest rate rk+1; or we can deposit from time [k, k+2] with the spot
rate R(k, k + 2) (compounding twice at t = k, k + 1). The spot rate R(k,N) is simply the
interest that we would earn for depositing during time period [k,N ] (compounding N − k
times at t = k, k + 1, · · · , N − 1). That is if we deposit 1 dollar at time k and do not
withdraw until time N then at time N we would receive (1 + R(k,N)∆T )N−k dollars.
There must be a consistency between these rates; otherwise there would be an arbitrage
opportunity. In particular we have

B(k,N) =
1

(1 +R(k,N)∆T )N−k
= EQ(

N−1∏
i=k

1

1 + ri∆T
F |Fk).

The difference is as followed: R(k,N) is a random variable that is known at time k. rk is
also known at time k but ri, k + 1 ≤ i ≤ N − 1 is not known until time i. Note that in this
sense, the spot rate R(k,N) coincides with the yield to maturity of the zero-coupon bond
B(k,N) for the time period [k,N ]. See also section (10.6).

Observe also that we assume here that R(k,N) is a compound interest rate that is
compounded at the end of each period. If R(k,N) is a simple interest rate the above
equation would read

B(k,N) =
1

(1 +R(k,N)(N − k)∆T )
= EQ(

N−1∏
i=k

1

1 + ri∆T
F |Fk).

That is, the interest is only compouned once at time t = k. We need to rely on the context
to distinguish between simple and compound interest rate.

10.2 Stochastic short rate model

Now we turn to modelling rk, k = 0, · · · , N . One important observation here is that we
need to model rk directly under the risk neutral measure Q. That is we need to take the
risk neutral measure Q as given exogenously (maybe from working with other financial
dirvatives) and model rk under this measure. The reason is if our market only consists of
bond then there is no reference underlying, such as a stock, for us to define Q upon. In the
lack of such reference product, we take our default risk neutral measure as q = 1−q = 1/2
for example.

We need to be careful on how to model rk. We can use the binomial approach

rk+1 = urk with probability q
= drk with probability 1− q;
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but it may not be realistic as this allows for the interest rate to grow quite large in some par-
ticular event (in contrast to the real world observation that interest rate tends to stay around
some fixed level, say around 1%, for a period of time). If we want to avoid specifying a
formula, we can just simply ‘fill in the nodes of the binomial tree for the intrest rate value
at that node. For example if N = 3 we can specify

r3(uuu) = 0.03, r3(udu) = 0.025, rd(ddu) = 0.0125, rd(ddd) = 0.025,

and so on for r2, r1, r0. Once we have the interest rate tree, we can use formula (10.1) to
figure out the bond price with all maturities up to N .

10.2.1 A mean reverting model

Instead of filling out the nodes of a binomial short rate tree, we can specify a mean-reverting
formulation for the short rate as followed:

rk+1 = rk + θ(µ− rk)∆T + σXk.

Here Xk, k = 0, 2, · · · , N − 1 are iid Bernoulli-type random variables such that

EQ(Xk) = qu+ (1− q)d = 0.

µ is the average level that the short rate “reverts" to in the long run and θ is the mean-
reverting rate. In terms of modeling, here we get the freedom to choose u, d once q is
given. See also section (10.4) for more information on how q might be determined. This is
a discretization version of the continuous time Hull-White model. The idea is on average,
the movement of rk looks like

rk+1 = rk + θ(µ− rk)∆T.

Thus if rk > µ‘ the term θ(µ− rk)∆T < 0 which pulls rk closer to µ. Similarly if rk < µ
the term θ(µ− rk)∆T > 0 which again pulls rk closer to µ.

10.3 The money market account

If we deposit 1 dollar at time k, we will earn 1 + rk∆T dollars at time k + 1. The money
market account Mk is the value at time k of the account that deposits 1 dollar at time 0.
That is

Mk =
k−1∏
i=0

(1 + ri∆T ).

Observe that even though Mk is random, Mk+1 is known at time k (since rk is determined
at time k). In this way we say the money market account process Mk is predictable.
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The money market account can be used in the pricing formula as followed: for 0 ≤ i <
j ≤ N

Bi = EQ(

j−1∏
k=i

1

1 + rk∆T
Bj|Fi).

Observe that
∏j−1

k=i
1

1+rk∆T
=

Mj

Mi
and Mi is known at time i we can write the pricing

formula succintly as

MiBi = EQ(MjBj|Fi).

10.4 Option pricing in stochastic interest rate model

Consider a binomial tree model where we have the underlying S that follows the model

Sk+1 = uSk with probability p
= dSk with probability 1− p.

Suppose we have a call option on S with strike K and expiration N . That is VN = (SN −
K)+. We want to find V0, given a stochastic interest rate model. To this end, suppose that
a stochastic interest tree has already be given as in section (10.2). Note though that we
cannot specify the risk neutral measure q = 1/2 by default as in that section. The reason is
because we have a reference underlying here. So we need to use the definition:

Sk = EQ(
1

1 + rk∆T
Sk+1|Sk).

This implies

(1 + rk∆T )Sk = qkuSk + (1− qk)dSk,

or

(1 + rk∆T ) = qku+ (1− qk)d.

One can solve for qk from there. Note something subtle here. Not only that q depends on
k as r depends on k but it also depends on the random event that happens at time k. That
is the qk in the above equation is a conditional probability. It is the risk neutral probability
that given an even ωk at time k, the next event twill be ωku:

PQ(ωku|ωk) = qk(ωk).

Once we can fill out all the risk neutral probabilities this way we can proceed to compute
the option price via the backward pricing method as we discussed before.
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10.5 Coupon paying bond and future cash flow

So far we have discussed zero-coupon bond. That is bond with only a face value, here
denominated as 1 dollar, which is paid at the maturity time N . More generally, one can
consider a coupon paying bond with coupon rate C and face value F . That is at each
period k = 0, 1, · · · , N (determined by the bond, usually annually or semi-annually) the
bond holder receives C% of the face value and receive the face value F dollars at the
maturity time N . The pricing of such a coupon paying bond, given an interest rate tree,
is similar to the method discuss above. Indeed, we can look at the zero-coupon bond as a
future income stream that pays us Ck = C

100
F at time k. We can compute the present-value

C0
k of a future payment Ck at time k by the risk neutral pricing formula

C0
k = EQ(

1

Mk

Ck).

Then the present value of the zero-coupon bond is the sum of the present values in the
future income stream:

C0 =
N∑
k=0

C0
k .

In the case of a coupon bond with a fixed coupon rate (say 5%) there is even a more
straightforward method to compute its present value without the need for modeling the
interest rate. Indeed, the present value of 1 dollar paid at time k is just B(0, k), the price
of a zero coupon bond that paids 1 dollar at time k. Thus in the above formula, C0

k =
B(0, k)Ck = B(0, k) C

100
F.

10.6 Yield to maturity

Precisely speaking, bond price is a function of two time variables: the current time k and
the maturity time N . Thus we write B(k,N) for the price at time k of a bond with maturity
N . For a present value of time, say k = 0, we can discuss the price of the bond that
matures at time N = 1, 2, · · · . Term structure refers to the concept of fixing a present time
and varies the maturity of a fixed income security, typically a bond. The term structure
reflects the public opinion on how the interest rate will behave in the future.

A particular quantity of interest is the bond’s yield to maturity. For a bond with maturity
at time N , the yield to maturity λ(0, N) is defined such that

B(0, N) =
1

(1 + λ(0, N)∆T )N
. (10.3)

If we plot B(0, N) as a function of N it will be a decreasing graph. However, if we plot
λ(0, N) as a function of N it will usually be an increasing graph. This reflects the fact that
people usually require a higher compensation for a longer duration of the loan.
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Furthermore, for a coupon paying bond with coupon rate C, face value F and maturity
N , its yield to maturity λ(0, N) is defined such that

B(0, N) =
N∑
k=0

C
100
F

(1 + λ(0, N)∆T )k
+

F

(1 + λ(0, N)∆T )N
. (10.4)

10.7 Forward rate agreement

A forward rate agreement (FRA) is a contract that allows the holder to pay a fixed rate
K(0, T1, T2) and receive a floating rate L(T1, T2) for the loan period [T1, T2]. Suppose all
interests are simple. The contract holder will receive (for a notional amount of 1 dollar)

(L(T1, T2)−K(0, T1, T2))(T2 − T1),

at time T2. Here L(T1, T2) is simply understood as the simple interest available for deposit-
ing or borrowing 1 dollar in the period [T1, T2]. A typical quote for L(T1, T2) follows the
Libor (London Interbank Offered Rate). Libor rates are calculated for 5 currencies and 7
borrowing periods ranging from overnight to one year and are published each business day
by Thomson Reuters. For convenience, we can assume L(T1, T2) falls into these 7 borrow-
ing periods. If not, it can be figured out using certain interpolation methods from the given
Libor rates. We emphasize that L(T1, T2) is a random variable that is only known at time
T1 while K(0, T1, T2) is a constant that is known at time t = 0.

Assume T1, T2 are two points on our discrete grid. The Libor rate must be consistent
with the short rate to avoid arbitrage. In fact, the simple Libor rate is related to the com-
pouding short rate as followed

1 + L(T1, T2)(T2 − T1) =
n∏
i=1

(1 + ri(ti+1 − ti)), (10.5)

where we assume t1 = T1 and tn = T2. There are more implications about the relations
between LIBOR rate and short rate in terms of forward rate and interest rate swap which
we will see more below.

The forward rate f(0, T1, T2) is the fixed rate (the strike) K(0, T1, T2) so that the FRA
costs nothing to enter at the present time t = 0. It turns out that we can calculate f(0, T1, T2)
as followed:

f(0, T1, T2) =
1

T2 − T1

(
B(0, T1)

B(0, T2)
− 1

)
.

The reasoning is as followed. Consider two investing schemes. The first one is to enter
a FRA at time 0, invest 1 dollar at time T1 which gives us (1+f(0, T1, T2))(T2−T1) at time
T2. The present value of this scheme is B(0, T2)(1 + f(0, T1, T2))(T2 − T1). The second
one is to invest 1 dollar at time T1 which gives us 1 + L(T1, T2)(T2 − T1) at time T2. The
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present value of this scheme is B(0, T1). This may be a bit surprising. But it really comes
from the fact that 1 + L(T1, T2)(T2 − T1) translates to 1 dollar at time T1 which translates
to B(0, T1) at time 0. These two schemes should have the same present value at time 0 to
avoid arbitrage. That is

B(0, T1) = B(0, T2)(1 + f(0, T1, T2))(T2 − T1).

From this equation we can solve for f(0, T1, T2) as indicated.
This equation also suggests a replication scheme for the FRA as followed: at time

0 we sell 1 FRA, short 1 share of zero coupon bond with maturity T1 and long (1 +
f(0, T1, T2))(T2 − T1) shares of zero coupon bond with maturity T2. At time T1 we re-
ceive 1 dollar from the FRA buyer and we use it to close out our short position in the bond
B(0, T1). At time T2 we receive (1 + f(0, T1, T2))(T2 − T1) from our long position with
the bond B(0, T2) and use it to close out our short position in the FRA contract.

10.8 Interest rate futures

An interest rate future is a contract that costs nothing to enter, and allows the holder to pay
a fixed rate F (0, T1, T2) and receive a floating rate R(T1, T2) for the loan period [T1, T2].
The contract holder is required, however, to post a margin account to reflect the fluctuation
in the contract price as time moves from t = 0 to t = T1.

In practice, the interest rate future is executed as followed:
1. The contract is settled at time T1 and the contract holder does not (typically) enter

into the loan period.
2. The contract holder is required to post a margin account. If the future rateF (t, T1, T2)

increases, he has to deposit more money into the account. If the future rate F (t, T1, T2) de-
creases he receives money into the account.

3. The future contract is quoted with the price 100 − F (t, T1, T2) for 0 ≤ t ≤ T1. Its
price at time T1 is 100−R(T1, T2).

If the interest rate is constant then the futures rate and forward rate are equal. However,
in practice the forward rate is less than the future rate, due to the margining requirement.
This phenomenon is called the negative convexity of the futures rate. Intuitively, it can
be explained as followed. The margining always works against the futures contract holder
(and works for the futures contract seller). When they receive margin, this will coincide
with a drop in the rate at which the balance in the margin account is rolled. When they
have to deposit margin, this will coincide with an increase in the borrowing rate. Thus if
the forward rate is equal to the futures rate, one can buy a forward rate agreement and sell
a futures contract to profit from the margining effect.

10.9 Interest rate swaps

An interest rate swap, set over a period of times t0, t1, · · · , tn is like a sequence of FRA
where at each time ti one party (referred to as the payer) pays an agreed upon (fixed) rate in
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exchange for a floating rate, typically the Libor during the period [ti, ti+1]. The party who
receives the fixed rate (and pays the floating rate) is referred to as the receiver. The contract
is entered at time t = 0 and the first swap payment happens at t = t1.

If we denote the fixed rate as K then at each time ti the paying leg receives

(L(ti−1, ti)−K)(ti − ti−1).

We compute the present value of the total cash flow of the fixed leg and the floating leg
separately. The present value of the total cash flow of the fixed leg is

n∑
i=1

K(ti − ti−1)B(0, ti).

To compute the present value of the floating rate payment, we need to compute the present
value Pi of a payment of the type L(ti−1, ti)(ti − ti−1) received at time ti. This is because
L(ti−1, ti) is not known until time ti−1 and we need to use risk neutral valuation to compute
its present value. Following the method we discuss aboved, we have

Pi = EQ
( i∏
k=1

1

1 + rk(tk − tk−1)
L(ti−1, ti)(ti − ti−1)

)
.

It turns out that we can express Pi in a more informative way using our analysis with the
FRA. Recall that Pi is the price such that one is indifferent between receiving Pi right now
or receiving L(ti−1, ti)(ti−ti−1) at time ti. If one to enter in to a FRA in the period [ti−1, ti]
with the forward rate f(0, ti−1, ti), one would also be indifferent between receiving a fixed
payment f(0, ti−1, ti)(ti − ti−1) or a floating payment L(ti−1, ti)(ti − ti−1). We know the
present value of the fixed payment f(0, ti−1, ti)(ti − ti−1) is

B(0, ti)f(0, ti−1, ti)(ti − ti−1) = B(0, ti)
1

ti − ti−1

(
B(0, ti−1)

B(0, ti)
− 1)(ti − ti−1)

= B(0, ti−1)−B(0, ti).

This implies that

Pi = B(0, ti−1)−B(0, ti),

as well. Indeed, we can derive this result using the relation (10.5).
Thus the present value of the total cash flow for the floating payment leg is just

n∑
i=1

Pi = 1−B(0, tn).

Similar to the forward rate, a swap rate S0 is the fixed rateH such that the swap contract
costs nothing to enter. In other words, it is the fixed rate such that the present value of the
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fixed leg payment equals the present value of the floating leg payment. Using our above
results, this means

S0

n∑
i=1

(ti − ti−1)B(0, ti) = 1−B(0, tn).

Thus the swap rate is

S0 =
1−B(0, tn)∑n

i=1(ti − ti−1)B(0, ti)
.

Remark: A swap contract has zero value at time 0 but most definitely will not at time
ti, i > 0. Indeed at time t = 1, a swap contract entered at time 0 will be similar to a n− 1
paying period contract entered at time 1. The difference is the rate has already been set for
the contract entered at time 0 (namely S0). On the other hand, if one enters a new contract
at time t = 1, the swap rate will be

S1 =
1−B(t1, tn)∑n

i=2(ti − ti−1)B(t1, ti)
.

It is easy to see that unless S1 = S0, the contract entered at time 0 will not have zero value
at time 1. In particular, if S0 > S1 then the contract has positive value for the receiver side
of the contract and negative value for the payer side of the contract.

10.10 Duration and convexity of a bond

Observe that it is equivalent to quote either the bond price or the yield to maturity; and more
often it is more important to look at the yield to maturity as an indication for the bond’s
“value". The yield to maturity is affected by other variables, such as the short rate (which
may change by the FED’s decision, for example). Thus we want to know how sensitive the
bond price is with respect to a change in the yield to maturity. The concept that captures
this is called the bond’s duration:

D = − 1

B(0, T )

dB(0, T )

dλ(0, T )

= − d

dλ(0, T )
log(B(0, T )).

The unit of the yield to maturity λ(0, T ) used in this formula is in percentage (for example
yield going from 8 % per year ( λ(0, T ) = 0.08 ) to 9 % per year (λ(0, T ) = 0.09) ) . Thus
the unit of duration D is percent change in price (since it is dB(0,T )

B(0,T )
) per one percentage

point change in yield per year. The duration D captures sensitivity of bond price to interest
rate.
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Remark: The definition we gave above technically is called the modified duration.
There is another concept called the Macaulay duration which measures the weighted av-
erage time until cash flows are received. Let Ci be a sequence of future cash flow that is
received at time ti, whose present value at time t = 0 is Pi. The present value of this cash
flow is

V =
∑
i

Pi.

The Macaulay duration is defined as

DMacaulay =
∑
i

Piti
V
.

It turns out that the Macaulay duration and the modified duration are pretty similar in
practice. Thus we have the following important observation: the duration of a zero coupon
bond is equal to its maturity (under continuous compounding) and the duration of a coupon
paying bond is always less than its maturity. Generally speaking, the longer the duration of
a bond, the riskier it is and the higher its price volatility is.

A related concept of duration is called the dollar duration. It is defined as

DV01 = − dB(0, T )

10000dλ(0, T )
.

Here λ(0, T ) is measured in the unit of basis point. One basis point equals .01 %, hence the
10000 at the denominator. Dollar duration or DV01 is the change in price in dollars, not in
percentage. It gives the dollar variation in a bond’s value per unit change (in basis point) in
the yield.

A bond’s convexity is defined as

C =
1

B(0, T )

d2dB(0, T )

λ(0, T )2
.

Thus one can approximate the change in the bond price with respect to the change in yield
if one knows its (modified) duration and convexity as followed:

dB(0, T )

B(0, T )
≈ −Dmoddλ(0, T ) +

1

2
C(dλ(0, T ))2.

Given a portfolio consisting of n bonds with present value Pi, i = 1, · · · , n; modified
durations Di, i = 1, · · · , n and convexities Ci, i = 1, · · · , n, we can calculate the duration
and convexity of the portfolio as the weighted average of the individual convexity:

Dportfolio =
n∑
i=1

DiPi
P

,

where P =
∑n

i=1 Pi and

Cportfolio =
n∑
i=1

CiPi
P

.
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CHAPTER 11 Continuous time interest rate model

11.1 Introduction

11.1.1 Various rates connected with bond

Since the payment of the bond with maturity T at time T is fixed, one can use the bonds
(with various maturities, if necessary) to “lock-in" certain interest rates. Thus, zero-coupon
bond prices are used as the standard for calculating interest rates. Throughout, it is assumed
we deal with the market for risk free bonds and loans. The price at time t ≤ T of a
zero-coupon bond that pays $1 at time T shall always be denoted by B(t, T ). Notice that
B(T, T ) = 1. There are various interest rates associated with B.

(i) Continuous compounding:

In this discussion all interest rates are quoted assuming continuous compounding. Con-
sider an account which at time S has $LS and at time T > S has $LT , where S and T are
measured in years. Then the interest rate r, per annum, continuously compounded, earned
over [S, T ] is determined by the equation LSer(T−S) = LT , or

r =
1

T − S
ln

(
LT
LS

)
(11.1)

(ii) The spot rate (yield to maturity)

The zero rate for the period [t, T ], also called the spot rate, or, more precisely, the
continuously compounded spot rate for the period [t, T ] is the function which gives the
interest rate of a zero coupon bond over the interval [t, T ]. That is, if we denote this rate by
R(t, T ) then

1 = B(t, T ) exp
(
R(t, T )(T − t)

)
.

From which it follows that

R(t, T ) =
1

T − t
ln

(
1

B(t, T )

)
= − lnB(t, T )

T − t
(11.2)

Thus
B(t, T ) = e−(T−t)R(t,T ). (11.3)
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For a fixed t, a plot of R(t, T ) as a function of T is called a spot rate curve. It gives
the (continuously compounded) interest rates available for risk free zero coupon bonds for
all maturities starting from t. The notable fact about the spot rate curve is that it is not
constant—normally it tends to be upward sloping. This phenomenon is called the term
structure of interest rates. R(t, T ) is also referred to as the yield to maturity of the zero
coupon bond at time t for the time to maturity τ = T − t.

(iii) The forward rate

Consider times t < S < T . Suppose at time twe would want to lock in certain spot rate
for the time interval [S, T ]. Let’s call this rate F (t, S, T ). Then clearly this rate must be
related with the bond priceB(t, S) andB(t, T ). So we should determine what F (t, S, T ) is
and further inquire into whether we can indeed lock in this rate at time t by trading certain
shares of the bonds with maturities at S and T .

To answer the first question, clearly what we want is if we invest 1 dollar at time S
then we should receive exp

(
F (t, S, T )(T − S

)
at time T . Note that, 1 dollar at time S is

equivalent to B(t, S) at time t and exp
(
F (t, S, T )(T −S)

)
dollars at time T is equivalent

to B(t, T ) exp
(
F (t, S, T )(T − S)

)
at time t. These clearly should be equal if we want to

lock in the rate F (t, S, T ) at time t. Therefore

B(t, S) = B(t, T ) exp
(
F (t, S, T )(T − S)

)
,

or

F (t;S, T ) =
1

T − S
ln

(
B(t, S)

B(t, T )

)
= − lnB(t, T )− lnB(t, S)

T − S
.

To answer the second question, first plug

F (t, S, T ) = − lnB(t, T )− lnB(t, S)

T − S

into B(t, T ) exp
(
F (t, S, T )(T − S)

)
and observe that

B(t, T ) exp
(
F (t, S, T )(T − S)

)
= B(t, T )

B(t, S)

B(t, T )
.

This suggests that we should hold B(t,S)
B(t,T )

shares of bond with maturity T at time t. To
finance this position, we should sell 1 share of bond with maturity S at time t (since we
expect to invest 1 dollar at time S). This turns out to be the right scheme because this
costs nothing at time t: If at t we sell one zero-coupon bond maturing at S for B(t, S)
and with this money buy B(t, S)/B(t, T ) zero-coupon bonds maturing at T , the net value
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of this transaction for us is 0. At time S we pay out a dollar and at time T receive
B(t, S)/B(t, T ). This is indeed equivalent to earning, at T , the amount B(t, S)/B(t, T ) =

exp
(
F (t, S, T )(T − S)

)
from a deposit of $ 1 at S. The rate of interest earned by this

transaction, F (t, S, T ) is called the forward rate for [S, T ] contracted at t.
Remark: F (t, S, T ) is known at time t by observingB(t, S) andB(t, T ), that isF (t, S, T ) ∈

Ft, where Ft is the filtration generated by B(t, S) and B(t, T ).

(iv) The instantaneous forward rate

The forward rate F (t, S, T ) has the formula

F (t;S, T ) = − lnB(t, T )− lnB(t, S)

T − S
.

If we let T goes to S, then the right hand side should go to − ∂
∂T

ln[B(t, S)], if the
derivative exists. Indeed, if we assume B(t, T ) is differentible in T , then this is the case.
This is not an unreasonable assumption since for a fixed t, one can believe that the bond
price is a smooth function of different maturities. (On the other hand, for a fix maturity T ,
the bond price should not be a smooth function of t. It should be very irregular, indeed, in
t, similar to behavior of the graph of a Brownian motion in t).

So we define the instantaneous forward rate at t for investing at time T as

f(t, T ) = − ∂

∂T
ln[B(t, T )]. (11.4)

By integrating in T , it follows that

B(t, T ) = exp{−
∫ T

t

f(t, u) du} (11.5)

For brevity, we refer to f(t, T ) as the forward rate function.
Remark: Again, note that here f(t, T ) is known at time t, that is f(t, T ) ∈ Ft where Ft

is the filtration generated by B(t, T ).

(v) The short rate
The short rate is the rate available at time t for the shortest period loans. Formally it is

defined as
R(t) = f(t, t) (11.6)

Remark: It seems reasonable to define R(t) = f(t, t) (just from the understanding of
what the forward rate is). First, it is reasonable to believe the spot rate R(t, T ) should
converge to the short rate R(t) when T → t. Recall

R(t, T ) = − lnB(t, T )

T − t
=

∫ T
t
f(t, u)du

T − t
.
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The RHS converges to f(t, t) (by Lesbegue differentation theorem) as T → t. So if we
expect R(t, T ) to converge to R(t), then it is reasonable to set R(t) = f(t, t).

Second, from comparing the risk neutral pricing formula

B(t, T ) = Ẽ
(
e−

∫ T
t R(u)du

)
with the definition of the forward rate:

B(t, T ) = e−
∫ T
t f(t,u)du,

we should expect R(t) = f(t, t) as well. Indeed, suppose R(t) > f(t, t). Then if we
suppose R(u) and f(t, u) are continuous functions of u (which is reasonable) then there
must exist some T > t so that R(u) > f(t, u) for u ∈ [t, T ]. But then we have

B(t, T ) = e−
∫ T
t f(t,u)du > Ẽ

(
e−

∫ T
t R(u)du

∣∣F(t)
)

= B(t, T ),

which is a contradiction. So this cannot happen.

11.2 One factor Hull-White model

11.2.1 Explicit formula for R(t)

The one-factor Hull-White model is defined by a short rate which solves a linear differential
equation

dR(t) = k(µ−R(t)) dt+ σ dW̃ (t),

where W̃ is a Brownian motion under the risk-neutral measure. To find the explicit solution
for R(t), note that

d(ektR(t)) = ekt(kR(t)dt+ dR(t)).

Thus we get

ektR(t) = R(0) +

∫ t

0

kµeksds+

∫ t

0

σeksdW̃s.

And

R(t) = e−ktR(0) + µ(1− e−kt) + e−kt
∫ t

0

σeksdW̃s.

From this formula we can see that as t approaches infinity, R(t) is centered around µ with
variance σ2

2k
. The formula also explains why we refer to this model as mean-reverting and

k as the rate of mean reversion.
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11.2.2 Explicit formula for B(t, T )

From the risk neutral pricing formula

B(t, T ) = Ẽ[e−
∫ T
t R(u)du|Ft].

Note that for u ≥ t

R(u) = e−k(u−t)R(t) + µ(1− e−k(u−t)) + e−k(u−t)
∫ u

t

σek(s−t)dW̃s.

We need to integrate∫ T

t

e−k(u−t)
∫ u

t

σek(s−t)dW̃sdu =

∫ T

t

∫ u

t

e−k(u−t)σek(s−t)dW̃sdu

= σ

∫ T

t

∫ u

t

e−k(u−s)dW̃sdu

Accepting the fact that change of order of integration applies to this double integral of dW̃s

and du we have

σ

∫ T

t

∫ u

t

e−k(u−s)dW̃sdu = σ

∫ T

t

∫ T

s

e−k(u−s)dudW̃s.

The above stochastic integral is independent of Ft and has normal distribution with mean
0 and variance

σ2(T − t) = σ2

∫ T

t

(

∫ T

s

e−k(u−s)du)2ds

=
σ2

k2

[
T − t+

2

k
(1− e−k(T−t)) +

1

2k
(1− e−2k(T−t))

]
.

Thus the conditional distribution of the integral
∫ T
t
Rudu on Ft has normal distribution

with mean

µ(T − t) = −
[
R(t)

1

k
(1− e−k(T−t)) + µ(T − t)− µ

k
(1− e−k(T−t))

]
and variance A(T − t).

Thus by the Independence Lemma and the moment genrating function of a Normal
random variable we have

B(t, T ) = eµ(T−t)+ 1
2
σ2(T−t).
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11.2.3 Model calibration

By model calibration we mean making the choices for µ, k, σ in the Hull-White model so
that the resulting bond prices B(t, T ) most closely match the market data.

It should be remarked that we possibly do not observe the short rate R(t) directly in the
market; if by R(t) we mean the process such that

B(t, T ) = Ẽ(e−
∫ T
t R(u)du|Ft).

There are some proxys for the risk free short rate, such as the OIS (overnight interest rate
swap) but strictly speaking this is not the rate R(t) we have in mind when plugging in
the pricing formula for the treasury bond B(t, T ). This is why even though we have the
dynamics of R(t) directly dependent on µ, k, σ we cannot use that dynamics to calibrate
these parameters. The yield to maturity R(t, T ) on the other hand, is readily observable as
a function of the bond price B(t, T ).

Observe that the previous formula for B(t, T ) can be written as

B(t, T ) = e−C(T−t)R(t)−D(T−t)

where

C(T − t) =
1

k
(1− e−k(T−t))

D(T − t) = µ(T − t)− µ

k
(1− e−k(T−t))− 1

2
A(T − t).

Recall that in terms of the yield to maturity R(t, T )

B(t, T ) = e−R(t,T )(T−t).

Thus we conclude that

R(t, T ) =
C(T − t)
T − t

R(t) +
D(T − t)
T − t

.

Now we start to look at R(t, T ) as dependent instead on t and the time to maturity
τ = T − t and we keep τ fixed for varying t. This is subtle conceptually because for
s 6= t, R(s, τ) and R(t, τ) refers to the yields to maturity of different bonds with the same
time to maturity τ . Nevertheless these quantities are readily observable in the market and
we have

dR(t, τ) =
C(τ)

τ
dR(t) +

D(τ)

τ

Thus

dR(t, τ) = k(τ)(µ(τ)−R(t, τ))dt+ σ(τ)dW̃t,
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where the coefficients k(τ), µ(τ), σ(τ) depend only on τ, k, µ, σ. Observe that R(t, τ) is
again a mean-reverting process like R(t). Since we can observe R(t, τ) at different t,
there are readily availble methods to estimate the coefficients k(τ), µ(τ), σ(τ) (see e.g.
calibration for Ornstein-Uhlenbeck process using linear regression technique) from which
we can get estimates of k, µ, σ.

Remark: The dynamics for R(t, τ) given above holds for any τ . In practice for each
time to maturity τ we have a different set of data R(t, τ), 0 ≤ t ≤ T for example. Each set
of data potentially gives rise to a different estimate of k, µ, σ. Thus we may have the issue
of having too much data for too few parameters. Or put it in another way: the Hull-White
model may not be flexible enough to fit the market term structure. A solution for this is of
course to increase the number of parameters, by going to the multi-factor setting. However,
it’s good to keep in mind that since the bond market is huge, with many different time to
maturity it probably is not easy to come up with a model that captures the term structure
perfectly across the spectrum, from the short end to the long end.

11.2.4 PDE representation for Hull-White Model

The Hull-White model is part of a affine-yield family of models. That is, the short rate is
modelled in such a way that the zero-coupon bond price B(t, T ) can be expressed as

B(t, T ) = e−A(t,T )Rt−B(t,T ).

We demonstrate how to find the equations that A(t, T ), B(t, T ) satisfy. This gives an alter-
native approach to finding the bond price when explicit computation of rt is not possible
(see below for the case of CIR model).

First, we accept as a fact that the bond can be expressed as a function u(t, Rt) of time
and the short rate. The PDE that u(t, x) satisfies is

−xu+ ut + uxk(µ− x) +
1

2
uxxσ

2 = 0

u(T, x) = 1.

This is derived in a similar manner to the Black-Scholes PDE, via the martingale approach.
That is we observe

e−
∫ t
0 RsdsB(t, T ) = e−

∫ t
0 Rsdsu(t, Rt)

is a martingale. Applying the Ito’s formula to Xt = e−
∫ t
0 Rsdsu(t, Rt) we have

dXt = e−
∫ t
0 Rsds

{
(−Rtu+ ut + uxk(µ−Rt) +

1

2
uxxσ

2)dt+ uxσdW̃t

}
.

Since Xt is a martingale, its “dt" part must be 0 and we obtain the PDE. On the other hand,
the affine yield representation suggests that

u(t, x) = e−A(t,T )x−B(t,T ).
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Plug this into the PDE we obtain

u(−x− (Atx+Bt)− Ak(µ− x) +
1

2
A2σ2) = 0.

Since u 6= 0 we have

x+ (Atx+Bt) + Ak(µ− x)− 1

2
A2σ2 = 0.

Factoring the terms involving x we have

(−kA+ At + 1)x+ kµA+
1

2
A2σ2 +Bt = 0.

Note that since B(T, T ) = 1, we necessarily have A(T, T ) = B(T, T ) = 0. Thus the
approach is first to solve the ODE with terminal condition

−kA+ At + 1 = 0

A(T, T ) = 0.

Once we obtain A we can plug that in and solve for the ODE for B:

kµA+
1

2
A2σ2 +Bt = 0

B(T, T ) = 0.

11.3 One factor CIR model

Suppose the short rate follows the dynamics

dRt = k(µ−Rt)dt+ σ
√
RtdW̃t.

This is a mean reveversion equation but it does not have an explicit solution. By Markov
property, there exists a function u(t, Rt) such that

u(t, Rt) = B(t, T ) = Ẽ(e−
∫ T
t Rudu|Ft).

The PDE that u(t, x) satisfies is

−xu+ ut + uxk(µ− x) +
1

2
uxxσ

2x = 0

u(T, x) = 1.

On the other hand, to be affine-yield, u(t, x) has the representation

u(t, x) = e−A(t,T )x−B(t,T ).
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Plug this form into the PDE, factoring the terms that involves x gives an ODE system
in t

Bt + kµA = 0

At − kA−
1

2
σ2A2 + 1 = 0.

The terminal conditions are A(T, T ) = B(T, T ) = 0. This is as far as we can go to
describe the form of the explicit solution for B(t, T ). It is not our interest here to find the
explicit solution to the above system of ODEs. The interested readers can find the solution
in Shreve section 6.6.
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