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1 Brownian motion and Ito integral

1.1 Definition

A stochastic process Wt is a Brownian motion (abbreviated BM) if

a. W0 = 0

b. Wt −Ws is independent of Wr, 0 ≤ r ≤ s.

c. Wt −Ws has Normal(0, t− s) distribution.

Remark:

1. Property a can be changed to W0 = x which would be referred to as Brownian

motion starting at x. Without specification, by default we refer to a Brownian motion

starting at 0.

2. Property b and c together are referred to as independent and stationary incre-

ment. Omiting the normal distribution, we can write it as: for any s1 < t1 ≤ s2 < t2

Wt1 −Ws1 and Wt2 −Ws2 are i.i.d. This can be generalized to n pair of points.

Example 1.1. Compute, for s < t E(Wt)
2, E(WsWt), E(WsW

2
t ), E(Wt|Ws), E(W 2

t |WS).

1.2 Some terminologies

1. We will say that an event E happens almost surely (abbreviated a.s.) (under some

reference probability P ) if it happens with probability 1 under P : P (E) = 1.

2. A stochastic process can be viewed as a function of 2 variables: t and ω. Let

Xt be a stochastic process (the ω variable is usually suppressed when it’s implicitly

understood that Xt also depends on ω). By a path of Xt, we understand it as fixing

an ω and viewing X(·, ω) as a function of t.
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1.3 Some properties of Brownian motion

a. Almost surely, Brownian motion path is continous . That is

P (Wt is continuous in t on [0, T ]) = 1.

b. Almost surely, Brownian motion has nowhere differentiable path. This property

is one of the reasons we need to use Ito Calculus to study integration with respect to

Brownian motion.

c. Let ∆ be a finite partition of t, T ], that is a collection of t = t0 < t1 < t2 <

· · · < tn = T . Then for all partition ∆ of [t, T ] we have

E
∑
i

(Wti+1
−Wti)

2 = T − t.

We say the quadratic variation of Brownian motion on the interval [t, T ] is T − t.
This is also one important feature of Brownian motion that leads to Ito Calculus.

Proof: See homework.

1.4 Integrating with respect to Brownian motion

As you have seen in the previous note, the underlying asset in continuous time has

the structure

St =

∫ t

0

α(u)du +

∫ t

0

σ(u)dWu.

Thus we need to make sense out of the term
∫ t

0
σ(u)dWu. Naively, one can define

it like this: let ∆ be a partition of [0, t]. By ‖∆‖ we mean the mesh of this partition:

maxi |ti+1 − ti|. Then following the Riemann integration technique, we can define∫ t

0

σ(u)dWu := lim
‖∆‖→0

∑
i

σ(ti)(Wti+1
−Wti).

There are several issues that need to be considered.

1. In what sense do we understand the convergence in the RHS (if it’s convergent

at all)? The reason is both the LHS and the RHS are still functions of ω. So the most

straightforward (!) way is to require the RHS to converge for all ω (or a.s.). This

won’t happen, because of the irregularity of BM. It turns out that we need to settle

for some type of convergence on average (that is, when we average - take expectation
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of the square - in ω, we see that the RHS converges). More specifically, we say Xn

converges to Y in mean square if as n→∞

E[(Xn − Y )2]→ 0.

In this way, there exists a RV, we call it
∫ T

0
σ(u)dWu so that

∑
i σ(ti)(Wti+1

−Wti)

converges to
∫ T

0
σ(u)dWu as ‖∆‖ → 0. This way of interpreting the convergence of

the RHS is the first feature of Ito’s integral.

2. Notice that the integrand σ is sampled at the left hand point of the partition: ti.

Recall that in Riemann integration, where you sample the integrand on the interval

does not affect the value of the integral (you can use right hand, left hand or mid

point). In integrating with respect to BM, it turns out that which sample point we

use matters.

3. The choice of the left hand point is referred to as the Ito integral, which we use

in math finance because of its connection to non-anticipating portfolio. The choice

of the trapezoidal rule (using 1
2
(σ(ti+1) + σ(ti))) is referred to as the Stratonovich

integral, and more popular among the physicists and engineers because of its closer

connection to classical calculus and a “more natural” interpretation of convergence.

( “More natural here means if we approximate the Brownian path with path of nicer

poperty - say piecewise smooth - then the integrals against these paths converge to

the Stratonovich integral.)

Example 1.2. Let ∆ be a partition of [0, t]. Then∑
i

2Wti(Wti+1
−Wti)

converges to W 2
t − t in mean square as ‖∆‖ → 0 while

2
∑
i

1

2
(Wti+1

+Wti)(Wti+1
−Wti)

converges to W 2
t in mean square as ‖∆‖ → 0.

Proof:

We show the first limit. The second is left as a homework exercise.

The key to proving the first limit is the identity

2Wti(Wti+1
−Wti) = W 2

ti+1
−W 2

ti
− (Wti+1

−Wti)
2.
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Thus ∑
i

2Wti(Wti+1
−Wti) =

∑
i

W 2
ti+1
−W 2

ti
−
∑
i

(Wti+1
−Wti)

2

= W 2
t −

∑
i

(Wti+1
−Wti)

2.

We will not show the details, but it can be showed without much difficulty that∑
i

(Wti+1
−Wti)

2

converges to t in mean square (The proof is left as a homework exercise). Just keep

in mind that it is not the same as showing

E(
∑
i

(Wti+1
−Wti)

2)→ t,

which is a simpler calculation and indeed true for every partition ∆. What we need

to show is

E
{[∑

i

(Wti+1
−Wti)

2 − t
]2}
→ 0,

as ‖∆‖ → 0.

1.5 Some properties of the Ito integrals

1. With probability 1, Xt =
∫ t

0
α(u)dWu is nowhere differentiable in t.

2.

E
{∫ t

0

α(u)dWu

}
= 0.

E
{[ ∫ t

0

α(u)dWu

]2}
=

∫ t

0

E(α(u)2)du.

3. If α(u) is deterministic, then
∫ t

0
αudu has N(0,

∫ t

0
α(u)2du) distribution.

Example 1.3.
∫ t

0
udWu has N(0, t3

3
) distribution.
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Example 1.4. W 2
t − t =

∫ t

0
2WudWu does NOT have a Normal distribution, because

the integrand, 2Wu, is NOT deterministic.

We can still compute

E(W 2
t − t) = t− t = 0,

which is consistent with

E(

∫ t

0

2WudWu) = 0.

Computing E((W 2
t − t)2) = E(W 4

t − 2tW 2
t + t2) involves computing the fourth

moment of a Normal distribution (we’ll learn how to do that later with Ito’s formula).

There’s an easier way to do it by computing the RHS:

E
{[ ∫ t

0

2WudWu

]2}
=

∫ t

0

4E(Wu)2du =

∫ t

0

4udu = 2t2.

Thus we can deduce that

E(W 4
t ) = 2t2 − t2 + 2tE(W 2

t ) = 3t2.

1.6 Ito integral versus Riemann integral

The convergence ∑
i

2Wti(Wti+1
−Wti)

to W 2
t − t in mean square means that∫ t

0

2WudWu = W 2
t − t.

Now suppose we have a process x(t) that is differentiable in t with x(0) = 0, so

that we can write

dx(t) = ẋ(t)dt,

where ẋ(t) is the derivative of x(t) wrt to t. (The above is just another way to

write dx(t)
dt

= ẋ(t). Then we have, by the chain rule,∫ t

0

2x(u)dx(u) =

∫ t

0

2x(u)ẋ(u)du = x2(t)− x2(0) = x2(t).

Thus Ito integral has a “correction” term versus its Riemannian counter part, in

this case the −t in the Ito integral. This can be thought of also as a consequence of

the non-differentiability of the BM, so Ito integral cannot be done in the Riemannian

way to begin with (the Ẇ (t) = dW (t)
dt

does not exist).
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1.7 Ito process and differential form

Let α(t, ω) and σ(t, ω) be nice enough process. The discussion above have given the

meaning to the process Xt defined as

Xt = x+

∫ t

0

α(u)du+

∫ t

0

σ(u)dWu,

where the dt term is understood in the Riemannian sense and the dWt term is

understood in the Ito sense. Any process Xt with the above structure is referred to

as an Ito process. Note that we also have X0 = x in the above equation.

It is the convention in stochastic calculus that we write the above equation for Xt

in differential form:

dXt = α(t)dt+ σ(t)dWt,

X0 = 0.

Just keep in mind that the differential form has no more rigorous meaning than

saying:

Xt = x+

∫ t

0

α(u)du+

∫ t

0

σ(u)dWu.

So if this is your first time seeing the differential form, it is good to build the habit

of automatically converting it to the integral form to give it meaning.

1.8 Explicit formula for Ito’s integral

You may wonder if we have explicit formula for Ito integral calculation, like the

example
∫ t

0
WudWu. The answer is yes, for certain types of integrand, essentially

like the classical calculus. Of course we do not want to go through the definition

to learn what the answer is. Recall that we “compute” the integral in the classical

case by guessing the anti-derivative, then prove that it is the true anti-derivative by

differentiating this candidate.

The idea for the Ito integral is the same, except that we have the correction

term, so it’s not easy to guess precisely what the “anti-derivative” is - but we can

get close. For example in
∫ t

0
2WudWu it is natural to guess it is W 2

t . The next

step is to “differentiate” the candidate and find out what the correction term should

be. However, we do not know what differentiation in the Ito’s context means yet.

It cannot be done like the classical derivative, because one can also show that the
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process Zt =
∫ t

0
σ(u)dWu is nowhere differentiable in t. The Ito’s formula gives the

us the meaning in “differentiating” in this case, as well as rules to “differentiate”

correctly with the right correction term.

2 Ito formula

2.1 Another perspective of differentiation

Let f(t) be a deterministic function of t. What do we mean by the derivative of f

wrt t: f ′(t) ? We can either use the classical definition, via the limit of the difference

quotion, or we can define it as a function such that for all s < t

f(t)− f(s) =

∫ t

s

f ′(u)du.

The only issue is such definition of f ′(t) needs to be unique (there might possibly

be two different functions f ′(t) that would satisfy the above equation). As you may

have expected from classical calculus, it turns out there is only one f ′(t) that satisfies

the above equation.

In this way, one can develop classical calculus with the notion of the integral first,

and define the derivative this way (which is the approach of the Lebesgue integral

and the derivative associated with it).

As far as we’re concerned, we’ve followed exactly this program with the Ito’s

integral. We developed what it means to have an Ito’s integral, and now we ask

what it means to differentiate in t. If you take the above definition as guidance, then

we’ve already known the answer: the “derivative” of a stochastic process is dXt. This

statement contains nothing deep, it simply says:

Xt =

∫ t

0

dXu,

which is true by partitioning the interval [0, t] and check it the Riemannian way.

However, if Xt is an Ito process then we have something more to say: if

Xt = x+

∫ t

0

α(u)du+

∫ t

0

σ(u)dWu,

then

dXt = α(t)dt+ σ(t)dWt.
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Note that if we divide both sides of the differential form with dt (a VERY formal

operation, not to be taken in any rigorous sense) we have

dXt

dt
= α(t) + σ(t)

dWt

dt
,

which is exactly the differentiation with respect to t that we have in mind. The

problem, of course is the term dWt
dt

does not exist, so we have to use the differential

form, and interpret the two types of integrals in two different sense.

So it turns out that differentiation in Ito sense is not that exciting (there is not

much we can say). Yet there are still questions worth asking: if

dXt = α(t)dt+ σ(t)dWt,

what can we say about dX2
t , or better, df(Xt) for a smooth function of f(Xt)?

Asking this question is equivalent to formulating the chain rule in the classical case.

Since if we have a differentiable function x(t) in t, we have

df(x(t)) = f ′(x(t))ẋ(t)dt.

In the case that X(t) is an Ito process, X(t) is not differentiable in t. Thus the

above formula does not work. The chain rule for a function of an Ito process, i.e. to

figure out df(Xt) when Xt is an Ito proess, is referred to as the Ito’s formula.

2.2 The Ito’s formula

Theorem 2.1. Let Xt be a Ito process:

dXt = α(t)dt+ σ(t)dWt.

Let f(t, x) be once continously differentiable in t, twice continuously differentiable in

x (abbreviated as C1,2). Then

df(t,Xt) = ft(t,Xt)dt+ fx(t,Xt)dXt +
1

2
fxx(t,Xt)σ

2(t)dt

= [ft(t,Xt) + fx(t,Xt)α(t) +
1

2
σ2(t)fxx(t,Xt)]dt+ fx(t,Xt)σ(t)dWt.

Remark: If we understood that the formula should be evaluated at (t,Xt) we can

neglect the arguments and write the Ito’s formula in a somewhat cleaner form:

df(t,Xt) = ftdt+ fxdXt +
1

2
fxxσ

2
t dt

= [ft + fxαt +
1

2
σtfxx]dt+ fxσtdWt.
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Example 2.2. Apply Ito’s formula to W 2
t :

dW 2
t = 2WtdWt + dt

That is

W 2
t −W 2

0 =

∫ t

0

2WudWu + t.

Or ∫ t

0

2WudWu = W 2
t − t,

recovering the formula we developed above.

Example 2.3. Apply Ito’s formula to tW 2
t :

d(tW 2
t ) = W 2

t dt+ 2tWtdWt + tdt.

That is

tW 2
t =

∫ t

0

W 2
udu+

∫ t

0

2uWudWu +

∫ t

0

udu.

Or

tW 2
t −

t2

2
=

∫ t

0

W 2
udu+

∫ t

0

2uWudWu.

This is an example of the integration by parts formula in the Ito’s context:∫ t

0

W 2
udu = tW 2

t −
∫ t

0

ud(W 2
u )

= tW 2
t −

∫ t

0

2udWu −
∫ t

0

udu.

2.3 Intuition of the Ito’s formula

We won’t give a rigorous proof of the Ito’s formula. We’ll only list here the steps

to help you understand why such formula is intuitively correct. We’ll do this by

considering different forms of f(t,Xt). Note that intuitively

df(t,Xt) ≈ ∆f(t,Xt) = f(t+ h,Xt+h)− f(t,Xt),

for very small h. The key to Ito’s formula is the second order Taylor expansion.

Indeed Ito’s formula can be looked at as Taylor’s expansion with the dWt term.
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2.3.1 f(t,Xt) = f(Wt)

Apply Taylor’s expansion

f(Wt+h)− f(Wt) = f ′(Wt)(Wt+h −Wt) +
1

2
f ′′(Wt+ε)(Wt+h −Wt)

2,

for some 0 ≤ ε ≤ h.

Therefore, if ∆ is a partition of [0, t] such that ‖∆‖ ≤ h, we have

f(Wt)− f(W0) =
∑
i

f(Wti+1
)− f(Wti)

=
∑
i

f ′(Wti)(Wti+h −Wti) +
1

2
f ′′(Wti+ε)(Wti+h −Wti)

2

Let ‖∆‖ → 0, you’ll see that

∑
i

f ′(Wti)(Wti+h −Wti)→
∫ t

0

f(Wu)dWu,

in mean square.

We have discussed how
∑

i(Wti+h −Wti)
2 → t in mean square as ‖∆‖ → 0. In a

similar manner, you can believe that∑
i

f ′′(Wti+ε)(Wti+h −Wti)
2 →

∫ t

0

f ′′(Wt)dt,

in mean square. That is, we have showed

f(Wt)− f(W0) =

∫ t

0

f ′(Wu)dWu +
1

2

∫ t

0

f ′′(Wu)du.

2.3.2 f(t,Xt) = f(t,Wt)

This case is very similar to the above, except the Taylor’s expansion becomes

f(t+ h,Wt+h)− f(t,Wt) = ft(t,Wt)(t+ h− h) + fx(t,Wt)(Wt+h −Wt)

+
1

2
fxx(t,Wt)(Wt+h −Wt)

2 + ftx(t,Wt)h(Wt+h −Wt)

+ higher order term

where by higher order term we mean terms of order hk(Wt+h−Wt)
j such that j+k ≥ 3.
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Apply the partition of [0, t] as before, and note that∑
i

ft(ti,Wti)h →
∫ t

0

f(u,Wu)du,

∑
i

fx(ti,Wti)(Wti+h −Wti) →
∫ t

0

fx(Wu)dWu,

∑
i

fxx(ti,Wti)(Wti+h −Wti)
2 →

∫ t

0

fxx(Wt)dt,∑
i

higher order term → 0

in mean square as before. The only point to note is that the term∑
i

ftx(ti,Wti)(Wti+h −Wti)h → 0

as h→ 0.

The heuristic reason is this: since
∑

i(Wti+h−Wti)
2 → t in mean square, you can

believe that Wti+h−Wti“→ ”
√
h for small h. (This is not to be taken in any rigorous

way). Thus, if ftx is bounded by a constant C:∣∣∣∑
i

ftx(ti,Wti)(Wti+h −Wti)h
∣∣∣ ≤ C

∑
i

h3/2 ≤ C
T

h
h3/2 → 0,

as h→ 0.

The above gives the following informal rule about product of differentials when

we deal with Taylor expansion involving dWt.

2.3.3 Informal rule for product of differentials

We have

(dt)2 = 0;

dtdWt = 0;

(dWt)
2 = dt.

More rigorously, the above means, for a partition ∆ of [0, T ] and bounded f∑
i

f(ti)(ti+1 − ti)2 → 0;∑
i

f(ti)(ti+1 − ti)(Wti+1
−Wti) → 0;

∑
i

f(ti)(Wti+1
−Wti)

2 →
∫ t

0

f(s)ds
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in mean square as ‖∆‖ → 0.

With these informal rule, we can give an intuition about the Ito’s formula for the

general case that Xt is an Ito process.

2.3.4 f(t,Xt), Xt an Ito process

By Taylor’s expansion

f(t+ h,Xt+h)− f(t,Xt) = ft(t,Xt)(t+ h− t) + fx(t,Wt)(Xt+h −Xt)

+
1

2
fxx(t,Xt)(Xt+h −Xt)

2 + ftx(t,Xt)h(Xt+h −Xt)

+ higher order term

Note that

Xt+h −Xt ≈ α(t)h+ σ(t)(Wt+h −Wt).

Rewriting the Taylor’s expansion, replacing the difference term with differential

term we have

df(t,Xt) = ftdt+ fxdXt +
1

2
fxx(α2

t (dt)
2

+ σ2
t (dWt)2 + 2αtσtdtdWt) + ftxdt(αtdt+ σtdWt).

Applying the informal rule of product of differentials, we get

df(t,Xt) = ftdt+ fxdXt +
1

2
fxxσ

2
t dt,

which is exactly the Ito’s formula.

2.4 An application of Ito’s formula

Ito’s formula is fundamental in stochastic analysis as it provides the equivalence of

the chain rule in this context. It also provides a nice tool for some computations, for

example, the moments of a Normal RV as followed.

Example 2.4. Let X have Normal(0, σ2) distribution. Compute E(X4).

Ans: If we were to apply the usual formula

E(X4) =

∫ ∞
−∞

x4fX(x)dx,
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where fX(x) is the density of the Normal (0, σ2) it would be a tedious calculation.

Instead, let’s compute E(W 4
t ) where Wt is a BM. If we can do this, then

E(X4) = σ4E(Z4) =
σ4

t2
E(W 4

t ),

where Z is a standard Normal.

Now apply Ito’s formula to W 4
t we have

W 4
t = W 4

0 +

∫ t

0

4W 3
s dWs +

∫ t

0

6W 2
s ds.

The key is the expectation of
∫ t

0
4W 3

s dWs is 0. Thus taking expectation on both

sides, we get

E(W 4
t ) = 6

∫ t

0

E(Ws)
2ds = 6

∫ t

0

s2ds = 3t2.

Therefore E(X4) = 3σ4.

Remark: It is clear that E(X2k+1), k an integer is always 0. So we’re only inter-

ested in computing the even moments of X. And for that purpose, we can just focus

on computing the even moment of Wt using the conversion trick described above.

Example 2.5. Compute E(W 2k
t ).

Ans: Apply Ito’s formula to W 2k
t :

W 2k
t = W 2k

0 +

∫ t

0

2kW 2k−1
s dWs +

∫ t

0

k(2k − 1)W 2k−2
s ds.

Taking expectations on both sides give

E(W 2k
t ) =

∫ t

0

k(2k − 1)E(W 2k−2
s )ds.

This provides a recursion formula to compute the even moments of Wt. For

example, for k = 3

E(W 6
t ) =

∫ t

0

3 · 5 · 3s2ds

= 5 · 3t3.

With this, we can compute for the case k = 4 for E(W 8
t ). In fact, it is not hard

to guess that

E(W 8
t ) = 7 · 5 · 3t4,
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and in general

E(W 2k
t ) = (2k − 1)!!tk,

where

(2k − 1)!! = (2k − 1)(2k − 3) · · · 3 · 1.
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