Homework 6

Math 485

November 6, 2015

In all of the following questions, suppose S_t follow the Black-Scholes model under a risk neutral measure Q:

$$dS_t = rS_t dt + \sigma S_t dW_t.$$

1. Derive the Black-Scholes formula. Try to go as far as you can before consulting the notes or textbook.

Compute V₀ for the following Euro-style derivatives:
a. V_T = (S^β_T - K)⁺, β a constant.
b. V_T = 1 is S_T < K, V_T = 0 otherwise.
c. V_T = S^β_T, β a constant.
d. V_T = log(S_T).
e. V_T = 1 if K₁ < S_T < K₂, V_T = 0 otherwise.
f. V_T = (K - S^β_T)⁺, β a constant.
3. Let ρ = ∂V₀/∂r where V_T = (S_T - K)⁺. Prove that

$$\rho = KTe^{-rT}N(d_2),$$

where

$$d_2 = \frac{(r - \frac{1}{2}\sigma^2)T - \log(K/S_0)}{\sigma\sqrt{T}}$$